xref: /openbmc/linux/fs/super.c (revision 9a8f3203)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/super.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  super.c contains code to handle: - mount structures
8  *                                   - super-block tables
9  *                                   - filesystem drivers list
10  *                                   - mount system call
11  *                                   - umount system call
12  *                                   - ustat system call
13  *
14  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
15  *
16  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18  *  Added options to /proc/mounts:
19  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22  */
23 
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include <linux/fs_context.h>
39 #include <uapi/linux/mount.h>
40 #include "internal.h"
41 
42 static int thaw_super_locked(struct super_block *sb);
43 
44 static LIST_HEAD(super_blocks);
45 static DEFINE_SPINLOCK(sb_lock);
46 
47 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
48 	"sb_writers",
49 	"sb_pagefaults",
50 	"sb_internal",
51 };
52 
53 /*
54  * One thing we have to be careful of with a per-sb shrinker is that we don't
55  * drop the last active reference to the superblock from within the shrinker.
56  * If that happens we could trigger unregistering the shrinker from within the
57  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
58  * take a passive reference to the superblock to avoid this from occurring.
59  */
60 static unsigned long super_cache_scan(struct shrinker *shrink,
61 				      struct shrink_control *sc)
62 {
63 	struct super_block *sb;
64 	long	fs_objects = 0;
65 	long	total_objects;
66 	long	freed = 0;
67 	long	dentries;
68 	long	inodes;
69 
70 	sb = container_of(shrink, struct super_block, s_shrink);
71 
72 	/*
73 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
74 	 * to recurse into the FS that called us in clear_inode() and friends..
75 	 */
76 	if (!(sc->gfp_mask & __GFP_FS))
77 		return SHRINK_STOP;
78 
79 	if (!trylock_super(sb))
80 		return SHRINK_STOP;
81 
82 	if (sb->s_op->nr_cached_objects)
83 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
84 
85 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
86 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
87 	total_objects = dentries + inodes + fs_objects + 1;
88 	if (!total_objects)
89 		total_objects = 1;
90 
91 	/* proportion the scan between the caches */
92 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
93 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
94 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
95 
96 	/*
97 	 * prune the dcache first as the icache is pinned by it, then
98 	 * prune the icache, followed by the filesystem specific caches
99 	 *
100 	 * Ensure that we always scan at least one object - memcg kmem
101 	 * accounting uses this to fully empty the caches.
102 	 */
103 	sc->nr_to_scan = dentries + 1;
104 	freed = prune_dcache_sb(sb, sc);
105 	sc->nr_to_scan = inodes + 1;
106 	freed += prune_icache_sb(sb, sc);
107 
108 	if (fs_objects) {
109 		sc->nr_to_scan = fs_objects + 1;
110 		freed += sb->s_op->free_cached_objects(sb, sc);
111 	}
112 
113 	up_read(&sb->s_umount);
114 	return freed;
115 }
116 
117 static unsigned long super_cache_count(struct shrinker *shrink,
118 				       struct shrink_control *sc)
119 {
120 	struct super_block *sb;
121 	long	total_objects = 0;
122 
123 	sb = container_of(shrink, struct super_block, s_shrink);
124 
125 	/*
126 	 * We don't call trylock_super() here as it is a scalability bottleneck,
127 	 * so we're exposed to partial setup state. The shrinker rwsem does not
128 	 * protect filesystem operations backing list_lru_shrink_count() or
129 	 * s_op->nr_cached_objects(). Counts can change between
130 	 * super_cache_count and super_cache_scan, so we really don't need locks
131 	 * here.
132 	 *
133 	 * However, if we are currently mounting the superblock, the underlying
134 	 * filesystem might be in a state of partial construction and hence it
135 	 * is dangerous to access it.  trylock_super() uses a SB_BORN check to
136 	 * avoid this situation, so do the same here. The memory barrier is
137 	 * matched with the one in mount_fs() as we don't hold locks here.
138 	 */
139 	if (!(sb->s_flags & SB_BORN))
140 		return 0;
141 	smp_rmb();
142 
143 	if (sb->s_op && sb->s_op->nr_cached_objects)
144 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
145 
146 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
147 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
148 
149 	if (!total_objects)
150 		return SHRINK_EMPTY;
151 
152 	total_objects = vfs_pressure_ratio(total_objects);
153 	return total_objects;
154 }
155 
156 static void destroy_super_work(struct work_struct *work)
157 {
158 	struct super_block *s = container_of(work, struct super_block,
159 							destroy_work);
160 	int i;
161 
162 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
163 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
164 	kfree(s);
165 }
166 
167 static void destroy_super_rcu(struct rcu_head *head)
168 {
169 	struct super_block *s = container_of(head, struct super_block, rcu);
170 	INIT_WORK(&s->destroy_work, destroy_super_work);
171 	schedule_work(&s->destroy_work);
172 }
173 
174 /* Free a superblock that has never been seen by anyone */
175 static void destroy_unused_super(struct super_block *s)
176 {
177 	if (!s)
178 		return;
179 	up_write(&s->s_umount);
180 	list_lru_destroy(&s->s_dentry_lru);
181 	list_lru_destroy(&s->s_inode_lru);
182 	security_sb_free(s);
183 	put_user_ns(s->s_user_ns);
184 	kfree(s->s_subtype);
185 	free_prealloced_shrinker(&s->s_shrink);
186 	/* no delays needed */
187 	destroy_super_work(&s->destroy_work);
188 }
189 
190 /**
191  *	alloc_super	-	create new superblock
192  *	@type:	filesystem type superblock should belong to
193  *	@flags: the mount flags
194  *	@user_ns: User namespace for the super_block
195  *
196  *	Allocates and initializes a new &struct super_block.  alloc_super()
197  *	returns a pointer new superblock or %NULL if allocation had failed.
198  */
199 static struct super_block *alloc_super(struct file_system_type *type, int flags,
200 				       struct user_namespace *user_ns)
201 {
202 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
203 	static const struct super_operations default_op;
204 	int i;
205 
206 	if (!s)
207 		return NULL;
208 
209 	INIT_LIST_HEAD(&s->s_mounts);
210 	s->s_user_ns = get_user_ns(user_ns);
211 	init_rwsem(&s->s_umount);
212 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
213 	/*
214 	 * sget() can have s_umount recursion.
215 	 *
216 	 * When it cannot find a suitable sb, it allocates a new
217 	 * one (this one), and tries again to find a suitable old
218 	 * one.
219 	 *
220 	 * In case that succeeds, it will acquire the s_umount
221 	 * lock of the old one. Since these are clearly distrinct
222 	 * locks, and this object isn't exposed yet, there's no
223 	 * risk of deadlocks.
224 	 *
225 	 * Annotate this by putting this lock in a different
226 	 * subclass.
