1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/super.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * super.c contains code to handle: - mount structures 8 * - super-block tables 9 * - filesystem drivers list 10 * - mount system call 11 * - umount system call 12 * - ustat system call 13 * 14 * GK 2/5/95 - Changed to support mounting the root fs via NFS 15 * 16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 18 * Added options to /proc/mounts: 19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 22 */ 23 24 #include <linux/export.h> 25 #include <linux/slab.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/fscrypt.h> 35 #include <linux/fsnotify.h> 36 #include <linux/lockdep.h> 37 #include <linux/user_namespace.h> 38 #include <linux/fs_context.h> 39 #include <uapi/linux/mount.h> 40 #include "internal.h" 41 42 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who); 43 44 static LIST_HEAD(super_blocks); 45 static DEFINE_SPINLOCK(sb_lock); 46 47 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 48 "sb_writers", 49 "sb_pagefaults", 50 "sb_internal", 51 }; 52 53 static inline void __super_lock(struct super_block *sb, bool excl) 54 { 55 if (excl) 56 down_write(&sb->s_umount); 57 else 58 down_read(&sb->s_umount); 59 } 60 61 static inline void super_unlock(struct super_block *sb, bool excl) 62 { 63 if (excl) 64 up_write(&sb->s_umount); 65 else 66 up_read(&sb->s_umount); 67 } 68 69 static inline void __super_lock_excl(struct super_block *sb) 70 { 71 __super_lock(sb, true); 72 } 73 74 static inline void super_unlock_excl(struct super_block *sb) 75 { 76 super_unlock(sb, true); 77 } 78 79 static inline void super_unlock_shared(struct super_block *sb) 80 { 81 super_unlock(sb, false); 82 } 83 84 static inline bool wait_born(struct super_block *sb) 85 { 86 unsigned int flags; 87 88 /* 89 * Pairs with smp_store_release() in super_wake() and ensures 90 * that we see SB_BORN or SB_DYING after we're woken. 91 */ 92 flags = smp_load_acquire(&sb->s_flags); 93 return flags & (SB_BORN | SB_DYING); 94 } 95 96 /** 97 * super_lock - wait for superblock to become ready and lock it 98 * @sb: superblock to wait for 99 * @excl: whether exclusive access is required 100 * 101 * If the superblock has neither passed through vfs_get_tree() or 102 * generic_shutdown_super() yet wait for it to happen. Either superblock 103 * creation will succeed and SB_BORN is set by vfs_get_tree() or we're 104 * woken and we'll see SB_DYING. 105 * 106 * The caller must have acquired a temporary reference on @sb->s_count. 107 * 108 * Return: This returns true if SB_BORN was set, false if SB_DYING was 109 * set. The function acquires s_umount and returns with it held. 110 */ 111 static __must_check bool super_lock(struct super_block *sb, bool excl) 112 { 113 114 lockdep_assert_not_held(&sb->s_umount); 115 116 relock: 117 __super_lock(sb, excl); 118 119 /* 120 * Has gone through generic_shutdown_super() in the meantime. 121 * @sb->s_root is NULL and @sb->s_active is 0. No one needs to 122 * grab a reference to this. Tell them so. 123 */ 124 if (sb->s_flags & SB_DYING) 125 return false; 126 127 /* Has called ->get_tree() successfully. */ 128 if (sb->s_flags & SB_BORN) 129 return true; 130 131 super_unlock(sb, excl); 132 133 /* wait until the superblock is ready or dying */ 134 wait_var_event(&sb->s_flags, wait_born(sb)); 135 136 /* 137 * Neither SB_BORN nor SB_DYING are ever unset so we never loop. 138 * Just reacquire @sb->s_umount for the caller. 139 */ 140 goto relock; 141 } 142 143 /* wait and acquire read-side of @sb->s_umount */ 144 static inline bool super_lock_shared(struct super_block *sb) 145 { 146 return super_lock(sb, false); 147 } 148 149 /* wait and acquire write-side of @sb->s_umount */ 150 static inline bool super_lock_excl(struct super_block *sb) 151 { 152 return super_lock(sb, true); 153 } 154 155 /* wake waiters */ 156 #define SUPER_WAKE_FLAGS (SB_BORN | SB_DYING | SB_DEAD) 157 static void super_wake(struct super_block *sb, unsigned int flag) 158 { 159 WARN_ON_ONCE((flag & ~SUPER_WAKE_FLAGS)); 160 WARN_ON_ONCE(hweight32(flag & SUPER_WAKE_FLAGS) > 1); 161 162 /* 163 * Pairs with smp_load_acquire() in super_lock() to make sure 164 * all initializations in the superblock are seen by the user 165 * seeing SB_BORN sent. 166 */ 167 smp_store_release(&sb->s_flags, sb->s_flags | flag); 168 /* 169 * Pairs with the barrier in prepare_to_wait_event() to make sure 170 * ___wait_var_event() either sees SB_BORN set or 171 * waitqueue_active() check in wake_up_var() sees the waiter. 172 */ 173 smp_mb(); 174 wake_up_var(&sb->s_flags); 175 } 176 177 /* 178 * One thing we have to be careful of with a per-sb shrinker is that we don't 179 * drop the last active reference to the superblock from within the shrinker. 180 * If that happens we could trigger unregistering the shrinker from within the 181 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 182 * take a passive reference to the superblock to avoid this from occurring. 183 */ 184 static unsigned long super_cache_scan(struct shrinker *shrink, 185 struct shrink_control *sc) 186 { 187 struct super_block *sb; 188 long fs_objects = 0; 189 long total_objects; 190 long freed = 0; 191 long dentries; 192 long inodes; 193 194 sb = container_of(shrink, struct super_block, s_shrink); 195 196 /* 197 * Deadlock avoidance. We may hold various FS locks, and we don't want 198 * to recurse into the FS that called us in clear_inode() and friends.. 199 */ 200 if (!(sc->gfp_mask & __GFP_FS)) 201 return SHRINK_STOP; 202 203 if (!super_trylock_shared(sb)) 204 return SHRINK_STOP; 205 206 if (sb->s_op->nr_cached_objects) 207 fs_objects = sb->s_op->nr_cached_objects(sb, sc); 208 209 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc); 210 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc); 211 total_objects = dentries + inodes + fs_objects + 1; 212 if (!total_objects) 213 total_objects = 1; 214 215 /* proportion the scan between the caches */ 216 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 217 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 218 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects); 219 220 /* 221 * prune the dcache first as the icache is pinned by it, then 222 * prune the icache, followed by the filesystem specific caches 223 * 224 * Ensure that we always scan at least one object - memcg kmem 225 * accounting uses this to fully empty the caches. 226 */ 227 sc->nr_to_scan = dentries + 1; 228 freed = prune_dcache_sb(sb, sc); 229 sc->nr_to_scan = inodes + 1; 230 freed += prune_icache_sb(sb, sc); 231 232 if (fs_objects) { 233 sc->nr_to_scan = fs_objects + 1; 234 freed += sb->s_op->free_cached_objects(sb, sc); 235 } 236 237 super_unlock_shared(sb); 238 return freed; 239 } 240 241 static unsigned long super_cache_count(struct shrinker *shrink, 242 struct shrink_control *sc) 243 { 244 struct super_block *sb; 245 long total_objects = 0; 246 247 sb = container_of(shrink, struct super_block, s_shrink); 248 249 /* 250 * We don't call super_trylock_shared() here as it is a scalability 251 * bottleneck, so we're exposed to partial setup state. The shrinker 252 * rwsem does not protect filesystem operations backing 253 * list_lru_shrink_count() or s_op->nr_cached_objects(). Counts can 254 * change between super_cache_count and super_cache_scan, so we really 255 * don't need locks here. 256 * 257 * However, if we are currently mounting the superblock, the underlying 258 * filesystem might be in a state of partial construction and hence it 259 * is dangerous to access it. super_trylock_shared() uses a SB_BORN check 260 * to avoid this situation, so do the same here. The memory barrier is 261 * matched with the one in mount_fs() as we don't hold locks here. 262 */ 263 if (!