xref: /openbmc/linux/fs/super.c (revision a1b2f04ea527397fcacacd09e0d690927feef429)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/super.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  super.c contains code to handle: - mount structures
8  *                                   - super-block tables
9  *                                   - filesystem drivers list
10  *                                   - mount system call
11  *                                   - umount system call
12  *                                   - ustat system call
13  *
14  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
15  *
16  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18  *  Added options to /proc/mounts:
19  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22  */
23 
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include <linux/fs_context.h>
39 #include <uapi/linux/mount.h>
40 #include "internal.h"
41 
42 static int thaw_super_locked(struct super_block *sb);
43 
44 static LIST_HEAD(super_blocks);
45 static DEFINE_SPINLOCK(sb_lock);
46 
47 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
48 	"sb_writers",
49 	"sb_pagefaults",
50 	"sb_internal",
51 };
52 
53 /*
54  * One thing we have to be careful of with a per-sb shrinker is that we don't
55  * drop the last active reference to the superblock from within the shrinker.
56  * If that happens we could trigger unregistering the shrinker from within the
57  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
58  * take a passive reference to the superblock to avoid this from occurring.
59  */
60 static unsigned long super_cache_scan(struct shrinker *shrink,
61 				      struct shrink_control *sc)
62 {
63 	struct super_block *sb;
64 	long	fs_objects = 0;
65 	long	total_objects;
66 	long	freed = 0;
67 	long	dentries;
68 	long	inodes;
69 
70 	sb = container_of(shrink, struct super_block, s_shrink);
71 
72 	/*
73 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
74 	 * to recurse into the FS that called us in clear_inode() and friends..
75 	 */
76 	if (!(sc->gfp_mask & __GFP_FS))
77 		return SHRINK_STOP;
78 
79 	if (!trylock_super(sb))
80 		return SHRINK_STOP;
81 
82 	if (sb->s_op->nr_cached_objects)
83 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
84 
85 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
86 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
87 	total_objects = dentries + inodes + fs_objects + 1;
88 	if (!total_objects)
89 		total_objects = 1;
90 
91 	/* proportion the scan between the caches */
92 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
93 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
94 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
95 
96 	/*
97 	 * prune the dcache first as the icache is pinned by it, then
98 	 * prune the icache, followed by the filesystem specific caches
99 	 *
100 	 * Ensure that we always scan at least one object - memcg kmem
101 	 * accounting uses this to fully empty the caches.
102 	 */
103 	sc->nr_to_scan = dentries + 1;
104 	freed = prune_dcache_sb(sb, sc);
105 	sc->nr_to_scan = inodes + 1;
106 	freed += prune_icache_sb(sb, sc);
107 
108 	if (fs_objects) {
109 		sc->nr_to_scan = fs_objects + 1;
110 		freed += sb->s_op->free_cached_objects(sb, sc);
111 	}
112 
113 	up_read(&sb->s_umount);
114 	return freed;
115 }
116 
117 static unsigned long super_cache_count(struct shrinker *shrink,
118 				       struct shrink_control *sc)
119 {
120 	struct super_block *sb;
121 	long	total_objects = 0;
122 
123 	sb = container_of(shrink, struct super_block, s_shrink);
124 
125 	/*
126 	 * We don't call trylock_super() here as it is a scalability bottleneck,
127 	 * so we're exposed to partial setup state. The shrinker rwsem does not
128 	 * protect filesystem operations backing list_lru_shrink_count() or
129 	 * s_op->nr_cached_objects(). Counts can change between
130 	 * super_cache_count and super_cache_scan, so we really don't need locks
131 	 * here.
132 	 *
133 	 * However, if we are currently mounting the superblock, the underlying
134 	 * filesystem might be in a state of partial construction and hence it
135 	 * is dangerous to access it.  trylock_super() uses a SB_BORN check to
136 	 * avoid this situation, so do the same here. The memory barrier is
137 	 * matched with the one in mount_fs() as we don't hold locks here.
138 	 */
139 	if (!(sb->s_flags & SB_BORN))
140 		return 0;
141 	smp_rmb();
142 
143 	if (sb->s_op && sb->s_op->nr_cached_objects)
144 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
145 
146 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
147 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
148 
149 	if (!total_objects)
150 		return SHRINK_EMPTY;
151 
152 	total_objects = vfs_pressure_ratio(total_objects);
153 	return total_objects;
154 }
155 
156 static void destroy_super_work(struct work_struct *work)
157 {
158 	struct super_block *s = container_of(work, struct super_block,
159 							destroy_work);
160 	int i;
161 
162 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
163 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
164 	kfree(s);
165 }
166 
167 static void destroy_super_rcu(struct rcu_head *head)
168 {
169 	struct super_block *s = container_of(head, struct super_block, rcu);
170 	INIT_WORK(&s->destroy_work, destroy_super_work);
171 	schedule_work(&s->destroy_work);
172 }
173 
174 /* Free a superblock that has never been seen by anyone */
175 static void destroy_unused_super(struct super_block *s)
176 {
177 	if (!s)
178 		return;
179 	up_write(&s->s_umount);
180 	list_lru_destroy(&s->s_dentry_lru);
181 	list_lru_destroy(&s->s_inode_lru);
182 	security_sb_free(s);
183 	put_user_ns(s->s_user_ns);
184 	kfree(s->s_subtype);
185 	free_prealloced_shrinker(&s->s_shrink);
186 	/* no delays needed */
187 	destroy_super_work(&s->destroy_work);
188 }
189 
190 /**
191  *	alloc_super	-	create new superblock
192  *	@type:	filesystem type superblock should belong to
193  *	@flags: the mount flags
194  *	@user_ns: User namespace for the super_block
195  *
196  *	Allocates and initializes a new &struct super_block.  alloc_super()
197  *	returns a pointer new superblock or %NULL if allocation had failed.
198  */
199 static struct super_block *alloc_super(struct file_system_type *type, int flags,
200 				       struct user_namespace *user_ns)
201 {
202 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
203 	static const struct super_operations default_op;
204 	int i;
205 
206 	if (!s)
207 		return NULL;
208 
209 	INIT_LIST_HEAD(&s->s_mounts);
210 	s->s_user_ns = get_user_ns(user_ns);
211 	init_rwsem(&s->s_umount);
212 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
213 	/*
214 	 * sget() can have s_umount recursion.
215 	 *
216 	 * When it cannot find a suitable sb, it allocates a new
217 	 * one (this one), and tries again to find a suitable old
218 	 * one.
219 	 *
220 	 * In case that succeeds, it will acquire the s_umount
221 	 * lock of the old one. Since these are clearly distrinct
222 	 * locks, and this object isn't exposed yet, there's no
223 	 * risk of deadlocks.
224 	 *
225 	 * Annotate this by putting this lock in a different
226 	 * subclass.
