xref: /openbmc/linux/fs/super.c (revision 8bf3cbe32b180836720f735e6de5dee700052317)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/super.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  super.c contains code to handle: - mount structures
8  *                                   - super-block tables
9  *                                   - filesystem drivers list
10  *                                   - mount system call
11  *                                   - umount system call
12  *                                   - ustat system call
13  *
14  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
15  *
16  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18  *  Added options to /proc/mounts:
19  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22  */
23 
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include <linux/fs_context.h>
39 #include <uapi/linux/mount.h>
40 #include "internal.h"
41 
42 static int thaw_super_locked(struct super_block *sb);
43 
44 static LIST_HEAD(super_blocks);
45 static DEFINE_SPINLOCK(sb_lock);
46 
47 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
48 	"sb_writers",
49 	"sb_pagefaults",
50 	"sb_internal",
51 };
52 
53 /*
54  * One thing we have to be careful of with a per-sb shrinker is that we don't
55  * drop the last active reference to the superblock from within the shrinker.
56  * If that happens we could trigger unregistering the shrinker from within the
57  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
58  * take a passive reference to the superblock to avoid this from occurring.
59  */
60 static unsigned long super_cache_scan(struct shrinker *shrink,
61 				      struct shrink_control *sc)
62 {
63 	struct super_block *sb;
64 	long	fs_objects = 0;
65 	long	total_objects;
66 	long	freed = 0;
67 	long	dentries;
68 	long	inodes;
69 
70 	sb = container_of(shrink, struct super_block, s_shrink);
71 
72 	/*
73 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
74 	 * to recurse into the FS that called us in clear_inode() and friends..
75 	 */
76 	if (!(sc->gfp_mask & __GFP_FS))
77 		return SHRINK_STOP;
78 
79 	if (!trylock_super(sb))
80 		return SHRINK_STOP;
81 
82 	if (sb->s_op->nr_cached_objects)
83 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
84 
85 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
86 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
87 	total_objects = dentries + inodes + fs_objects + 1;
88 	if (!total_objects)
89 		total_objects = 1;
90 
91 	/* proportion the scan between the caches */
92 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
93 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
94 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
95 
96 	/*
97 	 * prune the dcache first as the icache is pinned by it, then
98 	 * prune the icache, followed by the filesystem specific caches
99 	 *
100 	 * Ensure that we always scan at least one object - memcg kmem
101 	 * accounting uses this to fully empty the caches.
102 	 */
103 	sc->nr_to_scan = dentries + 1;
104 	freed = prune_dcache_sb(sb, sc);
105 	sc->nr_to_scan = inodes + 1;
106 	freed += prune_icache_sb(sb, sc);
107 
108 	if (fs_objects) {
109 		sc->nr_to_scan = fs_objects + 1;
110 		freed += sb->s_op->free_cached_objects(sb, sc);
111 	}
112 
113 	up_read(&sb->s_umount);
114 	return freed;
115 }
116 
117 static unsigned long super_cache_count(struct shrinker *shrink,
118 				       struct shrink_control *sc)
119 {
120 	struct super_block *sb;
121 	long	total_objects = 0;
122 
123 	sb = container_of(shrink, struct super_block, s_shrink);
124 
125 	/*
126 	 * We don't call trylock_super() here as it is a scalability bottleneck,
127 	 * so we're exposed to partial setup state. The shrinker rwsem does not
128 	 * protect filesystem operations backing list_lru_shrink_count() or
129 	 * s_op->nr_cached_objects(). Counts can change between
130 	 * super_cache_count and super_cache_scan, so we really don't need locks
131 	 * here.
132 	 *
133 	 * However, if we are currently mounting the superblock, the underlying
134 	 * filesystem might be in a state of partial construction and hence it
135 	 * is dangerous to access it.  trylock_super() uses a SB_BORN check to
136 	 * avoid this situation, so do the same here. The memory barrier is
137 	 * matched with the one in mount_fs() as we don't hold locks here.
138 	 */
139 	if (!(sb->s_flags & SB_BORN))
140 		return 0;
141 	smp_rmb();
142 
143 	if (sb->s_op && sb->s_op->nr_cached_objects)
144 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
145 
146 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
147 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
148 
149 	if (!total_objects)
150 		return SHRINK_EMPTY;
151 
152 	total_objects = vfs_pressure_ratio(total_objects);
153 	return total_objects;
154 }
155 
156 static void destroy_super_work(struct work_struct *work)
157 {
158 	struct super_block *s = container_of(work, struct super_block,
159 							destroy_work);
160 	int i;
161 
162 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
163 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
164 	kfree(s);
165 }
166 
167 static void destroy_super_rcu(struct rcu_head *head)
168 {
169 	struct super_block *s = container_of(head, struct super_block, rcu);
170 	INIT_WORK(&s->destroy_work, destroy_super_work);
171 	schedule_work(&s->destroy_work);
172 }
173 
174 /* Free a superblock that has never been seen by anyone */
175 static void destroy_unused_super(struct super_block *s)
176 {
177 	if (!s)
178 		return;
179 	up_write(&s->s_umount);
180 	list_lru_destroy(&s->s_dentry_lru);
181 	list_lru_destroy(&s->s_inode_lru);
182 	security_sb_free(s);
183 	put_user_ns(s->s_user_ns);
184 	kfree(s->s_subtype);
185 	free_prealloced_shrinker(&s->s_shrink);
186 	/* no delays needed */
187 	destroy_super_work(&s->destroy_work);
188 }
189 
190 /**
191  *	alloc_super	-	create new superblock
192  *	@type:	filesystem type superblock should belong to
193  *	@flags: the mount flags
194  *	@user_ns: User namespace for the super_block
195  *
196  *	Allocates and initializes a new &struct super_block.  alloc_super()
197  *	returns a pointer new superblock or %NULL if allocation had failed.
198  */
199 static struct super_block *alloc_super(struct file_system_type *type, int flags,
200 				       struct user_namespace *user_ns)
201 {
202 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
203 	static const struct super_operations default_op;
204 	int i;
205 
206 	if (!s)
207 		return NULL;
208 
209 	INIT_LIST_HEAD(&s->s_mounts);
210 	s->s_user_ns = get_user_ns(user_ns);
211 	init_rwsem(&s->s_umount);
212 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
213 	/*
214 	 * sget() can have s_umount recursion.
215 	 *
216 	 * When it cannot find a suitable sb, it allocates a new
217 	 * one (this one), and tries again to find a suitable old
218 	 * one.
219 	 *
220 	 * In case that succeeds, it will acquire the s_umount
221 	 * lock of the old one. Since these are clearly distrinct
222 	 * locks, and this object isn't exposed yet, there's no
223 	 * risk of deadlocks.
224 	 *
225 	 * Annotate this by putting this lock in a different
226 	 * subclass.
