1 /* 2 * linux/fs/super.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * super.c contains code to handle: - mount structures 7 * - super-block tables 8 * - filesystem drivers list 9 * - mount system call 10 * - umount system call 11 * - ustat system call 12 * 13 * GK 2/5/95 - Changed to support mounting the root fs via NFS 14 * 15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 17 * Added options to /proc/mounts: 18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 21 */ 22 23 #include <linux/export.h> 24 #include <linux/slab.h> 25 #include <linux/acct.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/cleancache.h> 35 #include <linux/fsnotify.h> 36 #include <linux/lockdep.h> 37 #include "internal.h" 38 39 40 LIST_HEAD(super_blocks); 41 DEFINE_SPINLOCK(sb_lock); 42 43 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 44 "sb_writers", 45 "sb_pagefaults", 46 "sb_internal", 47 }; 48 49 /* 50 * One thing we have to be careful of with a per-sb shrinker is that we don't 51 * drop the last active reference to the superblock from within the shrinker. 52 * If that happens we could trigger unregistering the shrinker from within the 53 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 54 * take a passive reference to the superblock to avoid this from occurring. 55 */ 56 static int prune_super(struct shrinker *shrink, struct shrink_control *sc) 57 { 58 struct super_block *sb; 59 int fs_objects = 0; 60 int total_objects; 61 62 sb = container_of(shrink, struct super_block, s_shrink); 63 64 /* 65 * Deadlock avoidance. We may hold various FS locks, and we don't want 66 * to recurse into the FS that called us in clear_inode() and friends.. 67 */ 68 if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS)) 69 return -1; 70 71 if (!grab_super_passive(sb)) 72 return -1; 73 74 if (sb->s_op && sb->s_op->nr_cached_objects) 75 fs_objects = sb->s_op->nr_cached_objects(sb); 76 77 total_objects = sb->s_nr_dentry_unused + 78 sb->s_nr_inodes_unused + fs_objects + 1; 79 80 if (sc->nr_to_scan) { 81 int dentries; 82 int inodes; 83 84 /* proportion the scan between the caches */ 85 dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) / 86 total_objects; 87 inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) / 88 total_objects; 89 if (fs_objects) 90 fs_objects = (sc->nr_to_scan * fs_objects) / 91 total_objects; 92 /* 93 * prune the dcache first as the icache is pinned by it, then 94 * prune the icache, followed by the filesystem specific caches 95 */ 96 prune_dcache_sb(sb, dentries); 97 prune_icache_sb(sb, inodes); 98 99 if (fs_objects && sb->s_op->free_cached_objects) { 100 sb->s_op->free_cached_objects(sb, fs_objects); 101 fs_objects = sb->s_op->nr_cached_objects(sb); 102 } 103 total_objects = sb->s_nr_dentry_unused + 104 sb->s_nr_inodes_unused + fs_objects; 105 } 106 107 total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure; 108 drop_super(sb); 109 return total_objects; 110 } 111 112 static int init_sb_writers(struct super_block *s, struct file_system_type *type) 113 { 114 int err; 115 int i; 116 117 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 118 err = percpu_counter_init(&s->s_writers.counter[i], 0); 119 if (err < 0) 120 goto err_out; 121 lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i], 122 &type->s_writers_key[i], 0); 123 } 124 init_waitqueue_head(&s->s_writers.wait); 125 init_waitqueue_head(&s->s_writers.wait_unfrozen); 126 return 0; 127 err_out: 128 while (--i >= 0) 129 percpu_counter_destroy(&s->s_writers.counter[i]); 130 return err; 131 } 132 133 static void destroy_sb_writers(struct super_block *s) 134 { 135 int i; 136 137 for (i = 0; i < SB_FREEZE_LEVELS; i++) 138 percpu_counter_destroy(&s->s_writers.counter[i]); 139 } 140 141 /** 142 * alloc_super - create new superblock 143 * @type: filesystem type superblock should belong to 144 * @flags: the mount flags 145 * 146 * Allocates and initializes a new &struct super_block. alloc_super() 147 * returns a pointer new superblock or %NULL if allocation had failed. 148 */ 149 static struct super_block *alloc_super(struct file_system_type *type, int flags) 150 { 151 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 152 static const struct super_operations default_op; 153 154 if (s) { 155 if (security_sb_alloc(s)) { 156 /* 157 * We cannot call security_sb_free() without 158 * security_sb_alloc() succeeding. So bail out manually 159 */ 160 kfree(s); 161 s = NULL; 162 goto out; 163 } 164 #ifdef CONFIG_SMP 165 s->s_files = alloc_percpu(struct list_head); 166 if (!s->s_files) 167 goto err_out; 168 else { 169 int i; 170 171 for_each_possible_cpu(i) 172 INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i)); 173 } 174 #else 175 INIT_LIST_HEAD(&s->s_files); 176 #endif 177 if (init_sb_writers(s, type)) 178 goto err_out; 179 s->s_flags = flags; 180 s->s_bdi = &default_backing_dev_info; 181 INIT_HLIST_NODE(&s->s_instances); 182 INIT_HLIST_BL_HEAD(&s->s_anon); 183 INIT_LIST_HEAD(&s->s_inodes); 184 INIT_LIST_HEAD(&s->s_dentry_lru); 185 INIT_LIST_HEAD(&s->s_inode_lru); 186 spin_lock_init(&s->s_inode_lru_lock); 187 INIT_LIST_HEAD(&s->s_mounts); 188 init_rwsem(&s->s_umount); 189 mutex_init(&s->s_lock); 190 lockdep_set_class(&s->s_umount, &type->s_umount_key); 191 /* 192 * The locking rules for s_lock are up to the 193 * filesystem. For example ext3fs has different 194 * lock ordering than usbfs: 195 */ 196 lockdep_set_class(&s->s_lock, &type->s_lock_key); 197 /* 198 * sget() can have s_umount recursion. 