(sb->s_flags & SB_BORN)) 264 return 0; 265 smp_rmb(); 266 267 if (sb->s_op && sb->s_op->nr_cached_objects) 268 total_objects = sb->s_op->nr_cached_objects(sb, sc); 269 270 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc); 271 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc); 272 273 if (!total_objects) 274 return SHRINK_EMPTY; 275 276 total_objects = vfs_pressure_ratio(total_objects); 277 return total_objects; 278 } 279 280 static void destroy_super_work(struct work_struct *work) 281 { 282 struct super_block *s = container_of(work, struct super_block, 283 destroy_work); 284 int i; 285 286 for (i = 0; i < SB_FREEZE_LEVELS; i++) 287 percpu_free_rwsem(&s->s_writers.rw_sem[i]); 288 kfree(s); 289 } 290 291 static void destroy_super_rcu(struct rcu_head *head) 292 { 293 struct super_block *s = container_of(head, struct super_block, rcu); 294 INIT_WORK(&s->destroy_work, destroy_super_work); 295 schedule_work(&s->destroy_work); 296 } 297 298 /* Free a superblock that has never been seen by anyone */ 299 static void destroy_unused_super(struct super_block *s) 300 { 301 if (!s) 302 return; 303 super_unlock_excl(s); 304 list_lru_destroy(&s->s_dentry_lru); 305 list_lru_destroy(&s->s_inode_lru); 306 security_sb_free(s); 307 put_user_ns(s->s_user_ns); 308 kfree(s->s_subtype); 309 free_prealloced_shrinker(&s->s_shrink); 310 /* no delays needed */ 311 destroy_super_work(&s->destroy_work); 312 } 313 314 /** 315 * alloc_super - create new superblock 316 * @type: filesystem type superblock should belong to 317 * @flags: the mount flags 318 * @user_ns: User namespace for the super_block 319 * 320 * Allocates and initializes a new &struct super_block. alloc_super() 321 * returns a pointer new superblock or %NULL if allocation had failed. 322 */ 323 static struct super_block *alloc_super(struct file_system_type *type, int flags, 324 struct user_namespace *user_ns) 325 { 326 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 327 static const struct super_operations default_op; 328 int i; 329 330 if (!s) 331 return NULL; 332 333 INIT_LIST_HEAD(&s->s_mounts); 334 s->s_user_ns = get_user_ns(user_ns); 335 init_rwsem(&s->s_umount); 336 lockdep_set_class(&s->s_umount, &type->s_umount_key); 337 /* 338 * sget() can have s_umount recursion. 339 * 340 * When it cannot find a suitable sb, it allocates a new 341 * one (this one), and tries again to find a suitable old 342 * one. 343 * 344 * In case that succeeds, it will acquire the s_umount 345 * lock of the old one. Since these are clearly distrinct 346 * locks, and this object isn't exposed yet, there's no 347 * risk of deadlocks. 348 * 349 * Annotate this by putting this lock in a different 350 * subclass. 351 */ 352 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 353 354 if (security_sb_alloc(s)) 355 goto fail; 356 357 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 358 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i], 359 sb_writers_name[i], 360 &type->s_writers_key[i])) 361 goto fail; 362 } 363 s->s_bdi = &noop_backing_dev_info; 364 s->s_flags = flags; 365 if (s->s_user_ns != &init_user_ns) 366 s->s_iflags |= SB_I_NODEV; 367 INIT_HLIST_NODE(&s->s_instances); 368 INIT_HLIST_BL_HEAD(&s->s_roots); 369 mutex_init(&s->s_sync_lock); 370 INIT_LIST_HEAD(&s->s_inodes); 371 spin_lock_init(&s->s_inode_list_lock); 372 INIT_LIST_HEAD(&s->s_inodes_wb); 373 spin_lock_init(&s->s_inode_wblist_lock); 374 375 s->s_count = 1; 376 atomic_set(&s->s_active, 1); 377 mutex_init(&s->s_vfs_rename_mutex); 378 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 379 init_rwsem(&s->s_dquot.dqio_sem); 380 s->s_maxbytes = MAX_NON_LFS; 381 s->s_op = &default_op; 382 s->s_time_gran = 1000000000; 383 s->s_time_min = TIME64_MIN; 384 s->s_time_max = TIME64_MAX; 385 386 s->s_shrink.seeks = DEFAULT_SEEKS; 387 s->s_shrink.scan_objects = super_cache_scan; 388 s->s_shrink.count_objects = super_cache_count; 389 s->s_shrink.batch = 1024; 390 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE; 391 if (prealloc_shrinker(&s->s_shrink, "sb-%s", type->name)) 392 goto fail; 393 if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink)) 394 goto fail; 395 if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink)) 396 goto fail; 397 return s; 398 399 fail: 400 destroy_unused_super(s); 401 return NULL; 402 } 403 404 /* Superblock refcounting */ 405 406 /* 407 * Drop a superblock's refcount. The caller must hold sb_lock. 408 */ 409 static void __put_super(struct super_block *s) 410 { 411 if (!--s->s_count) { 412 list_del_init(&s->s_list); 413 WARN_ON(s->s_dentry_lru.node); 414 WARN_ON(s->s_inode_lru.node); 415 WARN_ON(!list_empty(&s->s_mounts)); 416 security_sb_free(s); 417 put_user_ns(s->s_user_ns); 418 kfree(s->s_subtype); 419 call_rcu(&s->rcu, destroy_super_rcu); 420 } 421 } 422 423 /** 424 * put_super - drop a temporary reference to superblock 425 * @sb: superblock in question 426 * 427 * Drops a temporary reference, frees superblock if there's no 428 * references left. 429 */ 430 void put_super(struct super_block *sb) 431 { 432 spin_lock(&sb_lock); 433 __put_super(sb); 434 spin_unlock(&sb_lock); 435 } 436 437 static void kill_super_notify(struct super_block *sb) 438 { 439 lockdep_assert_not_held(&sb->s_umount); 440 441 /* already notified earlier */ 442 if (sb->s_flags & SB_DEAD) 443 return; 444 445 /* 446 * Remove it from @fs_supers so it isn't found by new 447 * sget{_fc}() walkers anymore. Any concurrent mounter still 448 * managing to grab a temporary reference is guaranteed to 449 * already see SB_DYING and will wait until we notify them about 450 * SB_DEAD. 451 */ 452 spin_lock(&sb_lock); 453 hlist_del_init(&sb->s_instances); 454 spin_unlock(&sb_lock); 455 456 /* 457 * Let concurrent mounts know that this thing is really dead. 458 * We don't need @sb->s_umount here as every concurrent caller 459 * will see SB_DYING and either discard the superblock or wait 460 * for SB_DEAD. 461 */ 462 super_wake(sb, SB_DEAD); 463 } 464 465 /** 466 * deactivate_locked_super - drop an active reference to superblock 467 * @s: superblock to deactivate 468 * 469 * Drops an active reference to superblock, converting it into a temporary 470 * one if there is no other active references left. In that case we 471 * tell fs driver to shut it down and drop the temporary reference we 472 * had just acquired. 473 * 474 * Caller holds exclusive lock on superblock; that lock is released. 475 */ 476 void deactivate_locked_super(struct super_block *s) 477 { 478 struct file_system_type *fs = s->s_type; 479 if (atomic_dec_and_test(&s->s_active)) { 480 unregister_shrinker(&s->s_shrink); 481 fs->kill_sb(s); 482 483 kill_super_notify(s); 484 485 /* 486 * Since list_lru_destroy() may sleep, we cannot call it from 487 * put_super(), where we hold the sb_lock. Therefore we destroy 488 * the lru lists right now. 489 */ 490 list_lru_destroy(&s->s_dentry_lru); 491 list_lru_destroy(&s->s_inode_lru); 492 493 put_filesystem(fs); 494 put_super(s); 495 } else { 496 super_unlock_excl(s); 497 } 498 } 499 500 EXPORT_SYMBOL(deactivate_locked_super); 501 502 /** 503 * deactivate_super - drop an active reference to superblock 504 * @s: superblock to deactivate 505 * 506 * Variant of deactivate_locked_super(), except that superblock is *not* 507 * locked by caller. If we are going to drop the final active reference, 508 * lock will be acquired prior to that. 509 */ 510 void deactivate_super(struct super_block *s) 511 { 512 if (!atomic_add_unless(&s->s_active, -1, 1)) { 513 __super_lock_excl(s); 514 deactivate_locked_super(s); 515 } 516 } 517 518 EXPORT_SYMBOL(deactivate_super); 519 520 /** 521 * grab_super - acquire an active reference 522 * @s: reference we are trying to make active 523 * 524 * Tries to acquire an active reference. grab_super() is used when we 525 * had just found a superblock in super_blocks or fs_type->fs_supers 526 * and want to turn it into a full-blown active reference. grab_super() 527 * is called with sb_lock held and drops it. Returns 1 in case of 528 * success, 0 if we had failed (superblock contents was already dead or 529 * dying when grab_super() had been called). Note that this is only 530 * called for superblocks not in rundown mode (== ones still on ->fs_supers 531 * of their type), so increment of ->s_count is OK here. 532 */ 533 static int grab_super(struct super_block *s) __releases(sb_lock) 534 { 535 bool born; 536 537 s->s_count++; 538 spin_unlock(&sb_lock); 539 born = super_lock_excl(s); 540 if (born && atomic_inc_not_zero(&s->s_active)) { 541 put_super(s); 542 return 1; 543 } 544 super_unlock_excl(s); 545 put_super(s); 546 return 0; 547 } 548 549 static inline bool wait_dead(struct super_block *sb) 550 { 551 unsigned int flags; 552 553 /* 554 * Pairs with memory barrier in super_wake() and ensures 555 * that we see SB_DEAD after we're woken. 