227 	 */
228 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
229 
230 	if (security_sb_alloc(s))
231 		goto fail;
232 
233 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
234 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
235 					sb_writers_name[i],
236 					&type->s_writers_key[i]))
237 			goto fail;
238 	}
239 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
240 	s->s_bdi = &noop_backing_dev_info;
241 	s->s_flags = flags;
242 	if (s->s_user_ns != &init_user_ns)
243 		s->s_iflags |= SB_I_NODEV;
244 	INIT_HLIST_NODE(&s->s_instances);
245 	INIT_HLIST_BL_HEAD(&s->s_roots);
246 	mutex_init(&s->s_sync_lock);
247 	INIT_LIST_HEAD(&s->s_inodes);
248 	spin_lock_init(&s->s_inode_list_lock);
249 	INIT_LIST_HEAD(&s->s_inodes_wb);
250 	spin_lock_init(&s->s_inode_wblist_lock);
251 
252 	s->s_count = 1;
253 	atomic_set(&s->s_active, 1);
254 	mutex_init(&s->s_vfs_rename_mutex);
255 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
256 	init_rwsem(&s->s_dquot.dqio_sem);
257 	s->s_maxbytes = MAX_NON_LFS;
258 	s->s_op = &default_op;
259 	s->s_time_gran = 1000000000;
260 	s->cleancache_poolid = CLEANCACHE_NO_POOL;
261 
262 	s->s_shrink.seeks = DEFAULT_SEEKS;
263 	s->s_shrink.scan_objects = super_cache_scan;
264 	s->s_shrink.count_objects = super_cache_count;
265 	s->s_shrink.batch = 1024;
266 	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
267 	if (prealloc_shrinker(&s->s_shrink))
268 		goto fail;
269 	if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
270 		goto fail;
271 	if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
272 		goto fail;
273 	return s;
274 
275 fail:
276 	destroy_unused_super(s);
277 	return NULL;
278 }
279 
280 /* Superblock refcounting  */
281 
282 /*
283  * Drop a superblock's refcount.  The caller must hold sb_lock.
284  */
285 static void __put_super(struct super_block *s)
286 {
287 	if (!--s->s_count) {
288 		list_del_init(&s->s_list);
289 		WARN_ON(s->s_dentry_lru.node);
290 		WARN_ON(s->s_inode_lru.node);
291 		WARN_ON(!list_empty(&s->s_mounts));
292 		security_sb_free(s);
293 		put_user_ns(s->s_user_ns);
294 		kfree(s->s_subtype);
295 		call_rcu(&s->rcu, destroy_super_rcu);
296 	}
297 }
298 
299 /**
300  *	put_super	-	drop a temporary reference to superblock
301  *	@sb: superblock in question
302  *
303  *	Drops a temporary reference, frees superblock if there's no
304  *	references left.
305  */
306 static void put_super(struct super_block *sb)
307 {
308 	spin_lock(&sb_lock);
309 	__put_super(sb);
310 	spin_unlock(&sb_lock);
311 }
312 
313 
314 /**
315  *	deactivate_locked_super	-	drop an active reference to superblock
316  *	@s: superblock to deactivate
317  *
318  *	Drops an active reference to superblock, converting it into a temporary
319  *	one if there is no other active references left.  In that case we
320  *	tell fs driver to shut it down and drop the temporary reference we
321  *	had just acquired.
322  *
323  *	Caller holds exclusive lock on superblock; that lock is released.
324  */
325 void deactivate_locked_super(struct super_block *s)
326 {
327 	struct file_system_type *fs = s->s_type;
328 	if (atomic_dec_and_test(&s->s_active)) {
329 		cleancache_invalidate_fs(s);
330 		unregister_shrinker(&s->s_shrink);
331 		fs->kill_sb(s);
332 
333 		/*
334 		 * Since list_lru_destroy() may sleep, we cannot call it from
335 		 * put_super(), where we hold the sb_lock. Therefore we destroy
336 		 * the lru lists right now.
337 		 */
338 		list_lru_destroy(&s->s_dentry_lru);
339 		list_lru_destroy(&s->s_inode_lru);
340 
341 		put_filesystem(fs);
342 		put_super(s);
343 	} else {
344 		up_write(&s->s_umount);
345 	}
346 }
347 
348 EXPORT_SYMBOL(deactivate_locked_super);
349 
350 /**
351  *	deactivate_super	-	drop an active reference to superblock
352  *	@s: superblock to deactivate
353  *
354  *	Variant of deactivate_locked_super(), except that superblock is *not*
355  *	locked by caller.  If we are going to drop the final active reference,
356  *	lock will be acquired prior to that.
357  */
358 void deactivate_super(struct super_block *s)
359 {
360         if (!atomic_add_unless(&s->s_active, -1, 1)) {
361 		down_write(&s->s_umount);
362 		deactivate_locked_super(s);
363 	}
364 }
365 
366 EXPORT_SYMBOL(deactivate_super);
367 
368 /**
369  *	grab_super - acquire an active reference
370  *	@s: reference we are trying to make active
371  *
372  *	Tries to acquire an active reference.  grab_super() is used when we
373  * 	had just found a superblock in super_blocks or fs_type->fs_supers
374  *	and want to turn it into a full-blown active reference.  grab_super()
375  *	is called with sb_lock held and drops it.  Returns 1 in case of
376  *	success, 0 if we had failed (superblock contents was already dead or
377  *	dying when grab_super() had been called).  Note that this is only
378  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
379  *	of their type), so increment of ->s_count is OK here.
380  */
381 static int grab_super(struct super_block *s) __releases(sb_lock)
382 {
383 	s->s_count++;
384 	spin_unlock(&sb_lock);
385 	down_write(&s->s_umount);
386 	if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
387 		put_super(s);
388 		return 1;
389 	}
390 	up_write(&s->s_umount);
391 	put_super(s);
392 	return 0;
393 }
394 
395 /*
396  *	trylock_super - try to grab ->s_umount shared
397  *	@sb: reference we are trying to grab
398  *
399  *	Try to prevent fs shutdown.  This is used in places where we
400  *	cannot take an active reference but we need to ensure that the
401  *	filesystem is not shut down while we are working on it. It returns
402  *	false if we cannot acquire s_umount or if we lose the race and
403  *	filesystem already got into shutdown, and returns true with the s_umount
404  *	lock held in read mode in case of success. On successful return,
405  *	the caller must drop the s_umount lock when done.
406  *
407  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
408  *	The reason why it's safe is that we are OK with doing trylock instead
409  *	of down_read().  There's a couple of places that are OK with that, but
410  *	it's very much not a general-purpose interface.
411  */
412 bool trylock_super(struct super_block *sb)
413 {
414 	if (down_read_trylock(&sb->s_umount)) {
415 		if (!hlist_unhashed(&sb->s_instances) &&
416 		    sb->s_root && (sb->s_flags & SB_BORN))
417 			return true;
418 		up_read(&sb->s_umount);
419 	}
420 
421 	return false;
422 }
423 
424 /**
425  *	generic_shutdown_super	-	common helper for ->kill_sb()
426  *	@sb: superblock to kill
427  *
428  *	generic_shutdown_super() does all fs-independent work on superblock
429  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
430  *	that need destruction out of superblock, call generic_shutdown_super()
431  *	and release aforementioned objects.  Note: dentries and inodes _are_
432  *	taken care of and do not need specific handling.