227 	 */
228 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
229 
230 	if (security_sb_alloc(s))
231 		goto fail;
232 
233 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
234 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
235 					sb_writers_name[i],
236 					&type->s_writers_key[i]))
237 			goto fail;
238 	}
239 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
240 	s->s_bdi = &noop_backing_dev_info;
241 	s->s_flags = flags;
242 	if (s->s_user_ns != &init_user_ns)
243 		s->s_iflags |= SB_I_NODEV;
244 	INIT_HLIST_NODE(&s->s_instances);
245 	INIT_HLIST_BL_HEAD(&s->s_roots);
246 	mutex_init(&s->s_sync_lock);
247 	INIT_LIST_HEAD(&s->s_inodes);
248 	spin_lock_init(&s->s_inode_list_lock);
249 	INIT_LIST_HEAD(&s->s_inodes_wb);
250 	spin_lock_init(&s->s_inode_wblist_lock);
251 
252 	s->s_count = 1;
253 	atomic_set(&s->s_active, 1);
254 	mutex_init(&s->s_vfs_rename_mutex);
255 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
256 	init_rwsem(&s->s_dquot.dqio_sem);
257 	s->s_maxbytes = MAX_NON_LFS;
258 	s->s_op = &default_op;
259 	s->s_time_gran = 1000000000;
260 	s->cleancache_poolid = CLEANCACHE_NO_POOL;
261 
262 	s->s_shrink.seeks = DEFAULT_SEEKS;
263 	s->s_shrink.scan_objects = super_cache_scan;
264 	s->s_shrink.count_objects = super_cache_count;
265 	s->s_shrink.batch = 1024;
266 	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
267 	if (prealloc_shrinker(&s->s_shrink))
268 		goto fail;
269 	if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
270 		goto fail;
271 	if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
272 		goto fail;
273 	return s;
274 
275 fail:
276 	destroy_unused_super(s);
277 	return NULL;
278 }
279 
280 /* Superblock refcounting  */
281 
282 /*
283  * Drop a superblock's refcount.  The caller must hold sb_lock.
284  */
285 static void __put_super(struct super_block *s)
286 {
287 	if (!--s->s_count) {
288 		list_del_init(&s->s_list);
289 		WARN_ON(s->s_dentry_lru.node);
290 		WARN_ON(s->s_inode_lru.node);
291 		WARN_ON(!list_empty(&s->s_mounts));
292 		security_sb_free(s);
293 		put_user_ns(s->s_user_ns);
294 		kfree(s->s_subtype);
295 		call_rcu(&s->rcu, destroy_super_rcu);
296 	}
297 }
298 
299 /**
300  *	put_super	-	drop a temporary reference to superblock
301  *	@sb: superblock in question
302  *
303  *	Drops a temporary reference, frees superblock if there's no
304  *	references left.
305  */
306 static void put_super(struct super_block *sb)
307 {
308 	spin_lock(&sb_lock);
309 	__put_super(sb);
310 	spin_unlock(&sb_lock);
311 }
312 
313 
314 /**
315  *	deactivate_locked_super	-	drop an active reference to superblock
316  *	@s: superblock to deactivate
317  *
318  *	Drops an active reference to superblock, converting it into a temporary
319  *	one if there is no other active references left.  In that case we
320  *	tell fs driver to shut it down and drop the temporary reference we
321  *	had just acquired.
322  *
323  *	Caller holds exclusive lock on superblock; that lock is released.
324  */
325 void deactivate_locked_super(struct super_block *s)
326 {
327 	struct file_system_type *fs = s->s_type;
328 	if (atomic_dec_and_test(&s->s_active)) {
329 		cleancache_invalidate_fs(s);
330 		unregister_shrinker(&s->s_shrink);
331 		fs->kill_sb(s);
332 
333 		/*
334 		 * Since list_lru_destroy() may sleep, we cannot call it from
335 		 * put_super(), where we hold the sb_lock. Therefore we destroy
336 		 * the lru lists right now.
337 		 */
338 		list_lru_destroy(&s->s_dentry_lru);
339 		list_lru_destroy(&s->s_inode_lru);
340 
341 		put_filesystem(fs);
342 		put_super(s);
343 	} else {
344 		up_write(&s->s_umount);
345 	}
346 }
347 
348 EXPORT_SYMBOL(deactivate_locked_super);
349 
350 /**
351  *	deactivate_super	-	drop an active reference to superblock
352  *	@s: superblock to deactivate
353  *
354  *	Variant of deactivate_locked_super(), except that superblock is *not*
355  *	locked by caller.  If we are going to drop the final active reference,
356  *	lock will be acquired prior to that.
357  */
358 void deactivate_super(struct super_block *s)
359 {
360         if (!atomic_add_unless(&s->s_active, -1, 1)) {
361 		down_write(&s->s_umount);
362 		deactivate_locked_super(s);
363 	}
364 }
365 
366 EXPORT_SYMBOL(deactivate_super);
367 
368 /**
369  *	grab_super - acquire an active reference
370  *	@s: reference we are trying to make active
371  *
372  *	Tries to acquire an active reference.  grab_super() is used when we
373  * 	had just found a superblock in super_blocks or fs_type->fs_supers
374  *	and want to turn it into a full-blown active reference.  grab_super()
375  *	is called with sb_lock held and drops it.  Returns 1 in case of
376  *	success, 0 if we had failed (superblock contents was already dead or
377  *	dying when grab_super() had been called).  Note that this is only
378  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
379  *	of their type), so increment of ->s_count is OK here.
380  */
381 static int grab_super(struct super_block *s) __releases(sb_lock)
382 {
383 	s->s_count++;
384 	spin_unlock(&sb_lock);
385 	down_write(&s->s_umount);
386 	if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
387 		put_super(s);
388 		return 1;
389 	}
390 	up_write(&s->s_umount);
391 	put_super(s);
392 	return 0;
393 }
394 
395 /*
396  *	trylock_super - try to grab ->s_umount shared
397  *	@sb: reference we are trying to grab
398  *
399  *	Try to prevent fs shutdown.  This is used in places where we
400  *	cannot take an active reference but we need to ensure that the
401  *	filesystem is not shut down while we are working on it. It returns
402  *	false if we cannot acquire s_umount or if we lose the race and
403  *	filesystem already got into shutdown, and returns true with the s_umount
404  *	lock held in read mode in case of success. On successful return,
405  *	the caller must drop the s_umount lock when done.
406  *
407  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
408  *	The reason why it's safe is that we are OK with doing trylock instead
409  *	of down_read().  There's a couple of places that are OK with that, but
410  *	it's very much not a general-purpose interface.
411  */
412 bool trylock_super(struct super_block *sb)
413 {
414 	if (down_read_trylock(&sb->s_umount)) {
415 		if (!hlist_unhashed(&sb->s_instances) &&
416 		    sb->s_root && (sb->s_flags & SB_BORN))
417 			return true;
418 		up_read(&sb->s_umount);
419 	}
420 
421 	return false;
422 }
423 
424 /**
425  *	generic_shutdown_super	-	common helper for ->kill_sb()
426  *	@sb: superblock to kill
427  *
428  *	generic_shutdown_super() does all fs-independent work on superblock
429  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
430  *	that need destruction out of superblock, call generic_shutdown_super()
431  *	and release aforementioned objects.  Note: dentries and inodes _are_
432  *	taken care of and do not need specific handling.
