1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/super.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * super.c contains code to handle: - mount structures 8 * - super-block tables 9 * - filesystem drivers list 10 * - mount system call 11 * - umount system call 12 * - ustat system call 13 * 14 * GK 2/5/95 - Changed to support mounting the root fs via NFS 15 * 16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 18 * Added options to /proc/mounts: 19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 22 */ 23 24 #include <linux/export.h> 25 #include <linux/slab.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/fscrypt.h> 35 #include <linux/fsnotify.h> 36 #include <linux/lockdep.h> 37 #include <linux/user_namespace.h> 38 #include <linux/fs_context.h> 39 #include <uapi/linux/mount.h> 40 #include "internal.h" 41 42 static int thaw_super_locked(struct super_block *sb); 43 44 static LIST_HEAD(super_blocks); 45 static DEFINE_SPINLOCK(sb_lock); 46 47 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 48 "sb_writers", 49 "sb_pagefaults", 50 "sb_internal", 51 }; 52 53 /* 54 * One thing we have to be careful of with a per-sb shrinker is that we don't 55 * drop the last active reference to the superblock from within the shrinker. 56 * If that happens we could trigger unregistering the shrinker from within the 57 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 58 * take a passive reference to the superblock to avoid this from occurring. 59 */ 60 static unsigned long super_cache_scan(struct shrinker *shrink, 61 struct shrink_control *sc) 62 { 63 struct super_block *sb; 64 long fs_objects = 0; 65 long total_objects; 66 long freed = 0; 67 long dentries; 68 long inodes; 69 70 sb = container_of(shrink, struct super_block, s_shrink); 71 72 /* 73 * Deadlock avoidance. We may hold various FS locks, and we don't want 74 * to recurse into the FS that called us in clear_inode() and friends.. 75 */ 76 if (!(sc->gfp_mask & __GFP_FS)) 77 return SHRINK_STOP; 78 79 if (!trylock_super(sb)) 80 return SHRINK_STOP; 81 82 if (sb->s_op->nr_cached_objects) 83 fs_objects = sb->s_op->nr_cached_objects(sb, sc); 84 85 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc); 86 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc); 87 total_objects = dentries + inodes + fs_objects + 1; 88 if (!total_objects) 89 total_objects = 1; 90 91 /* proportion the scan between the caches */ 92 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 93 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 94 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects); 95 96 /* 97 * prune the dcache first as the icache is pinned by it, then 98 * prune the icache, followed by the filesystem specific caches 99 * 100 * Ensure that we always scan at least one object - memcg kmem 101 * accounting uses this to fully empty the caches. 102 */ 103 sc->nr_to_scan = dentries + 1; 104 freed = prune_dcache_sb(sb, sc); 105 sc->nr_to_scan = inodes + 1; 106 freed += prune_icache_sb(sb, sc); 107 108 if (fs_objects) { 109 sc->nr_to_scan = fs_objects + 1; 110 freed += sb->s_op->free_cached_objects(sb, sc); 111 } 112 113 up_read(&sb->s_umount); 114 return freed; 115 } 116 117 static unsigned long super_cache_count(struct shrinker *shrink, 118 struct shrink_control *sc) 119 { 120 struct super_block *sb; 121 long total_objects = 0; 122 123 sb = container_of(shrink, struct super_block, s_shrink); 124 125 /* 126 * We don't call trylock_super() here as it is a scalability bottleneck, 127 * so we're exposed to partial setup state. The shrinker rwsem does not 128 * protect filesystem operations backing list_lru_shrink_count() or 129 * s_op->nr_cached_objects(). Counts can change between 130 * super_cache_count and super_cache_scan, so we really don't need locks 131 * here. 132 * 133 * However, if we are currently mounting the superblock, the underlying 134 * filesystem might be in a state of partial construction and hence it 135 * is dangerous to access it. trylock_super() uses a SB_BORN check to 136 * avoid this situation, so do the same here. The memory barrier is 137 * matched with the one in mount_fs() as we don't hold locks here. 138 */ 139 if (!