433  *
434  *	Upon calling this function, the filesystem may no longer alter or
435  *	rearrange the set of dentries belonging to this super_block, nor may it
436  *	change the attachments of dentries to inodes.
437  */
438 void generic_shutdown_super(struct super_block *sb)
439 {
440 	const struct super_operations *sop = sb->s_op;
441 
442 	if (sb->s_root) {
443 		shrink_dcache_for_umount(sb);
444 		sync_filesystem(sb);
445 		sb->s_flags &= ~SB_ACTIVE;
446 
447 		fsnotify_sb_delete(sb);
448 		cgroup_writeback_umount();
449 
450 		evict_inodes(sb);
451 
452 		if (sb->s_dio_done_wq) {
453 			destroy_workqueue(sb->s_dio_done_wq);
454 			sb->s_dio_done_wq = NULL;
455 		}
456 
457 		if (sop->put_super)
458 			sop->put_super(sb);
459 
460 		if (!list_empty(&sb->s_inodes)) {
461 			printk("VFS: Busy inodes after unmount of %s. "
462 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
463 			   sb->s_id);
464 		}
465 	}
466 	spin_lock(&sb_lock);
467 	/* should be initialized for __put_super_and_need_restart() */
468 	hlist_del_init(&sb->s_instances);
469 	spin_unlock(&sb_lock);
470 	up_write(&sb->s_umount);
471 	if (sb->s_bdi != &noop_backing_dev_info) {
472 		bdi_put(sb->s_bdi);
473 		sb->s_bdi = &noop_backing_dev_info;
474 	}
475 }
476 
477 EXPORT_SYMBOL(generic_shutdown_super);
478 
479 bool mount_capable(struct fs_context *fc)
480 {
481 	if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
482 		return capable(CAP_SYS_ADMIN);
483 	else
484 		return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
485 }
486 
487 /**
488  * sget_fc - Find or create a superblock
489  * @fc:	Filesystem context.
490  * @test: Comparison callback
491  * @set: Setup callback
492  *
493  * Find or create a superblock using the parameters stored in the filesystem
494  * context and the two callback functions.
495  *
496  * If an extant superblock is matched, then that will be returned with an
497  * elevated reference count that the caller must transfer or discard.
498  *
499  * If no match is made, a new superblock will be allocated and basic
500  * initialisation will be performed (s_type, s_fs_info and s_id will be set and
501  * the set() callback will be invoked), the superblock will be published and it
502  * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
503  * as yet unset.
504  */
505 struct super_block *sget_fc(struct fs_context *fc,
506 			    int (*test)(struct super_block *, struct fs_context *),
507 			    int (*set)(struct super_block *, struct fs_context *))
508 {
509 	struct super_block *s = NULL;
510 	struct super_block *old;
511 	struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
512 	int err;
513 
514 retry:
515 	spin_lock(&sb_lock);
516 	if (test) {
517 		hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
518 			if (test(old, fc))
519 				goto share_extant_sb;
520 		}
521 	}
522 	if (!s) {
523 		spin_unlock(&sb_lock);
524 		s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
525 		if (!s)
526 			return ERR_PTR(-ENOMEM);
527 		goto retry;
528 	}
529 
530 	s->s_fs_info = fc->s_fs_info;
531 	err = set(s, fc);
532 	if (err) {
533 		s->s_fs_info = NULL;
534 		spin_unlock(&sb_lock);
535 		destroy_unused_super(s);
536 		return ERR_PTR(err);
537 	}
538 	fc->s_fs_info = NULL;
539 	s->s_type = fc->fs_type;
540 	s->s_iflags |= fc->s_iflags;
541 	strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
542 	list_add_tail(&s->s_list, &super_blocks);
543 	hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
544 	spin_unlock(&sb_lock);
545 	get_filesystem(s->s_type);
546 	register_shrinker_prepared(&s->s_shrink);
547 	return s;
548 
549 share_extant_sb:
550 	if (user_ns != old->s_user_ns) {
551 		spin_unlock(&sb_lock);
552 		destroy_unused_super(s);
553 		return ERR_PTR(-EBUSY);
554 	}
555 	if (!grab_super(old))
556 		goto retry;
557 	destroy_unused_super(s);
558 	return old;
559 }
560 EXPORT_SYMBOL(sget_fc);
561 
562 /**
563  *	sget	-	find or create a superblock
564  *	@type:	  filesystem type superblock should belong to
565  *	@test:	  comparison callback
566  *	@set:	  setup callback
567  *	@flags:	  mount flags
568  *	@data:	  argument to each of them
569  */
570 struct super_block *sget(struct file_system_type *type,
571 			int (*test)(struct super_block *,void *),
572 			int (*set)(struct super_block *,void *),
573 			int flags,
574 			void *data)
575 {
576 	struct user_namespace *user_ns = current_user_ns();
577 	struct super_block *s = NULL;
578 	struct super_block *old;
579 	int err;
580 
581 	/* We don't yet pass the user namespace of the parent
582 	 * mount through to here so always use &init_user_ns
583 	 * until that changes.
584 	 */
585 	if (flags & SB_SUBMOUNT)
586 		user_ns = &init_user_ns;
587 
588 retry:
589 	spin_lock(&sb_lock);
590 	if (test) {
591 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
592 			if (!test(old, data))
593 				continue;
594 			if (user_ns != old->s_user_ns) {
595 				spin_unlock(&sb_lock);
596 				destroy_unused_super(s);
597 				return ERR_PTR(-EBUSY);
598 			}
599 			if (!grab_super(old))
600 				goto retry;
601 			destroy_unused_super(s);
602 			return old;
603 		}
604 	}
605 	if (!s) {
606 		spin_unlock(&sb_lock);
607 		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
608 		if (!s)
609 			return ERR_PTR(-ENOMEM);
610 		goto retry;
611 	}
612 
613 	err = set(s, data);
614 	if (err) {
615 		spin_unlock(&sb_lock);
616 		destroy_unused_super(s);
617 		return ERR_PTR(err);
618 	}
619 	s->s_type = type;
620 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
621 	list_add_tail(&s->s_list, &super_blocks);
622 	hlist_add_head(&s->s_instances, &type->fs_supers);
623 	spin_unlock(&sb_lock);
624 	get_filesystem(type);
625 	register_shrinker_prepared(&s->s_shrink);
626 	return s;
627 }
628 EXPORT_SYMBOL(sget);
629 
630 void drop_super(struct super_block *sb)
631 {
632 	up_read(&sb->s_umount);
633 	put_super(sb);
634 }
635 
636 EXPORT_SYMBOL(drop_super);
637 
638 void drop_super_exclusive(struct super_block *sb)
639 {
640 	up_write(&sb->s_umount);
641 	put_super(sb);
642 }
643 EXPORT_SYMBOL(drop_super_exclusive);
644 
645 static void __iterate_supers(void (*f)(struct super_block *))
646 {
647 	struct super_block *sb, *p = NULL;
648 
649 	spin_lock(&sb_lock);
650 	list_for_each_entry(sb, &super_blocks, s_list) {
651 		if (hlist_unhashed(&sb->s_instances))
652 			continue;
653 		sb->s_count++;
654 		spin_unlock(&sb_lock);
655 
656 		f(sb);
657 
658 		spin_lock(&sb_lock);
659 		if (p)
660 			__put_super(p);
661 		p = sb;
662 	}
663 	if (p)
664 		__put_super(p);
665 	spin_unlock(&sb_lock);
666 }
667 /**
668  *	iterate_supers - call function for all active superblocks
669  *	@f: function to call
670  *	@arg: argument to pass to it
671  *
672  *	Scans the superblock list and calls given function, passing it
673  *	locked superblock and given argument.