556 */ 557 flags = smp_load_acquire(&sb->s_flags); 558 return flags & SB_DEAD; 559 } 560 561 /** 562 * grab_super_dead - acquire an active reference to a superblock 563 * @sb: superblock to acquire 564 * 565 * Acquire a temporary reference on a superblock and try to trade it for 566 * an active reference. This is used in sget{_fc}() to wait for a 567 * superblock to either become SB_BORN or for it to pass through 568 * sb->kill() and be marked as SB_DEAD. 569 * 570 * Return: This returns true if an active reference could be acquired, 571 * false if not. 572 */ 573 static bool grab_super_dead(struct super_block *sb) 574 { 575 576 sb->s_count++; 577 if (grab_super(sb)) { 578 put_super(sb); 579 lockdep_assert_held(&sb->s_umount); 580 return true; 581 } 582 wait_var_event(&sb->s_flags, wait_dead(sb)); 583 lockdep_assert_not_held(&sb->s_umount); 584 put_super(sb); 585 return false; 586 } 587 588 /* 589 * super_trylock_shared - try to grab ->s_umount shared 590 * @sb: reference we are trying to grab 591 * 592 * Try to prevent fs shutdown. This is used in places where we 593 * cannot take an active reference but we need to ensure that the 594 * filesystem is not shut down while we are working on it. It returns 595 * false if we cannot acquire s_umount or if we lose the race and 596 * filesystem already got into shutdown, and returns true with the s_umount 597 * lock held in read mode in case of success. On successful return, 598 * the caller must drop the s_umount lock when done. 599 * 600 * Note that unlike get_super() et.al. this one does *not* bump ->s_count. 601 * The reason why it's safe is that we are OK with doing trylock instead 602 * of down_read(). There's a couple of places that are OK with that, but 603 * it's very much not a general-purpose interface. 604 */ 605 bool super_trylock_shared(struct super_block *sb) 606 { 607 if (down_read_trylock(&sb->s_umount)) { 608 if (!(sb->s_flags & SB_DYING) && sb->s_root && 609 (sb->s_flags & SB_BORN)) 610 return true; 611 super_unlock_shared(sb); 612 } 613 614 return false; 615 } 616 617 /** 618 * retire_super - prevents superblock from being reused 619 * @sb: superblock to retire 620 * 621 * The function marks superblock to be ignored in superblock test, which 622 * prevents it from being reused for any new mounts. If the superblock has 623 * a private bdi, it also unregisters it, but doesn't reduce the refcount 624 * of the superblock to prevent potential races. The refcount is reduced 625 * by generic_shutdown_super(). The function can not be called 626 * concurrently with generic_shutdown_super(). It is safe to call the 627 * function multiple times, subsequent calls have no effect. 628 * 629 * The marker will affect the re-use only for block-device-based 630 * superblocks. Other superblocks will still get marked if this function 631 * is used, but that will not affect their reusability. 632 */ 633 void retire_super(struct super_block *sb) 634 { 635 WARN_ON(!sb->s_bdev); 636 __super_lock_excl(sb); 637 if (sb->s_iflags & SB_I_PERSB_BDI) { 638 bdi_unregister(sb->s_bdi); 639 sb->s_iflags &= ~SB_I_PERSB_BDI; 640 } 641 sb->s_iflags |= SB_I_RETIRED; 642 super_unlock_excl(sb); 643 } 644 EXPORT_SYMBOL(retire_super); 645 646 /** 647 * generic_shutdown_super - common helper for ->kill_sb() 648 * @sb: superblock to kill 649 * 650 * generic_shutdown_super() does all fs-independent work on superblock 651 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 652 * that need destruction out of superblock, call generic_shutdown_super() 653 * and release aforementioned objects. Note: dentries and inodes _are_ 654 * taken care of and do not need specific handling. 655 * 656 * Upon calling this function, the filesystem may no longer alter or 657 * rearrange the set of dentries belonging to this super_block, nor may it 658 * change the attachments of dentries to inodes. 659 */ 660 void generic_shutdown_super(struct super_block *sb) 661 { 662 const struct super_operations *sop = sb->s_op; 663 664 if (sb->s_root) { 665 shrink_dcache_for_umount(sb); 666 sync_filesystem(sb); 667 sb->s_flags &= ~SB_ACTIVE; 668 669 cgroup_writeback_umount(); 670 671 /* Evict all inodes with zero refcount. */ 672 evict_inodes(sb); 673 674 /* 675 * Clean up and evict any inodes that still have references due 676 * to fsnotify or the security policy. 677 */ 678 fsnotify_sb_delete(sb); 679 security_sb_delete(sb); 680 681 /* 682 * Now that all potentially-encrypted inodes have been evicted, 683 * the fscrypt keyring can be destroyed. 684 */ 685 fscrypt_destroy_keyring(sb); 686 687 if (sb->s_dio_done_wq) { 688 destroy_workqueue(sb->s_dio_done_wq); 689 sb->s_dio_done_wq = NULL; 690 } 691 692 if (sop->put_super) 693 sop->put_super(sb); 694 695 if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes), 696 "VFS: Busy inodes after unmount of %s (%s)", 697 sb->s_id, sb->s_type->name)) { 698 /* 699 * Adding a proper bailout path here would be hard, but 700 * we can at least make it more likely that a later 701 * iput_final() or such crashes cleanly. 702 */ 703 struct inode *inode; 704 705 spin_lock(&sb->s_inode_list_lock); 706 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 707 inode->i_op = VFS_PTR_POISON; 708 inode->i_sb = VFS_PTR_POISON; 709 inode->i_mapping = VFS_PTR_POISON; 710 } 711 spin_unlock(&sb->s_inode_list_lock); 712 } 713 } 714 /* 715 * Broadcast to everyone that grabbed a temporary reference to this 716 * superblock before we removed it from @fs_supers that the superblock 717 * is dying. Every walker of @fs_supers outside of sget{_fc}() will now 718 * discard this superblock and treat it as dead. 719 * 720 * We leave the superblock on @fs_supers so it can be found by 721 * sget{_fc}() until we passed sb->kill_sb(). 722 */ 723 super_wake(sb, SB_DYING); 724 super_unlock_excl(sb); 725 if (sb->s_bdi != &noop_backing_dev_info) { 726 if (sb->s_iflags & SB_I_PERSB_BDI) 727 bdi_unregister(sb->s_bdi); 728 bdi_put(sb->s_bdi); 729 sb->s_bdi = &noop_backing_dev_info; 730 } 731 } 732 733 EXPORT_SYMBOL(generic_shutdown_super); 734 735 bool mount_capable(struct fs_context *fc) 736 { 737 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) 738 return capable(CAP_SYS_ADMIN); 739 else 740 return ns_capable(fc->user_ns, CAP_SYS_ADMIN); 741 } 742 743 /** 744 * sget_fc - Find or create a superblock 745 * @fc: Filesystem context. 746 * @test: Comparison callback 747 * @set: Setup callback 748 * 749 * Create a new superblock or find an existing one. 750 * 751 * The @test callback is used to find a matching existing superblock. 752 * Whether or not the requested parameters in @fc are taken into account 753 * is specific to the @test callback that is used. They may even be 754 * completely ignored. 755 * 756 * If an extant superblock is matched, it will be returned unless: 757 * 758 * (1) the namespace the filesystem context @fc and the extant 759 * superblock's namespace differ 760 * 761 * (2) the filesystem context @fc has requested that reusing an extant 762 * superblock is not allowed 763 * 764 * In both cases EBUSY will be returned. 765 * 766 * If no match is made, a new superblock will be allocated and basic 767 * initialisation will be performed (s_type, s_fs_info and s_id will be 768 * set and the @set callback will be invoked), the superblock will be 769 * published and it will be returned in a partially constructed state 770 * with SB_BORN and SB_ACTIVE as yet unset. 