227 	 */
228 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
229 
230 	if (security_sb_alloc(s))
231 		goto fail;
232 
233 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
234 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
235 					sb_writers_name[i],
236 					&type->s_writers_key[i]))
237 			goto fail;
238 	}
239 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
240 	s->s_bdi = &noop_backing_dev_info;
241 	s->s_flags = flags;
242 	if (s->s_user_ns != &init_user_ns)
243 		s->s_iflags |= SB_I_NODEV;
244 	INIT_HLIST_NODE(&s->s_instances);
245 	INIT_HLIST_BL_HEAD(&s->s_roots);
246 	mutex_init(&s->s_sync_lock);
247 	INIT_LIST_HEAD(&s->s_inodes);
248 	spin_lock_init(&s->s_inode_list_lock);
249 	INIT_LIST_HEAD(&s->s_inodes_wb);
250 	spin_lock_init(&s->s_inode_wblist_lock);
251 
252 	s->s_count = 1;
253 	atomic_set(&s->s_active, 1);
254 	mutex_init(&s->s_vfs_rename_mutex);
255 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
256 	init_rwsem(&s->s_dquot.dqio_sem);
257 	s->s_maxbytes = MAX_NON_LFS;
258 	s->s_op = &default_op;
259 	s->s_time_gran = 1000000000;
260 	s->cleancache_poolid = CLEANCACHE_NO_POOL;
261 
262 	s->s_shrink.seeks = DEFAULT_SEEKS;
263 	s->s_shrink.scan_objects = super_cache_scan;
264 	s->s_shrink.count_objects = super_cache_count;
265 	s->s_shrink.batch = 1024;
266 	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
267 	if (prealloc_shrinker(&s->s_shrink))
268 		goto fail;
269 	if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
270 		goto fail;
271 	if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
272 		goto fail;
273 	return s;
274 
275 fail:
276 	destroy_unused_super(s);
277 	return NULL;
278 }
279 
280 /* Superblock refcounting  */
281 
282 /*
283  * Drop a superblock's refcount.  The caller must hold sb_lock.
284  */
285 static void __put_super(struct super_block *s)
286 {
287 	if (!--s->s_count) {
288 		list_del_init(&s->s_list);
289 		WARN_ON(s->s_dentry_lru.node);
290 		WARN_ON(s->s_inode_lru.node);
291 		WARN_ON(!list_empty(&s->s_mounts));
292 		security_sb_free(s);
293 		put_user_ns(s->s_user_ns);
294 		kfree(s->s_subtype);
295 		call_rcu(&s->rcu, destroy_super_rcu);
296 	}
297 }
298 
299 /**
300  *	put_super	-	drop a temporary reference to superblock
301  *	@sb: superblock in question
302  *
303  *	Drops a temporary reference, frees superblock if there's no
304  *	references left.
305  */
306 static void put_super(struct super_block *sb)
307 {
308 	spin_lock(&sb_lock);
309 	__put_super(sb);
310 	spin_unlock(&sb_lock);
311 }
312 
313 
314 /**
315  *	deactivate_locked_super	-	drop an active reference to superblock
316  *	@s: superblock to deactivate
317  *
318  *	Drops an active reference to superblock, converting it into a temporary
319  *	one if there is no other active references left.  In that case we
320  *	tell fs driver to shut it down and drop the temporary reference we
321  *	had just acquired.
322  *
323  *	Caller holds exclusive lock on superblock; that lock is released.
324  */
325 void deactivate_locked_super(struct super_block *s)
326 {
327 	struct file_system_type *fs = s->s_type;
328 	if (atomic_dec_and_test(&s->s_active)) {
329 		cleancache_invalidate_fs(s);
330 		unregister_shrinker(&s->s_shrink);
331 		fs->kill_sb(s);
332 
333 		/*
334 		 * Since list_lru_destroy() may sleep, we cannot call it from
335 		 * put_super(), where we hold the sb_lock. Therefore we destroy
336 		 * the lru lists right now.
337 		 */
338 		list_lru_destroy(&s->s_dentry_lru);
339 		list_lru_destroy(&s->s_inode_lru);
340 
341 		put_filesystem(fs);
342 		put_super(s);
343 	} else {
344 		up_write(&s->s_umount);
345 	}
346 }
347 
348 EXPORT_SYMBOL(deactivate_locked_super);
349 
350 /**
351  *	deactivate_super	-	drop an active reference to superblock
352  *	@s: superblock to deactivate
353  *
354  *	Variant of deactivate_locked_super(), except that superblock is *not*
355  *	locked by caller.  If we are going to drop the final active reference,
356  *	lock will be acquired prior to that.
357  */
358 void deactivate_super(struct super_block *s)
359 {
360         if (!atomic_add_unless(&s->s_active, -1, 1)) {
361 		down_write(&s->s_umount);
362 		deactivate_locked_super(s);
363 	}
364 }
365 
366 EXPORT_SYMBOL(deactivate_super);
367 
368 /**
369  *	grab_super - acquire an active reference
370  *	@s: reference we are trying to make active
371  *
372  *	Tries to acquire an active reference.  grab_super() is used when we
373  * 	had just found a superblock in super_blocks or fs_type->fs_supers
374  *	and want to turn it into a full-blown active reference.  grab_super()
375  *	is called with sb_lock held and drops it.  Returns 1 in case of
376  *	success, 0 if we had failed (superblock contents was already dead or
377  *	dying when grab_super() had been called).  Note that this is only
378  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
379  *	of their type), so increment of ->s_count is OK here.
380  */
381 static int grab_super(struct super_block *s) __releases(sb_lock)
382 {
383 	s->s_count++;
384 	spin_unlock(&sb_lock);
385 	down_write(&s->s_umount);
386 	if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
387 		put_super(s);
388 		return 1;
389 	}
390 	up_write(&s->s_umount);
391 	put_super(s);
392 	return 0;
393 }
394 
395 /*
396  *	trylock_super - try to grab ->s_umount shared
397  *	@sb: reference we are trying to grab
398  *
399  *	Try to prevent fs shutdown.  This is used in places where we
400  *	cannot take an active reference but we need to ensure that the
401  *	filesystem is not shut down while we are working on it. It returns
402  *	false if we cannot acquire s_umount or if we lose the race and
403  *	filesystem already got into shutdown, and returns true with the s_umount
404  *	lock held in read mode in case of success. On successful return,
405  *	the caller must drop the s_umount lock when done.
406  *
407  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
408  *	The reason why it's safe is that we are OK with doing trylock instead
409  *	of down_read().  There's a couple of places that are OK with that, but
410  *	it's very much not a general-purpose interface.
411  */
412 bool trylock_super(struct super_block *sb)
413 {
414 	if (down_read_trylock(&sb->s_umount)) {
415 		if (!hlist_unhashed(&sb->s_instances) &&
416 		    sb->s_root && (sb->s_flags & SB_BORN))
417 			return true;
418 		up_read(&sb->s_umount);
419 	}
420 
421 	return false;
422 }
423 
424 /**
425  *	generic_shutdown_super	-	common helper for ->kill_sb()
426  *	@sb: superblock to kill
427  *
428  *	generic_shutdown_super() does all fs-independent work on superblock
429  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
430  *	that need destruction out of superblock, call generic_shutdown_super()
431  *	and release aforementioned objects.  Note: dentries and inodes _are_
432  *	taken care of and do not need specific handling.
433  *
434  *	Upon calling this function, the filesystem may no longer alter or
435  *	rearrange the set of dentries belonging to this super_block, nor may it
436  *	change the attachments of dentries to inodes.