199 * 200 * When it cannot find a suitable sb, it allocates a new 201 * one (this one), and tries again to find a suitable old 202 * one. 203 * 204 * In case that succeeds, it will acquire the s_umount 205 * lock of the old one. Since these are clearly distrinct 206 * locks, and this object isn't exposed yet, there's no 207 * risk of deadlocks. 208 * 209 * Annotate this by putting this lock in a different 210 * subclass. 211 */ 212 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 213 s->s_count = 1; 214 atomic_set(&s->s_active, 1); 215 mutex_init(&s->s_vfs_rename_mutex); 216 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 217 mutex_init(&s->s_dquot.dqio_mutex); 218 mutex_init(&s->s_dquot.dqonoff_mutex); 219 init_rwsem(&s->s_dquot.dqptr_sem); 220 s->s_maxbytes = MAX_NON_LFS; 221 s->s_op = &default_op; 222 s->s_time_gran = 1000000000; 223 s->cleancache_poolid = -1; 224 225 s->s_shrink.seeks = DEFAULT_SEEKS; 226 s->s_shrink.shrink = prune_super; 227 s->s_shrink.batch = 1024; 228 } 229 out: 230 return s; 231 err_out: 232 security_sb_free(s); 233 #ifdef CONFIG_SMP 234 if (s->s_files) 235 free_percpu(s->s_files); 236 #endif 237 destroy_sb_writers(s); 238 kfree(s); 239 s = NULL; 240 goto out; 241 } 242 243 /** 244 * destroy_super - frees a superblock 245 * @s: superblock to free 246 * 247 * Frees a superblock. 248 */ 249 static inline void destroy_super(struct super_block *s) 250 { 251 #ifdef CONFIG_SMP 252 free_percpu(s->s_files); 253 #endif 254 destroy_sb_writers(s); 255 security_sb_free(s); 256 WARN_ON(!list_empty(&s->s_mounts)); 257 kfree(s->s_subtype); 258 kfree(s->s_options); 259 kfree(s); 260 } 261 262 /* Superblock refcounting */ 263 264 /* 265 * Drop a superblock's refcount. The caller must hold sb_lock. 266 */ 267 static void __put_super(struct super_block *sb) 268 { 269 if (!--sb->s_count) { 270 list_del_init(&sb->s_list); 271 destroy_super(sb); 272 } 273 } 274 275 /** 276 * put_super - drop a temporary reference to superblock 277 * @sb: superblock in question 278 * 279 * Drops a temporary reference, frees superblock if there's no 280 * references left. 281 */ 282 static void put_super(struct super_block *sb) 283 { 284 spin_lock(&sb_lock); 285 __put_super(sb); 286 spin_unlock(&sb_lock); 287 } 288 289 290 /** 291 * deactivate_locked_super - drop an active reference to superblock 292 * @s: superblock to deactivate 293 * 294 * Drops an active reference to superblock, converting it into a temprory 295 * one if there is no other active references left. In that case we 296 * tell fs driver to shut it down and drop the temporary reference we 297 * had just acquired. 298 * 299 * Caller holds exclusive lock on superblock; that lock is released. 300 */ 301 void deactivate_locked_super(struct super_block *s) 302 { 303 struct file_system_type *fs = s->s_type; 304 if (atomic_dec_and_test(&s->s_active)) { 305 cleancache_invalidate_fs(s); 306 fs->kill_sb(s); 307 308 /* caches are now gone, we can safely kill the shrinker now */ 309 unregister_shrinker(&s->s_shrink); 310 311 /* 312 * We need to call rcu_barrier so all the delayed rcu free 313 * inodes are flushed before we release the fs module. 314 */ 315 rcu_barrier(); 316 put_filesystem(fs); 317 put_super(s); 318 } else { 319 up_write(&s->s_umount); 320 } 321 } 322 323 EXPORT_SYMBOL(deactivate_locked_super); 324 325 /** 326 * deactivate_super - drop an active reference to superblock 327 * @s: superblock to deactivate 328 * 329 * Variant of deactivate_locked_super(), except that superblock is *not* 330 * locked by caller. If we are going to drop the final active reference, 331 * lock will be acquired prior to that. 332 */ 333 void deactivate_super(struct super_block *s) 334 { 335 if (!atomic_add_unless(&s->s_active, -1, 1)) { 336 down_write(&s->s_umount); 337 deactivate_locked_super(s); 338 } 339 } 340 341 EXPORT_SYMBOL(deactivate_super); 342 343 /** 344 * grab_super - acquire an active reference 345 * @s: reference we are trying to make active 346 * 347 * Tries to acquire an active reference. grab_super() is used when we 348 * had just found a superblock in super_blocks or fs_type->fs_supers 349 * and want to turn it into a full-blown active reference. grab_super() 350 * is called with sb_lock held and drops it. Returns 1 in case of 351 * success, 0 if we had failed (superblock contents was already dead or 352 * dying when grab_super() had been called). 