(sb->s_flags & SB_BORN)) 140 return 0; 141 smp_rmb(); 142 143 if (sb->s_op && sb->s_op->nr_cached_objects) 144 total_objects = sb->s_op->nr_cached_objects(sb, sc); 145 146 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc); 147 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc); 148 149 if (!total_objects) 150 return SHRINK_EMPTY; 151 152 total_objects = vfs_pressure_ratio(total_objects); 153 return total_objects; 154 } 155 156 static void destroy_super_work(struct work_struct *work) 157 { 158 struct super_block *s = container_of(work, struct super_block, 159 destroy_work); 160 int i; 161 162 for (i = 0; i < SB_FREEZE_LEVELS; i++) 163 percpu_free_rwsem(&s->s_writers.rw_sem[i]); 164 kfree(s); 165 } 166 167 static void destroy_super_rcu(struct rcu_head *head) 168 { 169 struct super_block *s = container_of(head, struct super_block, rcu); 170 INIT_WORK(&s->destroy_work, destroy_super_work); 171 schedule_work(&s->destroy_work); 172 } 173 174 /* Free a superblock that has never been seen by anyone */ 175 static void destroy_unused_super(struct super_block *s) 176 { 177 if (!s) 178 return; 179 up_write(&s->s_umount); 180 list_lru_destroy(&s->s_dentry_lru); 181 list_lru_destroy(&s->s_inode_lru); 182 security_sb_free(s); 183 put_user_ns(s->s_user_ns); 184 kfree(s->s_subtype); 185 free_prealloced_shrinker(&s->s_shrink); 186 /* no delays needed */ 187 destroy_super_work(&s->destroy_work); 188 } 189 190 /** 191 * alloc_super - create new superblock 192 * @type: filesystem type superblock should belong to 193 * @flags: the mount flags 194 * @user_ns: User namespace for the super_block 195 * 196 * Allocates and initializes a new &struct super_block. alloc_super() 197 * returns a pointer new superblock or %NULL if allocation had failed. 198 */ 199 static struct super_block *alloc_super(struct file_system_type *type, int flags, 200 struct user_namespace *user_ns) 201 { 202 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 203 static const struct super_operations default_op; 204 int i; 205 206 if (!s) 207 return NULL; 208 209 INIT_LIST_HEAD(&s->s_mounts); 210 s->s_user_ns = get_user_ns(user_ns); 211 init_rwsem(&s->s_umount); 212 lockdep_set_class(&s->s_umount, &type->s_umount_key); 213 /* 214 * sget() can have s_umount recursion. 215 * 216 * When it cannot find a suitable sb, it allocates a new 217 * one (this one), and tries again to find a suitable old 218 * one. 219 * 220 * In case that succeeds, it will acquire the s_umount 221 * lock of the old one. Since these are clearly distrinct 222 * locks, and this object isn't exposed yet, there's no 223 * risk of deadlocks. 224 * 225 * Annotate this by putting this lock in a different 226 * subclass. 227 */ 228 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 229 230 if (security_sb_alloc(s)) 231 goto fail; 232 233 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 234 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i], 235 sb_writers_name[i], 236 &type->s_writers_key[i])) 237 goto fail; 238 } 239 s->s_bdi = &noop_backing_dev_info; 240 s->s_flags = flags; 241 if (s->s_user_ns != &init_user_ns) 242 s->s_iflags |= SB_I_NODEV; 243 INIT_HLIST_NODE(&s->s_instances); 244 INIT_HLIST_BL_HEAD(&s->s_roots); 245 mutex_init(&s->s_sync_lock); 246 INIT_LIST_HEAD(&s->s_inodes); 247 spin_lock_init(&s->s_inode_list_lock); 248 INIT_LIST_HEAD(&s->s_inodes_wb); 249 spin_lock_init(&s->s_inode_wblist_lock); 250 251 s->s_count = 1; 252 atomic_set(&s->s_active, 1); 253 mutex_init(&s->s_vfs_rename_mutex); 254 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 