437  */
438 void generic_shutdown_super(struct super_block *sb)
439 {
440 	const struct super_operations *sop = sb->s_op;
441 
442 	if (sb->s_root) {
443 		shrink_dcache_for_umount(sb);
444 		sync_filesystem(sb);
445 		sb->s_flags &= ~SB_ACTIVE;
446 
447 		fsnotify_sb_delete(sb);
448 		cgroup_writeback_umount();
449 
450 		evict_inodes(sb);
451 
452 		if (sb->s_dio_done_wq) {
453 			destroy_workqueue(sb->s_dio_done_wq);
454 			sb->s_dio_done_wq = NULL;
455 		}
456 
457 		if (sop->put_super)
458 			sop->put_super(sb);
459 
460 		if (!list_empty(&sb->s_inodes)) {
461 			printk("VFS: Busy inodes after unmount of %s. "
462 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
463 			   sb->s_id);
464 		}
465 	}
466 	spin_lock(&sb_lock);
467 	/* should be initialized for __put_super_and_need_restart() */
468 	hlist_del_init(&sb->s_instances);
469 	spin_unlock(&sb_lock);
470 	up_write(&sb->s_umount);
471 	if (sb->s_bdi != &noop_backing_dev_info) {
472 		bdi_put(sb->s_bdi);
473 		sb->s_bdi = &noop_backing_dev_info;
474 	}
475 }
476 
477 EXPORT_SYMBOL(generic_shutdown_super);
478 
479 /**
480  * sget_fc - Find or create a superblock
481  * @fc:	Filesystem context.
482  * @test: Comparison callback
483  * @set: Setup callback
484  *
485  * Find or create a superblock using the parameters stored in the filesystem
486  * context and the two callback functions.
487  *
488  * If an extant superblock is matched, then that will be returned with an
489  * elevated reference count that the caller must transfer or discard.
490  *
491  * If no match is made, a new superblock will be allocated and basic
492  * initialisation will be performed (s_type, s_fs_info and s_id will be set and
493  * the set() callback will be invoked), the superblock will be published and it
494  * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
495  * as yet unset.
496  */
497 struct super_block *sget_fc(struct fs_context *fc,
498 			    int (*test)(struct super_block *, struct fs_context *),
499 			    int (*set)(struct super_block *, struct fs_context *))
500 {
501 	struct super_block *s = NULL;
502 	struct super_block *old;
503 	struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
504 	int err;
505 
506 	if (!(fc->sb_flags & SB_KERNMOUNT) &&
507 	    fc->purpose != FS_CONTEXT_FOR_SUBMOUNT) {
508 		/* Don't allow mounting unless the caller has CAP_SYS_ADMIN
509 		 * over the namespace.
510 		 */
511 		if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) {
512 			if (!capable(CAP_SYS_ADMIN))
513 				return ERR_PTR(-EPERM);
514 		} else {
515 			if (!ns_capable(fc->user_ns, CAP_SYS_ADMIN))
516 				return ERR_PTR(-EPERM);
517 		}
518 	}
519 
520 retry:
521 	spin_lock(&sb_lock);
522 	if (test) {
523 		hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
524 			if (test(old, fc))
525 				goto share_extant_sb;
526 		}
527 	}
528 	if (!s) {
529 		spin_unlock(&sb_lock);
530 		s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
531 		if (!s)
532 			return ERR_PTR(-ENOMEM);
533 		goto retry;
534 	}
535 
536 	s->s_fs_info = fc->s_fs_info;
537 	err = set(s, fc);
538 	if (err) {
539 		s->s_fs_info = NULL;
540 		spin_unlock(&sb_lock);
541 		destroy_unused_super(s);
542 		return ERR_PTR(err);
543 	}
544 	fc->s_fs_info = NULL;
545 	s->s_type = fc->fs_type;
546 	strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
547 	list_add_tail(&s->s_list, &super_blocks);
548 	hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
549 	spin_unlock(&sb_lock);
550 	get_filesystem(s->s_type);
551 	register_shrinker_prepared(&s->s_shrink);
552 	return s;
553 
554 share_extant_sb:
555 	if (user_ns != old->s_user_ns) {
556 		spin_unlock(&sb_lock);
557 		destroy_unused_super(s);
558 		return ERR_PTR(-EBUSY);
559 	}
560 	if (!grab_super(old))
561 		goto retry;
562 	destroy_unused_super(s);
563 	return old;
564 }
565 EXPORT_SYMBOL(sget_fc);
566 
567 /**
568  *	sget_userns -	find or create a superblock
569  *	@type:	filesystem type superblock should belong to
570  *	@test:	comparison callback
571  *	@set:	setup callback
572  *	@flags:	mount flags
573  *	@user_ns: User namespace for the super_block
574  *	@data:	argument to each of them
575  */
576 struct super_block *sget_userns(struct file_system_type *type,
577 			int (*test)(struct super_block *,void *),
578 			int (*set)(struct super_block *,void *),
579 			int flags, struct user_namespace *user_ns,
580 			void *data)
581 {
582 	struct super_block *s = NULL;
583 	struct super_block *old;
584 	int err;
585 
586 	if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) &&
587 	    !(type->fs_flags & FS_USERNS_MOUNT) &&
588 	    !capable(CAP_SYS_ADMIN))
589 		return ERR_PTR(-EPERM);
590 retry:
591 	spin_lock(&sb_lock);
592 	if (test) {
593 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
594 			if (!test(old, data))
595 				continue;
596 			if (user_ns != old->s_user_ns) {
597 				spin_unlock(&sb_lock);
598 				destroy_unused_super(s);
599 				return ERR_PTR(-EBUSY);
600 			}
601 			if (!grab_super(old))
602 				goto retry;
603 			destroy_unused_super(s);
604 			return old;
605 		}
606 	}
607 	if (!s) {
608 		spin_unlock(&sb_lock);
609 		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
610 		if (!s)
611 			return ERR_PTR(-ENOMEM);
612 		goto retry;
613 	}
614 
615 	err = set(s, data);
616 	if (err) {
617 		spin_unlock(&sb_lock);
618 		destroy_unused_super(s);
619 		return ERR_PTR(err);
620 	}
621 	s->s_type = type;
622 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
623 	list_add_tail(&s->s_list, &super_blocks);
624 	hlist_add_head(&s->s_instances, &type->fs_supers);
625 	spin_unlock(&sb_lock);
626 	get_filesystem(type);
627 	register_shrinker_prepared(&s->s_shrink);
628 	return s;
629 }
630 
631 EXPORT_SYMBOL(sget_userns);
632 
633 /**
634  *	sget	-	find or create a superblock
635  *	@type:	  filesystem type superblock should belong to
636  *	@test:	  comparison callback
637  *	@set:	  setup callback
638  *	@flags:	  mount flags
639  *	@data:	  argument to each of them
640  */
641 struct super_block *sget(struct file_system_type *type,
642 			int (*test)(struct super_block *,void *),
643 			int (*set)(struct super_block *,void *),
644 			int flags,
645 			void *data)
646 {
647 	struct user_namespace *user_ns = current_user_ns();
648 
649 	/* We don't yet pass the user namespace of the parent
650 	 * mount through to here so always use &init_user_ns
651 	 * until that changes.