771 * 772 * Return: On success, an extant or newly created superblock is 773 * returned. On failure an error pointer is returned. 774 */ 775 struct super_block *sget_fc(struct fs_context *fc, 776 int (*test)(struct super_block *, struct fs_context *), 777 int (*set)(struct super_block *, struct fs_context *)) 778 { 779 struct super_block *s = NULL; 780 struct super_block *old; 781 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns; 782 int err; 783 784 /* 785 * Never allow s_user_ns != &init_user_ns when FS_USERNS_MOUNT is 786 * not set, as the filesystem is likely unprepared to handle it. 787 * This can happen when fsconfig() is called from init_user_ns with 788 * an fs_fd opened in another user namespace. 789 */ 790 if (user_ns != &init_user_ns && !(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) { 791 errorfc(fc, "VFS: Mounting from non-initial user namespace is not allowed"); 792 return ERR_PTR(-EPERM); 793 } 794 795 retry: 796 spin_lock(&sb_lock); 797 if (test) { 798 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) { 799 if (test(old, fc)) 800 goto share_extant_sb; 801 } 802 } 803 if (!s) { 804 spin_unlock(&sb_lock); 805 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns); 806 if (!s) 807 return ERR_PTR(-ENOMEM); 808 goto retry; 809 } 810 811 s->s_fs_info = fc->s_fs_info; 812 err = set(s, fc); 813 if (err) { 814 s->s_fs_info = NULL; 815 spin_unlock(&sb_lock); 816 destroy_unused_super(s); 817 return ERR_PTR(err); 818 } 819 fc->s_fs_info = NULL; 820 s->s_type = fc->fs_type; 821 s->s_iflags |= fc->s_iflags; 822 strscpy(s->s_id, s->s_type->name, sizeof(s->s_id)); 823 /* 824 * Make the superblock visible on @super_blocks and @fs_supers. 825 * It's in a nascent state and users should wait on SB_BORN or 826 * SB_DYING to be set. 827 */ 828 list_add_tail(&s->s_list, &super_blocks); 829 hlist_add_head(&s->s_instances, &s->s_type->fs_supers); 830 spin_unlock(&sb_lock); 831 get_filesystem(s->s_type); 832 register_shrinker_prepared(&s->s_shrink); 833 return s; 834 835 share_extant_sb: 836 if (user_ns != old->s_user_ns || fc->exclusive) { 837 spin_unlock(&sb_lock); 838 destroy_unused_super(s); 839 if (fc->exclusive) 840 warnfc(fc, "reusing existing filesystem not allowed"); 841 else 842 warnfc(fc, "reusing existing filesystem in another namespace not allowed"); 843 return ERR_PTR(-EBUSY); 844 } 845 if (!grab_super_dead(old)) 846 goto retry; 847 destroy_unused_super(s); 848 return old; 849 } 850 EXPORT_SYMBOL(sget_fc); 851 852 /** 853 * sget - find or create a superblock 854 * @type: filesystem type superblock should belong to 855 * @test: comparison callback 856 * @set: setup callback 857 * @flags: mount flags 858 * @data: argument to each of them 859 */ 860 struct super_block *sget(struct file_system_type *type, 861 int (*test)(struct super_block *,void *), 862 int (*set)(struct super_block *,void *), 863 int flags, 864 void *data) 865 { 866 struct user_namespace *user_ns = current_user_ns(); 867 struct super_block *s = NULL; 868 struct super_block *old; 869 int err; 870 871 /* We don't yet pass the user namespace of the parent 872 * mount through to here so always use &init_user_ns 873 * until that changes. 874 */ 875 if (flags & SB_SUBMOUNT) 876 user_ns = &init_user_ns; 877 878 retry: 879 spin_lock(&sb_lock); 880 if (test) { 881 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 882 if (!test(old, data)) 883 continue; 884 if (user_ns != old->s_user_ns) { 885 spin_unlock(&sb_lock); 886 destroy_unused_super(s); 887 return ERR_PTR(-EBUSY); 888 } 889 if (!grab_super_dead(old)) 890 goto retry; 891 destroy_unused_super(s); 892 return old; 893 } 894 } 895 if (!s) { 896 spin_unlock(&sb_lock); 897 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns); 898 if (!s) 899 return ERR_PTR(-ENOMEM); 900 goto retry; 901 } 902 903 err = set(s, data); 904 if (err) { 905 spin_unlock(&sb_lock); 906 destroy_unused_super(s); 907 return ERR_PTR(err); 908 } 909 s->s_type = type; 910 strscpy(s->s_id, type->name, sizeof(s->s_id)); 911 list_add_tail(&s->s_list, &super_blocks); 912 hlist_add_head(&s->s_instances, &type->fs_supers); 913 spin_unlock(&sb_lock); 914 get_filesystem(type); 915 register_shrinker_prepared(&s->s_shrink); 916 return s; 917 } 918 EXPORT_SYMBOL(sget); 919 920 void drop_super(struct super_block *sb) 921 { 922 super_unlock_shared(sb); 923 put_super(sb); 924 } 925 926 EXPORT_SYMBOL(drop_super); 927 928 void drop_super_exclusive(struct super_block *sb) 929 { 930 super_unlock_excl(sb); 931 put_super(sb); 932 } 933 EXPORT_SYMBOL(drop_super_exclusive); 934 935 static void __iterate_supers(void (*f)(struct super_block *)) 936 { 937 struct super_block *sb, *p = NULL; 938 939 spin_lock(&sb_lock); 940 list_for_each_entry(sb, &super_blocks, s_list) { 941 /* Pairs with memory marrier in super_wake(). */ 942 if (smp_load_acquire(&sb->s_flags) & SB_DYING) 943 continue; 944 sb->s_count++; 945 spin_unlock(&sb_lock); 946 947 f(sb); 948 949 spin_lock(&sb_lock); 950 if (p) 951 __put_super(p); 952 p = sb; 953 } 954 if (p) 955 __put_super(p); 956 spin_unlock(&sb_lock); 957 } 958 /** 959 * iterate_supers - call function for all active superblocks 960 * @f: function to call 961 * @arg: argument to pass to it 962 * 963 * Scans the superblock list and calls given function, passing it 964 * locked superblock and given argument. 965 */ 966 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 967 { 968 struct super_block *sb, *p = NULL; 969 970 spin_lock(&sb_lock); 971 list_for_each_entry(sb, &super_blocks, s_list) { 972 bool born; 973 974 sb->s_count++; 975 spin_unlock(&sb_lock); 976 977 born = super_lock_shared(sb); 978 if (born && sb->s_root) 979 f(sb, arg); 980 super_unlock_shared(sb); 981 982 spin_lock(&sb_lock); 983 if (p) 984 __put_super(p); 985 p = sb; 986 } 987 if (p) 988 __put_super(p); 989 spin_unlock(&sb_lock); 990 } 991 992 /** 993 * iterate_supers_type - call function for superblocks of given type 994 * @type: fs type 995 * @f: function to call 996 * @arg: argument to pass to it 997 * 998 * Scans the superblock list and calls given function, passing it 999 * locked superblock and given argument. 1000 */ 1001 void iterate_supers_type(struct file_system_type *type, 1002 void (*f)(struct super_block *, void *), void *arg) 1003 { 1004 struct super_block *sb, *p = NULL; 1005 1006 spin_lock(&sb_lock); 1007 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 1008 bool born; 1009 1010 sb->s_count++; 1011 spin_unlock(&sb_lock); 1012 1013 born = super_lock_shared(sb); 1014 if (born && sb->s_root) 1015 f(sb, arg); 1016 super_unlock_shared(sb); 1017 1018 spin_lock(&sb_lock); 1019 if (p) 1020 __put_super(p); 1021 p = sb; 1022 } 1023 if (p) 1024 __put_super(p); 1025 spin_unlock(&sb_lock); 1026 } 1027 1028 EXPORT_SYMBOL(iterate_supers_type); 1029 1030 /** 1031 * get_active_super - get an active reference to the superblock of a device 1032 * @bdev: device to get the superblock for 1033 * 1034 * Scans the superblock list and finds the superblock of the file system 1035 * mounted on the device given. Returns the superblock with an active 1036 * reference or %NULL if none was found. 1037 */ 1038 struct super_block *get_active_super(struct block_device *bdev) 1039 { 1040 struct super_block *sb; 1041 1042 if (!bdev) 1043 return NULL; 1044 1045 spin_lock(&sb_lock); 1046 list_for_each_entry(sb, &super_blocks, s_list) { 1047 if (sb->s_bdev == bdev) { 1048 if (!grab_super(sb)) 1049 return NULL; 1050 super_unlock_excl(sb); 1051 return sb; 1052 } 1053 } 1054 spin_unlock(&sb_lock); 1055 return NULL; 1056 } 1057 1058 struct super_block *user_get_super(dev_t dev, bool excl) 1059 { 1060 struct super_block *sb; 1061 1062 spin_lock(&sb_lock); 1063 list_for_each_entry(sb, &super_blocks, s_list) { 1064 if (sb->s_dev == dev) { 1065 bool born; 1066 1067 sb->s_count++; 1068 spin_unlock(&sb_lock); 1069 /* still alive? */ 1070 born = super_lock(sb, excl); 1071 if (born && sb->s_root) 1072 return sb; 1073 super_unlock(sb, excl); 1074 /* nope, got unmounted */ 1075 spin_lock(&sb_lock); 1076 __put_super(sb); 1077 break; 1078 } 1079 } 1080 spin_unlock(&sb_lock); 1081 return NULL; 1082 } 1083 1084 /** 1085 * reconfigure_super - asks filesystem to change superblock parameters 1086 * @fc: The superblock and configuration 1087 * 1088 * Alters the configuration parameters of a live superblock. 