1 /* 2 * linux/fs/super.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * super.c contains code to handle: - mount structures 7 * - super-block tables 8 * - filesystem drivers list 9 * - mount system call 10 * - umount system call 11 * - ustat system call 12 * 13 * GK 2/5/95 - Changed to support mounting the root fs via NFS 14 * 15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 17 * Added options to /proc/mounts: 18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 21 */ 22 23 #include <linux/export.h> 24 #include <linux/slab.h> 25 #include <linux/blkdev.h> 26 #include <linux/mount.h> 27 #include <linux/security.h> 28 #include <linux/writeback.h> /* for the emergency remount stuff */ 29 #include <linux/idr.h> 30 #include <linux/mutex.h> 31 #include <linux/backing-dev.h> 32 #include <linux/rculist_bl.h> 33 #include <linux/cleancache.h> 34 #include <linux/fsnotify.h> 35 #include <linux/lockdep.h> 36 #include "internal.h" 37 38 39 static LIST_HEAD(super_blocks); 40 static DEFINE_SPINLOCK(sb_lock); 41 42 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 43 "sb_writers", 44 "sb_pagefaults", 45 "sb_internal", 46 }; 47 48 /* 49 * One thing we have to be careful of with a per-sb shrinker is that we don't 50 * drop the last active reference to the superblock from within the shrinker. 51 * If that happens we could trigger unregistering the shrinker from within the 52 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 53 * take a passive reference to the superblock to avoid this from occurring. 54 */ 55 static unsigned long super_cache_scan(struct shrinker *shrink, 56 struct shrink_control *sc) 57 { 58 struct super_block *sb; 59 long fs_objects = 0; 60 long total_objects; 61 long freed = 0; 62 long dentries; 63 long inodes; 64 65 sb = container_of(shrink, struct super_block, s_shrink); 66 67 /* 68 * Deadlock avoidance. We may hold various FS locks, and we don't want 69 * to recurse into the FS that called us in clear_inode() and friends.. 70 */ 71 if (!(sc->gfp_mask & __GFP_FS)) 72 return SHRINK_STOP; 73 74 if (!trylock_super(sb)) 75 return SHRINK_STOP; 76 77 if (sb->s_op->nr_cached_objects) 78 fs_objects = sb->s_op->nr_cached_objects(sb, sc); 79 80 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc); 81 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc); 82 total_objects = dentries + inodes + fs_objects + 1; 83 if (!total_objects) 84 total_objects = 1; 85 86 /* proportion the scan between the caches */ 87 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 88 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 89 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects); 90 91 /* 92 * prune the dcache first as the icache is pinned by it, then 93 * prune the icache, followed by the filesystem specific caches 94 * 95 * Ensure that we always scan at least one object - memcg kmem 96 * accounting uses this to fully empty the caches. 97 */ 98 sc->nr_to_scan = dentries + 1; 99 freed = prune_dcache_sb(sb, sc); 100 sc->nr_to_scan = inodes + 1; 101 freed += prune_icache_sb(sb, sc); 102 103 if (fs_objects) { 104 sc->nr_to_scan = fs_objects + 1; 105 freed += sb->s_op->free_cached_objects(sb, sc); 106 } 107 108 up_read(&sb->s_umount); 109 return freed; 110 } 111 112 static unsigned long super_cache_count(struct shrinker *shrink, 113 struct shrink_control *sc) 114 { 115 struct super_block *sb; 116 long total_objects = 0; 117 118 sb = container_of(shrink, struct super_block, s_shrink); 119 120 /* 121 * Don't call trylock_super as it is a potential 122 * scalability bottleneck. The counts could get updated 123 * between super_cache_count and super_cache_scan anyway. 124 * Call to super_cache_count with shrinker_rwsem held 125 * ensures the safety of call to list_lru_shrink_count() and 126 * s_op->nr_cached_objects(). 127 */ 128 if (sb->s_op && sb->s_op->nr_cached_objects) 129 total_objects = sb->s_op->nr_cached_objects(sb, sc); 130 131 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc); 132 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc); 133 134 total_objects = vfs_pressure_ratio(total_objects); 135 return total_objects; 136 } 137 138 static void destroy_super_work(struct work_struct *work) 139 { 140 struct super_block *s = container_of(work, struct super_block, 141 destroy_work); 142 int i; 143 144 for (i = 0; i < SB_FREEZE_LEVELS; i++) 145 percpu_free_rwsem(&s->s_writers.rw_sem[i]); 146 kfree(s); 147 } 148 149 static void destroy_super_rcu(struct rcu_head *head) 150 { 151 struct super_block *s = container_of(head, struct super_block, rcu); 152 INIT_WORK(&s->destroy_work, destroy_super_work); 153 schedule_work(&s->destroy_work); 154 } 155 156 /** 157 * destroy_super - frees a superblock 158 * @s: superblock to free 159 * 160 * Frees a superblock. 