353 */ 354 static int grab_super(struct super_block *s) __releases(sb_lock) 355 { 356 if (atomic_inc_not_zero(&s->s_active)) { 357 spin_unlock(&sb_lock); 358 return 1; 359 } 360 /* it's going away */ 361 s->s_count++; 362 spin_unlock(&sb_lock); 363 /* wait for it to die */ 364 down_write(&s->s_umount); 365 up_write(&s->s_umount); 366 put_super(s); 367 return 0; 368 } 369 370 /* 371 * grab_super_passive - acquire a passive reference 372 * @sb: reference we are trying to grab 373 * 374 * Tries to acquire a passive reference. This is used in places where we 375 * cannot take an active reference but we need to ensure that the 376 * superblock does not go away while we are working on it. It returns 377 * false if a reference was not gained, and returns true with the s_umount 378 * lock held in read mode if a reference is gained. On successful return, 379 * the caller must drop the s_umount lock and the passive reference when 380 * done. 381 */ 382 bool grab_super_passive(struct super_block *sb) 383 { 384 spin_lock(&sb_lock); 385 if (hlist_unhashed(&sb->s_instances)) { 386 spin_unlock(&sb_lock); 387 return false; 388 } 389 390 sb->s_count++; 391 spin_unlock(&sb_lock); 392 393 if (down_read_trylock(&sb->s_umount)) { 394 if (sb->s_root && (sb->s_flags & MS_BORN)) 395 return true; 396 up_read(&sb->s_umount); 397 } 398 399 put_super(sb); 400 return false; 401 } 402 403 /* 404 * Superblock locking. We really ought to get rid of these two. 405 */ 406 void lock_super(struct super_block * sb) 407 { 408 mutex_lock(&sb->s_lock); 409 } 410 411 void unlock_super(struct super_block * sb) 412 { 413 mutex_unlock(&sb->s_lock); 414 } 415 416 EXPORT_SYMBOL(lock_super); 417 EXPORT_SYMBOL(unlock_super); 418 419 /** 420 * generic_shutdown_super - common helper for ->kill_sb() 421 * @sb: superblock to kill 422 * 423 * generic_shutdown_super() does all fs-independent work on superblock 424 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 425 * that need destruction out of superblock, call generic_shutdown_super() 426 * and release aforementioned objects. Note: dentries and inodes _are_ 427 * taken care of and do not need specific handling. 428 * 429 * Upon calling this function, the filesystem may no longer alter or 430 * rearrange the set of dentries belonging to this super_block, nor may it 431 * change the attachments of dentries to inodes. 432 */ 433 void generic_shutdown_super(struct super_block *sb) 434 { 435 const struct super_operations *sop = sb->s_op; 436 437 if (sb->s_root) { 438 shrink_dcache_for_umount(sb); 439 sync_filesystem(sb); 440 sb->s_flags &= ~MS_ACTIVE; 441 442 fsnotify_unmount_inodes(&sb->s_inodes); 443 444 evict_inodes(sb); 445 446 if (sop->put_super) 447 sop->put_super(sb); 448 449 if (!list_empty(&sb->s_inodes)) { 450 printk("VFS: Busy inodes after unmount of %s. " 451 "Self-destruct in 5 seconds. Have a nice day...\n", 452 sb->s_id); 453 } 454 } 455 spin_lock(&sb_lock); 456 /* should be initialized for __put_super_and_need_restart() */ 457 hlist_del_init(&sb->s_instances); 458 spin_unlock(&sb_lock); 459 up_write(&sb->s_umount); 460 } 461 462 EXPORT_SYMBOL(generic_shutdown_super); 463 464 /** 465 * sget - find or create a superblock 466 * @type: filesystem type superblock should belong to 467 * @test: comparison callback 468 * @set: setup callback 469 * @flags: mount flags 470 * @data: argument to each of them 471 */ 472 struct super_block *sget(struct file_system_type *type, 473 int (*test)(struct super_block *,void *), 474 int (*set)(struct super_block *,void *), 475 int flags, 476 void *data) 477 { 478 struct super_block *s = NULL; 479 struct hlist_node *node; 480 struct super_block *old; 481 int err; 482 483 retry: 484 spin_lock(&sb_lock); 485 if (test) { 486 hlist_for_each_entry(old, node, &type->fs_supers, s_instances) { 487 if (!test(old, data)) 488 continue; 489 if (!grab_super(old)) 490 goto retry; 491 if (s) { 492 up_write(&s->s_umount); 493 destroy_super(s); 494 s = NULL; 495 } 496 down_write(&old->s_umount); 497 if (unlikely(!(old->s_flags & MS_BORN))) { 498 deactivate_locked_super(old); 499 goto retry; 500 } 501 return old; 502 } 503 } 504 if (!s) { 505 spin_unlock(&sb_lock); 506 s = alloc_super(type, flags); 507 if (!s) 508 return ERR_PTR(-ENOMEM); 509 goto retry; 510 } 511 512 err = set(s, data); 513 if (err) { 514 spin_unlock(&sb_lock); 515 up_write(&s->s_umount); 516 destroy_super(s); 517 return ERR_PTR(err); 518 } 519 s->s_type = type; 520 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 521 list_add_tail(&s->s_list, &super_blocks); 522 hlist_add_head(&s->s_instances, &type->fs_supers); 523 spin_unlock(&sb_lock); 524 get_filesystem(type); 525 register_shrinker(&s->s_shrink); 526 return s; 527 } 528 529 EXPORT_SYMBOL(sget); 530 531 void drop_super(struct super_block *sb) 532 { 533 up_read(&sb->s_umount); 534 put_super(sb); 535 } 536 537 EXPORT_SYMBOL(drop_super); 538 539 /** 540 * iterate_supers - call function for all active superblocks 541 * @f: function to call 542 * @arg: argument to pass to it 543 * 544 * Scans the superblock list and calls given function, passing it 545 * locked superblock and given argument. 