255 init_rwsem(&s->s_dquot.dqio_sem); 256 s->s_maxbytes = MAX_NON_LFS; 257 s->s_op = &default_op; 258 s->s_time_gran = 1000000000; 259 s->s_time_min = TIME64_MIN; 260 s->s_time_max = TIME64_MAX; 261 262 s->s_shrink.seeks = DEFAULT_SEEKS; 263 s->s_shrink.scan_objects = super_cache_scan; 264 s->s_shrink.count_objects = super_cache_count; 265 s->s_shrink.batch = 1024; 266 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE; 267 if (prealloc_shrinker(&s->s_shrink, "sb-%s", type->name)) 268 goto fail; 269 if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink)) 270 goto fail; 271 if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink)) 272 goto fail; 273 return s; 274 275 fail: 276 destroy_unused_super(s); 277 return NULL; 278 } 279 280 /* Superblock refcounting */ 281 282 /* 283 * Drop a superblock's refcount. The caller must hold sb_lock. 284 */ 285 static void __put_super(struct super_block *s) 286 { 287 if (!--s->s_count) { 288 list_del_init(&s->s_list); 289 WARN_ON(s->s_dentry_lru.node); 290 WARN_ON(s->s_inode_lru.node); 291 WARN_ON(!list_empty(&s->s_mounts)); 292 security_sb_free(s); 293 put_user_ns(s->s_user_ns); 294 kfree(s->s_subtype); 295 call_rcu(&s->rcu, destroy_super_rcu); 296 } 297 } 298 299 /** 300 * put_super - drop a temporary reference to superblock 301 * @sb: superblock in question 302 * 303 * Drops a temporary reference, frees superblock if there's no 304 * references left. 305 */ 306 void put_super(struct super_block *sb) 307 { 308 spin_lock(&sb_lock); 309 __put_super(sb); 310 spin_unlock(&sb_lock); 311 } 312 313 314 /** 315 * deactivate_locked_super - drop an active reference to superblock 316 * @s: superblock to deactivate 317 * 318 * Drops an active reference to superblock, converting it into a temporary 319 * one if there is no other active references left. In that case we 320 * tell fs driver to shut it down and drop the temporary reference we 321 * had just acquired. 322 * 323 * Caller holds exclusive lock on superblock; that lock is released. 324 */ 325 void deactivate_locked_super(struct super_block *s) 326 { 327 struct file_system_type *fs = s->s_type; 328 if (atomic_dec_and_test(&s->s_active)) { 329 unregister_shrinker(&s->s_shrink); 330 fs->kill_sb(s); 331 332 /* 333 * Since list_lru_destroy() may sleep, we cannot call it from 334 * put_super(), where we hold the sb_lock. Therefore we destroy 335 * the lru lists right now. 336 */ 337 list_lru_destroy(&s->s_dentry_lru); 338 list_lru_destroy(&s->s_inode_lru); 339 340 put_filesystem(fs); 341 put_super(s); 342 } else { 343 up_write(&s->s_umount); 344 } 345 } 346 347 EXPORT_SYMBOL(deactivate_locked_super); 348 349 /** 350 * deactivate_super - drop an active reference to superblock 351 * @s: superblock to deactivate 352 * 353 * Variant of deactivate_locked_super(), except that superblock is *not* 354 * locked by caller. If we are going to drop the final active reference, 355 * lock will be acquired prior to that. 356 */ 357 void deactivate_super(struct super_block *s) 358 { 359 if (!atomic_add_unless(&s->s_active, -1, 1)) { 360 down_write(&s->s_umount); 361 deactivate_locked_super(s); 362 } 363 } 364 365 EXPORT_SYMBOL(deactivate_super); 366 367 /** 368 * grab_super - acquire an active reference 369 * @s: reference we are trying to make active 370 * 371 * Tries to acquire an active reference. grab_super() is used when we 372 * had just found a superblock in super_blocks or fs_type->fs_supers 373 * and want to turn it into a full-blown active reference. grab_super() 374 * is called with sb_lock held and drops it. Returns 1 in case of 375 * success, 0 if we had failed (superblock contents was already dead or 376 * dying when grab_super() had been called). Note that this is only 377 * called for superblocks not in rundown mode (== ones still on ->fs_supers 378 * of their type), so increment of ->s_count is OK