xref: /openbmc/linux/fs/super.c (revision 8b4a4080)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbj�rn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/smp_lock.h>
27 #include <linux/acct.h>
28 #include <linux/blkdev.h>
29 #include <linux/quotaops.h>
30 #include <linux/namei.h>
31 #include <linux/buffer_head.h>		/* for fsync_super() */
32 #include <linux/mount.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/vfs.h>
36 #include <linux/writeback.h>		/* for the emergency remount stuff */
37 #include <linux/idr.h>
38 #include <linux/kobject.h>
39 #include <linux/mutex.h>
40 #include <asm/uaccess.h>
41 
42 
43 void get_filesystem(struct file_system_type *fs);
44 void put_filesystem(struct file_system_type *fs);
45 struct file_system_type *get_fs_type(const char *name);
46 
47 LIST_HEAD(super_blocks);
48 DEFINE_SPINLOCK(sb_lock);
49 
50 /**
51  *	alloc_super	-	create new superblock
52  *	@type:	filesystem type superblock should belong to
53  *
54  *	Allocates and initializes a new &struct super_block.  alloc_super()
55  *	returns a pointer new superblock or %NULL if allocation had failed.
56  */
57 static struct super_block *alloc_super(struct file_system_type *type)
58 {
59 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
60 	static struct super_operations default_op;
61 
62 	if (s) {
63 		if (security_sb_alloc(s)) {
64 			kfree(s);
65 			s = NULL;
66 			goto out;
67 		}
68 		INIT_LIST_HEAD(&s->s_dirty);
69 		INIT_LIST_HEAD(&s->s_io);
70 		INIT_LIST_HEAD(&s->s_files);
71 		INIT_LIST_HEAD(&s->s_instances);
72 		INIT_HLIST_HEAD(&s->s_anon);
73 		INIT_LIST_HEAD(&s->s_inodes);
74 		init_rwsem(&s->s_umount);
75 		mutex_init(&s->s_lock);
76 		lockdep_set_class(&s->s_umount, &type->s_umount_key);
77 		/*
78 		 * The locking rules for s_lock are up to the
79 		 * filesystem. For example ext3fs has different
80 		 * lock ordering than usbfs:
81 		 */
82 		lockdep_set_class(&s->s_lock, &type->s_lock_key);
83 		down_write(&s->s_umount);
84 		s->s_count = S_BIAS;
85 		atomic_set(&s->s_active, 1);
86 		mutex_init(&s->s_vfs_rename_mutex);
87 		mutex_init(&s->s_dquot.dqio_mutex);
88 		mutex_init(&s->s_dquot.dqonoff_mutex);
89 		init_rwsem(&s->s_dquot.dqptr_sem);
90 		init_waitqueue_head(&s->s_wait_unfrozen);
91 		s->s_maxbytes = MAX_NON_LFS;
92 		s->dq_op = sb_dquot_ops;
93 		s->s_qcop = sb_quotactl_ops;
94 		s->s_op = &default_op;
95 		s->s_time_gran = 1000000000;
96 	}
97 out:
98 	return s;
99 }
100 
101 /**
102  *	destroy_super	-	frees a superblock
103  *	@s: superblock to free
104  *
105  *	Frees a superblock.
106  */
107 static inline void destroy_super(struct super_block *s)
108 {
109 	security_sb_free(s);
110 	kfree(s->s_subtype);
111 	kfree(s);
112 }
113 
114 /* Superblock refcounting  */
115 
116 /*
117  * Drop a superblock's refcount.  Returns non-zero if the superblock was
118  * destroyed.  The caller must hold sb_lock.
119  */
120 int __put_super(struct super_block *sb)
121 {
122 	int ret = 0;
123 
124 	if (!--sb->s_count) {
125 		destroy_super(sb);
126 		ret = 1;
127 	}
128 	return ret;
129 }
130 
131 /*
132  * Drop a superblock's refcount.
133  * Returns non-zero if the superblock is about to be destroyed and
134  * at least is already removed from super_blocks list, so if we are
135  * making a loop through super blocks then we need to restart.
136  * The caller must hold sb_lock.