546 */ 547 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 548 { 549 struct super_block *sb, *p = NULL; 550 551 spin_lock(&sb_lock); 552 list_for_each_entry(sb, &super_blocks, s_list) { 553 if (hlist_unhashed(&sb->s_instances)) 554 continue; 555 sb->s_count++; 556 spin_unlock(&sb_lock); 557 558 down_read(&sb->s_umount); 559 if (sb->s_root && (sb->s_flags & MS_BORN)) 560 f(sb, arg); 561 up_read(&sb->s_umount); 562 563 spin_lock(&sb_lock); 564 if (p) 565 __put_super(p); 566 p = sb; 567 } 568 if (p) 569 __put_super(p); 570 spin_unlock(&sb_lock); 571 } 572 573 /** 574 * iterate_supers_type - call function for superblocks of given type 575 * @type: fs type 576 * @f: function to call 577 * @arg: argument to pass to it 578 * 579 * Scans the superblock list and calls given function, passing it 580 * locked superblock and given argument. 581 */ 582 void iterate_supers_type(struct file_system_type *type, 583 void (*f)(struct super_block *, void *), void *arg) 584 { 585 struct super_block *sb, *p = NULL; 586 struct hlist_node *node; 587 588 spin_lock(&sb_lock); 589 hlist_for_each_entry(sb, node, &type->fs_supers, s_instances) { 590 sb->s_count++; 591 spin_unlock(&sb_lock); 592 593 down_read(&sb->s_umount); 594 if (sb->s_root && (sb->s_flags & MS_BORN)) 595 f(sb, arg); 596 up_read(&sb->s_umount); 597 598 spin_lock(&sb_lock); 599 if (p) 600 __put_super(p); 601 p = sb; 602 } 603 if (p) 604 __put_super(p); 605 spin_unlock(&sb_lock); 606 } 607 608 EXPORT_SYMBOL(iterate_supers_type); 609 610 /** 611 * get_super - get the superblock of a device 612 * @bdev: device to get the superblock for 613 * 614 * Scans the superblock list and finds the superblock of the file system 615 * mounted on the device given. %NULL is returned if no match is found. 616 */ 617 618 struct super_block *get_super(struct block_device *bdev) 619 { 620 struct super_block *sb; 621 622 if (!bdev) 623 return NULL; 624 625 spin_lock(&sb_lock); 626 rescan: 627 list_for_each_entry(sb, &super_blocks, s_list) { 628 if (hlist_unhashed(&sb->s_instances)) 629 continue; 630 if (sb->s_bdev == bdev) { 631 sb->s_count++; 632 spin_unlock(&sb_lock); 633 down_read(&sb->s_umount); 634 /* still alive? */ 635 if (sb->s_root && (sb->s_flags & MS_BORN)) 636 return sb; 637 up_read(&sb->s_umount); 638 /* nope, got unmounted */ 639 spin_lock(&sb_lock); 640 __put_super(sb); 641 goto rescan; 642 } 643 } 644 spin_unlock(&sb_lock); 645 return NULL; 646 } 647 648 EXPORT_SYMBOL(get_super); 649 650 /** 651 * get_super_thawed - get thawed superblock of a device 652 * @bdev: device to get the superblock for 653 * 654 * Scans the superblock list and finds the superblock of the file system 655 * mounted on the device. The superblock is returned once it is thawed 656 * (or immediately if it was not frozen). %NULL is returned if no match 657 * is found. 658 */ 659 struct super_block *get_super_thawed(struct block_device *bdev) 660 { 661 while (1) { 662 struct super_block *s = get_super(bdev); 663 if (!s || s->s_writers.frozen == SB_UNFROZEN) 664 return s; 665 up_read(&s->s_umount); 666 wait_event(s->s_writers.wait_unfrozen, 667 s->s_writers.frozen == SB_UNFROZEN); 668 put_super(s); 669 } 670 } 671 EXPORT_SYMBOL(get_super_thawed); 672 673 /** 674 * get_active_super - get an active reference to the superblock of a device 675 * @bdev: device to get the superblock for 676 * 677 * Scans the superblock list and finds the superblock of the file system 678 * mounted on the device given. Returns the superblock with an active 679 * reference or %NULL if none was found. 680 */ 681 struct super_block *get_active_super(struct block_device *bdev) 682 { 683 struct super_block *sb; 684 685 if (!bdev) 686 return NULL; 687 688 restart: 689 spin_lock(&sb_lock); 690 list_for_each_entry(sb, &super_blocks, s_list) { 691 if (hlist_unhashed(&sb->s_instances)) 692 continue; 693 if (sb->s_bdev == bdev) { 694 if (grab_super(sb)) /* drops sb_lock */ 695 return sb; 696 else 697 goto restart; 698 } 699 } 700 spin_unlock(&sb_lock); 701 return NULL; 702 } 703 704 struct super_block *user_get_super(dev_t dev) 705 { 706 struct super_block *sb; 707 708 spin_lock(&sb_lock); 709 rescan: 710 list_for_each_entry(sb, &super_blocks, s_list) { 711 if (hlist_unhashed(&sb->s_instances)) 712 continue; 713 if (sb->s_dev == dev) { 714 sb->s_count++; 715 spin_unlock(&sb_lock); 716 down_read(&sb->s_umount); 717 /* still alive? */ 718 if (sb->s_root && (sb->s_flags & MS_BORN)) 719 return sb; 720 up_read(&sb->s_umount); 721 /* nope, got unmounted */ 722 spin_lock(&sb_lock); 723 __put_super(sb); 724 goto rescan; 725 } 726 } 727 spin_unlock(&sb_lock); 728 return NULL; 729 } 730 731 /** 732 * do_remount_sb - asks filesystem to change mount options. 