1089 */ 1090 int reconfigure_super(struct fs_context *fc) 1091 { 1092 struct super_block *sb = fc->root->d_sb; 1093 int retval; 1094 bool remount_ro = false; 1095 bool remount_rw = false; 1096 bool force = fc->sb_flags & SB_FORCE; 1097 1098 if (fc->sb_flags_mask & ~MS_RMT_MASK) 1099 return -EINVAL; 1100 if (sb->s_writers.frozen != SB_UNFROZEN) 1101 return -EBUSY; 1102 1103 retval = security_sb_remount(sb, fc->security); 1104 if (retval) 1105 return retval; 1106 1107 if (fc->sb_flags_mask & SB_RDONLY) { 1108 #ifdef CONFIG_BLOCK 1109 if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev && 1110 bdev_read_only(sb->s_bdev)) 1111 return -EACCES; 1112 #endif 1113 remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb); 1114 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb); 1115 } 1116 1117 if (remount_ro) { 1118 if (!hlist_empty(&sb->s_pins)) { 1119 super_unlock_excl(sb); 1120 group_pin_kill(&sb->s_pins); 1121 __super_lock_excl(sb); 1122 if (!sb->s_root) 1123 return 0; 1124 if (sb->s_writers.frozen != SB_UNFROZEN) 1125 return -EBUSY; 1126 remount_ro = !sb_rdonly(sb); 1127 } 1128 } 1129 shrink_dcache_sb(sb); 1130 1131 /* If we are reconfiguring to RDONLY and current sb is read/write, 1132 * make sure there are no files open for writing. 1133 */ 1134 if (remount_ro) { 1135 if (force) { 1136 sb_start_ro_state_change(sb); 1137 } else { 1138 retval = sb_prepare_remount_readonly(sb); 1139 if (retval) 1140 return retval; 1141 } 1142 } else if (remount_rw) { 1143 /* 1144 * Protect filesystem's reconfigure code from writes from 1145 * userspace until reconfigure finishes. 1146 */ 1147 sb_start_ro_state_change(sb); 1148 } 1149 1150 if (fc->ops->reconfigure) { 1151 retval = fc->ops->reconfigure(fc); 1152 if (retval) { 1153 if (!force) 1154 goto cancel_readonly; 1155 /* If forced remount, go ahead despite any errors */ 1156 WARN(1, "forced remount of a %s fs returned %i\n", 1157 sb->s_type->name, retval); 1158 } 1159 } 1160 1161 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) | 1162 (fc->sb_flags & fc->sb_flags_mask))); 1163 sb_end_ro_state_change(sb); 1164 1165 /* 1166 * Some filesystems modify their metadata via some other path than the 1167 * bdev buffer cache (eg. use a private mapping, or directories in 1168 * pagecache, etc). Also file data modifications go via their own 1169 * mappings. So If we try to mount readonly then copy the filesystem 1170 * from bdev, we could get stale data, so invalidate it to give a best 1171 * effort at coherency. 1172 */ 1173 if (remount_ro && sb->s_bdev) 1174 invalidate_bdev(sb->s_bdev); 1175 return 0; 1176 1177 cancel_readonly: 1178 sb_end_ro_state_change(sb); 1179 return retval; 1180 } 1181 1182 static void do_emergency_remount_callback(struct super_block *sb) 1183 { 1184 bool born = super_lock_excl(sb); 1185 1186 if (born && sb->s_root && sb->s_bdev && !sb_rdonly(sb)) { 1187 struct fs_context *fc; 1188 1189 fc = fs_context_for_reconfigure(sb->s_root, 1190 SB_RDONLY | SB_FORCE, SB_RDONLY); 1191 if (!IS_ERR(fc)) { 1192 if (parse_monolithic_mount_data(fc, NULL) == 0) 1193 (void)reconfigure_super(fc); 1194 put_fs_context(fc); 1195 } 1196 } 1197 super_unlock_excl(sb); 1198 } 1199 1200 static void do_emergency_remount(struct work_struct *work) 1201 { 1202 __iterate_supers(do_emergency_remount_callback); 1203 kfree(work); 1204 printk("Emergency Remount complete\n"); 1205 } 1206 1207 void emergency_remount(void) 1208 { 1209 struct work_struct *work; 1210 1211 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1212 if (work) { 1213 INIT_WORK(work, do_emergency_remount); 1214 schedule_work(work); 1215 } 1216 } 1217 1218 static void do_thaw_all_callback(struct super_block *sb) 1219 { 1220 bool born = super_lock_excl(sb); 1221 1222 if (born && sb->s_root) { 1223 if (IS_ENABLED(CONFIG_BLOCK)) 1224 while (sb->s_bdev && !thaw_bdev(sb->s_bdev)) 1225 pr_warn("Emergency Thaw on %pg\n", sb->s_bdev); 1226 thaw_super_locked(sb, FREEZE_HOLDER_USERSPACE); 1227 } else { 1228 super_unlock_excl(sb); 1229 } 1230 } 1231 1232 static void do_thaw_all(struct work_struct *work) 1233 { 1234 __iterate_supers(do_thaw_all_callback); 1235 kfree(work); 1236 printk(KERN_WARNING "Emergency Thaw complete\n"); 1237 } 1238 1239 /** 1240 * emergency_thaw_all -- forcibly thaw every frozen filesystem 1241 * 1242 * Used for emergency unfreeze of all filesystems via SysRq 1243 */ 1244 void emergency_thaw_all(void) 1245 { 1246 struct work_struct *work; 1247 1248 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1249 if (work) { 1250 INIT_WORK(work, do_thaw_all); 1251 schedule_work(work); 1252 } 1253 } 1254 1255 static DEFINE_IDA(unnamed_dev_ida); 1256 1257 /** 1258 * get_anon_bdev - Allocate a block device for filesystems which don't have one. 1259 * @p: Pointer to a dev_t. 1260 * 1261 * Filesystems which don't use real block devices can call this function 1262 * to allocate a virtual block device. 1263 * 1264 * Context: Any context. Frequently called while holding sb_lock. 1265 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left 1266 * or -ENOMEM if memory allocation failed. 1267 */ 1268 int get_anon_bdev(dev_t *p) 1269 { 1270 int dev; 1271 1272 /* 1273 * Many userspace utilities consider an FSID of 0 invalid. 1274 * Always return at least 1 from get_anon_bdev. 1275 */ 1276 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1, 1277 GFP_ATOMIC); 1278 if (dev == -ENOSPC) 1279 dev = -EMFILE; 1280 if (dev < 0) 1281 return dev; 1282 1283 *p = MKDEV(0, dev); 1284 return 0; 1285 } 1286 EXPORT_SYMBOL(get_anon_bdev); 1287 1288 void free_anon_bdev(dev_t dev) 1289 { 1290 ida_free(&unnamed_dev_ida, MINOR(dev)); 1291 } 1292 EXPORT_SYMBOL(free_anon_bdev); 1293 1294 int set_anon_super(struct super_block *s, void *data) 1295 { 1296 return get_anon_bdev(&s->s_dev); 1297 } 1298 EXPORT_SYMBOL(set_anon_super); 1299 1300 void kill_anon_super(struct super_block *sb) 1301 { 1302 dev_t dev = sb->s_dev; 1303 generic_shutdown_super(sb); 1304 kill_super_notify(sb); 1305 free_anon_bdev(dev); 1306 } 1307 EXPORT_SYMBOL(kill_anon_super); 1308 1309 void kill_litter_super(struct super_block *sb) 1310 { 1311 if (sb->s_root) 1312 d_genocide(sb->s_root); 1313 kill_anon_super(sb); 1314 } 1315 EXPORT_SYMBOL(kill_litter_super); 1316 1317 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc) 1318 { 1319 return set_anon_super(sb, NULL); 1320 } 1321 EXPORT_SYMBOL(set_anon_super_fc); 1322 1323 static int test_keyed_super(struct super_block *sb, struct fs_context *fc) 1324 { 1325 return sb->s_fs_info == fc->s_fs_info; 1326 } 1327 1328 static int test_single_super(struct super_block *s, struct fs_context *fc) 1329 { 1330 return 1; 1331 } 1332 1333 static int vfs_get_super(struct fs_context *fc, 1334 int (*test)(struct super_block *, struct fs_context *), 1335 int (*fill_super)(struct super_block *sb, 1336 struct fs_context *fc)) 1337 { 1338 struct super_block *sb; 1339 int err; 1340 1341 sb = sget_fc(fc, test, set_anon_super_fc); 1342 if (IS_ERR(sb)) 1343 return PTR_ERR(sb); 1344 1345 if (!sb->s_root) { 1346 err = fill_super(sb, fc); 1347 if (err) 1348 goto error; 1349 1350 sb->s_flags |= SB_ACTIVE; 1351 } 1352 1353 fc->root = dget(sb->s_root); 1354 return 0; 1355 1356 error: 1357 deactivate_locked_super(sb); 1358 return err; 1359 } 1360 1361 int get_tree_nodev(struct fs_context *fc, 1362 int (*fill_super)(struct super_block *sb, 1363 struct fs_context *fc)) 1364 { 1365 return vfs_get_super(fc, NULL, fill_super); 1366 } 1367 EXPORT_SYMBOL(get_tree_nodev); 1368 1369 int get_tree_single(struct fs_context *fc, 1370 int (*fill_super)(struct super_block *sb, 1371 struct fs_context *fc)) 1372 { 1373 return vfs_get_super(fc, test_single_super, fill_super); 1374 } 1375 EXPORT_SYMBOL(get_tree_single); 1376 1377 int get_tree_keyed(struct fs_context *fc, 1378 int (*fill_super)(struct super_block *sb, 1379 struct fs_context *fc), 1380 void *key) 1381 { 1382 fc->s_fs_info = key; 1383 return vfs_get_super(fc, test_keyed_super, fill_super); 1384 } 1385 EXPORT_SYMBOL(get_tree_keyed); 1386 1387 static int set_bdev_super(struct super_block *s, void *data) 1388 { 1389 s->s_dev = *(dev_t *)data; 1390 return 0; 1391 } 1392 1393 static int super_s_dev_set(struct super_block *s, struct fs_context *fc) 1394 { 1395 return set_bdev_super(s, fc->sget_key); 1396 } 1397 1398 static int super_s_dev_test(struct super_block *s, struct fs_context *fc) 1399 { 1400 return !