652 	 */
653 	if (flags & SB_SUBMOUNT)
654 		user_ns = &init_user_ns;
655 
656 	/* Ensure the requestor has permissions over the target filesystem */
657 	if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN))
658 		return ERR_PTR(-EPERM);
659 
660 	return sget_userns(type, test, set, flags, user_ns, data);
661 }
662 
663 EXPORT_SYMBOL(sget);
664 
665 void drop_super(struct super_block *sb)
666 {
667 	up_read(&sb->s_umount);
668 	put_super(sb);
669 }
670 
671 EXPORT_SYMBOL(drop_super);
672 
673 void drop_super_exclusive(struct super_block *sb)
674 {
675 	up_write(&sb->s_umount);
676 	put_super(sb);
677 }
678 EXPORT_SYMBOL(drop_super_exclusive);
679 
680 static void __iterate_supers(void (*f)(struct super_block *))
681 {
682 	struct super_block *sb, *p = NULL;
683 
684 	spin_lock(&sb_lock);
685 	list_for_each_entry(sb, &super_blocks, s_list) {
686 		if (hlist_unhashed(&sb->s_instances))
687 			continue;
688 		sb->s_count++;
689 		spin_unlock(&sb_lock);
690 
691 		f(sb);
692 
693 		spin_lock(&sb_lock);
694 		if (p)
695 			__put_super(p);
696 		p = sb;
697 	}
698 	if (p)
699 		__put_super(p);
700 	spin_unlock(&sb_lock);
701 }
702 /**
703  *	iterate_supers - call function for all active superblocks
704  *	@f: function to call
705  *	@arg: argument to pass to it
706  *
707  *	Scans the superblock list and calls given function, passing it
708  *	locked superblock and given argument.
709  */
710 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
711 {
712 	struct super_block *sb, *p = NULL;
713 
714 	spin_lock(&sb_lock);
715 	list_for_each_entry(sb, &super_blocks, s_list) {
716 		if (hlist_unhashed(&sb->s_instances))
717 			continue;
718 		sb->s_count++;
719 		spin_unlock(&sb_lock);
720 
721 		down_read(&sb->s_umount);
722 		if (sb->s_root && (sb->s_flags & SB_BORN))
723 			f(sb, arg);
724 		up_read(&sb->s_umount);
725 
726 		spin_lock(&sb_lock);
727 		if (p)
728 			__put_super(p);
729 		p = sb;
730 	}
731 	if (p)
732 		__put_super(p);
733 	spin_unlock(&sb_lock);
734 }
735 
736 /**
737  *	iterate_supers_type - call function for superblocks of given type
738  *	@type: fs type
739  *	@f: function to call
740  *	@arg: argument to pass to it
741  *
742  *	Scans the superblock list and calls given function, passing it
743  *	locked superblock and given argument.
744  */
745 void iterate_supers_type(struct file_system_type *type,
746 	void (*f)(struct super_block *, void *), void *arg)
747 {
748 	struct super_block *sb, *p = NULL;
749 
750 	spin_lock(&sb_lock);
751 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
752 		sb->s_count++;
753 		spin_unlock(&sb_lock);
754 
755 		down_read(&sb->s_umount);
756 		if (sb->s_root && (sb->s_flags & SB_BORN))
757 			f(sb, arg);
758 		up_read(&sb->s_umount);
759 
760 		spin_lock(&sb_lock);
761 		if (p)
762 			__put_super(p);
763 		p = sb;
764 	}
765 	if (p)
766 		__put_super(p);
767 	spin_unlock(&sb_lock);
768 }
769 
770 EXPORT_SYMBOL(iterate_supers_type);
771 
772 static struct super_block *__get_super(struct block_device *bdev, bool excl)
773 {
774 	struct super_block *sb;
775 
776 	if (!bdev)
777 		return NULL;
778 
779 	spin_lock(&sb_lock);
780 rescan:
781 	list_for_each_entry(sb, &super_blocks, s_list) {
782 		if (hlist_unhashed(&sb->s_instances))
783 			continue;
784 		if (sb->s_bdev == bdev) {
785 			sb->s_count++;
786 			spin_unlock(&sb_lock);
787 			if (!excl)
788 				down_read(&sb->s_umount);
789 			else
790 				down_write(&sb->s_umount);
791 			/* still alive? */
792 			if (sb->s_root && (sb->s_flags & SB_BORN))
793 				return sb;
794 			if (!excl)
795 				up_read(&sb->s_umount);
796 			else
797 				up_write(&sb->s_umount);
798 			/* nope, got unmounted */
799 			spin_lock(&sb_lock);
800 			__put_super(sb);
801 			goto rescan;
802 		}
803 	}
804 	spin_unlock(&sb_lock);
805 	return NULL;
806 }
807 
808 /**
809  *	get_super - get the superblock of a device
810  *	@bdev: device to get the superblock for
811  *
812  *	Scans the superblock list and finds the superblock of the file system
813  *	mounted on the device given. %NULL is returned if no match is found.
814  */
815 struct super_block *get_super(struct block_device *bdev)
816 {
817 	return __get_super(bdev, false);
818 }
819 EXPORT_SYMBOL(get_super);
820 
821 static struct super_block *__get_super_thawed(struct block_device *bdev,
822 					      bool excl)
823 {
824 	while (1) {
825 		struct super_block *s = __get_super(bdev, excl);
826 		if (!s || s->s_writers.frozen == SB_UNFROZEN)
827 			return s;
828 		if (!excl)
829 			up_read(&s->s_umount);
830 		else
831 			up_write(&s->s_umount);
832 		wait_event(s->s_writers.wait_unfrozen,
833 			   s->s_writers.frozen == SB_UNFROZEN);
834 		put_super(s);
835 	}
836 }
837 
838 /**
839  *	get_super_thawed - get thawed superblock of a device
840  *	@bdev: device to get the superblock for
841  *
842  *	Scans the superblock list and finds the superblock of the file system
843  *	mounted on the device. The superblock is returned once it is thawed
844  *	(or immediately if it was not frozen). %NULL is returned if no match
845  *	is found.
846  */
847 struct super_block *get_super_thawed(struct block_device *bdev)
848 {
849 	return __get_super_thawed(bdev, false);
850 }
851 EXPORT_SYMBOL(get_super_thawed);
852 
853 /**
854  *	get_super_exclusive_thawed - get thawed superblock of a device
855  *	@bdev: device to get the superblock for
856  *
857  *	Scans the superblock list and finds the superblock of the file system
858  *	mounted on the device. The superblock is returned once it is thawed
859  *	(or immediately if it was not frozen) and s_umount semaphore is held
860  *	in exclusive mode. %NULL is returned if no match is found.
861  */
862 struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
863 {
864 	return __get_super_thawed(bdev, true);
865 }
866 EXPORT_SYMBOL(get_super_exclusive_thawed);
867 
868 /**
869  * get_active_super - get an active reference to the superblock of a device
870  * @bdev: device to get the superblock for
871  *
872  * Scans the superblock list and finds the superblock of the file system
873  * mounted on the device given.  Returns the superblock with an active
874  * reference or %NULL if none was found.