here. 379 */ 380 static int grab_super(struct super_block *s) __releases(sb_lock) 381 { 382 s->s_count++; 383 spin_unlock(&sb_lock); 384 down_write(&s->s_umount); 385 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) { 386 put_super(s); 387 return 1; 388 } 389 up_write(&s->s_umount); 390 put_super(s); 391 return 0; 392 } 393 394 /* 395 * trylock_super - try to grab ->s_umount shared 396 * @sb: reference we are trying to grab 397 * 398 * Try to prevent fs shutdown. This is used in places where we 399 * cannot take an active reference but we need to ensure that the 400 * filesystem is not shut down while we are working on it. It returns 401 * false if we cannot acquire s_umount or if we lose the race and 402 * filesystem already got into shutdown, and returns true with the s_umount 403 * lock held in read mode in case of success. On successful return, 404 * the caller must drop the s_umount lock when done. 405 * 406 * Note that unlike get_super() et.al. this one does *not* bump ->s_count. 407 * The reason why it's safe is that we are OK with doing trylock instead 408 * of down_read(). There's a couple of places that are OK with that, but 409 * it's very much not a general-purpose interface. 410 */ 411 bool trylock_super(struct super_block *sb) 412 { 413 if (down_read_trylock(&sb->s_umount)) { 414 if (!hlist_unhashed(&sb->s_instances) && 415 sb->s_root && (sb->s_flags & SB_BORN)) 416 return true; 417 up_read(&sb->s_umount); 418 } 419 420 return false; 421 } 422 423 /** 424 * retire_super - prevents superblock from being reused 425 * @sb: superblock to retire 426 * 427 * The function marks superblock to be ignored in superblock test, which 428 * prevents it from being reused for any new mounts. If the superblock has 429 * a private bdi, it also unregisters it, but doesn't reduce the refcount 430 * of the superblock to prevent potential races. The refcount is reduced 431 * by generic_shutdown_super(). The function can not be called 432 * concurrently with generic_shutdown_super(). It is safe to call the 433 * function multiple times, subsequent calls have no effect. 434 * 435 * The marker will affect the re-use only for block-device-based 436 * superblocks. Other superblocks will still get marked if this function 437 * is used, but that will not affect their reusability. 438 */ 439 void retire_super(struct super_block *sb) 440 { 441 WARN_ON(!sb->s_bdev); 442 down_write(&sb->s_umount); 443 if (sb->s_iflags & SB_I_PERSB_BDI) { 444 bdi_unregister(sb->s_bdi); 445 sb->s_iflags &= ~SB_I_PERSB_BDI; 446 } 447 sb->s_iflags |= SB_I_RETIRED; 448 up_write(&sb->s_umount); 449 } 450 EXPORT_SYMBOL(retire_super); 451 452 /** 453 * generic_shutdown_super - common helper for ->kill_sb() 454 * @sb: superblock to kill 455 * 456 * generic_shutdown_super() does all fs-independent work on superblock 457 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 458 * that need destruction out of superblock, call generic_shutdown_super() 459 * and release aforementioned objects. Note: dentries and inodes _are_ 460 * taken care of and do not need specific handling. 461 * 462 * Upon calling this function, the filesystem may no longer alter or 463 * rearrange the set of dentries belonging to this super_block, nor may it 464 * change the attachments of dentries to inodes. 465 */ 466 void generic_shutdown_super(struct super_block *sb) 467 { 468 const struct super_operations *sop = sb->s_op; 469 470 if (sb->s_root) { 471 shrink_dcache_for_umount(sb); 472 sync_filesystem(sb); 473 sb->s_flags &= ~SB_ACTIVE; 474 475 cgroup_writeback_umount(); 476 477 /* Evict all inodes with zero refcount. */ 478 evict_inodes(sb); 479 480 /* 481 * Clean up and evict any inodes that still have references due 482 * to fsnotify or the security policy. 483 */ 484 fsnotify_sb_delete(sb); 485 security_sb_delete(sb); 486 487 /* 488 * Now that all potentially-encrypted inodes have been evicted, 489 * the fscrypt keyring can be destroyed. 