433  *
434  *	Upon calling this function, the filesystem may no longer alter or
435  *	rearrange the set of dentries belonging to this super_block, nor may it
436  *	change the attachments of dentries to inodes.
437  */
438 void generic_shutdown_super(struct super_block *sb)
439 {
440 	const struct super_operations *sop = sb->s_op;
441 
442 	if (sb->s_root) {
443 		shrink_dcache_for_umount(sb);
444 		sync_filesystem(sb);
445 		sb->s_flags &= ~SB_ACTIVE;
446 
447 		fsnotify_sb_delete(sb);
448 		cgroup_writeback_umount();
449 
450 		evict_inodes(sb);
451 
452 		if (sb->s_dio_done_wq) {
453 			destroy_workqueue(sb->s_dio_done_wq);
454 			sb->s_dio_done_wq = NULL;
455 		}
456 
457 		if (sop->put_super)
458 			sop->put_super(sb);
459 
460 		if (!list_empty(&sb->s_inodes)) {
461 			printk("VFS: Busy inodes after unmount of %s. "
462 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
463 			   sb->s_id);
464 		}
465 	}
466 	spin_lock(&sb_lock);
467 	/* should be initialized for __put_super_and_need_restart() */
468 	hlist_del_init(&sb->s_instances);
469 	spin_unlock(&sb_lock);
470 	up_write(&sb->s_umount);
471 	if (sb->s_bdi != &noop_backing_dev_info) {
472 		bdi_put(sb->s_bdi);
473 		sb->s_bdi = &noop_backing_dev_info;
474 	}
475 }
476 
477 EXPORT_SYMBOL(generic_shutdown_super);
478 
479 bool mount_capable(struct fs_context *fc)
480 {
481 	struct user_namespace *user_ns = fc->global ? &init_user_ns
482 						    : fc->user_ns;
483 
484 	if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
485 		return capable(CAP_SYS_ADMIN);
486 	else
487 		return ns_capable(user_ns, CAP_SYS_ADMIN);
488 }
489 
490 /**
491  * sget_fc - Find or create a superblock
492  * @fc:	Filesystem context.
493  * @test: Comparison callback
494  * @set: Setup callback
495  *
496  * Find or create a superblock using the parameters stored in the filesystem
497  * context and the two callback functions.
498  *
499  * If an extant superblock is matched, then that will be returned with an
500  * elevated reference count that the caller must transfer or discard.
501  *
502  * If no match is made, a new superblock will be allocated and basic
503  * initialisation will be performed (s_type, s_fs_info and s_id will be set and
504  * the set() callback will be invoked), the superblock will be published and it
505  * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
506  * as yet unset.
507  */
508 struct super_block *sget_fc(struct fs_context *fc,
509 			    int (*test)(struct super_block *, struct fs_context *),
510 			    int (*set)(struct super_block *, struct fs_context *))
511 {
512 	struct super_block *s = NULL;
513 	struct super_block *old;
514 	struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
515 	int err;
516 
517 retry:
518 	spin_lock(&sb_lock);
519 	if (test) {
520 		hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
521 			if (test(old, fc))
522 				goto share_extant_sb;
523 		}
524 	}
525 	if (!s) {
526 		spin_unlock(&sb_lock);
527 		s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
528 		if (!s)
529 			return ERR_PTR(-ENOMEM);
530 		goto retry;
531 	}
532 
533 	s->s_fs_info = fc->s_fs_info;
534 	err = set(s, fc);
535 	if (err) {
536 		s->s_fs_info = NULL;
537 		spin_unlock(&sb_lock);
538 		destroy_unused_super(s);
539 		return ERR_PTR(err);
540 	}
541 	fc->s_fs_info = NULL;
542 	s->s_type = fc->fs_type;
543 	s->s_iflags |= fc->s_iflags;
544 	strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
545 	list_add_tail(&s->s_list, &super_blocks);
546 	hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
547 	spin_unlock(&sb_lock);
548 	get_filesystem(s->s_type);
549 	register_shrinker_prepared(&s->s_shrink);
550 	return s;
551 
552 share_extant_sb:
553 	if (user_ns != old->s_user_ns) {
554 		spin_unlock(&sb_lock);
555 		destroy_unused_super(s);
556 		return ERR_PTR(-EBUSY);
557 	}
558 	if (!grab_super(old))
559 		goto retry;
560 	destroy_unused_super(s);
561 	return old;
562 }
563 EXPORT_SYMBOL(sget_fc);
564 
565 /**
566  *	sget	-	find or create a superblock
567  *	@type:	  filesystem type superblock should belong to
568  *	@test:	  comparison callback
569  *	@set:	  setup callback
570  *	@flags:	  mount flags
571  *	@data:	  argument to each of them
572  */
573 struct super_block *sget(struct file_system_type *type,
574 			int (*test)(struct super_block *,void *),
575 			int (*set)(struct super_block *,void *),
576 			int flags,
577 			void *data)
578 {
579 	struct user_namespace *user_ns = current_user_ns();
580 	struct super_block *s = NULL;
581 	struct super_block *old;
582 	int err;
583 
584 	/* We don't yet pass the user namespace of the parent
585 	 * mount through to here so always use &init_user_ns
586 	 * until that changes.
587 	 */
588 	if (flags & SB_SUBMOUNT)
589 		user_ns = &init_user_ns;
590 
591 retry:
592 	spin_lock(&sb_lock);
593 	if (test) {
594 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
595 			if (!test(old, data))
596 				continue;
597 			if (user_ns != old->s_user_ns) {
598 				spin_unlock(&sb_lock);
599 				destroy_unused_super(s);
600 				return ERR_PTR(-EBUSY);
601 			}
602 			if (!grab_super(old))
603 				goto retry;
604 			destroy_unused_super(s);
605 			return old;
606 		}
607 	}
608 	if (!s) {
609 		spin_unlock(&sb_lock);
610 		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
611 		if (!s)
612 			return ERR_PTR(-ENOMEM);
613 		goto retry;
614 	}
615 
616 	err = set(s, data);
617 	if (err) {
618 		spin_unlock(&sb_lock);
619 		destroy_unused_super(s);
620 		return ERR_PTR(err);
621 	}
622 	s->s_type = type;
623 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
624 	list_add_tail(&s->s_list, &super_blocks);
625 	hlist_add_head(&s->s_instances, &type->fs_supers);
626 	spin_unlock(&sb_lock);
627 	get_filesystem(type);
628 	register_shrinker_prepared(&s->s_shrink);
629 	return s;
630 }
631 EXPORT_SYMBOL(sget);
632 
633 void drop_super(struct super_block *sb)
634 {
635 	up_read(&sb->s_umount);
636 	put_super(sb);
637 }
638 
639 EXPORT_SYMBOL(drop_super);
640 
641 void drop_super_exclusive(struct super_block *sb)
642 {
643 	up_write(&sb->s_umount);
644 	put_super(sb);
645 }
646 EXPORT_SYMBOL(drop_super_exclusive);
647 
648 static void __iterate_supers(void (*f)(struct super_block *))
649 {
650 	struct super_block *sb, *p = NULL;
651 
652 	spin_lock(&sb_lock);
653 	list_for_each_entry(sb, &super_blocks, s_list) {
654 		if (hlist_unhashed(&sb->s_instances))
655 			continue;
656 		sb->s_count++;
657 		spin_unlock(&sb_lock);
658 
659 		f(sb);
660 
661 		spin_lock(&sb_lock);
662 		if (p)
663 			__put_super(p);
664 		p = sb;
665 	}
666 	if (p)
667 		__put_super(p);
668 	spin_unlock(&sb_lock);
669 }
670 /**
671  *	iterate_supers - call function for all active superblocks
672  *	@f: function to call
673  *	@arg: argument to pass to it
674  *
675  *	Scans the superblock list and calls given function, passing it
676  *	locked superblock and given argument.