137  */
138 int __put_super_and_need_restart(struct super_block *sb)
139 {
140 	/* check for race with generic_shutdown_super() */
141 	if (list_empty(&sb->s_list)) {
142 		/* super block is removed, need to restart... */
143 		__put_super(sb);
144 		return 1;
145 	}
146 	/* can't be the last, since s_list is still in use */
147 	sb->s_count--;
148 	BUG_ON(sb->s_count == 0);
149 	return 0;
150 }
151 
152 /**
153  *	put_super	-	drop a temporary reference to superblock
154  *	@sb: superblock in question
155  *
156  *	Drops a temporary reference, frees superblock if there's no
157  *	references left.
158  */
159 static void put_super(struct super_block *sb)
160 {
161 	spin_lock(&sb_lock);
162 	__put_super(sb);
163 	spin_unlock(&sb_lock);
164 }
165 
166 
167 /**
168  *	deactivate_super	-	drop an active reference to superblock
169  *	@s: superblock to deactivate
170  *
171  *	Drops an active reference to superblock, acquiring a temprory one if
172  *	there is no active references left.  In that case we lock superblock,
173  *	tell fs driver to shut it down and drop the temporary reference we
174  *	had just acquired.
175  */
176 void deactivate_super(struct super_block *s)
177 {
178 	struct file_system_type *fs = s->s_type;
179 	if (atomic_dec_and_lock(&s->s_active, &sb_lock)) {
180 		s->s_count -= S_BIAS-1;
181 		spin_unlock(&sb_lock);
182 		DQUOT_OFF(s);
183 		down_write(&s->s_umount);
184 		fs->kill_sb(s);
185 		put_filesystem(fs);
186 		put_super(s);
187 	}
188 }
189 
190 EXPORT_SYMBOL(deactivate_super);
191 
192 /**
193  *	grab_super - acquire an active reference
194  *	@s: reference we are trying to make active
195  *
196  *	Tries to acquire an active reference.  grab_super() is used when we
197  * 	had just found a superblock in super_blocks or fs_type->fs_supers
198  *	and want to turn it into a full-blown active reference.  grab_super()
199  *	is called with sb_lock held and drops it.  Returns 1 in case of
200  *	success, 0 if we had failed (superblock contents was already dead or
201  *	dying when grab_super() had been called).
202  */
203 static int grab_super(struct super_block *s) __releases(sb_lock)
204 {
205 	s->s_count++;
206 	spin_unlock(&sb_lock);
207 	down_write(&s->s_umount);
208 	if (s->s_root) {
209 		spin_lock(&sb_lock);
210 		if (s->s_count > S_BIAS) {
211 			atomic_inc(&s->s_active);
212 			s->s_count--;
213 			spin_unlock(&sb_lock);
214 			return 1;
215 		}
216 		spin_unlock(&sb_lock);
217 	}
218 	up_write(&s->s_umount);
219 	put_super(s);
220 	yield();
221 	return 0;
222 }
223 
224 /*
225  * Superblock locking.  We really ought to get rid of these two.
226  */
227 void lock_super(struct super_block * sb)
228 {
229 	get_fs_excl();
230 	mutex_lock(&sb->s_lock);
231 }
232 
233 void unlock_super(struct super_block * sb)
234 {
235 	put_fs_excl();
236 	mutex_unlock(&sb->s_lock);
237 }
238 
239 EXPORT_SYMBOL(lock_super);
240 EXPORT_SYMBOL(unlock_super);
241 
242 /*
243  * Write out and wait upon all dirty data associated with this
244  * superblock.  Filesystem data as well as the underlying block
245  * device.  Takes the superblock lock.  Requires a second blkdev
246  * flush by the caller to complete the operation.
247  */
248 void __fsync_super(struct super_block *sb)
249 {
250 	sync_inodes_sb(sb, 0);
251 	DQUOT_SYNC(sb);
252 	lock_super(sb);
253 	if (sb->s_dirt && sb->s_op->write_super)
254 		sb->s_op->write_super(sb);
255 	unlock_super(sb);
256 	if (sb->s_op->sync_fs)
257 		sb->s_op->sync_fs(sb, 1);
258 	sync_blockdev(sb->s_bdev);
259 	sync_inodes_sb(sb, 1);
260 }
261 
262 /*
263  * Write out and wait upon all dirty data associated with this
264  * superblock.  Filesystem data as well as the underlying block
265  * device.  Takes the superblock lock.