490 */ 491 fscrypt_destroy_keyring(sb); 492 493 if (sb->s_dio_done_wq) { 494 destroy_workqueue(sb->s_dio_done_wq); 495 sb->s_dio_done_wq = NULL; 496 } 497 498 if (sop->put_super) 499 sop->put_super(sb); 500 501 if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes), 502 "VFS: Busy inodes after unmount of %s (%s)", 503 sb->s_id, sb->s_type->name)) { 504 /* 505 * Adding a proper bailout path here would be hard, but 506 * we can at least make it more likely that a later 507 * iput_final() or such crashes cleanly. 508 */ 509 struct inode *inode; 510 511 spin_lock(&sb->s_inode_list_lock); 512 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 513 inode->i_op = VFS_PTR_POISON; 514 inode->i_sb = VFS_PTR_POISON; 515 inode->i_mapping = VFS_PTR_POISON; 516 } 517 spin_unlock(&sb->s_inode_list_lock); 518 } 519 } 520 spin_lock(&sb_lock); 521 /* should be initialized for __put_super_and_need_restart() */ 522 hlist_del_init(&sb->s_instances); 523 spin_unlock(&sb_lock); 524 up_write(&sb->s_umount); 525 if (sb->s_bdi != &noop_backing_dev_info) { 526 if (sb->s_iflags & SB_I_PERSB_BDI) 527 bdi_unregister(sb->s_bdi); 528 bdi_put(sb->s_bdi); 529 sb->s_bdi = &noop_backing_dev_info; 530 } 531 } 532 533 EXPORT_SYMBOL(generic_shutdown_super); 534 535 bool mount_capable(struct fs_context *fc) 536 { 537 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) 538 return capable(CAP_SYS_ADMIN); 539 else 540 return ns_capable(fc->user_ns, CAP_SYS_ADMIN); 541 } 542 543 /** 544 * sget_fc - Find or create a superblock 545 * @fc: Filesystem context. 546 * @test: Comparison callback 547 * @set: Setup callback 548 * 549 * Find or create a superblock using the parameters stored in the filesystem 550 * context and the two callback functions. 551 * 552 * If an extant superblock is matched, then that will be returned with an 553 * elevated reference count that the caller must transfer or discard. 554 * 555 * If no match is made, a new superblock will be allocated and basic 556 * initialisation will be performed (s_type, s_fs_info and s_id will be set and 557 * the set() callback will be invoked), the superblock will be published and it 558 * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE 559 * as yet unset. 560 */ 561 struct super_block *sget_fc(struct fs_context *fc, 562 int (*test)(struct super_block *, struct fs_context *), 563 int (*set)(struct super_block *, struct fs_context *)) 564 { 565 struct super_block *s = NULL; 566 struct super_block *old; 567 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns; 568 int err; 569 570 retry: 571 spin_lock(&sb_lock); 572 if (test) { 573 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) { 574 if (test(old, fc)) 575 goto share_extant_sb; 576 } 577 } 578 if (!s) { 579 spin_unlock(&sb_lock); 580 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns); 581 if (!s) 582 return ERR_PTR(-ENOMEM); 583 goto retry; 584 } 585 586 s->s_fs_info = fc->s_fs_info; 587 err = set(s, fc); 588 if (err) { 589 s->s_fs_info = NULL; 590 spin_unlock(&sb_lock); 591 destroy_unused_super(s); 592 return ERR_PTR(err); 593 } 594 fc->s_fs_info = NULL; 595 s->s_type = fc->fs_type; 596 s->s_iflags |= fc->s_iflags; 597 strscpy(s->s_id, s->s_type->name, sizeof(s->s_id)); 598 list_add_tail(&s->s_list, &super_blocks); 599 hlist_add_head(&s->s_instances, &s->s_type->fs_supers); 600 spin_unlock(&sb_lock); 601 get_filesystem(s->s_type); 602 register_shrinker_prepared(&s->s_shrink); 603 return s; 604 605 share_extant_sb: 606 if (user_ns != old->s_user_ns) { 607 spin_unlock(&sb_lock); 608 destroy_unused_super(s); 609 return ERR_PTR(-EBUSY); 610 } 611 if (!grab_super(old)) 612 goto retry; 613 destroy_unused_super(s); 614 return old; 615 } 616 EXPORT_SYMBOL(sget_fc); 617 618 /** 619 * sget - find or create a superblock 620 * @type: filesystem type superblock should belong to 621 * @test: comparison callback 622 * @set: setup callback 623 * @flags: mount flags 624 * @data: argument to each of them 625 */ 626 struct super_block *sget(struct file_system_type *type, 627 int (*test)(struct super_block *,void *), 628 int (*set)(struct super_block *,void *), 629 int flags, 630 void *data) 631 { 632 struct user_namespace *user_ns = current_user_ns(); 633 struct super_block *s = NULL; 634 struct super_block *old; 635 int err; 636 637 /* We don't yet pass the user namespace of the parent 638 * mount through to here so always use &init_user_ns 639 * until that changes. 640 */ 641 if (flags & SB_SUBMOUNT) 642 user_ns = &init_user_ns; 643 644 retry: 645 spin_lock(&sb_lock); 646 if (test) { 647 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 648 if (!test(old, data)) 649 continue; 650 if (user_ns != old->s_user_ns) { 651 spin_unlock(&sb_lock); 652 destroy_unused_super(s); 653 return ERR_PTR(-EBUSY); 654 } 655 if (!grab_super(old)) 656 goto retry; 657 destroy_unused_super(s); 658 return old; 659 } 660 } 661 if (!s) { 662 spin_unlock(&sb_lock); 663 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns); 664 if (!s) 665 return ERR_PTR(-ENOMEM); 666 goto retry; 667 } 668 669 err = set(s, data); 670 if (err) { 671 spin_unlock(&sb_lock); 672 destroy_unused_super(s); 673 return ERR_PTR(err); 674 } 675 s->s_type = type; 676 strscpy(s->s_id, type->name, sizeof(s->s_id)); 677 list_add_tail(&s->s_list, &super_blocks); 678 hlist_add_head(&s->s_instances, &type->fs_supers); 679 spin_unlock(&sb_lock); 680 get_filesystem(type); 681 register_shrinker_prepared(&s->s_shrink); 682 return s; 683 } 684 EXPORT_SYMBOL(sget); 685 686 void drop_super(struct super_block *sb) 687 { 688 up_read(&sb->s_umount); 689 put_super(sb); 690 } 691 692 EXPORT_SYMBOL(drop_super); 693 694 void drop_super_exclusive(struct super_block *sb) 695 { 696 up_write(&sb->s_umount); 697 put_super(sb); 698 } 699 EXPORT_SYMBOL(drop_super_exclusive); 700 701 static void __iterate_supers(void (*f)(struct super_block *)) 702 { 703 struct super_block *sb, *p = NULL; 704 705 spin_lock(&sb_lock); 706 list_for_each_entry(sb, &super_blocks, s_list) { 707 if (hlist_unhashed(&sb->s_instances)) 708 continue; 709 sb->s_count++; 710 spin_unlock(&sb_lock); 711 712 f(sb); 713 714 spin_lock(&sb_lock); 715 if (p) 716 __put_super(p); 717 p = sb; 718 } 719 if (p) 720 __put_super(p); 721 spin_unlock(&sb_lock); 722 } 723 /** 724 * iterate_supers - call function for all active superblocks 725 * @f: function to call 726 * @arg: argument to pass to it 727 * 728 * Scans the superblock list and calls given function, passing it 729 * locked superblock and given argument. 730 */ 731 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 732 { 733 struct super_block *sb, *p = NULL; 734 735 spin_lock(&sb_lock); 736 list_for_each_entry(sb, &super_blocks, s_list) { 737 if (hlist_unhashed(&sb->s_instances)) 738 continue; 739 sb->s_count++; 740 spin_unlock(&sb_lock); 741 742 down_read(&sb->s_umount); 743 if (sb->s_root && (sb->s_flags & SB_BORN)) 744 f(sb, arg); 745 up_read(&sb->s_umount); 746 747 spin_lock(&sb_lock); 748 if (p) 749 __put_super(p); 750 p = sb; 751 } 752 if (p) 753 __put_super(p); 754 spin_unlock(&sb_lock); 755 } 756 757 /** 758 * iterate_supers_type - call function for superblocks of given type 759 * @type: fs type 760 * @f: function to call 761 * @arg: argument to pass to it 762 * 763 * Scans the superblock list and calls given function, passing it 764 * locked superblock and given argument. 