733 * @sb: superblock in question 734 * @flags: numeric part of options 735 * @data: the rest of options 736 * @force: whether or not to force the change 737 * 738 * Alters the mount options of a mounted file system. 739 */ 740 int do_remount_sb(struct super_block *sb, int flags, void *data, int force) 741 { 742 int retval; 743 int remount_ro; 744 745 if (sb->s_writers.frozen != SB_UNFROZEN) 746 return -EBUSY; 747 748 #ifdef CONFIG_BLOCK 749 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev)) 750 return -EACCES; 751 #endif 752 753 if (flags & MS_RDONLY) 754 acct_auto_close(sb); 755 shrink_dcache_sb(sb); 756 sync_filesystem(sb); 757 758 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY); 759 760 /* If we are remounting RDONLY and current sb is read/write, 761 make sure there are no rw files opened */ 762 if (remount_ro) { 763 if (force) { 764 mark_files_ro(sb); 765 } else { 766 retval = sb_prepare_remount_readonly(sb); 767 if (retval) 768 return retval; 769 } 770 } 771 772 if (sb->s_op->remount_fs) { 773 retval = sb->s_op->remount_fs(sb, &flags, data); 774 if (retval) { 775 if (!force) 776 goto cancel_readonly; 777 /* If forced remount, go ahead despite any errors */ 778 WARN(1, "forced remount of a %s fs returned %i\n", 779 sb->s_type->name, retval); 780 } 781 } 782 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK); 783 /* Needs to be ordered wrt mnt_is_readonly() */ 784 smp_wmb(); 785 sb->s_readonly_remount = 0; 786 787 /* 788 * Some filesystems modify their metadata via some other path than the 789 * bdev buffer cache (eg. use a private mapping, or directories in 790 * pagecache, etc). Also file data modifications go via their own 791 * mappings. So If we try to mount readonly then copy the filesystem 792 * from bdev, we could get stale data, so invalidate it to give a best 793 * effort at coherency. 794 */ 795 if (remount_ro && sb->s_bdev) 796 invalidate_bdev(sb->s_bdev); 797 return 0; 798 799 cancel_readonly: 800 sb->s_readonly_remount = 0; 801 return retval; 802 } 803 804 static void do_emergency_remount(struct work_struct *work) 805 { 806 struct super_block *sb, *p = NULL; 807 808 spin_lock(&sb_lock); 809 list_for_each_entry(sb, &super_blocks, s_list) { 810 if (hlist_unhashed(&sb->s_instances)) 811 continue; 812 sb->s_count++; 813 spin_unlock(&sb_lock); 814 down_write(&sb->s_umount); 815 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) && 816 !(sb->s_flags & MS_RDONLY)) { 817 /* 818 * What lock protects sb->s_flags?? 819 */ 820 do_remount_sb(sb, MS_RDONLY, NULL, 1); 821 } 822 up_write(&sb->s_umount); 823 spin_lock(&sb_lock); 824 if (p) 825 __put_super(p); 826 p = sb; 827 } 828 if (p) 829 __put_super(p); 830 spin_unlock(&sb_lock); 831 kfree(work); 832 printk("Emergency Remount complete\n"); 833 } 834 835 void emergency_remount(void) 836 { 837 struct work_struct *work; 838 839 work = kmalloc(sizeof(*work), GFP_ATOMIC); 840 if (work) { 841 INIT_WORK(work, do_emergency_remount); 842 schedule_work(work); 843 } 844 } 845 846 /* 847 * Unnamed block devices are dummy devices used by virtual 848 * filesystems which don't use real block-devices. -- jrs 849 */ 850 851 static DEFINE_IDA(unnamed_dev_ida); 852 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */ 853 static int unnamed_dev_start = 0; /* don't bother trying below it */ 854 855 int get_anon_bdev(dev_t *p) 856 { 857 int dev; 858 int error; 859 860 retry: 861 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0) 862 return -ENOMEM; 863 spin_lock(&unnamed_dev_lock); 864 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev); 865 if (!error) 866 unnamed_dev_start = dev + 1; 867 spin_unlock(&unnamed_dev_lock); 868 if (error == -EAGAIN) 869 /* We raced and lost with another CPU. */ 870 goto retry; 871 else if (error) 872 return -EAGAIN; 873 874 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) { 875 spin_lock(&unnamed_dev_lock); 876 ida_remove(&unnamed_dev_ida, dev); 877 if (unnamed_dev_start > dev) 878 unnamed_dev_start = dev; 879 spin_unlock(&unnamed_dev_lock); 880 return -EMFILE; 881 } 882 *p = MKDEV(0, dev & MINORMASK); 883 return 0; 884 } 885 EXPORT_SYMBOL(get_anon_bdev); 886 887 void free_anon_bdev(dev_t dev) 888 { 889 int slot = MINOR(dev); 890 spin_lock(&unnamed_dev_lock); 891 ida_remove(&unnamed_dev_ida, slot); 892 if (slot < unnamed_dev_start) 893 unnamed_dev_start = slot; 894 spin_unlock(&unnamed_dev_lock); 895 } 896 EXPORT_SYMBOL(free_anon_bdev); 897 898 int set_anon_super(struct super_block *s, void *data) 899 { 900 int error = get_anon_bdev(&s->s_dev); 901 if (!error) 902 s->s_bdi = &noop_backing_dev_info; 903 return error; 904 } 905 906 EXPORT_SYMBOL(set_anon_super); 907 908 void kill_anon_super(struct super_block *sb) 909 { 910 dev_t dev = sb->s_dev; 911 generic_shutdown_super(sb); 912 free_anon_bdev(dev); 913 } 914 915 EXPORT_SYMBOL(kill_anon_super); 916 917 void