677  */
678 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
679 {
680 	struct super_block *sb, *p = NULL;
681 
682 	spin_lock(&sb_lock);
683 	list_for_each_entry(sb, &super_blocks, s_list) {
684 		if (hlist_unhashed(&sb->s_instances))
685 			continue;
686 		sb->s_count++;
687 		spin_unlock(&sb_lock);
688 
689 		down_read(&sb->s_umount);
690 		if (sb->s_root && (sb->s_flags & SB_BORN))
691 			f(sb, arg);
692 		up_read(&sb->s_umount);
693 
694 		spin_lock(&sb_lock);
695 		if (p)
696 			__put_super(p);
697 		p = sb;
698 	}
699 	if (p)
700 		__put_super(p);
701 	spin_unlock(&sb_lock);
702 }
703 
704 /**
705  *	iterate_supers_type - call function for superblocks of given type
706  *	@type: fs type
707  *	@f: function to call
708  *	@arg: argument to pass to it
709  *
710  *	Scans the superblock list and calls given function, passing it
711  *	locked superblock and given argument.
712  */
713 void iterate_supers_type(struct file_system_type *type,
714 	void (*f)(struct super_block *, void *), void *arg)
715 {
716 	struct super_block *sb, *p = NULL;
717 
718 	spin_lock(&sb_lock);
719 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
720 		sb->s_count++;
721 		spin_unlock(&sb_lock);
722 
723 		down_read(&sb->s_umount);
724 		if (sb->s_root && (sb->s_flags & SB_BORN))
725 			f(sb, arg);
726 		up_read(&sb->s_umount);
727 
728 		spin_lock(&sb_lock);
729 		if (p)
730 			__put_super(p);
731 		p = sb;
732 	}
733 	if (p)
734 		__put_super(p);
735 	spin_unlock(&sb_lock);
736 }
737 
738 EXPORT_SYMBOL(iterate_supers_type);
739 
740 static struct super_block *__get_super(struct block_device *bdev, bool excl)
741 {
742 	struct super_block *sb;
743 
744 	if (!bdev)
745 		return NULL;
746 
747 	spin_lock(&sb_lock);
748 rescan:
749 	list_for_each_entry(sb, &super_blocks, s_list) {
750 		if (hlist_unhashed(&sb->s_instances))
751 			continue;
752 		if (sb->s_bdev == bdev) {
753 			sb->s_count++;
754 			spin_unlock(&sb_lock);
755 			if (!excl)
756 				down_read(&sb->s_umount);
757 			else
758 				down_write(&sb->s_umount);
759 			/* still alive? */
760 			if (sb->s_root && (sb->s_flags & SB_BORN))
761 				return sb;
762 			if (!excl)
763 				up_read(&sb->s_umount);
764 			else
765 				up_write(&sb->s_umount);
766 			/* nope, got unmounted */
767 			spin_lock(&sb_lock);
768 			__put_super(sb);
769 			goto rescan;
770 		}
771 	}
772 	spin_unlock(&sb_lock);
773 	return NULL;
774 }
775 
776 /**
777  *	get_super - get the superblock of a device
778  *	@bdev: device to get the superblock for
779  *
780  *	Scans the superblock list and finds the superblock of the file system
781  *	mounted on the device given. %NULL is returned if no match is found.
782  */
783 struct super_block *get_super(struct block_device *bdev)
784 {
785 	return __get_super(bdev, false);
786 }
787 EXPORT_SYMBOL(get_super);
788 
789 static struct super_block *__get_super_thawed(struct block_device *bdev,
790 					      bool excl)
791 {
792 	while (1) {
793 		struct super_block *s = __get_super(bdev, excl);
794 		if (!s || s->s_writers.frozen == SB_UNFROZEN)
795 			return s;
796 		if (!excl)
797 			up_read(&s->s_umount);
798 		else
799 			up_write(&s->s_umount);
800 		wait_event(s->s_writers.wait_unfrozen,
801 			   s->s_writers.frozen == SB_UNFROZEN);
802 		put_super(s);
803 	}
804 }
805 
806 /**
807  *	get_super_thawed - get thawed superblock of a device
808  *	@bdev: device to get the superblock for
809  *
810  *	Scans the superblock list and finds the superblock of the file system
811  *	mounted on the device. The superblock is returned once it is thawed
812  *	(or immediately if it was not frozen). %NULL is returned if no match
813  *	is found.
814  */
815 struct super_block *get_super_thawed(struct block_device *bdev)
816 {
817 	return __get_super_thawed(bdev, false);
818 }
819 EXPORT_SYMBOL(get_super_thawed);
820 
821 /**
822  *	get_super_exclusive_thawed - get thawed superblock of a device
823  *	@bdev: device to get the superblock for
824  *
825  *	Scans the superblock list and finds the superblock of the file system
826  *	mounted on the device. The superblock is returned once it is thawed
827  *	(or immediately if it was not frozen) and s_umount semaphore is held
828  *	in exclusive mode. %NULL is returned if no match is found.
829  */
830 struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
831 {
832 	return __get_super_thawed(bdev, true);
833 }
834 EXPORT_SYMBOL(get_super_exclusive_thawed);
835 
836 /**
837  * get_active_super - get an active reference to the superblock of a device
838  * @bdev: device to get the superblock for
839  *
840  * Scans the superblock list and finds the superblock of the file system
841  * mounted on the device given.  Returns the superblock with an active
842  * reference or %NULL if none was found.
843  */
844 struct super_block *get_active_super(struct block_device *bdev)
845 {
846 	struct super_block *sb;
847 
848 	if (!bdev)
849 		return NULL;
850 
851 restart:
852 	spin_lock(&sb_lock);
853 	list_for_each_entry(sb, &super_blocks, s_list) {
854 		if (hlist_unhashed(&sb->s_instances))
855 			continue;
856 		if (sb->s_bdev == bdev) {
857 			if (!grab_super(sb))
858 				goto restart;
859 			up_write(&sb->s_umount);
860 			return sb;
861 		}
862 	}
863 	spin_unlock(&sb_lock);
864 	return NULL;
865 }
866 
867 struct super_block *user_get_super(dev_t dev)
868 {
869 	struct super_block *sb;
870 
871 	spin_lock(&sb_lock);
872 rescan:
873 	list_for_each_entry(sb, &super_blocks, s_list) {
874 		if (hlist_unhashed(&sb->s_instances))
875 			continue;
876 		if (sb->s_dev ==  dev) {
877 			sb->s_count++;
878 			spin_unlock(&sb_lock);
879 			down_read(&sb->s_umount);
880 			/* still alive? */
881 			if (sb->s_root && (sb->s_flags & SB_BORN))
882 				return sb;
883 			up_read(&sb->s_umount);
884 			/* nope, got unmounted */
885 			spin_lock(&sb_lock);
886 			__put_super(sb);
887 			goto rescan;
888 		}
889 	}
890 	spin_unlock(&sb_lock);
891 	return NULL;
892 }
893 
894 /**
895  * reconfigure_super - asks filesystem to change superblock parameters
896  * @fc: The superblock and configuration
897  *
898  * Alters the configuration parameters of a live superblock.
