xref: /openbmc/linux/fs/super.c (revision 87c2ce3b)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbj�rn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/config.h>
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/smp_lock.h>
28 #include <linux/acct.h>
29 #include <linux/blkdev.h>
30 #include <linux/quotaops.h>
31 #include <linux/namei.h>
32 #include <linux/buffer_head.h>		/* for fsync_super() */
33 #include <linux/mount.h>
34 #include <linux/security.h>
35 #include <linux/syscalls.h>
36 #include <linux/vfs.h>
37 #include <linux/writeback.h>		/* for the emergency remount stuff */
38 #include <linux/idr.h>
39 #include <linux/kobject.h>
40 #include <asm/uaccess.h>
41 
42 
43 void get_filesystem(struct file_system_type *fs);
44 void put_filesystem(struct file_system_type *fs);
45 struct file_system_type *get_fs_type(const char *name);
46 
47 LIST_HEAD(super_blocks);
48 DEFINE_SPINLOCK(sb_lock);
49 
50 /**
51  *	alloc_super	-	create new superblock
52  *
53  *	Allocates and initializes a new &struct super_block.  alloc_super()
54  *	returns a pointer new superblock or %NULL if allocation had failed.
55  */
56 static struct super_block *alloc_super(void)
57 {
58 	struct super_block *s = kmalloc(sizeof(struct super_block),  GFP_USER);
59 	static struct super_operations default_op;
60 
61 	if (s) {
62 		memset(s, 0, sizeof(struct super_block));
63 		if (security_sb_alloc(s)) {
64 			kfree(s);
65 			s = NULL;
66 			goto out;
67 		}
68 		INIT_LIST_HEAD(&s->s_dirty);
69 		INIT_LIST_HEAD(&s->s_io);
70 		INIT_LIST_HEAD(&s->s_files);
71 		INIT_LIST_HEAD(&s->s_instances);
72 		INIT_HLIST_HEAD(&s->s_anon);
73 		INIT_LIST_HEAD(&s->s_inodes);
74 		init_rwsem(&s->s_umount);
75 		mutex_init(&s->s_lock);
76 		down_write(&s->s_umount);
77 		s->s_count = S_BIAS;
78 		atomic_set(&s->s_active, 1);
79 		sema_init(&s->s_vfs_rename_sem,1);
80 		sema_init(&s->s_dquot.dqio_sem, 1);
81 		sema_init(&s->s_dquot.dqonoff_sem, 1);
82 		init_rwsem(&s->s_dquot.dqptr_sem);
83 		init_waitqueue_head(&s->s_wait_unfrozen);
84 		s->s_maxbytes = MAX_NON_LFS;
85 		s->dq_op = sb_dquot_ops;
86 		s->s_qcop = sb_quotactl_ops;
87 		s->s_op = &default_op;
88 		s->s_time_gran = 1000000000;
89 	}
90 out:
91 	return s;
92 }
93 
94 /**
95  *	destroy_super	-	frees a superblock
96  *	@s: superblock to free
97  *
98  *	Frees a superblock.
99  */
100 static inline void destroy_super(struct super_block *s)
101 {
102 	security_sb_free(s);
103 	kfree(s);
104 }
105 
106 /* Superblock refcounting  */
107 
108 /*
109  * Drop a superblock's refcount.  Returns non-zero if the superblock was
110  * destroyed.  The caller must hold sb_lock.
111  */
112 int __put_super(struct super_block *sb)
113 {
114 	int ret = 0;
115 
116 	if (!--sb->s_count) {
117 		destroy_super(sb);
118 		ret = 1;
119 	}
120 	return ret;
121 }
122 
123 /*
124  * Drop a superblock's refcount.
125  * Returns non-zero if the superblock is about to be destroyed and
126  * at least is already removed from super_blocks list, so if we are
127  * making a loop through super blocks then we need to restart.
128  * The caller must hold sb_lock.