kill_litter_super(struct super_block *sb) 918 { 919 if (sb->s_root) 920 d_genocide(sb->s_root); 921 kill_anon_super(sb); 922 } 923 924 EXPORT_SYMBOL(kill_litter_super); 925 926 static int ns_test_super(struct super_block *sb, void *data) 927 { 928 return sb->s_fs_info == data; 929 } 930 931 static int ns_set_super(struct super_block *sb, void *data) 932 { 933 sb->s_fs_info = data; 934 return set_anon_super(sb, NULL); 935 } 936 937 struct dentry *mount_ns(struct file_system_type *fs_type, int flags, 938 void *data, int (*fill_super)(struct super_block *, void *, int)) 939 { 940 struct super_block *sb; 941 942 sb = sget(fs_type, ns_test_super, ns_set_super, flags, data); 943 if (IS_ERR(sb)) 944 return ERR_CAST(sb); 945 946 if (!sb->s_root) { 947 int err; 948 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 949 if (err) { 950 deactivate_locked_super(sb); 951 return ERR_PTR(err); 952 } 953 954 sb->s_flags |= MS_ACTIVE; 955 } 956 957 return dget(sb->s_root); 958 } 959 960 EXPORT_SYMBOL(mount_ns); 961 962 #ifdef CONFIG_BLOCK 963 static int set_bdev_super(struct super_block *s, void *data) 964 { 965 s->s_bdev = data; 966 s->s_dev = s->s_bdev->bd_dev; 967 968 /* 969 * We set the bdi here to the queue backing, file systems can 970 * overwrite this in ->fill_super() 971 */ 972 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info; 973 return 0; 974 } 975 976 static int test_bdev_super(struct super_block *s, void *data) 977 { 978 return (void *)s->s_bdev == data; 979 } 980 981 struct dentry *mount_bdev(struct file_system_type *fs_type, 982 int flags, const char *dev_name, void *data, 983 int (*fill_super)(struct super_block *, void *, int)) 984 { 985 struct block_device *bdev; 986 struct super_block *s; 987 fmode_t mode = FMODE_READ | FMODE_EXCL; 988 int error = 0; 989 990 if (!(flags & MS_RDONLY)) 991 mode |= FMODE_WRITE; 992 993 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 994 if (IS_ERR(bdev)) 995 return ERR_CAST(bdev); 996 997 /* 998 * once the super is inserted into the list by sget, s_umount 999 * will protect the lockfs code from trying to start a snapshot 1000 * while we are mounting 1001 */ 1002 mutex_lock(&bdev->bd_fsfreeze_mutex); 1003 if (bdev->bd_fsfreeze_count > 0) { 1004 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1005 error = -EBUSY; 1006 goto error_bdev; 1007 } 1008 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC, 1009 bdev); 1010 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1011 if (IS_ERR(s)) 1012 goto error_s; 1013 1014 if (s->s_root) { 1015 if ((flags ^ s->s_flags) & MS_RDONLY) { 1016 deactivate_locked_super(s); 1017 error = -EBUSY; 1018 goto error_bdev; 1019 } 1020 1021 /* 1022 * s_umount nests inside bd_mutex during 1023 * __invalidate_device(). blkdev_put() acquires 1024 * bd_mutex and can't be called under s_umount. Drop 1025 * s_umount temporarily. This is safe as we're 1026 * holding an active reference. 1027 */ 1028 up_write(&s->s_umount); 1029 blkdev_put(bdev, mode); 1030 down_write(&s->s_umount); 1031 } else { 1032 char b[BDEVNAME_SIZE]; 1033 1034 s->s_mode = mode; 1035 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); 1036 sb_set_blocksize(s, block_size(bdev)); 1037 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1038 if (error) { 1039 deactivate_locked_super(s); 1040 goto error; 1041 } 1042 1043 s->s_flags |= MS_ACTIVE; 1044 bdev->bd_super = s; 1045 } 1046 1047 return dget(s->s_root); 1048 1049 error_s: 1050 error = PTR_ERR(s); 1051 error_bdev: 1052 blkdev_put(bdev, mode); 1053 error: 1054 return ERR_PTR(error); 1055 } 1056 EXPORT_SYMBOL(mount_bdev); 1057 1058 void kill_block_super(struct super_block *sb) 1059 { 1060 struct block_device *bdev = sb->s_bdev; 1061 fmode_t mode = sb->s_mode; 1062 1063 bdev->bd_super = NULL; 1064 generic_shutdown_super(sb); 1065 sync_blockdev(bdev); 1066 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 1067 blkdev_put(bdev, mode | FMODE_EXCL); 1068 } 1069 1070 EXPORT_SYMBOL(kill_block_super); 1071 #endif 1072 1073 struct dentry *mount_nodev(struct file_system_type *fs_type, 1074 int flags, void *data, 1075 int (*fill_super)(struct super_block *, void *, int)) 1076 { 1077 int error; 1078 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1079 1080 if (IS_ERR(s)) 1081 return ERR_CAST(s); 1082 1083 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1084 if (error) { 1085 deactivate_locked_super(s); 1086 return ERR_PTR(error); 1087 } 1088 s->s_flags |= MS_ACTIVE; 1089 return dget(s->s_root); 1090 } 1091 EXPORT_SYMBOL(mount_nodev); 1092 1093 static int compare_single(struct super_block *s, void *p) 1094 { 1095 return 1; 1096 } 1097 1098 struct dentry *mount_single(struct file_system_type *fs_type, 1099 int flags, void *data, 1100 int (*fill_super)(struct super_block *, void *, int)) 1101 { 1102 struct super_block *s; 1103 int error; 1104 1105 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1106 if (IS_ERR(s)) 1107 return