674  */
675 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
676 {
677 	struct super_block *sb, *p = NULL;
678 
679 	spin_lock(&sb_lock);
680 	list_for_each_entry(sb, &super_blocks, s_list) {
681 		if (hlist_unhashed(&sb->s_instances))
682 			continue;
683 		sb->s_count++;
684 		spin_unlock(&sb_lock);
685 
686 		down_read(&sb->s_umount);
687 		if (sb->s_root && (sb->s_flags & SB_BORN))
688 			f(sb, arg);
689 		up_read(&sb->s_umount);
690 
691 		spin_lock(&sb_lock);
692 		if (p)
693 			__put_super(p);
694 		p = sb;
695 	}
696 	if (p)
697 		__put_super(p);
698 	spin_unlock(&sb_lock);
699 }
700 
701 /**
702  *	iterate_supers_type - call function for superblocks of given type
703  *	@type: fs type
704  *	@f: function to call
705  *	@arg: argument to pass to it
706  *
707  *	Scans the superblock list and calls given function, passing it
708  *	locked superblock and given argument.
709  */
710 void iterate_supers_type(struct file_system_type *type,
711 	void (*f)(struct super_block *, void *), void *arg)
712 {
713 	struct super_block *sb, *p = NULL;
714 
715 	spin_lock(&sb_lock);
716 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
717 		sb->s_count++;
718 		spin_unlock(&sb_lock);
719 
720 		down_read(&sb->s_umount);
721 		if (sb->s_root && (sb->s_flags & SB_BORN))
722 			f(sb, arg);
723 		up_read(&sb->s_umount);
724 
725 		spin_lock(&sb_lock);
726 		if (p)
727 			__put_super(p);
728 		p = sb;
729 	}
730 	if (p)
731 		__put_super(p);
732 	spin_unlock(&sb_lock);
733 }
734 
735 EXPORT_SYMBOL(iterate_supers_type);
736 
737 static struct super_block *__get_super(struct block_device *bdev, bool excl)
738 {
739 	struct super_block *sb;
740 
741 	if (!bdev)
742 		return NULL;
743 
744 	spin_lock(&sb_lock);
745 rescan:
746 	list_for_each_entry(sb, &super_blocks, s_list) {
747 		if (hlist_unhashed(&sb->s_instances))
748 			continue;
749 		if (sb->s_bdev == bdev) {
750 			sb->s_count++;
751 			spin_unlock(&sb_lock);
752 			if (!excl)
753 				down_read(&sb->s_umount);
754 			else
755 				down_write(&sb->s_umount);
756 			/* still alive? */
757 			if (sb->s_root && (sb->s_flags & SB_BORN))
758 				return sb;
759 			if (!excl)
760 				up_read(&sb->s_umount);
761 			else
762 				up_write(&sb->s_umount);
763 			/* nope, got unmounted */
764 			spin_lock(&sb_lock);
765 			__put_super(sb);
766 			goto rescan;
767 		}
768 	}
769 	spin_unlock(&sb_lock);
770 	return NULL;
771 }
772 
773 /**
774  *	get_super - get the superblock of a device
775  *	@bdev: device to get the superblock for
776  *
777  *	Scans the superblock list and finds the superblock of the file system
778  *	mounted on the device given. %NULL is returned if no match is found.
779  */
780 struct super_block *get_super(struct block_device *bdev)
781 {
782 	return __get_super(bdev, false);
783 }
784 EXPORT_SYMBOL(get_super);
785 
786 static struct super_block *__get_super_thawed(struct block_device *bdev,
787 					      bool excl)
788 {
789 	while (1) {
790 		struct super_block *s = __get_super(bdev, excl);
791 		if (!s || s->s_writers.frozen == SB_UNFROZEN)
792 			return s;
793 		if (!excl)
794 			up_read(&s->s_umount);
795 		else
796 			up_write(&s->s_umount);
797 		wait_event(s->s_writers.wait_unfrozen,
798 			   s->s_writers.frozen == SB_UNFROZEN);
799 		put_super(s);
800 	}
801 }
802 
803 /**
804  *	get_super_thawed - get thawed superblock of a device
805  *	@bdev: device to get the superblock for
806  *
807  *	Scans the superblock list and finds the superblock of the file system
808  *	mounted on the device. The superblock is returned once it is thawed
809  *	(or immediately if it was not frozen). %NULL is returned if no match
810  *	is found.
811  */
812 struct super_block *get_super_thawed(struct block_device *bdev)
813 {
814 	return __get_super_thawed(bdev, false);
815 }
816 EXPORT_SYMBOL(get_super_thawed);
817 
818 /**
819  *	get_super_exclusive_thawed - get thawed superblock of a device
820  *	@bdev: device to get the superblock for
821  *
822  *	Scans the superblock list and finds the superblock of the file system
823  *	mounted on the device. The superblock is returned once it is thawed
824  *	(or immediately if it was not frozen) and s_umount semaphore is held
825  *	in exclusive mode. %NULL is returned if no match is found.
826  */
827 struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
828 {
829 	return __get_super_thawed(bdev, true);
830 }
831 EXPORT_SYMBOL(get_super_exclusive_thawed);
832 
833 /**
834  * get_active_super - get an active reference to the superblock of a device
835  * @bdev: device to get the superblock for
836  *
837  * Scans the superblock list and finds the superblock of the file system
838  * mounted on the device given.  Returns the superblock with an active
839  * reference or %NULL if none was found.
840  */
841 struct super_block *get_active_super(struct block_device *bdev)
842 {
843 	struct super_block *sb;
844 
845 	if (!bdev)
846 		return NULL;
847 
848 restart:
849 	spin_lock(&sb_lock);
850 	list_for_each_entry(sb, &super_blocks, s_list) {
851 		if (hlist_unhashed(&sb->s_instances))
852 			continue;
853 		if (sb->s_bdev == bdev) {
854 			if (!grab_super(sb))
855 				goto restart;
856 			up_write(&sb->s_umount);
857 			return sb;
858 		}
859 	}
860 	spin_unlock(&sb_lock);
861 	return NULL;
862 }
863 
864 struct super_block *user_get_super(dev_t dev)
865 {
866 	struct super_block *sb;
867 
868 	spin_lock(&sb_lock);
869 rescan:
870 	list_for_each_entry(sb, &super_blocks, s_list) {
871 		if (hlist_unhashed(&sb->s_instances))
872 			continue;
873 		if (sb->s_dev ==  dev) {
874 			sb->s_count++;
875 			spin_unlock(&sb_lock);
876 			down_read(&sb->s_umount);
877 			/* still alive? */
878 			if (sb->s_root && (sb->s_flags & SB_BORN))
879 				return sb;
880 			up_read(&sb->s_umount);
881 			/* nope, got unmounted */
882 			spin_lock(&sb_lock);
883 			__put_super(sb);
884 			goto rescan;
885 		}
886 	}
887 	spin_unlock(&sb_lock);
888 	return NULL;
889 }
890 
891 /**
892  * reconfigure_super - asks filesystem to change superblock parameters
893  * @fc: The superblock and configuration
894  *
895  * Alters the configuration parameters of a live superblock.