875  */
876 struct super_block *get_active_super(struct block_device *bdev)
877 {
878 	struct super_block *sb;
879 
880 	if (!bdev)
881 		return NULL;
882 
883 restart:
884 	spin_lock(&sb_lock);
885 	list_for_each_entry(sb, &super_blocks, s_list) {
886 		if (hlist_unhashed(&sb->s_instances))
887 			continue;
888 		if (sb->s_bdev == bdev) {
889 			if (!grab_super(sb))
890 				goto restart;
891 			up_write(&sb->s_umount);
892 			return sb;
893 		}
894 	}
895 	spin_unlock(&sb_lock);
896 	return NULL;
897 }
898 
899 struct super_block *user_get_super(dev_t dev)
900 {
901 	struct super_block *sb;
902 
903 	spin_lock(&sb_lock);
904 rescan:
905 	list_for_each_entry(sb, &super_blocks, s_list) {
906 		if (hlist_unhashed(&sb->s_instances))
907 			continue;
908 		if (sb->s_dev ==  dev) {
909 			sb->s_count++;
910 			spin_unlock(&sb_lock);
911 			down_read(&sb->s_umount);
912 			/* still alive? */
913 			if (sb->s_root && (sb->s_flags & SB_BORN))
914 				return sb;
915 			up_read(&sb->s_umount);
916 			/* nope, got unmounted */
917 			spin_lock(&sb_lock);
918 			__put_super(sb);
919 			goto rescan;
920 		}
921 	}
922 	spin_unlock(&sb_lock);
923 	return NULL;
924 }
925 
926 /**
927  * reconfigure_super - asks filesystem to change superblock parameters
928  * @fc: The superblock and configuration
929  *
930  * Alters the configuration parameters of a live superblock.
931  */
932 int reconfigure_super(struct fs_context *fc)
933 {
934 	struct super_block *sb = fc->root->d_sb;
935 	int retval;
936 	bool remount_ro = false;
937 	bool force = fc->sb_flags & SB_FORCE;
938 
939 	if (fc->sb_flags_mask & ~MS_RMT_MASK)
940 		return -EINVAL;
941 	if (sb->s_writers.frozen != SB_UNFROZEN)
942 		return -EBUSY;
943 
944 	retval = security_sb_remount(sb, fc->security);
945 	if (retval)
946 		return retval;
947 
948 	if (fc->sb_flags_mask & SB_RDONLY) {
949 #ifdef CONFIG_BLOCK
950 		if (!(fc->sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
951 			return -EACCES;
952 #endif
953 
954 		remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
955 	}
956 
957 	if (remount_ro) {
958 		if (!hlist_empty(&sb->s_pins)) {
959 			up_write(&sb->s_umount);
960 			group_pin_kill(&sb->s_pins);
961 			down_write(&sb->s_umount);
962 			if (!sb->s_root)
963 				return 0;
964 			if (sb->s_writers.frozen != SB_UNFROZEN)
965 				return -EBUSY;
966 			remount_ro = !sb_rdonly(sb);
967 		}
968 	}
969 	shrink_dcache_sb(sb);
970 
971 	/* If we are reconfiguring to RDONLY and current sb is read/write,
972 	 * make sure there are no files open for writing.
973 	 */
974 	if (remount_ro) {
975 		if (force) {
976 			sb->s_readonly_remount = 1;
977 			smp_wmb();
978 		} else {
979 			retval = sb_prepare_remount_readonly(sb);
980 			if (retval)
981 				return retval;
982 		}
983 	}
984 
985 	if (fc->ops->reconfigure) {
986 		retval = fc->ops->reconfigure(fc);
987 		if (retval) {
988 			if (!force)
989 				goto cancel_readonly;
990 			/* If forced remount, go ahead despite any errors */
991 			WARN(1, "forced remount of a %s fs returned %i\n",
992 			     sb->s_type->name, retval);
993 		}
994 	}
995 
996 	WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
997 				 (fc->sb_flags & fc->sb_flags_mask)));
998 	/* Needs to be ordered wrt mnt_is_readonly() */
999 	smp_wmb();
1000 	sb->s_readonly_remount = 0;
1001 
1002 	/*
1003 	 * Some filesystems modify their metadata via some other path than the
1004 	 * bdev buffer cache (eg. use a private mapping, or directories in
1005 	 * pagecache, etc). Also file data modifications go via their own
1006 	 * mappings. So If we try to mount readonly then copy the filesystem
1007 	 * from bdev, we could get stale data, so invalidate it to give a best
1008 	 * effort at coherency.
1009 	 */
1010 	if (remount_ro && sb->s_bdev)
1011 		invalidate_bdev(sb->s_bdev);
1012 	return 0;
1013 
1014 cancel_readonly:
1015 	sb->s_readonly_remount = 0;
1016 	return retval;
1017 }
1018 
1019 static void do_emergency_remount_callback(struct super_block *sb)
1020 {
1021 	down_write(&sb->s_umount);
1022 	if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
1023 	    !sb_rdonly(sb)) {
1024 		struct fs_context *fc;
1025 
1026 		fc = fs_context_for_reconfigure(sb->s_root,
1027 					SB_RDONLY | SB_FORCE, SB_RDONLY);
1028 		if (!IS_ERR(fc)) {
1029 			if (parse_monolithic_mount_data(fc, NULL) == 0)
1030 				(void)reconfigure_super(fc);
1031 			put_fs_context(fc);
1032 		}
1033 	}
1034 	up_write(&sb->s_umount);
1035 }
1036 
1037 static void do_emergency_remount(struct work_struct *work)
1038 {
1039 	__iterate_supers(do_emergency_remount_callback);
1040 	kfree(work);
1041 	printk("Emergency Remount complete\n");
1042 }
1043 
1044 void emergency_remount(void)
1045 {
1046 	struct work_struct *work;
1047 
1048 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1049 	if (work) {
1050 		INIT_WORK(work, do_emergency_remount);
1051 		schedule_work(work);
1052 	}
1053 }
1054 
1055 static void do_thaw_all_callback(struct super_block *sb)
1056 {
1057 	down_write(&sb->s_umount);
1058 	if (sb->s_root && sb->s_flags & SB_BORN) {
1059 		emergency_thaw_bdev(sb);
1060 		thaw_super_locked(sb);
1061 	} else {
1062 		up_write(&sb->s_umount);
1063 	}
1064 }
1065 
1066 static void do_thaw_all(struct work_struct *work)
1067 {
1068 	__iterate_supers(do_thaw_all_callback);
1069 	kfree(work);
1070 	printk(KERN_WARNING "Emergency Thaw complete\n");
1071 }
1072 
1073 /**
1074  * emergency_thaw_all -- forcibly thaw every frozen filesystem
1075  *
1076  * Used for emergency unfreeze of all filesystems via SysRq
1077  */
1078 void emergency_thaw_all(void)
1079 {
1080 	struct work_struct *work;
1081 
1082 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1083 	if (work) {
1084 		INIT_WORK(work, do_thaw_all);
1085 		schedule_work(work);
1086 	}
1087 }
1088 
1089 static DEFINE_IDA(unnamed_dev_ida);
1090 
1091 /**
1092  * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1093  * @p: Pointer to a dev_t.
1094  *
1095  * Filesystems which don't use real block devices can call this function
1096  * to allocate a virtual block device.
1097  *
1098  * Context: Any context.  Frequently called while holding sb_lock.
1099  * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1100  * or -ENOMEM if memory allocation failed.
1101  */
1102 int get_anon_bdev(dev_t *p)
1103 {
1104 	int dev;
1105 
1106 	/*
1107 	 * Many userspace utilities consider an FSID of 0 invalid.
1108 	 * Always return at least 1 from get_anon_bdev.