266  */
267 int fsync_super(struct super_block *sb)
268 {
269 	__fsync_super(sb);
270 	return sync_blockdev(sb->s_bdev);
271 }
272 
273 /**
274  *	generic_shutdown_super	-	common helper for ->kill_sb()
275  *	@sb: superblock to kill
276  *
277  *	generic_shutdown_super() does all fs-independent work on superblock
278  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
279  *	that need destruction out of superblock, call generic_shutdown_super()
280  *	and release aforementioned objects.  Note: dentries and inodes _are_
281  *	taken care of and do not need specific handling.
282  *
283  *	Upon calling this function, the filesystem may no longer alter or
284  *	rearrange the set of dentries belonging to this super_block, nor may it
285  *	change the attachments of dentries to inodes.
286  */
287 void generic_shutdown_super(struct super_block *sb)
288 {
289 	const struct super_operations *sop = sb->s_op;
290 
291 	if (sb->s_root) {
292 		shrink_dcache_for_umount(sb);
293 		fsync_super(sb);
294 		lock_super(sb);
295 		sb->s_flags &= ~MS_ACTIVE;
296 		/* bad name - it should be evict_inodes() */
297 		invalidate_inodes(sb);
298 		lock_kernel();
299 
300 		if (sop->write_super && sb->s_dirt)
301 			sop->write_super(sb);
302 		if (sop->put_super)
303 			sop->put_super(sb);
304 
305 		/* Forget any remaining inodes */
306 		if (invalidate_inodes(sb)) {
307 			printk("VFS: Busy inodes after unmount of %s. "
308 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
309 			   sb->s_id);
310 		}
311 
312 		unlock_kernel();
313 		unlock_super(sb);
314 	}
315 	spin_lock(&sb_lock);
316 	/* should be initialized for __put_super_and_need_restart() */
317 	list_del_init(&sb->s_list);
318 	list_del(&sb->s_instances);
319 	spin_unlock(&sb_lock);
320 	up_write(&sb->s_umount);
321 }
322 
323 EXPORT_SYMBOL(generic_shutdown_super);
324 
325 /**
326  *	sget	-	find or create a superblock
327  *	@type:	filesystem type superblock should belong to
328  *	@test:	comparison callback
329  *	@set:	setup callback
330  *	@data:	argument to each of them
331  */
332 struct super_block *sget(struct file_system_type *type,
333 			int (*test)(struct super_block *,void *),
334 			int (*set)(struct super_block *,void *),
335 			void *data)
336 {
337 	struct super_block *s = NULL;
338 	struct list_head *p;
339 	int err;
340 
341 retry:
342 	spin_lock(&sb_lock);
343 	if (test) list_for_each(p, &type->fs_supers) {
344 		struct super_block *old;
345 		old = list_entry(p, struct super_block, s_instances);
346 		if (!test(old, data))
347 			continue;
348 		if (!grab_super(old))
349 			goto retry;
350 		if (s)
351 			destroy_super(s);
352 		return old;
353 	}
354 	if (!s) {
355 		spin_unlock(&sb_lock);
356 		s = alloc_super(type);
357 		if (!s)
358 			return ERR_PTR(-ENOMEM);
359 		goto retry;
360 	}
361 
362 	err = set(s, data);
363 	if (err) {
364 		spin_unlock(&sb_lock);
365 		destroy_super(s);
366 		return ERR_PTR(err);
367 	}
368 	s->s_type = type;
369 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
370 	list_add_tail(&s->s_list, &super_blocks);
371 	list_add(&s->s_instances, &type->fs_supers);
372 	spin_unlock(&sb_lock);
373 	get_filesystem(type);
374 	return s;
375 }
376 
377 EXPORT_SYMBOL(sget);
378 
379 void drop_super(struct super_block *sb)
380 {
381 	up_read(&sb->s_umount);
382 	put_super(sb);
383 }
384 
385 EXPORT_SYMBOL(drop_super);
386 
387 static inline void write_super(struct super_block *sb)
388 {
389 	lock_super(sb);
390 	if (sb->s_root && sb->s_dirt)
391 		if (sb->s_op->write_super)
392 			sb->s_op->write_super(sb);
393 	unlock_super(sb);
394 }
395 
396 /*
397  * Note: check the dirty flag before waiting, so we don't
398  * hold up the sync while mounting a device. (The newly
399  * mounted device won't need syncing.)