129  */
130 int __put_super_and_need_restart(struct super_block *sb)
131 {
132 	/* check for race with generic_shutdown_super() */
133 	if (list_empty(&sb->s_list)) {
134 		/* super block is removed, need to restart... */
135 		__put_super(sb);
136 		return 1;
137 	}
138 	/* can't be the last, since s_list is still in use */
139 	sb->s_count--;
140 	BUG_ON(sb->s_count == 0);
141 	return 0;
142 }
143 
144 /**
145  *	put_super	-	drop a temporary reference to superblock
146  *	@sb: superblock in question
147  *
148  *	Drops a temporary reference, frees superblock if there's no
149  *	references left.
150  */
151 static void put_super(struct super_block *sb)
152 {
153 	spin_lock(&sb_lock);
154 	__put_super(sb);
155 	spin_unlock(&sb_lock);
156 }
157 
158 
159 /**
160  *	deactivate_super	-	drop an active reference to superblock
161  *	@s: superblock to deactivate
162  *
163  *	Drops an active reference to superblock, acquiring a temprory one if
164  *	there is no active references left.  In that case we lock superblock,
165  *	tell fs driver to shut it down and drop the temporary reference we
166  *	had just acquired.
167  */
168 void deactivate_super(struct super_block *s)
169 {
170 	struct file_system_type *fs = s->s_type;
171 	if (atomic_dec_and_lock(&s->s_active, &sb_lock)) {
172 		s->s_count -= S_BIAS-1;
173 		spin_unlock(&sb_lock);
174 		DQUOT_OFF(s);
175 		down_write(&s->s_umount);
176 		fs->kill_sb(s);
177 		put_filesystem(fs);
178 		put_super(s);
179 	}
180 }
181 
182 EXPORT_SYMBOL(deactivate_super);
183 
184 /**
185  *	grab_super - acquire an active reference
186  *	@s: reference we are trying to make active
187  *
188  *	Tries to acquire an active reference.  grab_super() is used when we
189  * 	had just found a superblock in super_blocks or fs_type->fs_supers
190  *	and want to turn it into a full-blown active reference.  grab_super()
191  *	is called with sb_lock held and drops it.  Returns 1 in case of
192  *	success, 0 if we had failed (superblock contents was already dead or
193  *	dying when grab_super() had been called).
194  */
195 static int grab_super(struct super_block *s)
196 {
197 	s->s_count++;
198 	spin_unlock(&sb_lock);
199 	down_write(&s->s_umount);
200 	if (s->s_root) {
201 		spin_lock(&sb_lock);
202 		if (s->s_count > S_BIAS) {
203 			atomic_inc(&s->s_active);
204 			s->s_count--;
205 			spin_unlock(&sb_lock);
206 			return 1;
207 		}
208 		spin_unlock(&sb_lock);
209 	}
210 	up_write(&s->s_umount);
211 	put_super(s);
212 	yield();
213 	return 0;
214 }
215 
216 /**
217  *	generic_shutdown_super	-	common helper for ->kill_sb()
218  *	@sb: superblock to kill
219  *
220  *	generic_shutdown_super() does all fs-independent work on superblock
221  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
222  *	that need destruction out of superblock, call generic_shutdown_super()
223  *	and release aforementioned objects.  Note: dentries and inodes _are_
224  *	taken care of and do not need specific handling.