1109 	 */
1110 	dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1111 			GFP_ATOMIC);
1112 	if (dev == -ENOSPC)
1113 		dev = -EMFILE;
1114 	if (dev < 0)
1115 		return dev;
1116 
1117 	*p = MKDEV(0, dev);
1118 	return 0;
1119 }
1120 EXPORT_SYMBOL(get_anon_bdev);
1121 
1122 void free_anon_bdev(dev_t dev)
1123 {
1124 	ida_free(&unnamed_dev_ida, MINOR(dev));
1125 }
1126 EXPORT_SYMBOL(free_anon_bdev);
1127 
1128 int set_anon_super(struct super_block *s, void *data)
1129 {
1130 	return get_anon_bdev(&s->s_dev);
1131 }
1132 EXPORT_SYMBOL(set_anon_super);
1133 
1134 void kill_anon_super(struct super_block *sb)
1135 {
1136 	dev_t dev = sb->s_dev;
1137 	generic_shutdown_super(sb);
1138 	free_anon_bdev(dev);
1139 }
1140 EXPORT_SYMBOL(kill_anon_super);
1141 
1142 void kill_litter_super(struct super_block *sb)
1143 {
1144 	if (sb->s_root)
1145 		d_genocide(sb->s_root);
1146 	kill_anon_super(sb);
1147 }
1148 EXPORT_SYMBOL(kill_litter_super);
1149 
1150 static int ns_test_super(struct super_block *sb, void *data)
1151 {
1152 	return sb->s_fs_info == data;
1153 }
1154 
1155 static int ns_set_super(struct super_block *sb, void *data)
1156 {
1157 	sb->s_fs_info = data;
1158 	return set_anon_super(sb, NULL);
1159 }
1160 
1161 struct dentry *mount_ns(struct file_system_type *fs_type,
1162 	int flags, void *data, void *ns, struct user_namespace *user_ns,
1163 	int (*fill_super)(struct super_block *, void *, int))
1164 {
1165 	struct super_block *sb;
1166 
1167 	/* Don't allow mounting unless the caller has CAP_SYS_ADMIN
1168 	 * over the namespace.
1169 	 */
1170 	if (!(flags & SB_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
1171 		return ERR_PTR(-EPERM);
1172 
1173 	sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags,
1174 			 user_ns, ns);
1175 	if (IS_ERR(sb))
1176 		return ERR_CAST(sb);
1177 
1178 	if (!sb->s_root) {
1179 		int err;
1180 		err = fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
1181 		if (err) {
1182 			deactivate_locked_super(sb);
1183 			return ERR_PTR(err);
1184 		}
1185 
1186 		sb->s_flags |= SB_ACTIVE;
1187 	}
1188 
1189 	return dget(sb->s_root);
1190 }
1191 
1192 EXPORT_SYMBOL(mount_ns);
1193 
1194 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1195 {
1196 	return set_anon_super(sb, NULL);
1197 }
1198 EXPORT_SYMBOL(set_anon_super_fc);
1199 
1200 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1201 {
1202 	return sb->s_fs_info == fc->s_fs_info;
1203 }
1204 
1205 static int test_single_super(struct super_block *s, struct fs_context *fc)
1206 {
1207 	return 1;
1208 }
1209 
1210 /**
1211  * vfs_get_super - Get a superblock with a search key set in s_fs_info.
1212  * @fc: The filesystem context holding the parameters
1213  * @keying: How to distinguish superblocks
1214  * @fill_super: Helper to initialise a new superblock
1215  *
1216  * Search for a superblock and create a new one if not found.  The search
1217  * criterion is controlled by @keying.  If the search fails, a new superblock
1218  * is created and @fill_super() is called to initialise it.
1219  *
1220  * @keying can take one of a number of values:
1221  *
1222  * (1) vfs_get_single_super - Only one superblock of this type may exist on the
1223  *     system.  This is typically used for special system filesystems.
1224  *
1225  * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
1226  *     distinct keys (where the key is in s_fs_info).  Searching for the same
1227  *     key again will turn up the superblock for that key.
1228  *
1229  * (3) vfs_get_independent_super - Multiple superblocks may exist and are
1230  *     unkeyed.  Each call will get a new superblock.
1231  *
1232  * A permissions check is made by sget_fc() unless we're getting a superblock
1233  * for a kernel-internal mount or a submount.
1234  */
1235 int vfs_get_super(struct fs_context *fc,
1236 		  enum vfs_get_super_keying keying,
1237 		  int (*fill_super)(struct super_block *sb,
1238 				    struct fs_context *fc))
1239 {
1240 	int (*test)(struct super_block *, struct fs_context *);
1241 	struct super_block *sb;
1242 
1243 	switch (keying) {
1244 	case vfs_get_single_super:
1245 		test = test_single_super;
1246 		break;
1247 	case vfs_get_keyed_super:
1248 		test = test_keyed_super;
1249 		break;
1250 	case vfs_get_independent_super:
1251 		test = NULL;
1252 		break;
1253 	default:
1254 		BUG();
1255 	}
1256 
1257 	sb = sget_fc(fc, test, set_anon_super_fc);
1258 	if (IS_ERR(sb))
1259 		return PTR_ERR(sb);
1260 
1261 	if (!sb->s_root) {
1262 		int err = fill_super(sb, fc);
1263 		if (err) {
1264 			deactivate_locked_super(sb);
1265 			return err;
1266 		}
1267 
1268 		sb->s_flags |= SB_ACTIVE;
1269 	}
1270 
1271 	BUG_ON(fc->root);
1272 	fc->root = dget(sb->s_root);
1273 	return 0;
1274 }
1275 EXPORT_SYMBOL(vfs_get_super);
1276 
1277 #ifdef CONFIG_BLOCK
1278 static int set_bdev_super(struct super_block *s, void *data)
1279 {
1280 	s->s_bdev = data;
1281 	s->s_dev = s->s_bdev->bd_dev;
1282 	s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1283 
1284 	return 0;
1285 }
1286 
1287 static int test_bdev_super(struct super_block *s, void *data)
1288 {
1289 	return (void *)s->s_bdev == data;
1290 }
1291 
1292 struct dentry *mount_bdev(struct file_system_type *fs_type,
1293 	int flags, const char *dev_name, void *data,
1294 	int (*fill_super)(struct super_block *, void *, int))
1295 {
1296 	struct block_device *bdev;
1297 	struct super_block *s;
1298 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1299 	int error = 0;
1300 
1301 	if (!(flags & SB_RDONLY))
1302 		mode |= FMODE_WRITE;
1303 
1304 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1305 	if (IS_ERR(bdev))
1306 		return ERR_CAST(bdev);
1307 
1308 	/*
1309 	 * once the super is inserted into the list by sget, s_umount
1310 	 * will protect the lockfs code from trying to start a snapshot
1311 	 * while we are mounting
1312 	 */
1313 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1314 	if (bdev->bd_fsfreeze_count > 0) {
1315 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1316 		error = -EBUSY;
1317 		goto error_bdev;
1318 	}
1319 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1320 		 bdev);
1321 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1322 	if (IS_ERR(s))
1323 		goto error_s;
1324 
1325 	if (s->s_root) {
1326 		if ((flags ^ s->s_flags) & SB_RDONLY) {
1327 			deactivate_locked_super(s);
1328 			error = -EBUSY;
1329 			goto error_bdev;
1330 		}
1331 
1332 		/*
1333 		 * s_umount nests inside bd_mutex during
1334 		 * __invalidate_device().  blkdev_put() acquires
1335 		 * bd_mutex and can't be called under s_umount.  Drop
1336 		 * s_umount temporarily.  This is safe as we're
1337 		 * holding an active reference.