765 */ 766 void iterate_supers_type(struct file_system_type *type, 767 void (*f)(struct super_block *, void *), void *arg) 768 { 769 struct super_block *sb, *p = NULL; 770 771 spin_lock(&sb_lock); 772 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 773 sb->s_count++; 774 spin_unlock(&sb_lock); 775 776 down_read(&sb->s_umount); 777 if (sb->s_root && (sb->s_flags & SB_BORN)) 778 f(sb, arg); 779 up_read(&sb->s_umount); 780 781 spin_lock(&sb_lock); 782 if (p) 783 __put_super(p); 784 p = sb; 785 } 786 if (p) 787 __put_super(p); 788 spin_unlock(&sb_lock); 789 } 790 791 EXPORT_SYMBOL(iterate_supers_type); 792 793 /** 794 * get_super - get the superblock of a device 795 * @bdev: device to get the superblock for 796 * 797 * Scans the superblock list and finds the superblock of the file system 798 * mounted on the device given. %NULL is returned if no match is found. 799 */ 800 struct super_block *get_super(struct block_device *bdev) 801 { 802 struct super_block *sb; 803 804 if (!bdev) 805 return NULL; 806 807 spin_lock(&sb_lock); 808 rescan: 809 list_for_each_entry(sb, &super_blocks, s_list) { 810 if (hlist_unhashed(&sb->s_instances)) 811 continue; 812 if (sb->s_bdev == bdev) { 813 sb->s_count++; 814 spin_unlock(&sb_lock); 815 down_read(&sb->s_umount); 816 /* still alive? */ 817 if (sb->s_root && (sb->s_flags & SB_BORN)) 818 return sb; 819 up_read(&sb->s_umount); 820 /* nope, got unmounted */ 821 spin_lock(&sb_lock); 822 __put_super(sb); 823 goto rescan; 824 } 825 } 826 spin_unlock(&sb_lock); 827 return NULL; 828 } 829 830 /** 831 * get_active_super - get an active reference to the superblock of a device 832 * @bdev: device to get the superblock for 833 * 834 * Scans the superblock list and finds the superblock of the file system 835 * mounted on the device given. Returns the superblock with an active 836 * reference or %NULL if none was found. 837 */ 838 struct super_block *get_active_super(struct block_device *bdev) 839 { 840 struct super_block *sb; 841 842 if (!bdev) 843 return NULL; 844 845 restart: 846 spin_lock(&sb_lock); 847 list_for_each_entry(sb, &super_blocks, s_list) { 848 if (hlist_unhashed(&sb->s_instances)) 849 continue; 850 if (sb->s_bdev == bdev) { 851 if (!grab_super(sb)) 852 goto restart; 853 up_write(&sb->s_umount); 854 return sb; 855 } 856 } 857 spin_unlock(&sb_lock); 858 return NULL; 859 } 860 861 struct super_block *user_get_super(dev_t dev, bool excl) 862 { 863 struct super_block *sb; 864 865 spin_lock(&sb_lock); 866 rescan: 867 list_for_each_entry(sb, &super_blocks, s_list) { 868 if (hlist_unhashed(&sb->s_instances)) 869 continue; 870 if (sb->s_dev == dev) { 871 sb->s_count++; 872 spin_unlock(&sb_lock); 873 if (excl) 874 down_write(&sb->s_umount); 875 else 876 down_read(&sb->s_umount); 877 /* still alive? */ 878 if (sb->s_root && (sb->s_flags & SB_BORN)) 879 return sb; 880 if (excl) 881 up_write(&sb->s_umount); 882 else 883 up_read(&sb->s_umount); 884 /* nope, got unmounted */ 885 spin_lock(&sb_lock); 886 __put_super(sb); 887 goto rescan; 888 } 889 } 890 spin_unlock(&sb_lock); 891 return NULL; 892 } 893 894 /** 895 * reconfigure_super - asks filesystem to change superblock parameters 896 * @fc: The superblock and configuration 897 * 898 * Alters the configuration parameters of a live superblock. 899 */ 900 int reconfigure_super(struct fs_context *fc) 901 { 902 struct super_block *sb = fc->root->d_sb; 903 int retval; 904 bool remount_ro = false; 905 bool remount_rw = false; 906 bool force = fc->sb_flags & SB_FORCE; 907 908 if (fc->sb_flags_mask & ~MS_RMT_MASK) 909 return -EINVAL; 910 if (sb->s_writers.frozen != SB_UNFROZEN) 911 return -EBUSY; 912 913 retval = security_sb_remount(sb, fc->security); 914 if (retval) 915 return retval; 916 917 if (fc->sb_flags_mask & SB_RDONLY) { 918 #ifdef CONFIG_BLOCK 919 if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev && 920 bdev_read_only(sb->s_bdev)) 921 return -EACCES; 922 #endif 923 remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb); 924 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb); 925 } 926 927 if (remount_ro) { 928 if (!hlist_empty(&sb->s_pins)) { 929 up_write(&sb->s_umount); 930 group_pin_kill(&sb->s_pins); 931 down_write(&sb->s_umount); 932 if (!sb->s_root) 933 return 0; 934 if (sb->s_writers.frozen != SB_UNFROZEN) 935 return -EBUSY; 936 remount_ro = !sb_rdonly(sb); 937 } 938 } 939 shrink_dcache_sb(sb); 940 941 /* If we are reconfiguring to RDONLY and current sb is read/write, 942 * make sure there are no files open for writing. 