899  */
900 int reconfigure_super(struct fs_context *fc)
901 {
902 	struct super_block *sb = fc->root->d_sb;
903 	int retval;
904 	bool remount_ro = false;
905 	bool force = fc->sb_flags & SB_FORCE;
906 
907 	if (fc->sb_flags_mask & ~MS_RMT_MASK)
908 		return -EINVAL;
909 	if (sb->s_writers.frozen != SB_UNFROZEN)
910 		return -EBUSY;
911 
912 	retval = security_sb_remount(sb, fc->security);
913 	if (retval)
914 		return retval;
915 
916 	if (fc->sb_flags_mask & SB_RDONLY) {
917 #ifdef CONFIG_BLOCK
918 		if (!(fc->sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
919 			return -EACCES;
920 #endif
921 
922 		remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
923 	}
924 
925 	if (remount_ro) {
926 		if (!hlist_empty(&sb->s_pins)) {
927 			up_write(&sb->s_umount);
928 			group_pin_kill(&sb->s_pins);
929 			down_write(&sb->s_umount);
930 			if (!sb->s_root)
931 				return 0;
932 			if (sb->s_writers.frozen != SB_UNFROZEN)
933 				return -EBUSY;
934 			remount_ro = !sb_rdonly(sb);
935 		}
936 	}
937 	shrink_dcache_sb(sb);
938 
939 	/* If we are reconfiguring to RDONLY and current sb is read/write,
940 	 * make sure there are no files open for writing.
941 	 */
942 	if (remount_ro) {
943 		if (force) {
944 			sb->s_readonly_remount = 1;
945 			smp_wmb();
946 		} else {
947 			retval = sb_prepare_remount_readonly(sb);
948 			if (retval)
949 				return retval;
950 		}
951 	}
952 
953 	if (fc->ops->reconfigure) {
954 		retval = fc->ops->reconfigure(fc);
955 		if (retval) {
956 			if (!force)
957 				goto cancel_readonly;
958 			/* If forced remount, go ahead despite any errors */
959 			WARN(1, "forced remount of a %s fs returned %i\n",
960 			     sb->s_type->name, retval);
961 		}
962 	}
963 
964 	WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
965 				 (fc->sb_flags & fc->sb_flags_mask)));
966 	/* Needs to be ordered wrt mnt_is_readonly() */
967 	smp_wmb();
968 	sb->s_readonly_remount = 0;
969 
970 	/*
971 	 * Some filesystems modify their metadata via some other path than the
972 	 * bdev buffer cache (eg. use a private mapping, or directories in
973 	 * pagecache, etc). Also file data modifications go via their own
974 	 * mappings. So If we try to mount readonly then copy the filesystem
975 	 * from bdev, we could get stale data, so invalidate it to give a best
976 	 * effort at coherency.
977 	 */
978 	if (remount_ro && sb->s_bdev)
979 		invalidate_bdev(sb->s_bdev);
980 	return 0;
981 
982 cancel_readonly:
983 	sb->s_readonly_remount = 0;
984 	return retval;
985 }
986 
987 static void do_emergency_remount_callback(struct super_block *sb)
988 {
989 	down_write(&sb->s_umount);
990 	if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
991 	    !sb_rdonly(sb)) {
992 		struct fs_context *fc;
993 
994 		fc = fs_context_for_reconfigure(sb->s_root,
995 					SB_RDONLY | SB_FORCE, SB_RDONLY);
996 		if (!IS_ERR(fc)) {
997 			if (parse_monolithic_mount_data(fc, NULL) == 0)
998 				(void)reconfigure_super(fc);
999 			put_fs_context(fc);
1000 		}
1001 	}
1002 	up_write(&sb->s_umount);
1003 }
1004 
1005 static void do_emergency_remount(struct work_struct *work)
1006 {
1007 	__iterate_supers(do_emergency_remount_callback);
1008 	kfree(work);
1009 	printk("Emergency Remount complete\n");
1010 }
1011 
1012 void emergency_remount(void)
1013 {
1014 	struct work_struct *work;
1015 
1016 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1017 	if (work) {
1018 		INIT_WORK(work, do_emergency_remount);
1019 		schedule_work(work);
1020 	}
1021 }
1022 
1023 static void do_thaw_all_callback(struct super_block *sb)
1024 {
1025 	down_write(&sb->s_umount);
1026 	if (sb->s_root && sb->s_flags & SB_BORN) {
1027 		emergency_thaw_bdev(sb);
1028 		thaw_super_locked(sb);
1029 	} else {
1030 		up_write(&sb->s_umount);
1031 	}
1032 }
1033 
1034 static void do_thaw_all(struct work_struct *work)
1035 {
1036 	__iterate_supers(do_thaw_all_callback);
1037 	kfree(work);
1038 	printk(KERN_WARNING "Emergency Thaw complete\n");
1039 }
1040 
1041 /**
1042  * emergency_thaw_all -- forcibly thaw every frozen filesystem
1043  *
1044  * Used for emergency unfreeze of all filesystems via SysRq
1045  */
1046 void emergency_thaw_all(void)
1047 {
1048 	struct work_struct *work;
1049 
1050 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1051 	if (work) {
1052 		INIT_WORK(work, do_thaw_all);
1053 		schedule_work(work);
1054 	}
1055 }
1056 
1057 static DEFINE_IDA(unnamed_dev_ida);
1058 
1059 /**
1060  * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1061  * @p: Pointer to a dev_t.
1062  *
1063  * Filesystems which don't use real block devices can call this function
1064  * to allocate a virtual block device.
1065  *
1066  * Context: Any context.  Frequently called while holding sb_lock.
1067  * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1068  * or -ENOMEM if memory allocation failed.
1069  */
1070 int get_anon_bdev(dev_t *p)
1071 {
1072 	int dev;
1073 
1074 	/*
1075 	 * Many userspace utilities consider an FSID of 0 invalid.
1076 	 * Always return at least 1 from get_anon_bdev.