(s->s_iflags & SB_I_RETIRED) && 1401 s->s_dev == *(dev_t *)fc->sget_key; 1402 } 1403 1404 /** 1405 * sget_dev - Find or create a superblock by device number 1406 * @fc: Filesystem context. 1407 * @dev: device number 1408 * 1409 * Find or create a superblock using the provided device number that 1410 * will be stored in fc->sget_key. 1411 * 1412 * If an extant superblock is matched, then that will be returned with 1413 * an elevated reference count that the caller must transfer or discard. 1414 * 1415 * If no match is made, a new superblock will be allocated and basic 1416 * initialisation will be performed (s_type, s_fs_info, s_id, s_dev will 1417 * be set). The superblock will be published and it will be returned in 1418 * a partially constructed state with SB_BORN and SB_ACTIVE as yet 1419 * unset. 1420 * 1421 * Return: an existing or newly created superblock on success, an error 1422 * pointer on failure. 1423 */ 1424 struct super_block *sget_dev(struct fs_context *fc, dev_t dev) 1425 { 1426 fc->sget_key = &dev; 1427 return sget_fc(fc, super_s_dev_test, super_s_dev_set); 1428 } 1429 EXPORT_SYMBOL(sget_dev); 1430 1431 #ifdef CONFIG_BLOCK 1432 /* 1433 * Lock a super block that the callers holds a reference to. 1434 * 1435 * The caller needs to ensure that the super_block isn't being freed while 1436 * calling this function, e.g. by holding a lock over the call to this function 1437 * and the place that clears the pointer to the superblock used by this function 1438 * before freeing the superblock. 1439 */ 1440 static bool super_lock_shared_active(struct super_block *sb) 1441 { 1442 bool born = super_lock_shared(sb); 1443 1444 if (!born || !sb->s_root || !(sb->s_flags & SB_ACTIVE)) { 1445 super_unlock_shared(sb); 1446 return false; 1447 } 1448 return true; 1449 } 1450 1451 static void fs_bdev_mark_dead(struct block_device *bdev, bool surprise) 1452 { 1453 struct super_block *sb = bdev->bd_holder; 1454 1455 /* bd_holder_lock ensures that the sb isn't freed */ 1456 lockdep_assert_held(&bdev->bd_holder_lock); 1457 1458 if (!super_lock_shared_active(sb)) 1459 return; 1460 1461 if (!surprise) 1462 sync_filesystem(sb); 1463 shrink_dcache_sb(sb); 1464 invalidate_inodes(sb); 1465 if (sb->s_op->shutdown) 1466 sb->s_op->shutdown(sb); 1467 1468 super_unlock_shared(sb); 1469 } 1470 1471 static void fs_bdev_sync(struct block_device *bdev) 1472 { 1473 struct super_block *sb = bdev->bd_holder; 1474 1475 lockdep_assert_held(&bdev->bd_holder_lock); 1476 1477 if (!super_lock_shared_active(sb)) 1478 return; 1479 sync_filesystem(sb); 1480 super_unlock_shared(sb); 1481 } 1482 1483 const struct blk_holder_ops fs_holder_ops = { 1484 .mark_dead = fs_bdev_mark_dead, 1485 .sync = fs_bdev_sync, 1486 }; 1487 EXPORT_SYMBOL_GPL(fs_holder_ops); 1488 1489 int setup_bdev_super(struct super_block *sb, int sb_flags, 1490 struct fs_context *fc) 1491 { 1492 blk_mode_t mode = sb_open_mode(sb_flags); 1493 struct block_device *bdev; 1494 1495 bdev = blkdev_get_by_dev(sb->s_dev, mode, sb, &fs_holder_ops); 1496 if (IS_ERR(bdev)) { 1497 if (fc) 1498 errorf(fc, "%s: Can't open blockdev", fc->source); 1499 return PTR_ERR(bdev); 1500 } 1501 1502 /* 1503 * This really should be in blkdev_get_by_dev, but right now can't due 1504 * to legacy issues that require us to allow opening a block device node 1505 * writable from userspace even for a read-only block device. 1506 */ 1507 if ((mode & BLK_OPEN_WRITE) && bdev_read_only(bdev)) { 1508 blkdev_put(bdev, sb); 1509 return -EACCES; 1510 } 1511 1512 /* 1513 * Until SB_BORN flag is set, there can be no active superblock 1514 * references and thus no filesystem freezing. get_active_super() will 1515 * just loop waiting for SB_BORN so even freeze_bdev() cannot proceed. 1516 * 1517 * It is enough to check bdev was not frozen before we set s_bdev. 1518 */ 1519 mutex_lock(&bdev->bd_fsfreeze_mutex); 1520 if (bdev->bd_fsfreeze_count > 0) { 1521 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1522 if (fc) 1523 warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev); 1524 blkdev_put(bdev, sb); 1525 return -EBUSY; 1526 } 1527 spin_lock(&sb_lock); 1528 sb->s_bdev = bdev; 1529 sb->s_bdi = bdi_get(bdev->bd_disk->bdi); 1530 if (bdev_stable_writes(bdev)) 1531 sb->s_iflags |= SB_I_STABLE_WRITES; 1532 spin_unlock(&sb_lock); 1533 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1534 1535 snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev); 1536 shrinker_debugfs_rename(&sb->s_shrink, "sb-%s:%s", sb->s_type->name, 1537 sb->s_id); 1538 sb_set_blocksize(sb, block_size(bdev)); 1539 return 0; 1540 } 1541 EXPORT_SYMBOL_GPL(setup_bdev_super); 1542 1543 /** 1544 * get_tree_bdev - Get a superblock based on a single block device 1545 * @fc: The filesystem context holding the parameters 1546 * @fill_super: Helper to initialise a new superblock 1547 */ 1548 int get_tree_bdev(struct fs_context *fc, 1549 int (*fill_super)(struct super_block *, 1550 struct fs_context *)) 1551 { 1552 struct super_block *s; 1553 int error = 0; 1554 dev_t dev; 1555 1556 if (!fc->source) 1557 return invalf(fc, "No source specified"); 1558 1559 error = lookup_bdev(fc->source, &dev); 1560 if (error) { 1561 errorf(fc, "%s: Can't lookup blockdev", fc->source); 1562 return error; 1563 } 1564 1565 fc->sb_flags |= SB_NOSEC; 1566 s = sget_dev(fc, dev); 1567 if (IS_ERR(s)) 1568 return PTR_ERR(s); 1569 1570 if (s->s_root) { 1571 /* Don't summarily change the RO/RW state. */ 1572 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) { 1573 warnf(fc, "%pg: Can't mount, would change RO state", s->s_bdev); 1574 deactivate_locked_super(s); 1575 return -EBUSY; 1576 } 1577 } else { 1578 /* 1579 * We drop s_umount here because we need to open the bdev and 1580 * bdev->open_mutex ranks above s_umount (blkdev_put() -> 1581 * bdev_mark_dead()). It is safe because we have active sb 1582 * reference and SB_BORN is not set yet. 1583 */ 1584 super_unlock_excl(s); 1585 error = setup_bdev_super(s, fc->sb_flags, fc); 1586 __super_lock_excl(s); 1587 if (!error) 1588 error = fill_super(s, fc); 1589 if (error) { 1590 deactivate_locked_super(s); 1591 return error; 1592 } 1593 s->s_flags |= SB_ACTIVE; 1594 } 1595 1596 BUG_ON(fc->root); 1597 fc->root = dget(s->s_root); 1598 return 0; 1599 } 1600 EXPORT_SYMBOL(get_tree_bdev); 1601 1602 static int test_bdev_super(struct super_block *s, void *data) 1603 { 1604 return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data; 1605 } 1606 1607 struct dentry *mount_bdev(struct file_system_type *fs_type, 1608 int flags, const char *dev_name, void *data, 1609 int (*fill_super)(struct super_block *, void *, int)) 1610 { 1611 struct super_block *s; 1612 int error; 1613 dev_t dev; 1614 1615 error = lookup_bdev(dev_name, &dev); 1616 if (error) 1617 return ERR_PTR(error); 1618 1619 flags |= SB_NOSEC; 1620 s = sget(fs_type, test_bdev_super, set_bdev_super, flags, &dev); 1621 if (IS_ERR(s)) 1622 return ERR_CAST(s); 1623 1624 if (s->s_root) { 1625 if ((flags ^ s->s_flags) & SB_RDONLY) { 1626 deactivate_locked_super(s); 1627 return ERR_PTR(-EBUSY); 1628 } 1629 } else { 1630 /* 1631 * We drop s_umount here because we need to open the bdev and 