225  */
226 void generic_shutdown_super(struct super_block *sb)
227 {
228 	struct dentry *root = sb->s_root;
229 	struct super_operations *sop = sb->s_op;
230 
231 	if (root) {
232 		sb->s_root = NULL;
233 		shrink_dcache_parent(root);
234 		shrink_dcache_anon(&sb->s_anon);
235 		dput(root);
236 		fsync_super(sb);
237 		lock_super(sb);
238 		sb->s_flags &= ~MS_ACTIVE;
239 		/* bad name - it should be evict_inodes() */
240 		invalidate_inodes(sb);
241 		lock_kernel();
242 
243 		if (sop->write_super && sb->s_dirt)
244 			sop->write_super(sb);
245 		if (sop->put_super)
246 			sop->put_super(sb);
247 
248 		/* Forget any remaining inodes */
249 		if (invalidate_inodes(sb)) {
250 			printk("VFS: Busy inodes after unmount. "
251 			   "Self-destruct in 5 seconds.  Have a nice day...\n");
252 		}
253 
254 		unlock_kernel();
255 		unlock_super(sb);
256 	}
257 	spin_lock(&sb_lock);
258 	/* should be initialized for __put_super_and_need_restart() */
259 	list_del_init(&sb->s_list);
260 	list_del(&sb->s_instances);
261 	spin_unlock(&sb_lock);
262 	up_write(&sb->s_umount);
263 }
264 
265 EXPORT_SYMBOL(generic_shutdown_super);
266 
267 /**
268  *	sget	-	find or create a superblock
269  *	@type:	filesystem type superblock should belong to
270  *	@test:	comparison callback
271  *	@set:	setup callback
272  *	@data:	argument to each of them
273  */
274 struct super_block *sget(struct file_system_type *type,
275 			int (*test)(struct super_block *,void *),
276 			int (*set)(struct super_block *,void *),
277 			void *data)
278 {
279 	struct super_block *s = NULL;
280 	struct list_head *p;
281 	int err;
282 
283 retry:
284 	spin_lock(&sb_lock);
285 	if (test) list_for_each(p, &type->fs_supers) {
286 		struct super_block *old;
287 		old = list_entry(p, struct super_block, s_instances);
288 		if (!test(old, data))
289 			continue;
290 		if (!grab_super(old))
291 			goto retry;
292 		if (s)
293 			destroy_super(s);
294 		return old;
295 	}
296 	if (!s) {
297 		spin_unlock(&sb_lock);
298 		s = alloc_super();
299 		if (!s)
300 			return ERR_PTR(-ENOMEM);
301 		goto retry;
302 	}
303 
304 	err = set(s, data);
305 	if (err) {
306 		spin_unlock(&sb_lock);
307 		destroy_super(s);
308 		return ERR_PTR(err);
309 	}
310 	s->s_type = type;
311 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
312 	list_add_tail(&s->s_list, &super_blocks);
313 	list_add(&s->s_instances, &type->fs_supers);
314 	spin_unlock(&sb_lock);
315 	get_filesystem(type);
316 	return s;
317 }
318 
319 EXPORT_SYMBOL(sget);
320 
321 void drop_super(struct super_block *sb)
322 {
323 	up_read(&sb->s_umount);
324 	put_super(sb);
325 }
326 
327 EXPORT_SYMBOL(drop_super);
328 
329 static inline void write_super(struct super_block *sb)
330 {
331 	lock_super(sb);
332 	if (sb->s_root && sb->s_dirt)
333 		if (sb->s_op->write_super)
334 			sb->s_op->write_super(sb);
335 	unlock_super(sb);
336 }
337 
338 /*
339  * Note: check the dirty flag before waiting, so we don't
340  * hold up the sync while mounting a device. (The newly
341  * mounted device won't need syncing.)
342  */
343 void sync_supers(void)
344 {
345 	struct super_block *sb;
346 
347 	spin_lock(&sb_lock);
348 restart:
349 	list_for_each_entry(sb, &super_blocks, s_list) {
350 		if (sb->s_dirt) {
351 			sb->s_count++;
352 			spin_unlock(&sb_lock);
353 			down_read(&sb->s_umount);
354 			write_super(sb);
355 			up_read(&sb->s_umount);
356 			spin_lock(&sb_lock);
357 			if (__put_super_and_need_restart(sb))
358 				goto restart;
359 		}
360 	}
361 	spin_unlock(&sb_lock);
362 }
363 
364 /*
365  * Call the ->sync_fs super_op against all filesytems which are r/w and
366  * which implement it.