400  */
401 void sync_supers(void)
402 {
403 	struct super_block *sb;
404 
405 	spin_lock(&sb_lock);
406 restart:
407 	list_for_each_entry(sb, &super_blocks, s_list) {
408 		if (sb->s_dirt) {
409 			sb->s_count++;
410 			spin_unlock(&sb_lock);
411 			down_read(&sb->s_umount);
412 			write_super(sb);
413 			up_read(&sb->s_umount);
414 			spin_lock(&sb_lock);
415 			if (__put_super_and_need_restart(sb))
416 				goto restart;
417 		}
418 	}
419 	spin_unlock(&sb_lock);
420 }
421 
422 /*
423  * Call the ->sync_fs super_op against all filesytems which are r/w and
424  * which implement it.
425  *
426  * This operation is careful to avoid the livelock which could easily happen
427  * if two or more filesystems are being continuously dirtied.  s_need_sync_fs
428  * is used only here.  We set it against all filesystems and then clear it as
429  * we sync them.  So redirtied filesystems are skipped.
430  *
431  * But if process A is currently running sync_filesytems and then process B
432  * calls sync_filesystems as well, process B will set all the s_need_sync_fs
433  * flags again, which will cause process A to resync everything.  Fix that with
434  * a local mutex.
435  *
436  * (Fabian) Avoid sync_fs with clean fs & wait mode 0
437  */
438 void sync_filesystems(int wait)
439 {
440 	struct super_block *sb;
441 	static DEFINE_MUTEX(mutex);
442 
443 	mutex_lock(&mutex);		/* Could be down_interruptible */
444 	spin_lock(&sb_lock);
445 	list_for_each_entry(sb, &super_blocks, s_list) {
446 		if (!sb->s_op->sync_fs)
447 			continue;
448 		if (sb->s_flags & MS_RDONLY)
449 			continue;
450 		sb->s_need_sync_fs = 1;
451 	}
452 
453 restart:
454 	list_for_each_entry(sb, &super_blocks, s_list) {
455 		if (!sb->s_need_sync_fs)
456 			continue;
457 		sb->s_need_sync_fs = 0;
458 		if (sb->s_flags & MS_RDONLY)
459 			continue;	/* hm.  Was remounted r/o meanwhile */
460 		sb->s_count++;
461 		spin_unlock(&sb_lock);
462 		down_read(&sb->s_umount);
463 		if (sb->s_root && (wait || sb->s_dirt))
464 			sb->s_op->sync_fs(sb, wait);
465 		up_read(&sb->s_umount);
466 		/* restart only when sb is no longer on the list */
467 		spin_lock(&sb_lock);
468 		if (__put_super_and_need_restart(sb))
469 			goto restart;
470 	}
471 	spin_unlock(&sb_lock);
472 	mutex_unlock(&mutex);
473 }
474 
475 /**
476  *	get_super - get the superblock of a device
477  *	@bdev: device to get the superblock for
478  *
479  *	Scans the superblock list and finds the superblock of the file system
480  *	mounted on the device given. %NULL is returned if no match is found.
481  */
482 
483 struct super_block * get_super(struct block_device *bdev)
484 {
485 	struct super_block *sb;
486 
487 	if (!bdev)
488 		return NULL;
489 
490 	spin_lock(&sb_lock);
491 rescan:
492 	list_for_each_entry(sb, &super_blocks, s_list) {
493 		if (sb->s_bdev == bdev) {
494 			sb->s_count++;
495 			spin_unlock(&sb_lock);
496 			down_read(&sb->s_umount);
497 			if (sb->s_root)
498 				return sb;
499 			up_read(&sb->s_umount);
500 			/* restart only when sb is no longer on the list */
501 			spin_lock(&sb_lock);
502 			if (__put_super_and_need_restart(sb))
503 				goto rescan;
504 		}
505 	}
506 	spin_unlock(&sb_lock);
507 	return NULL;
508 }
509 
510 EXPORT_SYMBOL(get_super);
511 
512 struct super_block * user_get_super(dev_t dev)
513 {
514 	struct super_block *sb;