1632 * bdev->open_mutex ranks above s_umount (blkdev_put() -> 1633 * bdev_mark_dead()). It is safe because we have active sb 1634 * reference and SB_BORN is not set yet. 1635 */ 1636 super_unlock_excl(s); 1637 error = setup_bdev_super(s, flags, NULL); 1638 __super_lock_excl(s); 1639 if (!error) 1640 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1641 if (error) { 1642 deactivate_locked_super(s); 1643 return ERR_PTR(error); 1644 } 1645 1646 s->s_flags |= SB_ACTIVE; 1647 } 1648 1649 return dget(s->s_root); 1650 } 1651 EXPORT_SYMBOL(mount_bdev); 1652 1653 void kill_block_super(struct super_block *sb) 1654 { 1655 struct block_device *bdev = sb->s_bdev; 1656 1657 generic_shutdown_super(sb); 1658 if (bdev) { 1659 sync_blockdev(bdev); 1660 blkdev_put(bdev, sb); 1661 } 1662 } 1663 1664 EXPORT_SYMBOL(kill_block_super); 1665 #endif 1666 1667 struct dentry *mount_nodev(struct file_system_type *fs_type, 1668 int flags, void *data, 1669 int (*fill_super)(struct super_block *, void *, int)) 1670 { 1671 int error; 1672 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1673 1674 if (IS_ERR(s)) 1675 return ERR_CAST(s); 1676 1677 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1678 if (error) { 1679 deactivate_locked_super(s); 1680 return ERR_PTR(error); 1681 } 1682 s->s_flags |= SB_ACTIVE; 1683 return dget(s->s_root); 1684 } 1685 EXPORT_SYMBOL(mount_nodev); 1686 1687 int reconfigure_single(struct super_block *s, 1688 int flags, void *data) 1689 { 1690 struct fs_context *fc; 1691 int ret; 1692 1693 /* The caller really need to be passing fc down into mount_single(), 1694 * then a chunk of this can be removed. [Bollocks -- AV] 1695 * Better yet, reconfiguration shouldn't happen, but rather the second 1696 * mount should be rejected if the parameters are not compatible. 1697 */ 1698 fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK); 1699 if (IS_ERR(fc)) 1700 return PTR_ERR(fc); 1701 1702 ret = parse_monolithic_mount_data(fc, data); 1703 if (ret < 0) 1704 goto out; 1705 1706 ret = reconfigure_super(fc); 1707 out: 1708 put_fs_context(fc); 1709 return ret; 1710 } 1711 1712 static int compare_single(struct super_block *s, void *p) 1713 { 1714 return 1; 1715 } 1716 1717 struct dentry *mount_single(struct file_system_type *fs_type, 1718 int flags, void *data, 1719 int (*fill_super)(struct super_block *, void *, int)) 1720 { 1721 struct super_block *s; 1722 int error; 1723 1724 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1725 if (IS_ERR(s)) 1726 return ERR_CAST(s); 1727 if (!s->s_root) { 1728 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1729 if (!error) 1730 s->s_flags |= SB_ACTIVE; 1731 } else { 1732 error = reconfigure_single(s, flags, data); 1733 } 1734 if (unlikely(error)) { 1735 deactivate_locked_super(s); 1736 return ERR_PTR(error); 1737 } 1738 return dget(s->s_root); 1739 } 1740 EXPORT_SYMBOL(mount_single); 1741 1742 /** 1743 * vfs_get_tree - Get the mountable root 1744 * @fc: The superblock configuration context. 1745 * 1746 * The filesystem is invoked to get or create a superblock which can then later 1747 * be used for mounting. The filesystem places a pointer to the root to be 1748 * used for mounting in @fc->root. 1749 */ 1750 int vfs_get_tree(struct fs_context *fc) 1751 { 1752 struct super_block *sb; 1753 int error; 1754 1755 if (fc->root) 1756 return -EBUSY; 1757 1758 /* Get the mountable root in fc->root, with a ref on the root and a ref 1759 * on the superblock. 1760 */ 1761 error = fc->ops->get_tree(fc); 1762 if (error < 0) 1763 return error; 1764 1765 if (!fc->root) { 1766 pr_err("Filesystem %s get_tree() didn't set fc->root\n", 1767 fc->fs_type->name); 1768 /* We don't know what the locking state of the superblock is - 1769 * if there is a superblock. 1770 */ 1771 BUG(); 1772 } 1773 1774 sb = fc->root->d_sb; 1775 WARN_ON(!sb->s_bdi); 1776 1777 /* 1778 * super_wake() contains a memory barrier which also care of 1779 * ordering for super_cache_count(). We place it before setting 1780 * SB_BORN as the data dependency between the two functions is 1781 * the superblock structure contents that we just set up, not 1782 * the SB_BORN flag. 1783 */ 1784 super_wake(sb, SB_BORN); 1785 1786 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL); 1787 if (unlikely(error)) { 1788 fc_drop_locked(fc); 1789 return error; 1790 } 1791 1792 /* 1793 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1794 * but s_maxbytes was an unsigned long long for many releases. Throw 1795 * this warning for a little while to try and catch filesystems that 1796 * violate this rule. 1797 */ 1798 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1799 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes); 1800 1801 return 0; 1802 } 1803 EXPORT_SYMBOL(vfs_get_tree); 1804 1805 /* 1806 * Setup private BDI for given superblock. It gets automatically cleaned up 1807 * in generic_shutdown_super(). 1808 */ 1809 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...) 1810 { 1811 struct backing_dev_info *bdi; 1812 int err; 1813 va_list args; 1814 1815 bdi = bdi_alloc(NUMA_NO_NODE); 1816 if (!bdi) 1817 return -ENOMEM; 1818 1819 va_start(args, fmt); 1820 err = bdi_register_va(bdi, fmt, args); 1821 va_end(args); 1822 if (err) { 1823 bdi_put(bdi); 1824 return err; 1825 } 1826 WARN_ON(sb->s_bdi != &noop_backing_dev_info); 1827 sb->s_bdi = bdi; 1828 sb->s_iflags |= SB_I_PERSB_BDI; 1829 1830 return 0; 1831 } 1832 EXPORT_SYMBOL(super_setup_bdi_name); 1833 1834 /* 1835 * Setup private BDI for given superblock. I gets automatically cleaned up 1836 * in generic_shutdown_super(). 1837 */ 1838 int super_setup_bdi(struct super_block *sb) 1839 { 1840 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0); 1841 1842 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name, 1843 atomic_long_inc_return(&bdi_seq)); 1844 } 1845 EXPORT_SYMBOL(super_setup_bdi); 1846 1847 /** 1848 * sb_wait_write - wait until all writers to given file system finish 1849 * @sb: the super for which we wait 1850 * @level: type of writers we wait for (normal vs page fault) 1851 * 1852 * This function waits until there are no writers of given type to given file 1853 * system. 1854 */ 1855 static void sb_wait_write(struct super_block *sb, int level) 1856 { 1857 percpu_down_write(sb->s_writers.rw_sem + level-1); 1858 } 1859 1860 /* 1861 * We are going to return to userspace and forget about these locks, the 1862 * ownership goes to the caller of thaw_super() which does unlock(). 1863 */ 1864 static void lockdep_sb_freeze_release(struct super_block *sb) 1865 { 1866 int level; 1867 1868 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1869 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1870 } 1871 1872 /* 1873 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb). 1874 */ 1875 static void lockdep_sb_freeze_acquire(struct super_block *sb) 1876 { 1877 int level; 1878 1879 for (level = 0; level < SB_FREEZE_LEVELS; ++level) 1880 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1881 } 1882 1883 static void sb_freeze_unlock(struct super_block *sb, int level) 1884 { 1885 for (level--; level >= 0; level--) 1886 percpu_up_write(sb->s_writers.rw_sem + level); 1887 } 1888 1889 static int wait_for_partially_frozen(struct super_block *sb) 1890 { 1891 int ret = 0; 1892 1893 do { 1894 unsigned short old = sb->s_writers.frozen; 1895 1896 up_write(&sb->s_umount); 1897 ret = wait_var_event_killable(&sb->s_writers.frozen, 1898 sb->s_writers.frozen != old); 1899 down_write(&sb->s_umount); 1900 } while (ret == 0 && 1901 sb->s_writers.frozen != SB_UNFROZEN && 1902 sb->s_writers.frozen != SB_FREEZE_COMPLETE); 1903 1904 return ret; 1905 } 1906 1907 /** 1908 * freeze_super - lock the filesystem and force it into a consistent state 1909 * @sb: the super to lock 1910 * @who: context that wants to freeze 1911 * 1912 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1913 * freeze_fs. Subsequent calls to this without first thawing the fs may return 1914 * -EBUSY. 