1338 		 */
1339 		up_write(&s->s_umount);
1340 		blkdev_put(bdev, mode);
1341 		down_write(&s->s_umount);
1342 	} else {
1343 		s->s_mode = mode;
1344 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1345 		sb_set_blocksize(s, block_size(bdev));
1346 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1347 		if (error) {
1348 			deactivate_locked_super(s);
1349 			goto error;
1350 		}
1351 
1352 		s->s_flags |= SB_ACTIVE;
1353 		bdev->bd_super = s;
1354 	}
1355 
1356 	return dget(s->s_root);
1357 
1358 error_s:
1359 	error = PTR_ERR(s);
1360 error_bdev:
1361 	blkdev_put(bdev, mode);
1362 error:
1363 	return ERR_PTR(error);
1364 }
1365 EXPORT_SYMBOL(mount_bdev);
1366 
1367 void kill_block_super(struct super_block *sb)
1368 {
1369 	struct block_device *bdev = sb->s_bdev;
1370 	fmode_t mode = sb->s_mode;
1371 
1372 	bdev->bd_super = NULL;
1373 	generic_shutdown_super(sb);
1374 	sync_blockdev(bdev);
1375 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1376 	blkdev_put(bdev, mode | FMODE_EXCL);
1377 }
1378 
1379 EXPORT_SYMBOL(kill_block_super);
1380 #endif
1381 
1382 struct dentry *mount_nodev(struct file_system_type *fs_type,
1383 	int flags, void *data,
1384 	int (*fill_super)(struct super_block *, void *, int))
1385 {
1386 	int error;
1387 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1388 
1389 	if (IS_ERR(s))
1390 		return ERR_CAST(s);
1391 
1392 	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1393 	if (error) {
1394 		deactivate_locked_super(s);
1395 		return ERR_PTR(error);
1396 	}
1397 	s->s_flags |= SB_ACTIVE;
1398 	return dget(s->s_root);
1399 }
1400 EXPORT_SYMBOL(mount_nodev);
1401 
1402 static int reconfigure_single(struct super_block *s,
1403 			      int flags, void *data)
1404 {
1405 	struct fs_context *fc;
1406 	int ret;
1407 
1408 	/* The caller really need to be passing fc down into mount_single(),
1409 	 * then a chunk of this can be removed.  [Bollocks -- AV]
1410 	 * Better yet, reconfiguration shouldn't happen, but rather the second
1411 	 * mount should be rejected if the parameters are not compatible.
1412 	 */
1413 	fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1414 	if (IS_ERR(fc))
1415 		return PTR_ERR(fc);
1416 
1417 	ret = parse_monolithic_mount_data(fc, data);
1418 	if (ret < 0)
1419 		goto out;
1420 
1421 	ret = reconfigure_super(fc);
1422 out:
1423 	put_fs_context(fc);
1424 	return ret;
1425 }
1426 
1427 static int compare_single(struct super_block *s, void *p)
1428 {
1429 	return 1;
1430 }
1431 
1432 struct dentry *mount_single(struct file_system_type *fs_type,
1433 	int flags, void *data,
1434 	int (*fill_super)(struct super_block *, void *, int))
1435 {
1436 	struct super_block *s;
1437 	int error;
1438 
1439 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1440 	if (IS_ERR(s))
1441 		return ERR_CAST(s);
1442 	if (!s->s_root) {
1443 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1444 		if (!error)
1445 			s->s_flags |= SB_ACTIVE;
1446 	} else {
1447 		error = reconfigure_single(s, flags, data);
1448 	}
1449 	if (unlikely(error)) {
1450 		deactivate_locked_super(s);
1451 		return ERR_PTR(error);
1452 	}
1453 	return dget(s->s_root);
1454 }
1455 EXPORT_SYMBOL(mount_single);
1456 
1457 /**
1458  * vfs_get_tree - Get the mountable root
1459  * @fc: The superblock configuration context.
1460  *
1461  * The filesystem is invoked to get or create a superblock which can then later
1462  * be used for mounting.  The filesystem places a pointer to the root to be
1463  * used for mounting in @fc->root.
1464  */
1465 int vfs_get_tree(struct fs_context *fc)
1466 {
1467 	struct super_block *sb;
1468 	int error;
1469 
1470 	if (fc->fs_type->fs_flags & FS_REQUIRES_DEV && !fc->source) {
1471 		errorf(fc, "Filesystem requires source device");
1472 		return -ENOENT;
1473 	}
1474 
1475 	if (fc->root)
1476 		return -EBUSY;
1477 
1478 	/* Get the mountable root in fc->root, with a ref on the root and a ref
1479 	 * on the superblock.
1480 	 */
1481 	error = fc->ops->get_tree(fc);
1482 	if (error < 0)
1483 		return error;
1484 
1485 	if (!fc->root) {
1486 		pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1487 		       fc->fs_type->name);
1488 		/* We don't know what the locking state of the superblock is -
1489 		 * if there is a superblock.
1490 		 */
1491 		BUG();
1492 	}
1493 
1494 	sb = fc->root->d_sb;
1495 	WARN_ON(!sb->s_bdi);
1496 
1497 	if (fc->subtype && !sb->s_subtype) {
1498 		sb->s_subtype = fc->subtype;
1499 		fc->subtype = NULL;
1500 	}
1501 
1502 	/*
1503 	 * Write barrier is for super_cache_count(). We place it before setting
1504 	 * SB_BORN as the data dependency between the two functions is the
1505 	 * superblock structure contents that we just set up, not the SB_BORN
1506 	 * flag.
1507 	 */
1508 	smp_wmb();
1509 	sb->s_flags |= SB_BORN;
1510 
1511 	error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1512 	if (unlikely(error)) {
1513 		fc_drop_locked(fc);
1514 		return error;
1515 	}
1516 
1517 	/*
1518 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1519 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1520 	 * this warning for a little while to try and catch filesystems that
1521 	 * violate this rule.
1522 	 */
1523 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1524 		"negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1525 
1526 	return 0;
1527 }
1528 EXPORT_SYMBOL(vfs_get_tree);
1529 
1530 /*
1531  * Setup private BDI for given superblock. It gets automatically cleaned up
1532  * in generic_shutdown_super().
1533  */
1534 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1535 {
1536 	struct backing_dev_info *bdi;
1537 	int err;
1538 	va_list args;
1539 
1540 	bdi = bdi_alloc(GFP_KERNEL);
1541 	if (!bdi)
1542 		return -ENOMEM;
1543 
1544 	bdi->name = sb->s_type->name;
1545 
1546 	va_start(args, fmt);
1547 	err = bdi_register_va(bdi, fmt, args);
1548 	va_end(args);
1549 	if (err) {
1550 		bdi_put(bdi);
1551 		return err;
1552 	}
1553 	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1554 	sb->s_bdi = bdi;
1555 
1556 	return 0;
1557 }
1558 EXPORT_SYMBOL(super_setup_bdi_name);
1559 
1560 /*
1561  * Setup private BDI for given superblock. I gets automatically cleaned up
1562  * in generic_shutdown_super().
1563  */
1564 int super_setup_bdi(struct super_block *sb)
1565 {
1566 	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1567 
1568 	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1569 				    atomic_long_inc_return(&bdi_seq));
1570 }
1571 EXPORT_SYMBOL(super_setup_bdi);
1572 
1573 /*
1574  * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1575  * instead.