1077 	 */
1078 	dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1079 			GFP_ATOMIC);
1080 	if (dev == -ENOSPC)
1081 		dev = -EMFILE;
1082 	if (dev < 0)
1083 		return dev;
1084 
1085 	*p = MKDEV(0, dev);
1086 	return 0;
1087 }
1088 EXPORT_SYMBOL(get_anon_bdev);
1089 
1090 void free_anon_bdev(dev_t dev)
1091 {
1092 	ida_free(&unnamed_dev_ida, MINOR(dev));
1093 }
1094 EXPORT_SYMBOL(free_anon_bdev);
1095 
1096 int set_anon_super(struct super_block *s, void *data)
1097 {
1098 	return get_anon_bdev(&s->s_dev);
1099 }
1100 EXPORT_SYMBOL(set_anon_super);
1101 
1102 void kill_anon_super(struct super_block *sb)
1103 {
1104 	dev_t dev = sb->s_dev;
1105 	generic_shutdown_super(sb);
1106 	free_anon_bdev(dev);
1107 }
1108 EXPORT_SYMBOL(kill_anon_super);
1109 
1110 void kill_litter_super(struct super_block *sb)
1111 {
1112 	if (sb->s_root)
1113 		d_genocide(sb->s_root);
1114 	kill_anon_super(sb);
1115 }
1116 EXPORT_SYMBOL(kill_litter_super);
1117 
1118 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1119 {
1120 	return set_anon_super(sb, NULL);
1121 }
1122 EXPORT_SYMBOL(set_anon_super_fc);
1123 
1124 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1125 {
1126 	return sb->s_fs_info == fc->s_fs_info;
1127 }
1128 
1129 static int test_single_super(struct super_block *s, struct fs_context *fc)
1130 {
1131 	return 1;
1132 }
1133 
1134 /**
1135  * vfs_get_super - Get a superblock with a search key set in s_fs_info.
1136  * @fc: The filesystem context holding the parameters
1137  * @keying: How to distinguish superblocks
1138  * @fill_super: Helper to initialise a new superblock
1139  *
1140  * Search for a superblock and create a new one if not found.  The search
1141  * criterion is controlled by @keying.  If the search fails, a new superblock
1142  * is created and @fill_super() is called to initialise it.
1143  *
1144  * @keying can take one of a number of values:
1145  *
1146  * (1) vfs_get_single_super - Only one superblock of this type may exist on the
1147  *     system.  This is typically used for special system filesystems.
1148  *
1149  * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
1150  *     distinct keys (where the key is in s_fs_info).  Searching for the same
1151  *     key again will turn up the superblock for that key.
1152  *
1153  * (3) vfs_get_independent_super - Multiple superblocks may exist and are
1154  *     unkeyed.  Each call will get a new superblock.
1155  *
1156  * A permissions check is made by sget_fc() unless we're getting a superblock
1157  * for a kernel-internal mount or a submount.
1158  */
1159 int vfs_get_super(struct fs_context *fc,
1160 		  enum vfs_get_super_keying keying,
1161 		  int (*fill_super)(struct super_block *sb,
1162 				    struct fs_context *fc))
1163 {
1164 	int (*test)(struct super_block *, struct fs_context *);
1165 	struct super_block *sb;
1166 
1167 	switch (keying) {
1168 	case vfs_get_single_super:
1169 		test = test_single_super;
1170 		break;
1171 	case vfs_get_keyed_super:
1172 		test = test_keyed_super;
1173 		break;
1174 	case vfs_get_independent_super:
1175 		test = NULL;
1176 		break;
1177 	default:
1178 		BUG();
1179 	}
1180 
1181 	sb = sget_fc(fc, test, set_anon_super_fc);
1182 	if (IS_ERR(sb))
1183 		return PTR_ERR(sb);
1184 
1185 	if (!sb->s_root) {
1186 		int err = fill_super(sb, fc);
1187 		if (err) {
1188 			deactivate_locked_super(sb);
1189 			return err;
1190 		}
1191 
1192 		sb->s_flags |= SB_ACTIVE;
1193 	}
1194 
1195 	BUG_ON(fc->root);
1196 	fc->root = dget(sb->s_root);
1197 	return 0;
1198 }
1199 EXPORT_SYMBOL(vfs_get_super);
1200 
1201 int get_tree_nodev(struct fs_context *fc,
1202 		  int (*fill_super)(struct super_block *sb,
1203 				    struct fs_context *fc))
1204 {
1205 	return vfs_get_super(fc, vfs_get_independent_super, fill_super);
1206 }
1207 EXPORT_SYMBOL(get_tree_nodev);
1208 
1209 int get_tree_single(struct fs_context *fc,
1210 		  int (*fill_super)(struct super_block *sb,
1211 				    struct fs_context *fc))
1212 {
1213 	return vfs_get_super(fc, vfs_get_single_super, fill_super);
1214 }
1215 EXPORT_SYMBOL(get_tree_single);
1216 
1217 #ifdef CONFIG_BLOCK
1218 static int set_bdev_super(struct super_block *s, void *data)
1219 {
1220 	s->s_bdev = data;
1221 	s->s_dev = s->s_bdev->bd_dev;
1222 	s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1223 
1224 	return 0;
1225 }
1226 
1227 static int test_bdev_super(struct super_block *s, void *data)
1228 {
1229 	return (void *)s->s_bdev == data;
1230 }
1231 
1232 struct dentry *mount_bdev(struct file_system_type *fs_type,
1233 	int flags, const char *dev_name, void *data,
1234 	int (*fill_super)(struct super_block *, void *, int))
1235 {
1236 	struct block_device *bdev;
1237 	struct super_block *s;
1238 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1239 	int error = 0;
1240 
1241 	if (!(flags & SB_RDONLY))
1242 		mode |= FMODE_WRITE;
1243 
1244 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1245 	if (IS_ERR(bdev))
1246 		return ERR_CAST(bdev);
1247 
1248 	/*
1249 	 * once the super is inserted into the list by sget, s_umount
1250 	 * will protect the lockfs code from trying to start a snapshot
1251 	 * while we are mounting
1252 	 */
1253 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1254 	if (bdev->bd_fsfreeze_count > 0) {
1255 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1256 		error = -EBUSY;
1257 		goto error_bdev;
1258 	}
1259 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1260 		 bdev);
1261 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1262 	if (IS_ERR(s))
1263 		goto error_s;
1264 
1265 	if (s->s_root) {
1266 		if ((flags ^ s->s_flags) & SB_RDONLY) {
1267 			deactivate_locked_super(s);
1268 			error = -EBUSY;
1269 			goto error_bdev;
1270 		}
1271 
1272 		/*
1273 		 * s_umount nests inside bd_mutex during
1274 		 * __invalidate_device().  blkdev_put() acquires
1275 		 * bd_mutex and can't be called under s_umount.  Drop
1276 		 * s_umount temporarily.  This is safe as we're
1277 		 * holding an active reference.