1915 * 1916 * @who should be: 1917 * * %FREEZE_HOLDER_USERSPACE if userspace wants to freeze the fs; 1918 * * %FREEZE_HOLDER_KERNEL if the kernel wants to freeze the fs. 1919 * 1920 * The @who argument distinguishes between the kernel and userspace trying to 1921 * freeze the filesystem. Although there cannot be multiple kernel freezes or 1922 * multiple userspace freezes in effect at any given time, the kernel and 1923 * userspace can both hold a filesystem frozen. The filesystem remains frozen 1924 * until there are no kernel or userspace freezes in effect. 1925 * 1926 * During this function, sb->s_writers.frozen goes through these values: 1927 * 1928 * SB_UNFROZEN: File system is normal, all writes progress as usual. 1929 * 1930 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 1931 * writes should be blocked, though page faults are still allowed. We wait for 1932 * all writes to complete and then proceed to the next stage. 1933 * 1934 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 1935 * but internal fs threads can still modify the filesystem (although they 1936 * should not dirty new pages or inodes), writeback can run etc. After waiting 1937 * for all running page faults we sync the filesystem which will clean all 1938 * dirty pages and inodes (no new dirty pages or inodes can be created when 1939 * sync is running). 1940 * 1941 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 1942 * modification are blocked (e.g. XFS preallocation truncation on inode 1943 * reclaim). This is usually implemented by blocking new transactions for 1944 * filesystems that have them and need this additional guard. After all 1945 * internal writers are finished we call ->freeze_fs() to finish filesystem 1946 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 1947 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 1948 * 1949 * sb->s_writers.frozen is protected by sb->s_umount. 1950 */ 1951 int freeze_super(struct super_block *sb, enum freeze_holder who) 1952 { 1953 int ret; 1954 1955 atomic_inc(&sb->s_active); 1956 if (!super_lock_excl(sb)) 1957 WARN(1, "Dying superblock while freezing!"); 1958 1959 retry: 1960 if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) { 1961 if (sb->s_writers.freeze_holders & who) { 1962 deactivate_locked_super(sb); 1963 return -EBUSY; 1964 } 1965 1966 WARN_ON(sb->s_writers.freeze_holders == 0); 1967 1968 /* 1969 * Someone else already holds this type of freeze; share the 1970 * freeze and assign the active ref to the freeze. 1971 */ 1972 sb->s_writers.freeze_holders |= who; 1973 super_unlock_excl(sb); 1974 return 0; 1975 } 1976 1977 if (sb->s_writers.frozen != SB_UNFROZEN) { 1978 ret = wait_for_partially_frozen(sb); 1979 if (ret) { 1980 deactivate_locked_super(sb); 1981 return ret; 1982 } 1983 1984 goto retry; 1985 } 1986 1987 if (!(sb->s_flags & SB_BORN)) { 1988 super_unlock_excl(sb); 1989 return 0; /* sic - it's "nothing to do" */ 1990 } 1991 1992 if (sb_rdonly(sb)) { 1993 /* Nothing to do really... */ 1994 sb->s_writers.freeze_holders |= who; 1995 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1996 wake_up_var(&sb->s_writers.frozen); 1997 super_unlock_excl(sb); 1998 return 0; 1999 } 2000 2001 sb->s_writers.frozen = SB_FREEZE_WRITE; 2002 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 2003 super_unlock_excl(sb); 2004 sb_wait_write(sb, SB_FREEZE_WRITE); 2005 if (!super_lock_excl(sb)) 2006 WARN(1, "Dying superblock while freezing!"); 2007 2008 /* Now we go and block page faults... */ 2009 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 2010 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 2011 2012 /* All writers are done so after syncing there won't be dirty data */ 2013 ret = sync_filesystem(sb); 2014 if (ret) { 2015 sb->s_writers.frozen = SB_UNFROZEN; 2016 sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT); 2017 wake_up_var(&sb->s_writers.frozen); 2018 deactivate_locked_super(sb); 2019 return ret; 2020 } 2021 2022 /* Now wait for internal filesystem counter */ 2023 sb->s_writers.frozen = SB_FREEZE_FS; 2024 sb_wait_write(sb, SB_FREEZE_FS); 2025 2026 if (sb->s_op->freeze_fs) { 2027 ret = sb->s_op->freeze_fs(sb); 2028 if (ret) { 2029 printk(KERN_ERR 2030 "VFS:Filesystem freeze failed\n"); 2031 sb->s_writers.frozen = SB_UNFROZEN; 2032 sb_freeze_unlock(sb, SB_FREEZE_FS); 2033 wake_up_var(&sb->s_writers.frozen); 2034 deactivate_locked_super(sb); 2035 return ret; 2036 } 2037 } 2038 /* 2039 * For debugging purposes so that fs can warn if it sees write activity 2040 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super(). 2041 */ 2042 sb->s_writers.freeze_holders |= who; 2043 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 2044 wake_up_var(&sb->s_writers.frozen); 2045 lockdep_sb_freeze_release(sb); 2046 super_unlock_excl(sb); 2047 return 0; 2048 } 2049 EXPORT_SYMBOL(freeze_super); 2050 2051 /* 2052 * Undoes the effect of a freeze_super_locked call. If the filesystem is 2053 * frozen both by userspace and the kernel, a thaw call from either source 2054 * removes that state without releasing the other state or unlocking the 2055 * filesystem. 2056 */ 2057 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who) 2058 { 2059 int error; 2060 2061 if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) { 2062 if (!(sb->s_writers.freeze_holders & who)) { 2063 super_unlock_excl(sb); 2064 return -EINVAL; 2065 } 2066 2067 /* 2068 * Freeze is shared with someone else. Release our hold and 2069 * drop the active ref that freeze_super assigned to the 2070 * freezer. 2071 */ 2072 if (sb->s_writers.freeze_holders & ~who) { 2073 sb->s_writers.freeze_holders &= ~who; 2074 deactivate_locked_super(sb); 2075 return 0; 2076 } 2077 } else { 2078 super_unlock_excl(sb); 2079 return -EINVAL; 2080 } 2081 2082 if (sb_rdonly(sb)) { 2083 sb->s_writers.freeze_holders &= ~who; 2084 sb->s_writers.frozen = SB_UNFROZEN; 2085 wake_up_var(&sb->s_writers.frozen); 2086 goto out; 2087 } 2088 2089 lockdep_sb_freeze_acquire(sb); 2090 2091 if (sb->s_op->unfreeze_fs) { 2092 error = sb->s_op->unfreeze_fs(sb); 2093 if (error) { 2094 printk(KERN_ERR "VFS:Filesystem thaw failed\n"); 2095 lockdep_sb_freeze_release(sb); 2096 super_unlock_excl(sb); 2097 return error; 2098 } 2099 } 2100 2101 sb->s_writers.freeze_holders &= ~who; 2102 sb->s_writers.frozen = SB_UNFROZEN; 2103 wake_up_var(&sb->s_writers.frozen); 2104 sb_freeze_unlock(sb, SB_FREEZE_FS); 2105 out: 2106 deactivate_locked_super(sb); 2107 return 0; 2108 } 2109 2110 /** 2111 * thaw_super -- unlock filesystem 2112 * @sb: the super to thaw 2113 * @who: context that wants to freeze 2114 * 2115 * Unlocks the filesystem and marks it writeable again after freeze_super() 2116 * if there are no remaining freezes on the filesystem. 2117 * 2118 * @who should be: 2119 * * %FREEZE_HOLDER_USERSPACE if userspace wants to thaw the fs; 2120 * * %FREEZE_HOLDER_KERNEL if the kernel wants to thaw the fs. 2121 */ 2122 int thaw_super(struct super_block *sb, enum freeze_holder who) 2123 { 2124 if (!super_lock_excl(sb)) 2125 WARN(1, "Dying superblock while thawing!"); 2126 return thaw_super_locked(sb, who); 2127 } 2128 EXPORT_SYMBOL(thaw_super); 2129 2130 /* 2131 * Create workqueue for deferred direct IO completions. We allocate the 2132 * workqueue when it's first needed. This avoids creating workqueue for 2133 * filesystems that don't need it and also allows us to create the workqueue 2134 * late enough so the we can include s_id in the name of the workqueue. 2135 */ 2136 int sb_init_dio_done_wq(struct super_block *sb) 2137 { 2138 struct workqueue_struct *old; 2139 struct workqueue_struct *wq = alloc_workqueue("dio/%s", 2140 WQ_MEM_RECLAIM, 0, 2141 sb->s_id); 2142 if (!wq) 2143 return -ENOMEM; 2144 /* 2145 * This has to be atomic as more DIOs can race to create the workqueue 2146 */ 2147 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); 2148 /* Someone created workqueue before us? Free ours... */ 2149 if (old) 2150 destroy_workqueue(wq); 2151 return 0; 2152 } 2153