367  *
368  * This operation is careful to avoid the livelock which could easily happen
369  * if two or more filesystems are being continuously dirtied.  s_need_sync_fs
370  * is used only here.  We set it against all filesystems and then clear it as
371  * we sync them.  So redirtied filesystems are skipped.
372  *
373  * But if process A is currently running sync_filesytems and then process B
374  * calls sync_filesystems as well, process B will set all the s_need_sync_fs
375  * flags again, which will cause process A to resync everything.  Fix that with
376  * a local mutex.
377  *
378  * (Fabian) Avoid sync_fs with clean fs & wait mode 0
379  */
380 void sync_filesystems(int wait)
381 {
382 	struct super_block *sb;
383 	static DECLARE_MUTEX(mutex);
384 
385 	down(&mutex);		/* Could be down_interruptible */
386 	spin_lock(&sb_lock);
387 	list_for_each_entry(sb, &super_blocks, s_list) {
388 		if (!sb->s_op->sync_fs)
389 			continue;
390 		if (sb->s_flags & MS_RDONLY)
391 			continue;
392 		sb->s_need_sync_fs = 1;
393 	}
394 
395 restart:
396 	list_for_each_entry(sb, &super_blocks, s_list) {
397 		if (!sb->s_need_sync_fs)
398 			continue;
399 		sb->s_need_sync_fs = 0;
400 		if (sb->s_flags & MS_RDONLY)
401 			continue;	/* hm.  Was remounted r/o meanwhile */
402 		sb->s_count++;
403 		spin_unlock(&sb_lock);
404 		down_read(&sb->s_umount);
405 		if (sb->s_root && (wait || sb->s_dirt))
406 			sb->s_op->sync_fs(sb, wait);
407 		up_read(&sb->s_umount);
408 		/* restart only when sb is no longer on the list */
409 		spin_lock(&sb_lock);
410 		if (__put_super_and_need_restart(sb))
411 			goto restart;
412 	}
413 	spin_unlock(&sb_lock);
414 	up(&mutex);
415 }
416 
417 /**
418  *	get_super - get the superblock of a device
419  *	@bdev: device to get the superblock for
420  *
421  *	Scans the superblock list and finds the superblock of the file system
422  *	mounted on the device given. %NULL is returned if no match is found.
423  */
424 
425 struct super_block * get_super(struct block_device *bdev)
426 {
427 	struct super_block *sb;
428 
429 	if (!bdev)
430 		return NULL;
431 
432 	spin_lock(&sb_lock);
433 rescan:
434 	list_for_each_entry(sb, &super_blocks, s_list) {
435 		if (sb->s_bdev == bdev) {
436 			sb->s_count++;
437 			spin_unlock(&sb_lock);
438 			down_read(&sb->s_umount);
439 			if (sb->s_root)
440 				return sb;
441 			up_read(&sb->s_umount);
442 			/* restart only when sb is no longer on the list */
443 			spin_lock(&sb_lock);
444 			if (__put_super_and_need_restart(sb))
445 				goto rescan;
446 		}
447 	}
448 	spin_unlock(&sb_lock);
449 	return NULL;
450 }
451 
452 EXPORT_SYMBOL(get_super);
453 
454 struct super_block * user_get_super(dev_t dev)
455 {
456 	struct super_block *sb;
457 
458 	spin_lock(&sb_lock);
459 rescan:
460 	list_for_each_entry(sb, &super_blocks, s_list) {
461 		if (sb->s_dev ==  dev) {
462 			sb->s_count++;
463 			spin_unlock(&sb_lock);
464 			down_read(&sb->s_umount);
465 			if (sb->s_root)
466 				return sb;