515 
516 	spin_lock(&sb_lock);
517 rescan:
518 	list_for_each_entry(sb, &super_blocks, s_list) {
519 		if (sb->s_dev ==  dev) {
520 			sb->s_count++;
521 			spin_unlock(&sb_lock);
522 			down_read(&sb->s_umount);
523 			if (sb->s_root)
524 				return sb;
525 			up_read(&sb->s_umount);
526 			/* restart only when sb is no longer on the list */
527 			spin_lock(&sb_lock);
528 			if (__put_super_and_need_restart(sb))
529 				goto rescan;
530 		}
531 	}
532 	spin_unlock(&sb_lock);
533 	return NULL;
534 }
535 
536 asmlinkage long sys_ustat(unsigned dev, struct ustat __user * ubuf)
537 {
538         struct super_block *s;
539         struct ustat tmp;
540         struct kstatfs sbuf;
541 	int err = -EINVAL;
542 
543         s = user_get_super(new_decode_dev(dev));
544         if (s == NULL)
545                 goto out;
546 	err = vfs_statfs(s->s_root, &sbuf);
547 	drop_super(s);
548 	if (err)
549 		goto out;
550 
551         memset(&tmp,0,sizeof(struct ustat));
552         tmp.f_tfree = sbuf.f_bfree;
553         tmp.f_tinode = sbuf.f_ffree;
554 
555         err = copy_to_user(ubuf,&tmp,sizeof(struct ustat)) ? -EFAULT : 0;
556 out:
557 	return err;
558 }
559 
560 /**
561  *	mark_files_ro
562  *	@sb: superblock in question
563  *
564  *	All files are marked read/only.  We don't care about pending
565  *	delete files so this should be used in 'force' mode only
566  */
567 
568 static void mark_files_ro(struct super_block *sb)
569 {
570 	struct file *f;
571 
572 	file_list_lock();
573 	list_for_each_entry(f, &sb->s_files, f_u.fu_list) {
574 		if (S_ISREG(f->f_path.dentry->d_inode->i_mode) && file_count(f))
575 			f->f_mode &= ~FMODE_WRITE;
576 	}
577 	file_list_unlock();
578 }
579 
580 /**
581  *	do_remount_sb - asks filesystem to change mount options.
582  *	@sb:	superblock in question
583  *	@flags:	numeric part of options
584  *	@data:	the rest of options
585  *      @force: whether or not to force the change
586  *
587  *	Alters the mount options of a mounted file system.
588  */
589 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
590 {
591 	int retval;
592 
593 #ifdef CONFIG_BLOCK
594 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
595 		return -EACCES;
596 #endif
597 	if (flags & MS_RDONLY)
598 		acct_auto_close(sb);
599 	shrink_dcache_sb(sb);
600 	fsync_super(sb);
601 
602 	/* If we are remounting RDONLY and current sb is read/write,
603 	   make sure there are no rw files opened */
604 	if ((flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY)) {
605 		if (force)
606 			mark_files_ro(sb);
607 		else if (!fs_may_remount_ro(sb))
608 			return -EBUSY;
609 	}
610 
611 	if (sb->s_op->remount_fs) {
612 		lock_super(sb);
613 		retval = sb->s_op->remount_fs(sb, &flags, data);
614 		unlock_super(sb);
615 		if (retval)
616 			return retval;
617 	}
618 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
619 	return 0;
620 }
621 
622 static void do_emergency_remount(unsigned long foo)
623 {
624 	struct super_block *sb;
625 
626 	spin_lock(&sb_lock);
627 	list_for_each_entry(sb, &super_blocks, s_list) {
628 		sb->s_count++;
629 		spin_unlock(&sb_lock);
630 		down_read(&sb->s_umount);
631 		if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
632 			/*
633 			 * ->remount_fs needs lock_kernel().
634 			 *
635 			 * What lock protects sb->s_flags??