896  */
897 int reconfigure_super(struct fs_context *fc)
898 {
899 	struct super_block *sb = fc->root->d_sb;
900 	int retval;
901 	bool remount_ro = false;
902 	bool force = fc->sb_flags & SB_FORCE;
903 
904 	if (fc->sb_flags_mask & ~MS_RMT_MASK)
905 		return -EINVAL;
906 	if (sb->s_writers.frozen != SB_UNFROZEN)
907 		return -EBUSY;
908 
909 	retval = security_sb_remount(sb, fc->security);
910 	if (retval)
911 		return retval;
912 
913 	if (fc->sb_flags_mask & SB_RDONLY) {
914 #ifdef CONFIG_BLOCK
915 		if (!(fc->sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
916 			return -EACCES;
917 #endif
918 
919 		remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
920 	}
921 
922 	if (remount_ro) {
923 		if (!hlist_empty(&sb->s_pins)) {
924 			up_write(&sb->s_umount);
925 			group_pin_kill(&sb->s_pins);
926 			down_write(&sb->s_umount);
927 			if (!sb->s_root)
928 				return 0;
929 			if (sb->s_writers.frozen != SB_UNFROZEN)
930 				return -EBUSY;
931 			remount_ro = !sb_rdonly(sb);
932 		}
933 	}
934 	shrink_dcache_sb(sb);
935 
936 	/* If we are reconfiguring to RDONLY and current sb is read/write,
937 	 * make sure there are no files open for writing.
938 	 */
939 	if (remount_ro) {
940 		if (force) {
941 			sb->s_readonly_remount = 1;
942 			smp_wmb();
943 		} else {
944 			retval = sb_prepare_remount_readonly(sb);
945 			if (retval)
946 				return retval;
947 		}
948 	}
949 
950 	if (fc->ops->reconfigure) {
951 		retval = fc->ops->reconfigure(fc);
952 		if (retval) {
953 			if (!force)
954 				goto cancel_readonly;
955 			/* If forced remount, go ahead despite any errors */
956 			WARN(1, "forced remount of a %s fs returned %i\n",
957 			     sb->s_type->name, retval);
958 		}
959 	}
960 
961 	WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
962 				 (fc->sb_flags & fc->sb_flags_mask)));
963 	/* Needs to be ordered wrt mnt_is_readonly() */
964 	smp_wmb();
965 	sb->s_readonly_remount = 0;
966 
967 	/*
968 	 * Some filesystems modify their metadata via some other path than the
969 	 * bdev buffer cache (eg. use a private mapping, or directories in
970 	 * pagecache, etc). Also file data modifications go via their own
971 	 * mappings. So If we try to mount readonly then copy the filesystem
972 	 * from bdev, we could get stale data, so invalidate it to give a best
973 	 * effort at coherency.
974 	 */
975 	if (remount_ro && sb->s_bdev)
976 		invalidate_bdev(sb->s_bdev);
977 	return 0;
978 
979 cancel_readonly:
980 	sb->s_readonly_remount = 0;
981 	return retval;
982 }
983 
984 static void do_emergency_remount_callback(struct super_block *sb)
985 {
986 	down_write(&sb->s_umount);
987 	if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
988 	    !sb_rdonly(sb)) {
989 		struct fs_context *fc;
990 
991 		fc = fs_context_for_reconfigure(sb->s_root,
992 					SB_RDONLY | SB_FORCE, SB_RDONLY);
993 		if (!IS_ERR(fc)) {
994 			if (parse_monolithic_mount_data(fc, NULL) == 0)
995 				(void)reconfigure_super(fc);
996 			put_fs_context(fc);
997 		}
998 	}
999 	up_write(&sb->s_umount);
1000 }
1001 
1002 static void do_emergency_remount(struct work_struct *work)
1003 {
1004 	__iterate_supers(do_emergency_remount_callback);
1005 	kfree(work);
1006 	printk("Emergency Remount complete\n");
1007 }
1008 
1009 void emergency_remount(void)
1010 {
1011 	struct work_struct *work;
1012 
1013 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1014 	if (work) {
1015 		INIT_WORK(work, do_emergency_remount);
1016 		schedule_work(work);
1017 	}
1018 }
1019 
1020 static void do_thaw_all_callback(struct super_block *sb)
1021 {
1022 	down_write(&sb->s_umount);
1023 	if (sb->s_root && sb->s_flags & SB_BORN) {
1024 		emergency_thaw_bdev(sb);
1025 		thaw_super_locked(sb);
1026 	} else {
1027 		up_write(&sb->s_umount);
1028 	}
1029 }
1030 
1031 static void do_thaw_all(struct work_struct *work)
1032 {
1033 	__iterate_supers(do_thaw_all_callback);
1034 	kfree(work);
1035 	printk(KERN_WARNING "Emergency Thaw complete\n");
1036 }
1037 
1038 /**
1039  * emergency_thaw_all -- forcibly thaw every frozen filesystem
1040  *
1041  * Used for emergency unfreeze of all filesystems via SysRq
1042  */
1043 void emergency_thaw_all(void)
1044 {
1045 	struct work_struct *work;
1046 
1047 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1048 	if (work) {
1049 		INIT_WORK(work, do_thaw_all);
1050 		schedule_work(work);
1051 	}
1052 }
1053 
1054 static DEFINE_IDA(unnamed_dev_ida);
1055 
1056 /**
1057  * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1058  * @p: Pointer to a dev_t.
1059  *
1060  * Filesystems which don't use real block devices can call this function
1061  * to allocate a virtual block device.
1062  *
1063  * Context: Any context.  Frequently called while holding sb_lock.
1064  * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1065  * or -ENOMEM if memory allocation failed.
1066  */
1067 int get_anon_bdev(dev_t *p)
1068 {
1069 	int dev;
1070 
1071 	/*
1072 	 * Many userspace utilities consider an FSID of 0 invalid.
1073 	 * Always return at least 1 from get_anon_bdev.