1278 		 */
1279 		up_write(&s->s_umount);
1280 		blkdev_put(bdev, mode);
1281 		down_write(&s->s_umount);
1282 	} else {
1283 		s->s_mode = mode;
1284 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1285 		sb_set_blocksize(s, block_size(bdev));
1286 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1287 		if (error) {
1288 			deactivate_locked_super(s);
1289 			goto error;
1290 		}
1291 
1292 		s->s_flags |= SB_ACTIVE;
1293 		bdev->bd_super = s;
1294 	}
1295 
1296 	return dget(s->s_root);
1297 
1298 error_s:
1299 	error = PTR_ERR(s);
1300 error_bdev:
1301 	blkdev_put(bdev, mode);
1302 error:
1303 	return ERR_PTR(error);
1304 }
1305 EXPORT_SYMBOL(mount_bdev);
1306 
1307 void kill_block_super(struct super_block *sb)
1308 {
1309 	struct block_device *bdev = sb->s_bdev;
1310 	fmode_t mode = sb->s_mode;
1311 
1312 	bdev->bd_super = NULL;
1313 	generic_shutdown_super(sb);
1314 	sync_blockdev(bdev);
1315 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1316 	blkdev_put(bdev, mode | FMODE_EXCL);
1317 }
1318 
1319 EXPORT_SYMBOL(kill_block_super);
1320 #endif
1321 
1322 struct dentry *mount_nodev(struct file_system_type *fs_type,
1323 	int flags, void *data,
1324 	int (*fill_super)(struct super_block *, void *, int))
1325 {
1326 	int error;
1327 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1328 
1329 	if (IS_ERR(s))
1330 		return ERR_CAST(s);
1331 
1332 	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1333 	if (error) {
1334 		deactivate_locked_super(s);
1335 		return ERR_PTR(error);
1336 	}
1337 	s->s_flags |= SB_ACTIVE;
1338 	return dget(s->s_root);
1339 }
1340 EXPORT_SYMBOL(mount_nodev);
1341 
1342 static int reconfigure_single(struct super_block *s,
1343 			      int flags, void *data)
1344 {
1345 	struct fs_context *fc;
1346 	int ret;
1347 
1348 	/* The caller really need to be passing fc down into mount_single(),
1349 	 * then a chunk of this can be removed.  [Bollocks -- AV]
1350 	 * Better yet, reconfiguration shouldn't happen, but rather the second
1351 	 * mount should be rejected if the parameters are not compatible.
1352 	 */
1353 	fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1354 	if (IS_ERR(fc))
1355 		return PTR_ERR(fc);
1356 
1357 	ret = parse_monolithic_mount_data(fc, data);
1358 	if (ret < 0)
1359 		goto out;
1360 
1361 	ret = reconfigure_super(fc);
1362 out:
1363 	put_fs_context(fc);
1364 	return ret;
1365 }
1366 
1367 static int compare_single(struct super_block *s, void *p)
1368 {
1369 	return 1;
1370 }
1371 
1372 struct dentry *mount_single(struct file_system_type *fs_type,
1373 	int flags, void *data,
1374 	int (*fill_super)(struct super_block *, void *, int))
1375 {
1376 	struct super_block *s;
1377 	int error;
1378 
1379 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1380 	if (IS_ERR(s))
1381 		return ERR_CAST(s);
1382 	if (!s->s_root) {
1383 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1384 		if (!error)
1385 			s->s_flags |= SB_ACTIVE;
1386 	} else {
1387 		error = reconfigure_single(s, flags, data);
1388 	}
1389 	if (unlikely(error)) {
1390 		deactivate_locked_super(s);
1391 		return ERR_PTR(error);
1392 	}
1393 	return dget(s->s_root);
1394 }
1395 EXPORT_SYMBOL(mount_single);
1396 
1397 /**
1398  * vfs_get_tree - Get the mountable root
1399  * @fc: The superblock configuration context.
1400  *
1401  * The filesystem is invoked to get or create a superblock which can then later
1402  * be used for mounting.  The filesystem places a pointer to the root to be
1403  * used for mounting in @fc->root.
1404  */
1405 int vfs_get_tree(struct fs_context *fc)
1406 {
1407 	struct super_block *sb;
1408 	int error;
1409 
1410 	if (fc->root)
1411 		return -EBUSY;
1412 
1413 	/* Get the mountable root in fc->root, with a ref on the root and a ref
1414 	 * on the superblock.
1415 	 */
1416 	error = fc->ops->get_tree(fc);
1417 	if (error < 0)
1418 		return error;
1419 
1420 	if (!fc->root) {
1421 		pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1422 		       fc->fs_type->name);
1423 		/* We don't know what the locking state of the superblock is -
1424 		 * if there is a superblock.
1425 		 */
1426 		BUG();
1427 	}
1428 
1429 	sb = fc->root->d_sb;
1430 	WARN_ON(!sb->s_bdi);
1431 
1432 	if (fc->subtype && !sb->s_subtype) {
1433 		sb->s_subtype = fc->subtype;
1434 		fc->subtype = NULL;
1435 	}
1436 
1437 	/*
1438 	 * Write barrier is for super_cache_count(). We place it before setting
1439 	 * SB_BORN as the data dependency between the two functions is the
1440 	 * superblock structure contents that we just set up, not the SB_BORN
1441 	 * flag.
1442 	 */
1443 	smp_wmb();
1444 	sb->s_flags |= SB_BORN;
1445 
1446 	error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1447 	if (unlikely(error)) {
1448 		fc_drop_locked(fc);
1449 		return error;
1450 	}
1451 
1452 	/*
1453 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1454 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1455 	 * this warning for a little while to try and catch filesystems that
1456 	 * violate this rule.
1457 	 */
1458 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1459 		"negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1460 
1461 	return 0;
1462 }
1463 EXPORT_SYMBOL(vfs_get_tree);
1464 
1465 /*
1466  * Setup private BDI for given superblock. It gets automatically cleaned up
1467  * in generic_shutdown_super().
1468  */
1469 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1470 {
1471 	struct backing_dev_info *bdi;
1472 	int err;
1473 	va_list args;
1474 
1475 	bdi = bdi_alloc(GFP_KERNEL);
1476 	if (!bdi)
1477 		return -ENOMEM;
1478 
1479 	bdi->name = sb->s_type->name;
1480 
1481 	va_start(args, fmt);
1482 	err = bdi_register_va(bdi, fmt, args);
1483 	va_end(args);
1484 	if (err) {
1485 		bdi_put(bdi);
1486 		return err;
1487 	}
1488 	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1489 	sb->s_bdi = bdi;
1490 
1491 	return 0;
1492 }
1493 EXPORT_SYMBOL(super_setup_bdi_name);
1494 
1495 /*
1496  * Setup private BDI for given superblock. I gets automatically cleaned up
1497  * in generic_shutdown_super().
1498  */
1499 int super_setup_bdi(struct super_block *sb)
1500 {
1501 	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1502 
1503 	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1504 				    atomic_long_inc_return(&bdi_seq));
1505 }
1506 EXPORT_SYMBOL(super_setup_bdi);
1507 
1508 /*
1509  * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1510  * instead.
1511  */
1512 void __sb_end_write(struct super_block *sb, int level)
1513 {
1514 	percpu_up_read(sb->s_writers.rw_sem + level-1);
1515 }
1516 EXPORT_SYMBOL(__sb_end_write);
1517 
1518 /*
1519  * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1520  * instead.