1576  */
1577 void __sb_end_write(struct super_block *sb, int level)
1578 {
1579 	percpu_up_read(sb->s_writers.rw_sem + level-1);
1580 }
1581 EXPORT_SYMBOL(__sb_end_write);
1582 
1583 /*
1584  * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1585  * instead.
1586  */
1587 int __sb_start_write(struct super_block *sb, int level, bool wait)
1588 {
1589 	bool force_trylock = false;
1590 	int ret = 1;
1591 
1592 #ifdef CONFIG_LOCKDEP
1593 	/*
1594 	 * We want lockdep to tell us about possible deadlocks with freezing
1595 	 * but it's it bit tricky to properly instrument it. Getting a freeze
1596 	 * protection works as getting a read lock but there are subtle
1597 	 * problems. XFS for example gets freeze protection on internal level
1598 	 * twice in some cases, which is OK only because we already hold a
1599 	 * freeze protection also on higher level. Due to these cases we have
1600 	 * to use wait == F (trylock mode) which must not fail.
1601 	 */
1602 	if (wait) {
1603 		int i;
1604 
1605 		for (i = 0; i < level - 1; i++)
1606 			if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1607 				force_trylock = true;
1608 				break;
1609 			}
1610 	}
1611 #endif
1612 	if (wait && !force_trylock)
1613 		percpu_down_read(sb->s_writers.rw_sem + level-1);
1614 	else
1615 		ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1616 
1617 	WARN_ON(force_trylock && !ret);
1618 	return ret;
1619 }
1620 EXPORT_SYMBOL(__sb_start_write);
1621 
1622 /**
1623  * sb_wait_write - wait until all writers to given file system finish
1624  * @sb: the super for which we wait
1625  * @level: type of writers we wait for (normal vs page fault)
1626  *
1627  * This function waits until there are no writers of given type to given file
1628  * system.
1629  */
1630 static void sb_wait_write(struct super_block *sb, int level)
1631 {
1632 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1633 }
1634 
1635 /*
1636  * We are going to return to userspace and forget about these locks, the
1637  * ownership goes to the caller of thaw_super() which does unlock().
1638  */
1639 static void lockdep_sb_freeze_release(struct super_block *sb)
1640 {
1641 	int level;
1642 
1643 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1644 		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1645 }
1646 
1647 /*
1648  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1649  */
1650 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1651 {
1652 	int level;
1653 
1654 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1655 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1656 }
1657 
1658 static void sb_freeze_unlock(struct super_block *sb)
1659 {
1660 	int level;
1661 
1662 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1663 		percpu_up_write(sb->s_writers.rw_sem + level);
1664 }
1665 
1666 /**
1667  * freeze_super - lock the filesystem and force it into a consistent state
1668  * @sb: the super to lock
1669  *
1670  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1671  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1672  * -EBUSY.
1673  *
1674  * During this function, sb->s_writers.frozen goes through these values:
1675  *
1676  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1677  *
1678  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1679  * writes should be blocked, though page faults are still allowed. We wait for
1680  * all writes to complete and then proceed to the next stage.
1681  *
1682  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1683  * but internal fs threads can still modify the filesystem (although they
1684  * should not dirty new pages or inodes), writeback can run etc. After waiting
1685  * for all running page faults we sync the filesystem which will clean all
1686  * dirty pages and inodes (no new dirty pages or inodes can be created when
1687  * sync is running).
1688  *
1689  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1690  * modification are blocked (e.g. XFS preallocation truncation on inode
1691  * reclaim). This is usually implemented by blocking new transactions for
1692  * filesystems that have them and need this additional guard. After all
1693  * internal writers are finished we call ->freeze_fs() to finish filesystem
1694  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1695  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1696  *
1697  * sb->s_writers.frozen is protected by sb->s_umount.
1698  */
1699 int freeze_super(struct super_block *sb)
1700 {
1701 	int ret;
1702 
1703 	atomic_inc(&sb->s_active);
1704 	down_write(&sb->s_umount);
1705 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1706 		deactivate_locked_super(sb);
1707 		return -EBUSY;
1708 	}
1709 
1710 	if (!(sb->s_flags & SB_BORN)) {
1711 		up_write(&sb->s_umount);
1712 		return 0;	/* sic - it's "nothing to do" */
1713 	}
1714 
1715 	if (sb_rdonly(sb)) {
1716 		/* Nothing to do really... */
1717 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1718 		up_write(&sb->s_umount);
1719 		return 0;
1720 	}
1721 
1722 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1723 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1724 	up_write(&sb->s_umount);
1725 	sb_wait_write(sb, SB_FREEZE_WRITE);
1726 	down_write(&sb->s_umount);
1727 
1728 	/* Now we go and block page faults... */
1729 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1730 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1731 
1732 	/* All writers are done so after syncing there won't be dirty data */
1733 	sync_filesystem(sb);
1734 
1735 	/* Now wait for internal filesystem counter */
1736 	sb->s_writers.frozen = SB_FREEZE_FS;
1737 	sb_wait_write(sb, SB_FREEZE_FS);
1738 
1739 	if (sb->s_op->freeze_fs) {
1740 		ret = sb->s_op->freeze_fs(sb);
1741 		if (ret) {
1742 			printk(KERN_ERR
1743 				"VFS:Filesystem freeze failed\n");
1744 			sb->s_writers.frozen = SB_UNFROZEN;
1745 			sb_freeze_unlock(sb);
1746 			wake_up(&sb->s_writers.wait_unfrozen);
1747 			deactivate_locked_super(sb);
1748 			return ret;
1749 		}
1750 	}
1751 	/*
1752 	 * For debugging purposes so that fs can warn if it sees write activity
1753 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1754 	 */
1755 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1756 	lockdep_sb_freeze_release(sb);
1757 	up_write(&sb->s_umount);
1758 	return 0;
1759 }
1760 EXPORT_SYMBOL(freeze_super);
1761 
1762 /**
1763  * thaw_super -- unlock filesystem
1764  * @sb: the super to thaw
1765  *
1766  * Unlocks the filesystem and marks it writeable again after freeze_super().
1767  */
1768 static int thaw_super_locked(struct super_block *sb)
1769 {
1770 	int error;
1771 
1772 	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1773 		up_write(&sb->s_umount);
1774 		return -EINVAL;
1775 	}
1776 
1777 	if (sb_rdonly(sb)) {
1778 		sb->s_writers.frozen = SB_UNFROZEN;
1779 		goto out;
1780 	}
1781 
1782 	lockdep_sb_freeze_acquire(sb);
1783 
1784 	if (sb->s_op->unfreeze_fs) {
1785 		error = sb->s_op->unfreeze_fs(sb);
1786 		if (error) {
1787 			printk(KERN_ERR
1788 				"VFS:Filesystem thaw failed\n");
1789 			lockdep_sb_freeze_release(sb);
1790 			up_write(&sb->s_umount);
1791 			return error;
1792 		}
1793 	}
1794 
1795 	sb->s_writers.frozen = SB_UNFROZEN;
1796 	sb_freeze_unlock(sb);
1797 out:
1798 	wake_up(&sb->s_writers.wait_unfrozen);
1799 	deactivate_locked_super(sb);
1800 	return 0;
1801 }
1802 
1803 int thaw_super(struct super_block *sb)
1804 {
1805 	down_write(&sb->s_umount);
1806 	return thaw_super_locked(sb);
1807 }
1808 EXPORT_SYMBOL(thaw_super);
1809