1074 	 */
1075 	dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1076 			GFP_ATOMIC);
1077 	if (dev == -ENOSPC)
1078 		dev = -EMFILE;
1079 	if (dev < 0)
1080 		return dev;
1081 
1082 	*p = MKDEV(0, dev);
1083 	return 0;
1084 }
1085 EXPORT_SYMBOL(get_anon_bdev);
1086 
1087 void free_anon_bdev(dev_t dev)
1088 {
1089 	ida_free(&unnamed_dev_ida, MINOR(dev));
1090 }
1091 EXPORT_SYMBOL(free_anon_bdev);
1092 
1093 int set_anon_super(struct super_block *s, void *data)
1094 {
1095 	return get_anon_bdev(&s->s_dev);
1096 }
1097 EXPORT_SYMBOL(set_anon_super);
1098 
1099 void kill_anon_super(struct super_block *sb)
1100 {
1101 	dev_t dev = sb->s_dev;
1102 	generic_shutdown_super(sb);
1103 	free_anon_bdev(dev);
1104 }
1105 EXPORT_SYMBOL(kill_anon_super);
1106 
1107 void kill_litter_super(struct super_block *sb)
1108 {
1109 	if (sb->s_root)
1110 		d_genocide(sb->s_root);
1111 	kill_anon_super(sb);
1112 }
1113 EXPORT_SYMBOL(kill_litter_super);
1114 
1115 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1116 {
1117 	return set_anon_super(sb, NULL);
1118 }
1119 EXPORT_SYMBOL(set_anon_super_fc);
1120 
1121 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1122 {
1123 	return sb->s_fs_info == fc->s_fs_info;
1124 }
1125 
1126 static int test_single_super(struct super_block *s, struct fs_context *fc)
1127 {
1128 	return 1;
1129 }
1130 
1131 /**
1132  * vfs_get_super - Get a superblock with a search key set in s_fs_info.
1133  * @fc: The filesystem context holding the parameters
1134  * @keying: How to distinguish superblocks
1135  * @fill_super: Helper to initialise a new superblock
1136  *
1137  * Search for a superblock and create a new one if not found.  The search
1138  * criterion is controlled by @keying.  If the search fails, a new superblock
1139  * is created and @fill_super() is called to initialise it.
1140  *
1141  * @keying can take one of a number of values:
1142  *
1143  * (1) vfs_get_single_super - Only one superblock of this type may exist on the
1144  *     system.  This is typically used for special system filesystems.
1145  *
1146  * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
1147  *     distinct keys (where the key is in s_fs_info).  Searching for the same
1148  *     key again will turn up the superblock for that key.
1149  *
1150  * (3) vfs_get_independent_super - Multiple superblocks may exist and are
1151  *     unkeyed.  Each call will get a new superblock.
1152  *
1153  * A permissions check is made by sget_fc() unless we're getting a superblock
1154  * for a kernel-internal mount or a submount.
1155  */
1156 int vfs_get_super(struct fs_context *fc,
1157 		  enum vfs_get_super_keying keying,
1158 		  int (*fill_super)(struct super_block *sb,
1159 				    struct fs_context *fc))
1160 {
1161 	int (*test)(struct super_block *, struct fs_context *);
1162 	struct super_block *sb;
1163 
1164 	switch (keying) {
1165 	case vfs_get_single_super:
1166 		test = test_single_super;
1167 		break;
1168 	case vfs_get_keyed_super:
1169 		test = test_keyed_super;
1170 		break;
1171 	case vfs_get_independent_super:
1172 		test = NULL;
1173 		break;
1174 	default:
1175 		BUG();
1176 	}
1177 
1178 	sb = sget_fc(fc, test, set_anon_super_fc);
1179 	if (IS_ERR(sb))
1180 		return PTR_ERR(sb);
1181 
1182 	if (!sb->s_root) {
1183 		int err = fill_super(sb, fc);
1184 		if (err) {
1185 			deactivate_locked_super(sb);
1186 			return err;
1187 		}
1188 
1189 		sb->s_flags |= SB_ACTIVE;
1190 	}
1191 
1192 	BUG_ON(fc->root);
1193 	fc->root = dget(sb->s_root);
1194 	return 0;
1195 }
1196 EXPORT_SYMBOL(vfs_get_super);
1197 
1198 int get_tree_nodev(struct fs_context *fc,
1199 		  int (*fill_super)(struct super_block *sb,
1200 				    struct fs_context *fc))
1201 {
1202 	return vfs_get_super(fc, vfs_get_independent_super, fill_super);
1203 }
1204 EXPORT_SYMBOL(get_tree_nodev);
1205 
1206 int get_tree_single(struct fs_context *fc,
1207 		  int (*fill_super)(struct super_block *sb,
1208 				    struct fs_context *fc))
1209 {
1210 	return vfs_get_super(fc, vfs_get_single_super, fill_super);
1211 }
1212 EXPORT_SYMBOL(get_tree_single);
1213 
1214 #ifdef CONFIG_BLOCK
1215 static int set_bdev_super(struct super_block *s, void *data)
1216 {
1217 	s->s_bdev = data;
1218 	s->s_dev = s->s_bdev->bd_dev;
1219 	s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1220 
1221 	return 0;
1222 }
1223 
1224 static int test_bdev_super(struct super_block *s, void *data)
1225 {
1226 	return (void *)s->s_bdev == data;
1227 }
1228 
1229 struct dentry *mount_bdev(struct file_system_type *fs_type,
1230 	int flags, const char *dev_name, void *data,
1231 	int (*fill_super)(struct super_block *, void *, int))
1232 {
1233 	struct block_device *bdev;
1234 	struct super_block *s;
1235 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1236 	int error = 0;
1237 
1238 	if (!(flags & SB_RDONLY))
1239 		mode |= FMODE_WRITE;
1240 
1241 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1242 	if (IS_ERR(bdev))
1243 		return ERR_CAST(bdev);
1244 
1245 	/*
1246 	 * once the super is inserted into the list by sget, s_umount
1247 	 * will protect the lockfs code from trying to start a snapshot
1248 	 * while we are mounting
1249 	 */
1250 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1251 	if (bdev->bd_fsfreeze_count > 0) {
1252 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1253 		error = -EBUSY;
1254 		goto error_bdev;
1255 	}
1256 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1257 		 bdev);
1258 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1259 	if (IS_ERR(s))
1260 		goto error_s;
1261 
1262 	if (s->s_root) {
1263 		if ((flags ^ s->s_flags) & SB_RDONLY) {
1264 			deactivate_locked_super(s);
1265 			error = -EBUSY;
1266 			goto error_bdev;
1267 		}
1268 
1269 		/*
1270 		 * s_umount nests inside bd_mutex during
1271 		 * __invalidate_device().  blkdev_put() acquires
1272 		 * bd_mutex and can't be called under s_umount.  Drop
1273 		 * s_umount temporarily.  This is safe as we're
1274 		 * holding an active reference.