467 			up_read(&sb->s_umount);
468 			/* restart only when sb is no longer on the list */
469 			spin_lock(&sb_lock);
470 			if (__put_super_and_need_restart(sb))
471 				goto rescan;
472 		}
473 	}
474 	spin_unlock(&sb_lock);
475 	return NULL;
476 }
477 
478 asmlinkage long sys_ustat(unsigned dev, struct ustat __user * ubuf)
479 {
480         struct super_block *s;
481         struct ustat tmp;
482         struct kstatfs sbuf;
483 	int err = -EINVAL;
484 
485         s = user_get_super(new_decode_dev(dev));
486         if (s == NULL)
487                 goto out;
488 	err = vfs_statfs(s, &sbuf);
489 	drop_super(s);
490 	if (err)
491 		goto out;
492 
493         memset(&tmp,0,sizeof(struct ustat));
494         tmp.f_tfree = sbuf.f_bfree;
495         tmp.f_tinode = sbuf.f_ffree;
496 
497         err = copy_to_user(ubuf,&tmp,sizeof(struct ustat)) ? -EFAULT : 0;
498 out:
499 	return err;
500 }
501 
502 /**
503  *	mark_files_ro
504  *	@sb: superblock in question
505  *
506  *	All files are marked read/only.  We don't care about pending
507  *	delete files so this should be used in 'force' mode only
508  */
509 
510 static void mark_files_ro(struct super_block *sb)
511 {
512 	struct file *f;
513 
514 	file_list_lock();
515 	list_for_each_entry(f, &sb->s_files, f_u.fu_list) {
516 		if (S_ISREG(f->f_dentry->d_inode->i_mode) && file_count(f))
517 			f->f_mode &= ~FMODE_WRITE;
518 	}
519 	file_list_unlock();
520 }
521 
522 /**
523  *	do_remount_sb - asks filesystem to change mount options.
524  *	@sb:	superblock in question
525  *	@flags:	numeric part of options
526  *	@data:	the rest of options
527  *      @force: whether or not to force the change
528  *
529  *	Alters the mount options of a mounted file system.
530  */
531 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
532 {
533 	int retval;
534 
535 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
536 		return -EACCES;
537 	if (flags & MS_RDONLY)
538 		acct_auto_close(sb);
539 	shrink_dcache_sb(sb);
540 	fsync_super(sb);
541 
542 	/* If we are remounting RDONLY and current sb is read/write,
543 	   make sure there are no rw files opened */
544 	if ((flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY)) {
545 		if (force)
546 			mark_files_ro(sb);
547 		else if (!fs_may_remount_ro(sb))
548 			return -EBUSY;
549 	}
550 
551 	if (sb->s_op->remount_fs) {
552 		lock_super(sb);
553 		retval = sb->s_op->remount_fs(sb, &flags, data);
554 		unlock_super(sb);
555 		if (retval)
556 			return retval;
557 	}
558 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
559 	return 0;
560 }
561 
562 static void do_emergency_remount(unsigned long foo)
563 {
564 	struct super_block *sb;
565 
566 	spin_lock(&sb_lock);
567 	list_for_each_entry(sb, &super_blocks, s_list) {
568 		sb->s_count++;
569 		spin_unlock(&sb_lock);
570 		down_read(&sb->s_umount);
571 		if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
572 			/*
573 			 * ->remount_fs needs lock_kernel().
574 			 *
575 			 * What lock protects sb->s_flags??