161 */ 162 static void destroy_super(struct super_block *s) 163 { 164 list_lru_destroy(&s->s_dentry_lru); 165 list_lru_destroy(&s->s_inode_lru); 166 security_sb_free(s); 167 WARN_ON(!list_empty(&s->s_mounts)); 168 kfree(s->s_subtype); 169 kfree(s->s_options); 170 call_rcu(&s->rcu, destroy_super_rcu); 171 } 172 173 /** 174 * alloc_super - create new superblock 175 * @type: filesystem type superblock should belong to 176 * @flags: the mount flags 177 * 178 * Allocates and initializes a new &struct super_block. alloc_super() 179 * returns a pointer new superblock or %NULL if allocation had failed. 180 */ 181 static struct super_block *alloc_super(struct file_system_type *type, int flags) 182 { 183 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 184 static const struct super_operations default_op; 185 int i; 186 187 if (!s) 188 return NULL; 189 190 INIT_LIST_HEAD(&s->s_mounts); 191 192 if (security_sb_alloc(s)) 193 goto fail; 194 195 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 196 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i], 197 sb_writers_name[i], 198 &type->s_writers_key[i])) 199 goto fail; 200 } 201 init_waitqueue_head(&s->s_writers.wait_unfrozen); 202 s->s_bdi = &noop_backing_dev_info; 203 s->s_flags = flags; 204 INIT_HLIST_NODE(&s->s_instances); 205 INIT_HLIST_BL_HEAD(&s->s_anon); 206 mutex_init(&s->s_sync_lock); 207 INIT_LIST_HEAD(&s->s_inodes); 208 spin_lock_init(&s->s_inode_list_lock); 209 210 if (list_lru_init_memcg(&s->s_dentry_lru)) 211 goto fail; 212 if (list_lru_init_memcg(&s->s_inode_lru)) 213 goto fail; 214 215 init_rwsem(&s->s_umount); 216 lockdep_set_class(&s->s_umount, &type->s_umount_key); 217 /* 218 * sget() can have s_umount recursion. 219 * 220 * When it cannot find a suitable sb, it allocates a new 221 * one (this one), and tries again to find a suitable old 222 * one. 223 * 224 * In case that succeeds, it will acquire the s_umount 225 * lock of the old one. Since these are clearly distrinct 226 * locks, and this object isn't exposed yet, there's no 227 * risk of deadlocks. 228 * 229 * Annotate this by putting this lock in a different 230 * subclass. 231 */ 232 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 233 s->s_count = 1; 234 atomic_set(&s->s_active, 1); 235 mutex_init(&s->s_vfs_rename_mutex); 236 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 237 mutex_init(&s->s_dquot.dqio_mutex); 238 mutex_init(&s->s_dquot.dqonoff_mutex); 239 s->s_maxbytes = MAX_NON_LFS; 240 s->s_op = &default_op; 241 s->s_time_gran = 1000000000; 242 s->cleancache_poolid = CLEANCACHE_NO_POOL; 243 244 s->s_shrink.seeks = DEFAULT_SEEKS; 245 s->s_shrink.scan_objects = super_cache_scan; 246 s->s_shrink.count_objects = super_cache_count; 247 s->s_shrink.batch = 1024; 248 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE; 249 return s; 250 251 fail: 252 destroy_super(s); 253 return NULL; 254 } 255 256 /* Superblock refcounting */ 257 258 /* 259 * Drop a superblock's refcount. The caller must hold sb_lock. 260 */ 261 static void __put_super(struct super_block *sb) 262 { 263 if (!--sb->s_count) { 264 list_del_init(&sb->s_list); 265 destroy_super(sb); 266 } 267 } 268 269 /** 270 * put_super - drop a temporary reference to superblock 271 * @sb: superblock in question 272 * 273 * Drops a temporary reference, frees superblock if there's no 274 * references left. 275 */ 276 static void put_super(struct super_block *sb) 277 { 278 spin_lock(&sb_lock); 279 __put_super(sb); 280 spin_unlock(&sb_lock); 281 } 282 283 284 /** 285 * deactivate_locked_super - drop an active reference to superblock 286 * @s: superblock to deactivate 287 * 288 * Drops an active reference to superblock, converting it into a temprory 289 * one if there is no other active references left. In that case we 290 * tell fs driver to shut it down and drop the temporary reference we 291 * had just acquired. 292 * 293 * Caller holds exclusive lock on superblock; that lock is released. 294 */ 295 void deactivate_locked_super(struct super_block *s) 296 { 297 struct file_system_type *fs = s->s_type; 298 if (atomic_dec_and_test(&s->s_active)) { 299 cleancache_invalidate_fs(s); 300 unregister_shrinker(&s->s_shrink); 301 fs->kill_sb(s); 302 303 /* 304 * Since list_lru_destroy() may sleep, we cannot call it from 305 * put_super(), where we hold the sb_lock. Therefore we destroy 306 * the lru lists right now. 307 */ 308 list_lru_destroy(&s->s_dentry_lru); 309 list_lru_destroy(&s->s_inode_lru); 310 311 put_filesystem(fs); 312 put_super(s); 313 } else { 314 up_write(&s->s_umount); 315 } 316 } 317 318 EXPORT_SYMBOL(deactivate_locked_super); 319 320 /** 321 * deactivate_super - drop an active reference to superblock 322 * @s: superblock to deactivate 323 * 324 * Variant of deactivate_locked_super(), except that superblock is *not* 325 * locked by caller. If we are going to drop the final active reference, 326 * lock will be acquired prior to that. 327 */ 328 void deactivate_super(struct super_block *s) 329 { 330 if (!atomic_add_unless(&s->s_active, -1, 1)) { 331 down_write(&s->s_umount); 332 deactivate_locked_super(s); 333 } 334 } 335 336 EXPORT_SYMBOL(deactivate_super); 337 338 /** 339 * grab_super - acquire an active reference 340 * @s: reference we are trying to make active 341 * 342 * Tries to acquire an active reference. grab_super() is used when we 343 * had just found a superblock in super_blocks or fs_type->fs_supers 344 * and want to turn it into a full-blown active reference. grab_super() 345 * is called with sb_lock held and drops it. Returns 1 in case of 346 * success, 0 if we had failed (superblock contents was already dead or 347 * dying when grab_super() had been called). Note that this is only 348 * called for superblocks not in rundown mode (== ones still on ->fs_supers 349 * of their type), so increment of ->s_count is OK here. 350 */ 351 static int grab_super(struct super_block *s) __releases(sb_lock) 352 { 353 s->s_count++; 354 spin_unlock(&sb_lock); 355 down_write(&s->s_umount); 356 if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) { 357 put_super(s); 358 return 1; 359 } 360 up_write(&s->s_umount); 361 put_super(s); 362 return 0; 363 } 364 365 /* 366 * trylock_super - try to grab ->s_umount shared 367 * @sb: reference we are trying to grab 368 * 369 * Try to prevent fs shutdown. This is used in places where we 370 * cannot take an active reference but we need to ensure that the 371 * filesystem is not shut down while we are working on it. It returns 372 * false if we cannot acquire s_umount or if we lose the race and 373 * filesystem already got into shutdown, and returns true with the s_umount 374 * lock held in read mode in case of success. On successful return, 375 * the caller must drop the s_umount lock when done. 376 * 377 * Note that unlike get_super() et.al. this one does *not* bump ->s_count. 378 * The reason why it's safe is that we are OK with doing trylock instead 379 * of down_read(). There's a couple of places that are OK with that, but 380 * it's very much not a general-purpose interface. 381 */ 382 bool trylock_super(struct super_block *sb) 383 { 384 if (down_read_trylock(&sb->s_umount)) { 385 if (!hlist_unhashed(&sb->s_instances) && 386 sb->s_root && (sb->s_flags & MS_BORN)) 387 return true; 388 up_read(&sb->s_umount); 389 } 390 391 return false; 392 } 393 394 /** 395 * generic_shutdown_super - common helper for ->kill_sb() 396 * @sb: superblock to kill 397 * 398 * generic_shutdown_super() does all fs-independent work on superblock 399 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 400 * that need destruction out of superblock, call generic_shutdown_super() 401 * and release aforementioned objects. Note: dentries and inodes _are_ 402 * taken care of and do not need specific handling. 403 * 404 * Upon calling this function, the filesystem may no longer alter or 405 * rearrange the set of dentries belonging to this super_block, nor may it 406 * change the attachments of dentries to inodes. 407 */ 408 void generic_shutdown_super(struct super_block *sb) 409 { 410 const struct super_operations *sop = sb->s_op; 411 412 if (sb->s_root) { 413 shrink_dcache_for_umount(sb); 414 sync_filesystem(sb); 415 sb->s_flags &= ~MS_ACTIVE; 416 417 fsnotify_unmount_inodes(sb); 418 419 evict_inodes(sb); 420 421 if (sb->s_dio_done_wq) { 422 destroy_workqueue(sb->s_dio_done_wq); 423 sb->s_dio_done_wq = NULL; 424 } 425 426 if (sop->put_super) 427 sop->put_super(sb); 428 429 if (!list_empty(&sb->s_inodes)) { 430 printk("VFS: Busy inodes after unmount of %s. " 431 "Self-destruct in 5 seconds. Have a nice day...\n", 432 sb->s_id); 433 } 434 } 435 spin_lock(&sb_lock); 436 /* should be initialized for __put_super_and_need_restart() */ 437 hlist_del_init(&sb->s_instances); 438 spin_unlock(&sb_lock); 439 up_write(&sb->s_umount); 440 } 441 442 EXPORT_SYMBOL(generic_shutdown_super); 443 444 /** 445 * sget - find or create a superblock 446 * @type: filesystem type superblock should belong to 447 * @test: comparison callback 448 * @set: setup callback 449 * @flags: mount flags 450 * @data: argument to each of them 451 */ 452 struct super_block *sget(struct file_system_type *type, 453 int (*test)(struct super_block *,void *), 454 int (*set)(struct super_block *,void *), 455 int flags, 456 void *data) 457 { 458 struct super_block *s = NULL; 459 struct super_block *old; 460 int err; 461 462 retry: 463 spin_lock(&sb_lock); 464 if (test) { 465 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 466 if (!test(old, data)) 467 continue; 468 if (!grab_super(old)) 469 goto retry; 470 if (s) { 471 up_write(&s->s_umount); 472 destroy_super(s); 473 s = NULL; 474 } 475 return old; 476 } 477 } 478 if (!s) { 479 spin_unlock(&sb_lock); 480 s = alloc_super(type, flags); 481 if (!s) 482 return ERR_PTR(-ENOMEM); 483 goto retry; 484 } 485 486 err = set(s, data); 487 if (err) { 488 spin_unlock(&sb_lock); 489 