1275 		 */
1276 		up_write(&s->s_umount);
1277 		blkdev_put(bdev, mode);
1278 		down_write(&s->s_umount);
1279 	} else {
1280 		s->s_mode = mode;
1281 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1282 		sb_set_blocksize(s, block_size(bdev));
1283 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1284 		if (error) {
1285 			deactivate_locked_super(s);
1286 			goto error;
1287 		}
1288 
1289 		s->s_flags |= SB_ACTIVE;
1290 		bdev->bd_super = s;
1291 	}
1292 
1293 	return dget(s->s_root);
1294 
1295 error_s:
1296 	error = PTR_ERR(s);
1297 error_bdev:
1298 	blkdev_put(bdev, mode);
1299 error:
1300 	return ERR_PTR(error);
1301 }
1302 EXPORT_SYMBOL(mount_bdev);
1303 
1304 void kill_block_super(struct super_block *sb)
1305 {
1306 	struct block_device *bdev = sb->s_bdev;
1307 	fmode_t mode = sb->s_mode;
1308 
1309 	bdev->bd_super = NULL;
1310 	generic_shutdown_super(sb);
1311 	sync_blockdev(bdev);
1312 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1313 	blkdev_put(bdev, mode | FMODE_EXCL);
1314 }
1315 
1316 EXPORT_SYMBOL(kill_block_super);
1317 #endif
1318 
1319 struct dentry *mount_nodev(struct file_system_type *fs_type,
1320 	int flags, void *data,
1321 	int (*fill_super)(struct super_block *, void *, int))
1322 {
1323 	int error;
1324 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1325 
1326 	if (IS_ERR(s))
1327 		return ERR_CAST(s);
1328 
1329 	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1330 	if (error) {
1331 		deactivate_locked_super(s);
1332 		return ERR_PTR(error);
1333 	}
1334 	s->s_flags |= SB_ACTIVE;
1335 	return dget(s->s_root);
1336 }
1337 EXPORT_SYMBOL(mount_nodev);
1338 
1339 static int reconfigure_single(struct super_block *s,
1340 			      int flags, void *data)
1341 {
1342 	struct fs_context *fc;
1343 	int ret;
1344 
1345 	/* The caller really need to be passing fc down into mount_single(),
1346 	 * then a chunk of this can be removed.  [Bollocks -- AV]
1347 	 * Better yet, reconfiguration shouldn't happen, but rather the second
1348 	 * mount should be rejected if the parameters are not compatible.
1349 	 */
1350 	fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1351 	if (IS_ERR(fc))
1352 		return PTR_ERR(fc);
1353 
1354 	ret = parse_monolithic_mount_data(fc, data);
1355 	if (ret < 0)
1356 		goto out;
1357 
1358 	ret = reconfigure_super(fc);
1359 out:
1360 	put_fs_context(fc);
1361 	return ret;
1362 }
1363 
1364 static int compare_single(struct super_block *s, void *p)
1365 {
1366 	return 1;
1367 }
1368 
1369 struct dentry *mount_single(struct file_system_type *fs_type,
1370 	int flags, void *data,
1371 	int (*fill_super)(struct super_block *, void *, int))
1372 {
1373 	struct super_block *s;
1374 	int error;
1375 
1376 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1377 	if (IS_ERR(s))
1378 		return ERR_CAST(s);
1379 	if (!s->s_root) {
1380 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1381 		if (!error)
1382 			s->s_flags |= SB_ACTIVE;
1383 	} else {
1384 		error = reconfigure_single(s, flags, data);
1385 	}
1386 	if (unlikely(error)) {
1387 		deactivate_locked_super(s);
1388 		return ERR_PTR(error);
1389 	}
1390 	return dget(s->s_root);
1391 }
1392 EXPORT_SYMBOL(mount_single);
1393 
1394 /**
1395  * vfs_get_tree - Get the mountable root
1396  * @fc: The superblock configuration context.
1397  *
1398  * The filesystem is invoked to get or create a superblock which can then later
1399  * be used for mounting.  The filesystem places a pointer to the root to be
1400  * used for mounting in @fc->root.
1401  */
1402 int vfs_get_tree(struct fs_context *fc)
1403 {
1404 	struct super_block *sb;
1405 	int error;
1406 
1407 	if (fc->root)
1408 		return -EBUSY;
1409 
1410 	/* Get the mountable root in fc->root, with a ref on the root and a ref
1411 	 * on the superblock.
1412 	 */
1413 	error = fc->ops->get_tree(fc);
1414 	if (error < 0)
1415 		return error;
1416 
1417 	if (!fc->root) {
1418 		pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1419 		       fc->fs_type->name);
1420 		/* We don't know what the locking state of the superblock is -
1421 		 * if there is a superblock.
1422 		 */
1423 		BUG();
1424 	}
1425 
1426 	sb = fc->root->d_sb;
1427 	WARN_ON(!sb->s_bdi);
1428 
1429 	if (fc->subtype && !sb->s_subtype) {
1430 		sb->s_subtype = fc->subtype;
1431 		fc->subtype = NULL;
1432 	}
1433 
1434 	/*
1435 	 * Write barrier is for super_cache_count(). We place it before setting
1436 	 * SB_BORN as the data dependency between the two functions is the
1437 	 * superblock structure contents that we just set up, not the SB_BORN
1438 	 * flag.
1439 	 */
1440 	smp_wmb();
1441 	sb->s_flags |= SB_BORN;
1442 
1443 	error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1444 	if (unlikely(error)) {
1445 		fc_drop_locked(fc);
1446 		return error;
1447 	}
1448 
1449 	/*
1450 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1451 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1452 	 * this warning for a little while to try and catch filesystems that
1453 	 * violate this rule.
1454 	 */
1455 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1456 		"negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1457 
1458 	return 0;
1459 }
1460 EXPORT_SYMBOL(vfs_get_tree);
1461 
1462 /*
1463  * Setup private BDI for given superblock. It gets automatically cleaned up
1464  * in generic_shutdown_super().
1465  */
1466 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1467 {
1468 	struct backing_dev_info *bdi;
1469 	int err;
1470 	va_list args;
1471 
1472 	bdi = bdi_alloc(GFP_KERNEL);
1473 	if (!bdi)
1474 		return -ENOMEM;
1475 
1476 	bdi->name = sb->s_type->name;
1477 
1478 	va_start(args, fmt);
1479 	err = bdi_register_va(bdi, fmt, args);
1480 	va_end(args);
1481 	if (err) {
1482 		bdi_put(bdi);
1483 		return err;
1484 	}
1485 	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1486 	sb->s_bdi = bdi;
1487 
1488 	return 0;
1489 }
1490 EXPORT_SYMBOL(super_setup_bdi_name);
1491 
1492 /*
1493  * Setup private BDI for given superblock. I gets automatically cleaned up
1494  * in generic_shutdown_super().
1495  */
1496 int super_setup_bdi(struct super_block *sb)
1497 {
1498 	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1499 
1500 	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1501 				    atomic_long_inc_return(&bdi_seq));
1502 }
1503 EXPORT_SYMBOL(super_setup_bdi);
1504 
1505 /*
1506  * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1507  * instead.
1508  */
1509 void __sb_end_write(struct super_block *sb, int level)
1510 {
1511 	percpu_up_read(sb->s_writers.rw_sem + level-1);
1512 }
1513 EXPORT_SYMBOL(__sb_end_write);
1514 
1515 /*
1516  * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1517  * instead.