636 			 */
637 			lock_kernel();
638 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
639 			unlock_kernel();
640 		}
641 		drop_super(sb);
642 		spin_lock(&sb_lock);
643 	}
644 	spin_unlock(&sb_lock);
645 	printk("Emergency Remount complete\n");
646 }
647 
648 void emergency_remount(void)
649 {
650 	pdflush_operation(do_emergency_remount, 0);
651 }
652 
653 /*
654  * Unnamed block devices are dummy devices used by virtual
655  * filesystems which don't use real block-devices.  -- jrs
656  */
657 
658 static struct idr unnamed_dev_idr;
659 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
660 
661 int set_anon_super(struct super_block *s, void *data)
662 {
663 	int dev;
664 	int error;
665 
666  retry:
667 	if (idr_pre_get(&unnamed_dev_idr, GFP_ATOMIC) == 0)
668 		return -ENOMEM;
669 	spin_lock(&unnamed_dev_lock);
670 	error = idr_get_new(&unnamed_dev_idr, NULL, &dev);
671 	spin_unlock(&unnamed_dev_lock);
672 	if (error == -EAGAIN)
673 		/* We raced and lost with another CPU. */
674 		goto retry;
675 	else if (error)
676 		return -EAGAIN;
677 
678 	if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
679 		spin_lock(&unnamed_dev_lock);
680 		idr_remove(&unnamed_dev_idr, dev);
681 		spin_unlock(&unnamed_dev_lock);
682 		return -EMFILE;
683 	}
684 	s->s_dev = MKDEV(0, dev & MINORMASK);
685 	return 0;
686 }
687 
688 EXPORT_SYMBOL(set_anon_super);
689 
690 void kill_anon_super(struct super_block *sb)
691 {
692 	int slot = MINOR(sb->s_dev);
693 
694 	generic_shutdown_super(sb);
695 	spin_lock(&unnamed_dev_lock);
696 	idr_remove(&unnamed_dev_idr, slot);
697 	spin_unlock(&unnamed_dev_lock);
698 }
699 
700 EXPORT_SYMBOL(kill_anon_super);
701 
702 void __init unnamed_dev_init(void)
703 {
704 	idr_init(&unnamed_dev_idr);
705 }
706 
707 void kill_litter_super(struct super_block *sb)
708 {
709 	if (sb->s_root)
710 		d_genocide(sb->s_root);
711 	kill_anon_super(sb);
712 }
713 
714 EXPORT_SYMBOL(kill_litter_super);
715 
716 #ifdef CONFIG_BLOCK
717 static int set_bdev_super(struct super_block *s, void *data)
718 {
719 	s->s_bdev = data;
720 	s->s_dev = s->s_bdev->bd_dev;
721 	return 0;
722 }
723 
724 static int test_bdev_super(struct super_block *s, void *data)
725 {
726 	return (void *)s->s_bdev == data;
727 }
728 
729 int get_sb_bdev(struct file_system_type *fs_type,
730 	int flags, const char *dev_name, void *data,
731 	int (*fill_super)(struct super_block *, void *, int),
732 	struct vfsmount *mnt)
733 {
734 	struct block_device *bdev;
735 	struct super_block *s;
736 	int error = 0;
737 
738 	bdev = open_bdev_excl(dev_name, flags, fs_type);
739 	if (IS_ERR(bdev))
740 		return PTR_ERR(bdev);
741 
742 	/*
743 	 * once the super is inserted into the list by sget, s_umount
744 	 * will protect the lockfs code from trying to start a snapshot
745 	 * while we are mounting
746 	 */
747 	down(&bdev->bd_mount_sem);
748 	s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
749 	up(&bdev->bd_mount_sem);
750 	if (IS_ERR(s))
751 		goto error_s;
752 
753 	if (s->s_root) {
754 		if ((flags ^ s->s_flags) & MS_RDONLY) {
755 			up_write(&s->s_umount);
756 			deactivate_super(s);
757 			error = -EBUSY;
758 			goto error_bdev;
759 		}
760 
761 		close_bdev_excl(bdev);
762 	} else {
763 		char b[BDEVNAME_SIZE];
764 
765 		s->s_flags = flags;
766 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
767 		sb_set_blocksize(s, block_size(bdev));
768 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
769 		if (error) {
770 			up_write(&s->s_umount);
771 			deactivate_super(s);
772 			goto error;
773 		}
774 
775 		s->s_flags |= MS_ACTIVE;
776 	}
777 
778 	return simple_set_mnt(mnt, s);
779 
780 error_s:
781 	error = PTR_ERR(s);
782 error_bdev:
783 	close_bdev_excl(bdev);
784 error:
785 	return error;
786 }
787 
788 EXPORT_SYMBOL(get_sb_bdev);
789 
790 void kill_block_super(struct super_block *sb)
791 {
792 	struct block_device *bdev = sb->s_bdev;