ERR_CAST(s); 1108 if (!s->s_root) { 1109 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1110 if (error) { 1111 deactivate_locked_super(s); 1112 return ERR_PTR(error); 1113 } 1114 s->s_flags |= MS_ACTIVE; 1115 } else { 1116 do_remount_sb(s, flags, data, 0); 1117 } 1118 return dget(s->s_root); 1119 } 1120 EXPORT_SYMBOL(mount_single); 1121 1122 struct dentry * 1123 mount_fs(struct file_system_type *type, int flags, const char *name, void *data) 1124 { 1125 struct dentry *root; 1126 struct super_block *sb; 1127 char *secdata = NULL; 1128 int error = -ENOMEM; 1129 1130 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) { 1131 secdata = alloc_secdata(); 1132 if (!secdata) 1133 goto out; 1134 1135 error = security_sb_copy_data(data, secdata); 1136 if (error) 1137 goto out_free_secdata; 1138 } 1139 1140 root = type->mount(type, flags, name, data); 1141 if (IS_ERR(root)) { 1142 error = PTR_ERR(root); 1143 goto out_free_secdata; 1144 } 1145 sb = root->d_sb; 1146 BUG_ON(!sb); 1147 WARN_ON(!sb->s_bdi); 1148 WARN_ON(sb->s_bdi == &default_backing_dev_info); 1149 sb->s_flags |= MS_BORN; 1150 1151 error = security_sb_kern_mount(sb, flags, secdata); 1152 if (error) 1153 goto out_sb; 1154 1155 /* 1156 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1157 * but s_maxbytes was an unsigned long long for many releases. Throw 1158 * this warning for a little while to try and catch filesystems that 1159 * violate this rule. 1160 */ 1161 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1162 "negative value (%lld)\n", type->name, sb->s_maxbytes); 1163 1164 up_write(&sb->s_umount); 1165 free_secdata(secdata); 1166 return root; 1167 out_sb: 1168 dput(root); 1169 deactivate_locked_super(sb); 1170 out_free_secdata: 1171 free_secdata(secdata); 1172 out: 1173 return ERR_PTR(error); 1174 } 1175 1176 /* 1177 * This is an internal function, please use sb_end_{write,pagefault,intwrite} 1178 * instead. 1179 */ 1180 void __sb_end_write(struct super_block *sb, int level) 1181 { 1182 percpu_counter_dec(&sb->s_writers.counter[level-1]); 1183 /* 1184 * Make sure s_writers are updated before we wake up waiters in 1185 * freeze_super(). 1186 */ 1187 smp_mb(); 1188 if (waitqueue_active(&sb->s_writers.wait)) 1189 wake_up(&sb->s_writers.wait); 1190 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_); 1191 } 1192 EXPORT_SYMBOL(__sb_end_write); 1193 1194 #ifdef CONFIG_LOCKDEP 1195 /* 1196 * We want lockdep to tell us about possible deadlocks with freezing but 1197 * it's it bit tricky to properly instrument it. Getting a freeze protection 1198 * works as getting a read lock but there are subtle problems. XFS for example 1199 * gets freeze protection on internal level twice in some cases, which is OK 1200 * only because we already hold a freeze protection also on higher level. Due 1201 * to these cases we have to tell lockdep we are doing trylock when we 1202 * already hold a freeze protection for a higher freeze level. 1203 */ 1204 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock, 1205 unsigned long ip) 1206 { 1207 int i; 1208 1209 if (!trylock) { 1210 for (i = 0; i < level - 1; i++) 1211 if (lock_is_held(&sb->s_writers.lock_map[i])) { 1212 trylock = true; 1213 break; 1214 } 1215 } 1216 rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip); 1217 } 1218 #endif 1219 1220 /* 1221 * This is an internal function, please use sb_start_{write,pagefault,intwrite} 1222 * instead. 1223 */ 1224 int __sb_start_write(struct super_block *sb, int level, bool wait) 1225 { 1226 retry: 1227 if (unlikely(sb->s_writers.frozen >= level)) { 1228 if (!wait) 1229 return 0; 1230 wait_event(sb->s_writers.wait_unfrozen, 1231 sb->s_writers.frozen < level); 1232 } 1233 1234 #ifdef CONFIG_LOCKDEP 1235 acquire_freeze_lock(sb, level, !wait, _RET_IP_); 1236 #endif 1237 percpu_counter_inc(&sb->s_writers.counter[level-1]); 1238 /* 1239 * Make sure counter is updated before we check for frozen. 1240 * freeze_super() first sets frozen and then checks the counter. 1241 */ 1242 smp_mb(); 1243 if (unlikely(sb->s_writers.frozen >= level)) { 1244 __sb_end_write(sb, level); 1245 goto retry; 1246 } 1247 return 1; 1248 } 1249 EXPORT_SYMBOL(__sb_start_write); 1250 1251 /** 1252 * sb_wait_write - wait until all writers to given file system finish 1253 * @sb: the super for which we wait 1254 * @level: type of writers we wait for (normal vs page fault) 1255 * 1256 * This function waits until there are no writers of given type to given file 1257 * system. Caller of this function should make sure there can be no new writers 1258 * of type @level before calling this function. Otherwise this function can 1259 * livelock. 