up_write(&s->s_umount); 490 destroy_super(s); 491 return ERR_PTR(err); 492 } 493 s->s_type = type; 494 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 495 list_add_tail(&s->s_list, &super_blocks); 496 hlist_add_head(&s->s_instances, &type->fs_supers); 497 spin_unlock(&sb_lock); 498 get_filesystem(type); 499 register_shrinker(&s->s_shrink); 500 return s; 501 } 502 503 EXPORT_SYMBOL(sget); 504 505 void drop_super(struct super_block *sb) 506 { 507 up_read(&sb->s_umount); 508 put_super(sb); 509 } 510 511 EXPORT_SYMBOL(drop_super); 512 513 /** 514 * iterate_supers - call function for all active superblocks 515 * @f: function to call 516 * @arg: argument to pass to it 517 * 518 * Scans the superblock list and calls given function, passing it 519 * locked superblock and given argument. 520 */ 521 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 522 { 523 struct super_block *sb, *p = NULL; 524 525 spin_lock(&sb_lock); 526 list_for_each_entry(sb, &super_blocks, s_list) { 527 if (hlist_unhashed(&sb->s_instances)) 528 continue; 529 sb->s_count++; 530 spin_unlock(&sb_lock); 531 532 down_read(&sb->s_umount); 533 if (sb->s_root && (sb->s_flags & MS_BORN)) 534 f(sb, arg); 535 up_read(&sb->s_umount); 536 537 spin_lock(&sb_lock); 538 if (p) 539 __put_super(p); 540 p = sb; 541 } 542 if (p) 543 __put_super(p); 544 spin_unlock(&sb_lock); 545 } 546 547 /** 548 * iterate_supers_type - call function for superblocks of given type 549 * @type: fs type 550 * @f: function to call 551 * @arg: argument to pass to it 552 * 553 * Scans the superblock list and calls given function, passing it 554 * locked superblock and given argument. 555 */ 556 void iterate_supers_type(struct file_system_type *type, 557 void (*f)(struct super_block *, void *), void *arg) 558 { 559 struct super_block *sb, *p = NULL; 560 561 spin_lock(&sb_lock); 562 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 563 sb->s_count++; 564 spin_unlock(&sb_lock); 565 566 down_read(&sb->s_umount); 567 if (sb->s_root && (sb->s_flags & MS_BORN)) 568 f(sb, arg); 569 up_read(&sb->s_umount); 570 571 spin_lock(&sb_lock); 572 if (p) 573 __put_super(p); 574 p = sb; 575 } 576 if (p) 577 __put_super(p); 578 spin_unlock(&sb_lock); 579 } 580 581 EXPORT_SYMBOL(iterate_supers_type); 582 583 /** 584 * get_super - get the superblock of a device 585 * @bdev: device to get the superblock for 586 * 587 * Scans the superblock list and finds the superblock of the file system 588 * mounted on the device given. %NULL is returned if no match is found. 589 */ 590 591 struct super_block *get_super(struct block_device *bdev) 592 { 593 struct super_block *sb; 594 595 if (!bdev) 596 return NULL; 597 598 spin_lock(&sb_lock); 599 rescan: 600 list_for_each_entry(sb, &super_blocks, s_list) { 601 if (hlist_unhashed(&sb->s_instances)) 602 continue; 603 if (sb->s_bdev == bdev) { 604 sb->s_count++; 605 spin_unlock(&sb_lock); 606 down_read(&sb->s_umount); 607 /* still alive? */ 608 if (sb->s_root && (sb->s_flags & MS_BORN)) 609 return sb; 610 up_read(&sb->s_umount); 611 /* nope, got unmounted */ 612 spin_lock(&sb_lock); 613 __put_super(sb); 614 goto rescan; 615 } 616 } 617 spin_unlock(&sb_lock); 618 return NULL; 619 } 620 621 EXPORT_SYMBOL(get_super); 622 623 /** 624 * get_super_thawed - get thawed superblock of a device 625 * @bdev: device to get the superblock for 626 * 627 * Scans the superblock list and finds the superblock of the file system 628 * mounted on the device. The superblock is returned once it is thawed 629 * (or immediately if it was not frozen). %NULL is returned if no match 630 * is found. 631 */ 632 struct super_block *get_super_thawed(struct block_device *bdev) 633 { 634 while (1) { 635 struct super_block *s = get_super(bdev); 636 if (!s || s->s_writers.frozen == SB_UNFROZEN) 637 return s; 638 up_read(&s->s_umount); 639 wait_event(s->s_writers.wait_unfrozen, 640 s->s_writers.frozen == SB_UNFROZEN); 641 put_super(s); 642 } 643 } 644 EXPORT_SYMBOL(get_super_thawed); 645 646 /** 647 * get_active_super - get an active reference to the superblock of a device 648 * @bdev: device to get the superblock for 649 * 650 * Scans the superblock list and finds the superblock of the file system 651 * mounted on the device given. Returns the superblock with an active 652 * reference or %NULL if none was found. 