1521  */
1522 int __sb_start_write(struct super_block *sb, int level, bool wait)
1523 {
1524 	bool force_trylock = false;
1525 	int ret = 1;
1526 
1527 #ifdef CONFIG_LOCKDEP
1528 	/*
1529 	 * We want lockdep to tell us about possible deadlocks with freezing
1530 	 * but it's it bit tricky to properly instrument it. Getting a freeze
1531 	 * protection works as getting a read lock but there are subtle
1532 	 * problems. XFS for example gets freeze protection on internal level
1533 	 * twice in some cases, which is OK only because we already hold a
1534 	 * freeze protection also on higher level. Due to these cases we have
1535 	 * to use wait == F (trylock mode) which must not fail.
1536 	 */
1537 	if (wait) {
1538 		int i;
1539 
1540 		for (i = 0; i < level - 1; i++)
1541 			if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1542 				force_trylock = true;
1543 				break;
1544 			}
1545 	}
1546 #endif
1547 	if (wait && !force_trylock)
1548 		percpu_down_read(sb->s_writers.rw_sem + level-1);
1549 	else
1550 		ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1551 
1552 	WARN_ON(force_trylock && !ret);
1553 	return ret;
1554 }
1555 EXPORT_SYMBOL(__sb_start_write);
1556 
1557 /**
1558  * sb_wait_write - wait until all writers to given file system finish
1559  * @sb: the super for which we wait
1560  * @level: type of writers we wait for (normal vs page fault)
1561  *
1562  * This function waits until there are no writers of given type to given file
1563  * system.
1564  */
1565 static void sb_wait_write(struct super_block *sb, int level)
1566 {
1567 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1568 }
1569 
1570 /*
1571  * We are going to return to userspace and forget about these locks, the
1572  * ownership goes to the caller of thaw_super() which does unlock().
1573  */
1574 static void lockdep_sb_freeze_release(struct super_block *sb)
1575 {
1576 	int level;
1577 
1578 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1579 		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1580 }
1581 
1582 /*
1583  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1584  */
1585 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1586 {
1587 	int level;
1588 
1589 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1590 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1591 }
1592 
1593 static void sb_freeze_unlock(struct super_block *sb)
1594 {
1595 	int level;
1596 
1597 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1598 		percpu_up_write(sb->s_writers.rw_sem + level);
1599 }
1600 
1601 /**
1602  * freeze_super - lock the filesystem and force it into a consistent state
1603  * @sb: the super to lock
1604  *
1605  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1606  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1607  * -EBUSY.
1608  *
1609  * During this function, sb->s_writers.frozen goes through these values:
1610  *
1611  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1612  *
1613  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1614  * writes should be blocked, though page faults are still allowed. We wait for
1615  * all writes to complete and then proceed to the next stage.
1616  *
1617  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1618  * but internal fs threads can still modify the filesystem (although they
1619  * should not dirty new pages or inodes), writeback can run etc. After waiting
1620  * for all running page faults we sync the filesystem which will clean all
1621  * dirty pages and inodes (no new dirty pages or inodes can be created when
1622  * sync is running).
1623  *
1624  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1625  * modification are blocked (e.g. XFS preallocation truncation on inode
1626  * reclaim). This is usually implemented by blocking new transactions for
1627  * filesystems that have them and need this additional guard. After all
1628  * internal writers are finished we call ->freeze_fs() to finish filesystem
1629  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1630  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1631  *
1632  * sb->s_writers.frozen is protected by sb->s_umount.
1633  */
1634 int freeze_super(struct super_block *sb)
1635 {
1636 	int ret;
1637 
1638 	atomic_inc(&sb->s_active);
1639 	down_write(&sb->s_umount);
1640 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1641 		deactivate_locked_super(sb);
1642 		return -EBUSY;
1643 	}
1644 
1645 	if (!(sb->s_flags & SB_BORN)) {
1646 		up_write(&sb->s_umount);
1647 		return 0;	/* sic - it's "nothing to do" */
1648 	}
1649 
1650 	if (sb_rdonly(sb)) {
1651 		/* Nothing to do really... */
1652 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1653 		up_write(&sb->s_umount);
1654 		return 0;
1655 	}
1656 
1657 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1658 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1659 	up_write(&sb->s_umount);
1660 	sb_wait_write(sb, SB_FREEZE_WRITE);
1661 	down_write(&sb->s_umount);
1662 
1663 	/* Now we go and block page faults... */
1664 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1665 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1666 
1667 	/* All writers are done so after syncing there won't be dirty data */
1668 	sync_filesystem(sb);
1669 
1670 	/* Now wait for internal filesystem counter */
1671 	sb->s_writers.frozen = SB_FREEZE_FS;
1672 	sb_wait_write(sb, SB_FREEZE_FS);
1673 
1674 	if (sb->s_op->freeze_fs) {
1675 		ret = sb->s_op->freeze_fs(sb);
1676 		if (ret) {
1677 			printk(KERN_ERR
1678 				"VFS:Filesystem freeze failed\n");
1679 			sb->s_writers.frozen = SB_UNFROZEN;
1680 			sb_freeze_unlock(sb);
1681 			wake_up(&sb->s_writers.wait_unfrozen);
1682 			deactivate_locked_super(sb);
1683 			return ret;
1684 		}
1685 	}
1686 	/*
1687 	 * For debugging purposes so that fs can warn if it sees write activity
1688 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1689 	 */
1690 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1691 	lockdep_sb_freeze_release(sb);
1692 	up_write(&sb->s_umount);
1693 	return 0;
1694 }
1695 EXPORT_SYMBOL(freeze_super);
1696 
1697 /**
1698  * thaw_super -- unlock filesystem
1699  * @sb: the super to thaw
1700  *
1701  * Unlocks the filesystem and marks it writeable again after freeze_super().
1702  */
1703 static int thaw_super_locked(struct super_block *sb)
1704 {
1705 	int error;
1706 
1707 	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1708 		up_write(&sb->s_umount);
1709 		return -EINVAL;
1710 	}
1711 
1712 	if (sb_rdonly(sb)) {
1713 		sb->s_writers.frozen = SB_UNFROZEN;
1714 		goto out;
1715 	}
1716 
1717 	lockdep_sb_freeze_acquire(sb);
1718 
1719 	if (sb->s_op->unfreeze_fs) {
1720 		error = sb->s_op->unfreeze_fs(sb);
1721 		if (error) {
1722 			printk(KERN_ERR
1723 				"VFS:Filesystem thaw failed\n");
1724 			lockdep_sb_freeze_release(sb);
1725 			up_write(&sb->s_umount);
1726 			return error;
1727 		}
1728 	}
1729 
1730 	sb->s_writers.frozen = SB_UNFROZEN;
1731 	sb_freeze_unlock(sb);
1732 out:
1733 	wake_up(&sb->s_writers.wait_unfrozen);
1734 	deactivate_locked_super(sb);
1735 	return 0;
1736 }
1737 
1738 int thaw_super(struct super_block *sb)
1739 {
1740 	down_write(&sb->s_umount);
1741 	return thaw_super_locked(sb);
1742 }
1743 EXPORT_SYMBOL(thaw_super);
1744