793 
794 	generic_shutdown_super(sb);
795 	sync_blockdev(bdev);
796 	close_bdev_excl(bdev);
797 }
798 
799 EXPORT_SYMBOL(kill_block_super);
800 #endif
801 
802 int get_sb_nodev(struct file_system_type *fs_type,
803 	int flags, void *data,
804 	int (*fill_super)(struct super_block *, void *, int),
805 	struct vfsmount *mnt)
806 {
807 	int error;
808 	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
809 
810 	if (IS_ERR(s))
811 		return PTR_ERR(s);
812 
813 	s->s_flags = flags;
814 
815 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
816 	if (error) {
817 		up_write(&s->s_umount);
818 		deactivate_super(s);
819 		return error;
820 	}
821 	s->s_flags |= MS_ACTIVE;
822 	return simple_set_mnt(mnt, s);
823 }
824 
825 EXPORT_SYMBOL(get_sb_nodev);
826 
827 static int compare_single(struct super_block *s, void *p)
828 {
829 	return 1;
830 }
831 
832 int get_sb_single(struct file_system_type *fs_type,
833 	int flags, void *data,
834 	int (*fill_super)(struct super_block *, void *, int),
835 	struct vfsmount *mnt)
836 {
837 	struct super_block *s;
838 	int error;
839 
840 	s = sget(fs_type, compare_single, set_anon_super, NULL);
841 	if (IS_ERR(s))
842 		return PTR_ERR(s);
843 	if (!s->s_root) {
844 		s->s_flags = flags;
845 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
846 		if (error) {
847 			up_write(&s->s_umount);
848 			deactivate_super(s);
849 			return error;
850 		}
851 		s->s_flags |= MS_ACTIVE;
852 	}
853 	do_remount_sb(s, flags, data, 0);
854 	return simple_set_mnt(mnt, s);
855 }
856 
857 EXPORT_SYMBOL(get_sb_single);
858 
859 struct vfsmount *
860 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
861 {
862 	struct vfsmount *mnt;
863 	char *secdata = NULL;
864 	int error;
865 
866 	if (!type)
867 		return ERR_PTR(-ENODEV);
868 
869 	error = -ENOMEM;
870 	mnt = alloc_vfsmnt(name);
871 	if (!mnt)
872 		goto out;
873 
874 	if (data) {
875 		secdata = alloc_secdata();
876 		if (!secdata)
877 			goto out_mnt;
878 
879 		error = security_sb_copy_data(type, data, secdata);
880 		if (error)
881 			goto out_free_secdata;
882 	}
883 
884 	error = type->get_sb(type, flags, name, data, mnt);
885 	if (error < 0)
886 		goto out_free_secdata;
887 	BUG_ON(!mnt->mnt_sb);
888 
889  	error = security_sb_kern_mount(mnt->mnt_sb, secdata);
890  	if (error)
891  		goto out_sb;
892 
893 	mnt->mnt_mountpoint = mnt->mnt_root;
894 	mnt->mnt_parent = mnt;
895 	up_write(&mnt->mnt_sb->s_umount);
896 	free_secdata(secdata);
897 	return mnt;
898 out_sb:
899 	dput(mnt->mnt_root);
900 	up_write(&mnt->mnt_sb->s_umount);
901 	deactivate_super(mnt->mnt_sb);
902 out_free_secdata:
903 	free_secdata(secdata);
904 out_mnt:
905 	free_vfsmnt(mnt);
906 out:
907 	return ERR_PTR(error);
908 }
909 
910 EXPORT_SYMBOL_GPL(vfs_kern_mount);
911 
912 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
913 {
914 	int err;
915 	const char *subtype = strchr(fstype, '.');
916 	if (subtype) {
917 		subtype++;
918 		err = -EINVAL;
919 		if (!subtype[0])
920 			goto err;
921 	} else
922 		subtype = "";
923 
924 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
925 	err = -ENOMEM;
926 	if (!mnt->mnt_sb->s_subtype)
927 		goto err;
928 	return mnt;
929 
930  err:
931 	mntput(mnt);
932 	return ERR_PTR(err);
933 }
934 
935 struct vfsmount *
936 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
937 {
938 	struct file_system_type *type = get_fs_type(fstype);
939 	struct vfsmount *mnt;
940 	if (!type)
941 		return ERR_PTR(-ENODEV);
942 	mnt = vfs_kern_mount(type, flags, name, data);
943 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
944 	    !mnt->mnt_sb->s_subtype)
945 		mnt = fs_set_subtype(mnt, fstype);
946 	put_filesystem(type);
947 	return mnt;
948 }
949 
950 struct vfsmount *kern_mount(struct file_system_type *type)
951 {
952 	return vfs_kern_mount(type, 0, type->name, NULL);
953 }
954 
955 EXPORT_SYMBOL(kern_mount);
956