653 */ 654 struct super_block *get_active_super(struct block_device *bdev) 655 { 656 struct super_block *sb; 657 658 if (!bdev) 659 return NULL; 660 661 restart: 662 spin_lock(&sb_lock); 663 list_for_each_entry(sb, &super_blocks, s_list) { 664 if (hlist_unhashed(&sb->s_instances)) 665 continue; 666 if (sb->s_bdev == bdev) { 667 if (!grab_super(sb)) 668 goto restart; 669 up_write(&sb->s_umount); 670 return sb; 671 } 672 } 673 spin_unlock(&sb_lock); 674 return NULL; 675 } 676 677 struct super_block *user_get_super(dev_t dev) 678 { 679 struct super_block *sb; 680 681 spin_lock(&sb_lock); 682 rescan: 683 list_for_each_entry(sb, &super_blocks, s_list) { 684 if (hlist_unhashed(&sb->s_instances)) 685 continue; 686 if (sb->s_dev == dev) { 687 sb->s_count++; 688 spin_unlock(&sb_lock); 689 down_read(&sb->s_umount); 690 /* still alive? */ 691 if (sb->s_root && (sb->s_flags & MS_BORN)) 692 return sb; 693 up_read(&sb->s_umount); 694 /* nope, got unmounted */ 695 spin_lock(&sb_lock); 696 __put_super(sb); 697 goto rescan; 698 } 699 } 700 spin_unlock(&sb_lock); 701 return NULL; 702 } 703 704 /** 705 * do_remount_sb - asks filesystem to change mount options. 706 * @sb: superblock in question 707 * @flags: numeric part of options 708 * @data: the rest of options 709 * @force: whether or not to force the change 710 * 711 * Alters the mount options of a mounted file system. 712 */ 713 int do_remount_sb(struct super_block *sb, int flags, void *data, int force) 714 { 715 int retval; 716 int remount_ro; 717 718 if (sb->s_writers.frozen != SB_UNFROZEN) 719 return -EBUSY; 720 721 #ifdef CONFIG_BLOCK 722 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev)) 723 return -EACCES; 724 #endif 725 726 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY); 727 728 if (remount_ro) { 729 if (!hlist_empty(&sb->s_pins)) { 730 up_write(&sb->s_umount); 731 group_pin_kill(&sb->s_pins); 732 down_write(&sb->s_umount); 733 if (!sb->s_root) 734 return 0; 735 if (sb->s_writers.frozen != SB_UNFROZEN) 736 return -EBUSY; 737 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY); 738 } 739 } 740 shrink_dcache_sb(sb); 741 742 /* If we are remounting RDONLY and current sb is read/write, 743 make sure there are no rw files opened */ 744 if (remount_ro) { 745 if (force) { 746 sb->s_readonly_remount = 1; 747 smp_wmb(); 748 } else { 749 retval = sb_prepare_remount_readonly(sb); 750 if (retval) 751 return retval; 752 } 753 } 754 755 if (sb->s_op->remount_fs) { 756 retval = sb->s_op->remount_fs(sb, &flags, data); 757 if (retval) { 758 if (!force) 759 goto cancel_readonly; 760 /* If forced remount, go ahead despite any errors */ 761 WARN(1, "forced remount of a %s fs returned %i\n", 762 sb->s_type->name, retval); 763 } 764 } 765 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK); 766 /* Needs to be ordered wrt mnt_is_readonly() */ 767 smp_wmb(); 768 sb->s_readonly_remount = 0; 769 770 /* 771 * Some filesystems modify their metadata via some other path than the 772 * bdev buffer cache (eg. use a private mapping, or directories in 773 * pagecache, etc). Also file data modifications go via their own 774 * mappings. So If we try to mount readonly then copy the filesystem 775 * from bdev, we could get stale data, so invalidate it to give a best 776 * effort at coherency. 777 */ 778 if (remount_ro && sb->s_bdev) 779 invalidate_bdev(sb->s_bdev); 780 return 0; 781 782 cancel_readonly: 783 sb->s_readonly_remount = 0; 784 return retval; 785 } 786 787 static void do_emergency_remount(struct work_struct *work) 788 { 789 struct super_block *sb, *p = NULL; 790 791 spin_lock(&sb_lock); 792 list_for_each_entry(sb, &super_blocks, s_list) { 793 if (hlist_unhashed(&sb->s_instances)) 794 continue; 795 sb->s_count++; 796 spin_unlock(&sb_lock); 797 down_write(&sb->s_umount); 798 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) && 799 !(sb->s_flags & MS_RDONLY)) { 800 /* 801 * What lock protects sb->s_flags?? 802 */ 803 do_remount_sb(sb, MS_RDONLY, NULL, 1); 804 } 805 up_write(&sb->s_umount); 806 spin_lock(&sb_lock); 807 if (p) 808 __put_super(p); 809 p = sb; 810 } 811 if (p) 812 __put_super(p); 813 spin_unlock(&sb_lock); 814 kfree(work); 815 printk("Emergency Remount complete\n"); 816 } 817 818 void emergency_remount(void) 819 { 820 struct work_struct *work; 821 822 work = kmalloc(sizeof(*work), GFP_ATOMIC); 823 if (work) { 824 INIT_WORK(work, do_emergency_remount); 825 schedule_work(work); 826 } 827 } 828 829 /* 830 * Unnamed block devices are dummy devices used by virtual 831 * filesystems which don't use real block-devices. -- jrs 832 */ 833 834 static DEFINE_IDA(unnamed_dev_ida); 835 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */ 836 /* Many userspace utilities consider an FSID of 0 invalid. 