576 			 */
577 			lock_kernel();
578 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
579 			unlock_kernel();
580 		}
581 		drop_super(sb);
582 		spin_lock(&sb_lock);
583 	}
584 	spin_unlock(&sb_lock);
585 	printk("Emergency Remount complete\n");
586 }
587 
588 void emergency_remount(void)
589 {
590 	pdflush_operation(do_emergency_remount, 0);
591 }
592 
593 /*
594  * Unnamed block devices are dummy devices used by virtual
595  * filesystems which don't use real block-devices.  -- jrs
596  */
597 
598 static struct idr unnamed_dev_idr;
599 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
600 
601 int set_anon_super(struct super_block *s, void *data)
602 {
603 	int dev;
604 	int error;
605 
606  retry:
607 	if (idr_pre_get(&unnamed_dev_idr, GFP_ATOMIC) == 0)
608 		return -ENOMEM;
609 	spin_lock(&unnamed_dev_lock);
610 	error = idr_get_new(&unnamed_dev_idr, NULL, &dev);
611 	spin_unlock(&unnamed_dev_lock);
612 	if (error == -EAGAIN)
613 		/* We raced and lost with another CPU. */
614 		goto retry;
615 	else if (error)
616 		return -EAGAIN;
617 
618 	if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
619 		spin_lock(&unnamed_dev_lock);
620 		idr_remove(&unnamed_dev_idr, dev);
621 		spin_unlock(&unnamed_dev_lock);
622 		return -EMFILE;
623 	}
624 	s->s_dev = MKDEV(0, dev & MINORMASK);
625 	return 0;
626 }
627 
628 EXPORT_SYMBOL(set_anon_super);
629 
630 void kill_anon_super(struct super_block *sb)
631 {
632 	int slot = MINOR(sb->s_dev);
633 
634 	generic_shutdown_super(sb);
635 	spin_lock(&unnamed_dev_lock);
636 	idr_remove(&unnamed_dev_idr, slot);
637 	spin_unlock(&unnamed_dev_lock);
638 }
639 
640 EXPORT_SYMBOL(kill_anon_super);
641 
642 void __init unnamed_dev_init(void)
643 {
644 	idr_init(&unnamed_dev_idr);
645 }
646 
647 void kill_litter_super(struct super_block *sb)
648 {
649 	if (sb->s_root)
650 		d_genocide(sb->s_root);
651 	kill_anon_super(sb);
652 }
653 
654 EXPORT_SYMBOL(kill_litter_super);
655 
656 static int set_bdev_super(struct super_block *s, void *data)
657 {
658 	s->s_bdev = data;
659 	s->s_dev = s->s_bdev->bd_dev;
660 	return 0;
661 }
662 
663 static int test_bdev_super(struct super_block *s, void *data)
664 {
665 	return (void *)s->s_bdev == data;
666 }
667 
668 struct super_block *get_sb_bdev(struct file_system_type *fs_type,
669 	int flags, const char *dev_name, void *data,
670 	int (*fill_super)(struct super_block *, void *, int))
671 {
672 	struct block_device *bdev;
673 	struct super_block *s;
674 	int error = 0;
675 
676 	bdev = open_bdev_excl(dev_name, flags, fs_type);
677 	if (IS_ERR(bdev))
678 		return (struct super_block *)bdev;
679 
680 	/*
681 	 * once the super is inserted into the list by sget, s_umount
682 	 * will protect the lockfs code from trying to start a snapshot
683 	 * while we are mounting
684 	 */
685 	down(&bdev->bd_mount_sem);
686 	s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
687 	up(&bdev->bd_mount_sem);
688 	if (IS_ERR(s))
689 		goto out;
690 
691 	if (s->s_root) {
692 		if ((flags ^ s->s_flags) & MS_RDONLY) {
693 			up_write(&s->s_umount);
694 			deactivate_super(s);
695 			s = ERR_PTR(-EBUSY);
696 		}
697 		goto out;
698 	} else {
699 		char b[BDEVNAME_SIZE];
700 
701 		s->s_flags = flags;
702 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
703 		sb_set_blocksize(s, block_size(bdev));
704 		error = fill_super(s, data, flags & MS_VERBOSE ? 1 : 0);
705 		if (error) {
706 			up_write(&s->s_umount);