1260 */ 1261 static void sb_wait_write(struct super_block *sb, int level) 1262 { 1263 s64 writers; 1264 1265 /* 1266 * We just cycle-through lockdep here so that it does not complain 1267 * about returning with lock to userspace 1268 */ 1269 rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_); 1270 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_); 1271 1272 do { 1273 DEFINE_WAIT(wait); 1274 1275 /* 1276 * We use a barrier in prepare_to_wait() to separate setting 1277 * of frozen and checking of the counter 1278 */ 1279 prepare_to_wait(&sb->s_writers.wait, &wait, 1280 TASK_UNINTERRUPTIBLE); 1281 1282 writers = percpu_counter_sum(&sb->s_writers.counter[level-1]); 1283 if (writers) 1284 schedule(); 1285 1286 finish_wait(&sb->s_writers.wait, &wait); 1287 } while (writers); 1288 } 1289 1290 /** 1291 * freeze_super - lock the filesystem and force it into a consistent state 1292 * @sb: the super to lock 1293 * 1294 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1295 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1296 * -EBUSY. 1297 * 1298 * During this function, sb->s_writers.frozen goes through these values: 1299 * 1300 * SB_UNFROZEN: File system is normal, all writes progress as usual. 1301 * 1302 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 1303 * writes should be blocked, though page faults are still allowed. We wait for 1304 * all writes to complete and then proceed to the next stage. 1305 * 1306 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 1307 * but internal fs threads can still modify the filesystem (although they 1308 * should not dirty new pages or inodes), writeback can run etc. After waiting 1309 * for all running page faults we sync the filesystem which will clean all 1310 * dirty pages and inodes (no new dirty pages or inodes can be created when 1311 * sync is running). 1312 * 1313 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 1314 * modification are blocked (e.g. XFS preallocation truncation on inode 1315 * reclaim). This is usually implemented by blocking new transactions for 1316 * filesystems that have them and need this additional guard. After all 1317 * internal writers are finished we call ->freeze_fs() to finish filesystem 1318 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 1319 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 1320 * 1321 * sb->s_writers.frozen is protected by sb->s_umount. 1322 */ 1323 int freeze_super(struct super_block *sb) 1324 { 1325 int ret; 1326 1327 atomic_inc(&sb->s_active); 1328 down_write(&sb->s_umount); 1329 if (sb->s_writers.frozen != SB_UNFROZEN) { 1330 deactivate_locked_super(sb); 1331 return -EBUSY; 1332 } 1333 1334 if (!(sb->s_flags & MS_BORN)) { 1335 up_write(&sb->s_umount); 1336 return 0; /* sic - it's "nothing to do" */ 1337 } 1338 1339 if (sb->s_flags & MS_RDONLY) { 1340 /* Nothing to do really... */ 1341 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1342 up_write(&sb->s_umount); 1343 return 0; 1344 } 1345 1346 /* From now on, no new normal writers can start */ 1347 sb->s_writers.frozen = SB_FREEZE_WRITE; 1348 smp_wmb(); 1349 1350 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 1351 up_write(&sb->s_umount); 1352 1353 sb_wait_write(sb, SB_FREEZE_WRITE); 1354 1355 /* Now we go and block page faults... */ 1356 down_write(&sb->s_umount); 1357 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 1358 smp_wmb(); 1359 1360 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 1361 1362 /* All writers are done so after syncing there won't be dirty data */ 1363 sync_filesystem(sb); 1364 1365 /* Now wait for internal filesystem counter */ 1366 sb->s_writers.frozen = SB_FREEZE_FS; 1367 smp_wmb(); 1368 sb_wait_write(sb, SB_FREEZE_FS); 1369 1370 if (sb->s_op->freeze_fs) { 1371 ret = sb->s_op->freeze_fs(sb); 1372 if (ret) { 1373 printk(KERN_ERR 1374 "VFS:Filesystem freeze failed\n"); 1375 sb->s_writers.frozen = SB_UNFROZEN; 1376 smp_wmb(); 1377 wake_up(&sb->s_writers.wait_unfrozen); 1378 deactivate_locked_super(sb); 1379 return ret; 1380 } 1381 } 1382 /* 1383 * This is just for debugging purposes so that fs can warn if it 1384 * sees write activity when frozen is set to SB_FREEZE_COMPLETE. 1385 */ 1386 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1387 up_write(&sb->s_umount); 1388 return 0; 1389 } 1390 EXPORT_SYMBOL(freeze_super); 1391 1392 /** 1393 * thaw_super -- unlock filesystem 1394 * @sb: the super to thaw 1395 * 1396 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1397 */ 1398 int thaw_super(struct super_block *sb) 1399 { 1400 int error; 1401 1402 down_write(&sb->s_umount); 1403 if (sb->s_writers.frozen == SB_UNFROZEN) { 1404 up_write(&sb->s_umount); 1405 return -EINVAL; 1406 } 1407 1408 if (sb->s_flags & MS_RDONLY) 1409 goto out; 1410 1411 if (sb->s_op->unfreeze_fs) { 1412 error = sb->s_op->unfreeze_fs(sb); 1413 if (error) { 1414 printk(KERN_ERR 1415 "VFS:Filesystem thaw failed\n"); 1416 up_write(&sb->s_umount); 1417 return error; 1418 } 1419 } 1420 1421 out: 1422 sb->s_writers.frozen = SB_UNFROZEN; 1423 smp_wmb(); 1424 wake_up(&sb->s_writers.wait_unfrozen); 1425 deactivate_locked_super(sb); 1426 1427 return 0; 1428 } 1429 EXPORT_SYMBOL(thaw_super); 1430