837 * Always return at least 1 from get_anon_bdev. 838 */ 839 static int unnamed_dev_start = 1; 840 841 int get_anon_bdev(dev_t *p) 842 { 843 int dev; 844 int error; 845 846 retry: 847 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0) 848 return -ENOMEM; 849 spin_lock(&unnamed_dev_lock); 850 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev); 851 if (!error) 852 unnamed_dev_start = dev + 1; 853 spin_unlock(&unnamed_dev_lock); 854 if (error == -EAGAIN) 855 /* We raced and lost with another CPU. */ 856 goto retry; 857 else if (error) 858 return -EAGAIN; 859 860 if (dev >= (1 << MINORBITS)) { 861 spin_lock(&unnamed_dev_lock); 862 ida_remove(&unnamed_dev_ida, dev); 863 if (unnamed_dev_start > dev) 864 unnamed_dev_start = dev; 865 spin_unlock(&unnamed_dev_lock); 866 return -EMFILE; 867 } 868 *p = MKDEV(0, dev & MINORMASK); 869 return 0; 870 } 871 EXPORT_SYMBOL(get_anon_bdev); 872 873 void free_anon_bdev(dev_t dev) 874 { 875 int slot = MINOR(dev); 876 spin_lock(&unnamed_dev_lock); 877 ida_remove(&unnamed_dev_ida, slot); 878 if (slot < unnamed_dev_start) 879 unnamed_dev_start = slot; 880 spin_unlock(&unnamed_dev_lock); 881 } 882 EXPORT_SYMBOL(free_anon_bdev); 883 884 int set_anon_super(struct super_block *s, void *data) 885 { 886 return get_anon_bdev(&s->s_dev); 887 } 888 889 EXPORT_SYMBOL(set_anon_super); 890 891 void kill_anon_super(struct super_block *sb) 892 { 893 dev_t dev = sb->s_dev; 894 generic_shutdown_super(sb); 895 free_anon_bdev(dev); 896 } 897 898 EXPORT_SYMBOL(kill_anon_super); 899 900 void kill_litter_super(struct super_block *sb) 901 { 902 if (sb->s_root) 903 d_genocide(sb->s_root); 904 kill_anon_super(sb); 905 } 906 907 EXPORT_SYMBOL(kill_litter_super); 908 909 static int ns_test_super(struct super_block *sb, void *data) 910 { 911 return sb->s_fs_info == data; 912 } 913 914 static int ns_set_super(struct super_block *sb, void *data) 915 { 916 sb->s_fs_info = data; 917 return set_anon_super(sb, NULL); 918 } 919 920 struct dentry *mount_ns(struct file_system_type *fs_type, int flags, 921 void *data, int (*fill_super)(struct super_block *, void *, int)) 922 { 923 struct super_block *sb; 924 925 sb = sget(fs_type, ns_test_super, ns_set_super, flags, data); 926 if (IS_ERR(sb)) 927 return ERR_CAST(sb); 928 929 if (!sb->s_root) { 930 int err; 931 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 932 if (err) { 933 deactivate_locked_super(sb); 934 return ERR_PTR(err); 935 } 936 937 sb->s_flags |= MS_ACTIVE; 938 } 939 940 return dget(sb->s_root); 941 } 942 943 EXPORT_SYMBOL(mount_ns); 944 945 #ifdef CONFIG_BLOCK 946 static int set_bdev_super(struct super_block *s, void *data) 947 { 948 s->s_bdev = data; 949 s->s_dev = s->s_bdev->bd_dev; 950 951 /* 952 * We set the bdi here to the queue backing, file systems can 953 * overwrite this in ->fill_super() 954 */ 955 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info; 956 return 0; 957 } 958 959 static int test_bdev_super(struct super_block *s, void *data) 960 { 961 return (void *)s->s_bdev == data; 962 } 963 964 struct dentry *mount_bdev(struct file_system_type *fs_type, 965 int flags, const char *dev_name, void *data, 966 int (*fill_super)(struct super_block *, void *, int)) 967 { 968 struct block_device *bdev; 969 struct super_block *s; 970 fmode_t mode = FMODE_READ | FMODE_EXCL; 971 int error = 0; 972 973 if (!(flags & MS_RDONLY)) 974 mode |= FMODE_WRITE; 975 976 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 977 if (IS_ERR(bdev)) 978 return ERR_CAST(bdev); 979 980 /* 981 * once the super is inserted into the list by sget, s_umount 982 * will protect the lockfs code from trying to start a snapshot 983 * while we are mounting 984 */ 985 mutex_lock(&bdev->bd_fsfreeze_mutex); 986 if (bdev->bd_fsfreeze_count > 0) { 987 mutex_unlock(&bdev->bd_fsfreeze_mutex); 988 error = -EBUSY; 989 goto error_bdev; 990 } 991 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC, 992 bdev); 993 mutex_unlock(&bdev->bd_fsfreeze_mutex); 994 if (IS_ERR(s)) 995 goto error_s; 996 997 if (s->s_root) { 998 if ((flags ^ s->s_flags) & MS_RDONLY) { 999 deactivate_locked_super(s); 1000 error = -EBUSY; 1001 goto error_bdev; 1002 } 1003 1004 /* 1005 * s_umount nests inside bd_mutex during 1006 * __invalidate_device(). blkdev_put() acquires 1007 * bd_mutex and can't be called under s_umount. Drop 1008 * s_umount temporarily. This is safe as we're 1009 * holding an active reference. 1010 */ 1011 up_write(&s->s_umount); 1012 blkdev_put(bdev, mode); 1013 down_write(&s->s_umount); 1014 } else { 1015 s->s_mode = mode; 1016 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1017 sb_set_blocksize(s, block_size(bdev)); 1018 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1019 if (error) { 1020 deactivate_locked_super(s); 1021 goto error; 1022 } 1023 1024 s->s_flags |= MS_ACTIVE; 1025 bdev->bd_super = s; 1026 } 1027 1028 return dget(s->s_root); 1029 1030 error_s: 1031 error = PTR_ERR(s); 1032 error_bdev: 1033 blkdev_put(bdev, mode); 1034 error: 1035 return ERR_PTR(error); 1036 } 1037 EXPORT_SYMBOL(mount_bdev); 1038 1039 void kill_block_super(struct super_block *sb) 1040 { 1041 struct block_device *bdev = sb->s_bdev; 1042 fmode_t mode = sb->s_mode; 1043 1044 bdev->bd_super = NULL; 1045 generic_shutdown_super(sb); 1046 sync_blockdev(bdev); 1047 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 1048 blkdev_put(bdev, mode | FMODE_EXCL); 1049 } 1050 1051 EXPORT_SYMBOL(kill_block_super); 1052 #endif 1053 1054 struct dentry *mount_nodev(struct file_system_type *fs_type, 1055 int flags, void *data, 1056 int (*fill_super)(struct super_block *, void *, int)) 