707 			deactivate_super(s);
708 			s = ERR_PTR(error);
709 		} else
710 			s->s_flags |= MS_ACTIVE;
711 	}
712 
713 	return s;
714 
715 out:
716 	close_bdev_excl(bdev);
717 	return s;
718 }
719 
720 EXPORT_SYMBOL(get_sb_bdev);
721 
722 void kill_block_super(struct super_block *sb)
723 {
724 	struct block_device *bdev = sb->s_bdev;
725 
726 	generic_shutdown_super(sb);
727 	sync_blockdev(bdev);
728 	close_bdev_excl(bdev);
729 }
730 
731 EXPORT_SYMBOL(kill_block_super);
732 
733 struct super_block *get_sb_nodev(struct file_system_type *fs_type,
734 	int flags, void *data,
735 	int (*fill_super)(struct super_block *, void *, int))
736 {
737 	int error;
738 	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
739 
740 	if (IS_ERR(s))
741 		return s;
742 
743 	s->s_flags = flags;
744 
745 	error = fill_super(s, data, flags & MS_VERBOSE ? 1 : 0);
746 	if (error) {
747 		up_write(&s->s_umount);
748 		deactivate_super(s);
749 		return ERR_PTR(error);
750 	}
751 	s->s_flags |= MS_ACTIVE;
752 	return s;
753 }
754 
755 EXPORT_SYMBOL(get_sb_nodev);
756 
757 static int compare_single(struct super_block *s, void *p)
758 {
759 	return 1;
760 }
761 
762 struct super_block *get_sb_single(struct file_system_type *fs_type,
763 	int flags, void *data,
764 	int (*fill_super)(struct super_block *, void *, int))
765 {
766 	struct super_block *s;
767 	int error;
768 
769 	s = sget(fs_type, compare_single, set_anon_super, NULL);
770 	if (IS_ERR(s))
771 		return s;
772 	if (!s->s_root) {
773 		s->s_flags = flags;
774 		error = fill_super(s, data, flags & MS_VERBOSE ? 1 : 0);
775 		if (error) {
776 			up_write(&s->s_umount);
777 			deactivate_super(s);
778 			return ERR_PTR(error);
779 		}
780 		s->s_flags |= MS_ACTIVE;
781 	}
782 	do_remount_sb(s, flags, data, 0);
783 	return s;
784 }
785 
786 EXPORT_SYMBOL(get_sb_single);
787 
788 struct vfsmount *
789 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
790 {
791 	struct file_system_type *type = get_fs_type(fstype);
792 	struct super_block *sb = ERR_PTR(-ENOMEM);
793 	struct vfsmount *mnt;
794 	int error;
795 	char *secdata = NULL;
796 
797 	if (!type)
798 		return ERR_PTR(-ENODEV);
799 
800 	mnt = alloc_vfsmnt(name);
801 	if (!mnt)
802 		goto out;
803 
804 	if (data) {
805 		secdata = alloc_secdata();
806 		if (!secdata) {
807 			sb = ERR_PTR(-ENOMEM);
808 			goto out_mnt;
809 		}
810 
811 		error = security_sb_copy_data(type, data, secdata);
812 		if (error) {
813 			sb = ERR_PTR(error);
814 			goto out_free_secdata;
815 		}
816 	}
817 
818 	sb = type->get_sb(type, flags, name, data);
819 	if (IS_ERR(sb))
820 		goto out_free_secdata;
821  	error = security_sb_kern_mount(sb, secdata);
822  	if (error)
823  		goto out_sb;
824 	mnt->mnt_sb = sb;
825 	mnt->mnt_root = dget(sb->s_root);
826 	mnt->mnt_mountpoint = sb->s_root;
827 	mnt->mnt_parent = mnt;
828 	up_write(&sb->s_umount);
829 	free_secdata(secdata);
830 	put_filesystem(type);
831 	return mnt;
832 out_sb:
833 	up_write(&sb->s_umount);
834 	deactivate_super(sb);
835 	sb = ERR_PTR(error);
836 out_free_secdata:
837 	free_secdata(secdata);
838 out_mnt:
839 	free_vfsmnt(mnt);
840 out:
841 	put_filesystem(type);
842 	return (struct vfsmount *)sb;
843 }
844 
845 EXPORT_SYMBOL_GPL(do_kern_mount);
846 
847 struct vfsmount *kern_mount(struct file_system_type *type)
848 {
849 	return do_kern_mount(type->name, 0, type->name, NULL);
850 }
851 
852 EXPORT_SYMBOL(kern_mount);
853