1518  */
1519 int __sb_start_write(struct super_block *sb, int level, bool wait)
1520 {
1521 	bool force_trylock = false;
1522 	int ret = 1;
1523 
1524 #ifdef CONFIG_LOCKDEP
1525 	/*
1526 	 * We want lockdep to tell us about possible deadlocks with freezing
1527 	 * but it's it bit tricky to properly instrument it. Getting a freeze
1528 	 * protection works as getting a read lock but there are subtle
1529 	 * problems. XFS for example gets freeze protection on internal level
1530 	 * twice in some cases, which is OK only because we already hold a
1531 	 * freeze protection also on higher level. Due to these cases we have
1532 	 * to use wait == F (trylock mode) which must not fail.
1533 	 */
1534 	if (wait) {
1535 		int i;
1536 
1537 		for (i = 0; i < level - 1; i++)
1538 			if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1539 				force_trylock = true;
1540 				break;
1541 			}
1542 	}
1543 #endif
1544 	if (wait && !force_trylock)
1545 		percpu_down_read(sb->s_writers.rw_sem + level-1);
1546 	else
1547 		ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1548 
1549 	WARN_ON(force_trylock && !ret);
1550 	return ret;
1551 }
1552 EXPORT_SYMBOL(__sb_start_write);
1553 
1554 /**
1555  * sb_wait_write - wait until all writers to given file system finish
1556  * @sb: the super for which we wait
1557  * @level: type of writers we wait for (normal vs page fault)
1558  *
1559  * This function waits until there are no writers of given type to given file
1560  * system.
1561  */
1562 static void sb_wait_write(struct super_block *sb, int level)
1563 {
1564 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1565 }
1566 
1567 /*
1568  * We are going to return to userspace and forget about these locks, the
1569  * ownership goes to the caller of thaw_super() which does unlock().
1570  */
1571 static void lockdep_sb_freeze_release(struct super_block *sb)
1572 {
1573 	int level;
1574 
1575 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1576 		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1577 }
1578 
1579 /*
1580  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1581  */
1582 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1583 {
1584 	int level;
1585 
1586 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1587 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1588 }
1589 
1590 static void sb_freeze_unlock(struct super_block *sb)
1591 {
1592 	int level;
1593 
1594 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1595 		percpu_up_write(sb->s_writers.rw_sem + level);
1596 }
1597 
1598 /**
1599  * freeze_super - lock the filesystem and force it into a consistent state
1600  * @sb: the super to lock
1601  *
1602  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1603  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1604  * -EBUSY.
1605  *
1606  * During this function, sb->s_writers.frozen goes through these values:
1607  *
1608  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1609  *
1610  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1611  * writes should be blocked, though page faults are still allowed. We wait for
1612  * all writes to complete and then proceed to the next stage.
1613  *
1614  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1615  * but internal fs threads can still modify the filesystem (although they
1616  * should not dirty new pages or inodes), writeback can run etc. After waiting
1617  * for all running page faults we sync the filesystem which will clean all
1618  * dirty pages and inodes (no new dirty pages or inodes can be created when
1619  * sync is running).
1620  *
1621  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1622  * modification are blocked (e.g. XFS preallocation truncation on inode
1623  * reclaim). This is usually implemented by blocking new transactions for
1624  * filesystems that have them and need this additional guard. After all
1625  * internal writers are finished we call ->freeze_fs() to finish filesystem
1626  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1627  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1628  *
1629  * sb->s_writers.frozen is protected by sb->s_umount.
1630  */
1631 int freeze_super(struct super_block *sb)
1632 {
1633 	int ret;
1634 
1635 	atomic_inc(&sb->s_active);
1636 	down_write(&sb->s_umount);
1637 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1638 		deactivate_locked_super(sb);
1639 		return -EBUSY;
1640 	}
1641 
1642 	if (!(sb->s_flags & SB_BORN)) {
1643 		up_write(&sb->s_umount);
1644 		return 0;	/* sic - it's "nothing to do" */
1645 	}
1646 
1647 	if (sb_rdonly(sb)) {
1648 		/* Nothing to do really... */
1649 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1650 		up_write(&sb->s_umount);
1651 		return 0;
1652 	}
1653 
1654 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1655 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1656 	up_write(&sb->s_umount);
1657 	sb_wait_write(sb, SB_FREEZE_WRITE);
1658 	down_write(&sb->s_umount);
1659 
1660 	/* Now we go and block page faults... */
1661 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1662 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1663 
1664 	/* All writers are done so after syncing there won't be dirty data */
1665 	sync_filesystem(sb);
1666 
1667 	/* Now wait for internal filesystem counter */
1668 	sb->s_writers.frozen = SB_FREEZE_FS;
1669 	sb_wait_write(sb, SB_FREEZE_FS);
1670 
1671 	if (sb->s_op->freeze_fs) {
1672 		ret = sb->s_op->freeze_fs(sb);
1673 		if (ret) {
1674 			printk(KERN_ERR
1675 				"VFS:Filesystem freeze failed\n");
1676 			sb->s_writers.frozen = SB_UNFROZEN;
1677 			sb_freeze_unlock(sb);
1678 			wake_up(&sb->s_writers.wait_unfrozen);
1679 			deactivate_locked_super(sb);
1680 			return ret;
1681 		}
1682 	}
1683 	/*
1684 	 * For debugging purposes so that fs can warn if it sees write activity
1685 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1686 	 */
1687 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1688 	lockdep_sb_freeze_release(sb);
1689 	up_write(&sb->s_umount);
1690 	return 0;
1691 }
1692 EXPORT_SYMBOL(freeze_super);
1693 
1694 /**
1695  * thaw_super -- unlock filesystem
1696  * @sb: the super to thaw
1697  *
1698  * Unlocks the filesystem and marks it writeable again after freeze_super().
1699  */
1700 static int thaw_super_locked(struct super_block *sb)
1701 {
1702 	int error;
1703 
1704 	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1705 		up_write(&sb->s_umount);
1706 		return -EINVAL;
1707 	}
1708 
1709 	if (sb_rdonly(sb)) {
1710 		sb->s_writers.frozen = SB_UNFROZEN;
1711 		goto out;
1712 	}
1713 
1714 	lockdep_sb_freeze_acquire(sb);
1715 
1716 	if (sb->s_op->unfreeze_fs) {
1717 		error = sb->s_op->unfreeze_fs(sb);
1718 		if (error) {
1719 			printk(KERN_ERR
1720 				"VFS:Filesystem thaw failed\n");
1721 			lockdep_sb_freeze_release(sb);
1722 			up_write(&sb->s_umount);
1723 			return error;
1724 		}
1725 	}
1726 
1727 	sb->s_writers.frozen = SB_UNFROZEN;
1728 	sb_freeze_unlock(sb);
1729 out:
1730 	wake_up(&sb->s_writers.wait_unfrozen);
1731 	deactivate_locked_super(sb);
1732 	return 0;
1733 }
1734 
1735 int thaw_super(struct super_block *sb)
1736 {
1737 	down_write(&sb->s_umount);
1738 	return thaw_super_locked(sb);
1739 }
1740 EXPORT_SYMBOL(thaw_super);
1741