1057 { 1058 int error; 1059 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1060 1061 if (IS_ERR(s)) 1062 return ERR_CAST(s); 1063 1064 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1065 if (error) { 1066 deactivate_locked_super(s); 1067 return ERR_PTR(error); 1068 } 1069 s->s_flags |= MS_ACTIVE; 1070 return dget(s->s_root); 1071 } 1072 EXPORT_SYMBOL(mount_nodev); 1073 1074 static int compare_single(struct super_block *s, void *p) 1075 { 1076 return 1; 1077 } 1078 1079 struct dentry *mount_single(struct file_system_type *fs_type, 1080 int flags, void *data, 1081 int (*fill_super)(struct super_block *, void *, int)) 1082 { 1083 struct super_block *s; 1084 int error; 1085 1086 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1087 if (IS_ERR(s)) 1088 return ERR_CAST(s); 1089 if (!s->s_root) { 1090 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1091 if (error) { 1092 deactivate_locked_super(s); 1093 return ERR_PTR(error); 1094 } 1095 s->s_flags |= MS_ACTIVE; 1096 } else { 1097 do_remount_sb(s, flags, data, 0); 1098 } 1099 return dget(s->s_root); 1100 } 1101 EXPORT_SYMBOL(mount_single); 1102 1103 struct dentry * 1104 mount_fs(struct file_system_type *type, int flags, const char *name, void *data) 1105 { 1106 struct dentry *root; 1107 struct super_block *sb; 1108 char *secdata = NULL; 1109 int error = -ENOMEM; 1110 1111 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) { 1112 secdata = alloc_secdata(); 1113 if (!secdata) 1114 goto out; 1115 1116 error = security_sb_copy_data(data, secdata); 1117 if (error) 1118 goto out_free_secdata; 1119 } 1120 1121 root = type->mount(type, flags, name, data); 1122 if (IS_ERR(root)) { 1123 error = PTR_ERR(root); 1124 goto out_free_secdata; 1125 } 1126 sb = root->d_sb; 1127 BUG_ON(!sb); 1128 WARN_ON(!sb->s_bdi); 1129 sb->s_flags |= MS_BORN; 1130 1131 error = security_sb_kern_mount(sb, flags, secdata); 1132 if (error) 1133 goto out_sb; 1134 1135 /* 1136 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1137 * but s_maxbytes was an unsigned long long for many releases. Throw 1138 * this warning for a little while to try and catch filesystems that 1139 * violate this rule. 1140 */ 1141 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1142 "negative value (%lld)\n", type->name, sb->s_maxbytes); 1143 1144 up_write(&sb->s_umount); 1145 free_secdata(secdata); 1146 return root; 1147 out_sb: 1148 dput(root); 1149 deactivate_locked_super(sb); 1150 out_free_secdata: 1151 free_secdata(secdata); 1152 out: 1153 return ERR_PTR(error); 1154 } 1155 1156 /* 1157 * This is an internal function, please use sb_end_{write,pagefault,intwrite} 1158 * instead. 1159 */ 1160 void __sb_end_write(struct super_block *sb, int level) 1161 { 1162 percpu_up_read(sb->s_writers.rw_sem + level-1); 1163 } 1164 EXPORT_SYMBOL(__sb_end_write); 1165 1166 /* 1167 * This is an internal function, please use sb_start_{write,pagefault,intwrite} 1168 * instead. 1169 */ 1170 int __sb_start_write(struct super_block *sb, int level, bool wait) 1171 { 1172 bool force_trylock = false; 1173 int ret = 1; 1174 1175 #ifdef CONFIG_LOCKDEP 1176 /* 1177 * We want lockdep to tell us about possible deadlocks with freezing 1178 * but it's it bit tricky to properly instrument it. Getting a freeze 1179 * protection works as getting a read lock but there are subtle 1180 * problems. XFS for example gets freeze protection on internal level 1181 * twice in some cases, which is OK only because we already hold a 1182 * freeze protection also on higher level. Due to these cases we have 1183 * to use wait == F (trylock mode) which must not fail. 1184 */ 1185 if (wait) { 1186 int i; 1187 1188 for (i = 0; i < level - 1; i++) 1189 if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) { 1190 force_trylock = true; 1191 break; 1192 } 1193 } 1194 #endif 1195 if (wait && !force_trylock) 1196 percpu_down_read(sb->s_writers.rw_sem + level-1); 1197 else 1198 ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1); 1199 1200 WARN_ON(force_trylock && !ret); 1201 return ret; 1202 } 1203 EXPORT_SYMBOL(__sb_start_write); 1204 1205 /** 1206 * sb_wait_write - wait until all writers to given file system finish 1207 * @sb: the super for which we wait 1208 * @level: type of writers we wait for (normal vs page fault) 1209 * 1210 * This function waits until there are no writers of given type to given file 1211 * system. 1212 */ 1213 static void sb_wait_write(struct super_block *sb, int level) 1214 { 1215 percpu_down_write(sb->s_writers.rw_sem + level-1); 1216 /* 1217 * We are going to return to userspace and forget about this lock, the 1218 * ownership goes to the caller of thaw_super() which does unlock. 1219 * 1220 * FIXME: we should do this before return from freeze_super() after we 1221 * called sync_filesystem(sb) and s_op->freeze_fs(sb), and thaw_super() 1222 * should re-acquire these locks before s_op->unfreeze_fs(sb). However 1223 * this leads to lockdep false-positives, so currently we do the early 1224 * release right after acquire. 1225 */ 1226 percpu_rwsem_release(sb->s_writers.rw_sem + level-1, 0, _THIS_IP_); 1227 } 1228 1229 static void sb_freeze_unlock(struct super_block *sb) 1230 { 1231 int level; 1232 1233 for (level = 0; level < SB_FREEZE_LEVELS; ++level) 1234 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1235 1236 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1237 percpu_up_write(sb->s_writers.rw_sem + level); 1238 } 1239 1240 /** 1241 * freeze_super - lock the filesystem and force it into a consistent state 1242 * @sb: the super to lock 1243 * 1244 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1245 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1246 * -EBUSY. 1247 * 1248 * During this function, sb->s_writers.frozen goes through these values: 1249 * 1250 * SB_UNFROZEN: File system is normal, all writes progress as usual. 1251 * 1252 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 1253 * writes should be blocked, though page faults are still allowed. We wait for 1254 * all writes to complete and then proceed to the next stage. 1255 * 1256 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 1257 * but internal fs threads can still modify the filesystem (although they 1258 * should not dirty new pages or inodes), writeback can run etc. After waiting 1259 * for all running page faults we sync the filesystem which will clean all 1260 * dirty pages and inodes (no new dirty pages or inodes can be created when 1261 * sync is running). 1262 * 1263 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 1264 * modification are blocked (e.g. XFS preallocation truncation on inode 1265 * reclaim). This is usually implemented by blocking new transactions for 1266 * filesystems that have them and need this additional guard. After all 1267 * internal writers are finished we call ->freeze_fs() to finish filesystem 1268 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 1269 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 1270 * 1271 * sb->s_writers.frozen is protected by sb->s_umount. 1272 */ 1273 int freeze_super(struct super_block *sb) 1274 { 1275 int ret; 1276 1277 atomic_inc(&sb->s_active); 1278 down_write(&sb->s_umount); 1279 if (sb->s_writers.frozen != SB_UNFROZEN) { 1280 deactivate_locked_super(sb); 1281 return -EBUSY; 1282 } 1283 1284 if (!(sb->s_flags & MS_BORN)) { 1285 up_write(&sb->s_umount); 1286 return 0; /* sic - it's "nothing to do" */ 1287 } 1288 1289 if (sb->s_flags & MS_RDONLY) { 1290 /* Nothing to do really... */ 1291 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1292 up_write(&sb->s_umount); 1293 return 0; 1294 } 1295 1296 sb->s_writers.frozen = SB_FREEZE_WRITE; 1297 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 1298 up_write(&sb->s_umount); 1299 sb_wait_write(sb, SB_FREEZE_WRITE); 1300 down_write(&sb->s_umount); 1301 1302 /* Now we go and block page faults... */ 1303 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 1304 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 1305 1306 /* All writers are done so after syncing there won't be dirty data */ 1307 sync_filesystem(sb); 1308 1309 /* Now wait for internal filesystem counter */ 1310 sb->s_writers.frozen = SB_FREEZE_FS; 1311 sb_wait_write(sb, SB_FREEZE_FS); 1312 1313 if (sb->s_op->freeze_fs) { 1314 ret = sb->s_op->freeze_fs(sb); 1315 if (ret) { 1316 printk(KERN_ERR 1317 "VFS:Filesystem freeze failed\n"); 1318 sb->s_writers.frozen = SB_UNFROZEN; 1319 sb_freeze_unlock(sb); 1320 wake_up(&sb->s_writers.wait_unfrozen); 1321 deactivate_locked_super(sb); 1322 return ret; 1323 } 1324 } 1325 /* 1326 * This is just for debugging purposes so that fs can warn if it 1327 * sees write activity when frozen is set to SB_FREEZE_COMPLETE. 1328 */ 1329 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1330 up_write(&sb->s_umount); 1331 return 0; 1332 } 1333 EXPORT_SYMBOL(freeze_super); 1334 1335 /** 1336 * thaw_super -- unlock filesystem 1337 * @sb: the super to thaw 1338 * 1339 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1340 */ 1341 int thaw_super(struct super_block *sb) 1342 { 1343 int error; 1344 1345 down_write(&sb->s_umount); 1346 if (sb->s_writers.frozen == SB_UNFROZEN) { 1347 up_write(&sb->s_umount); 1348 return -EINVAL; 1349 } 1350 1351 if (sb->s_flags & MS_RDONLY) { 1352 sb->s_writers.frozen = SB_UNFROZEN; 1353 goto out; 1354 } 1355 1356 if (sb->s_op->unfreeze_fs) { 1357 error = sb->s_op->unfreeze_fs(sb); 1358 if (error) { 1359 printk(KERN_ERR 1360 "VFS:Filesystem thaw failed\n"); 1361 up_write(&sb->s_umount); 1362 return error; 1363 } 1364 } 1365 1366 sb->s_writers.frozen = SB_UNFROZEN; 1367 sb_freeze_unlock(sb); 1368 out: 1369 wake_up(&sb->s_writers.wait_unfrozen); 1370 deactivate_locked_super(sb); 1371 return 0; 1372 } 1373 EXPORT_SYMBOL(thaw_super); 1374