943 */ 944 if (remount_ro) { 945 if (force) { 946 sb_start_ro_state_change(sb); 947 } else { 948 retval = sb_prepare_remount_readonly(sb); 949 if (retval) 950 return retval; 951 } 952 } else if (remount_rw) { 953 /* 954 * Protect filesystem's reconfigure code from writes from 955 * userspace until reconfigure finishes. 956 */ 957 sb_start_ro_state_change(sb); 958 } 959 960 if (fc->ops->reconfigure) { 961 retval = fc->ops->reconfigure(fc); 962 if (retval) { 963 if (!force) 964 goto cancel_readonly; 965 /* If forced remount, go ahead despite any errors */ 966 WARN(1, "forced remount of a %s fs returned %i\n", 967 sb->s_type->name, retval); 968 } 969 } 970 971 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) | 972 (fc->sb_flags & fc->sb_flags_mask))); 973 sb_end_ro_state_change(sb); 974 975 /* 976 * Some filesystems modify their metadata via some other path than the 977 * bdev buffer cache (eg. use a private mapping, or directories in 978 * pagecache, etc). Also file data modifications go via their own 979 * mappings. So If we try to mount readonly then copy the filesystem 980 * from bdev, we could get stale data, so invalidate it to give a best 981 * effort at coherency. 982 */ 983 if (remount_ro && sb->s_bdev) 984 invalidate_bdev(sb->s_bdev); 985 return 0; 986 987 cancel_readonly: 988 sb_end_ro_state_change(sb); 989 return retval; 990 } 991 992 static void do_emergency_remount_callback(struct super_block *sb) 993 { 994 down_write(&sb->s_umount); 995 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) && 996 !sb_rdonly(sb)) { 997 struct fs_context *fc; 998 999 fc = fs_context_for_reconfigure(sb->s_root, 1000 SB_RDONLY | SB_FORCE, SB_RDONLY); 1001 if (!IS_ERR(fc)) { 1002 if (parse_monolithic_mount_data(fc, NULL) == 0) 1003 (void)reconfigure_super(fc); 1004 put_fs_context(fc); 1005 } 1006 } 1007 up_write(&sb->s_umount); 1008 } 1009 1010 static void do_emergency_remount(struct work_struct *work) 1011 { 1012 __iterate_supers(do_emergency_remount_callback); 1013 kfree(work); 1014 printk("Emergency Remount complete\n"); 1015 } 1016 1017 void emergency_remount(void) 1018 { 1019 struct work_struct *work; 1020 1021 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1022 if (work) { 1023 INIT_WORK(work, do_emergency_remount); 1024 schedule_work(work); 1025 } 1026 } 1027 1028 static void do_thaw_all_callback(struct super_block *sb) 1029 { 1030 down_write(&sb->s_umount); 1031 if (sb->s_root && sb->s_flags & SB_BORN) { 1032 emergency_thaw_bdev(sb); 1033 thaw_super_locked(sb); 1034 } else { 1035 up_write(&sb->s_umount); 1036 } 1037 } 1038 1039 static void do_thaw_all(struct work_struct *work) 1040 { 1041 __iterate_supers(do_thaw_all_callback); 1042 kfree(work); 1043 printk(KERN_WARNING "Emergency Thaw complete\n"); 1044 } 1045 1046 /** 1047 * emergency_thaw_all -- forcibly thaw every frozen filesystem 1048 * 1049 * Used for emergency unfreeze of all filesystems via SysRq 1050 */ 1051 void emergency_thaw_all(void) 1052 { 1053 struct work_struct *work; 1054 1055 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1056 if (work) { 1057 INIT_WORK(work, do_thaw_all); 1058 schedule_work(work); 1059 } 1060 } 1061 1062 static DEFINE_IDA(unnamed_dev_ida); 1063 1064 /** 1065 * get_anon_bdev - Allocate a block device for filesystems which don't have one. 1066 * @p: Pointer to a dev_t. 1067 * 1068 * Filesystems which don't use real block devices can call this function 1069 * to allocate a virtual block device. 1070 * 1071 * Context: Any context. Frequently called while holding sb_lock. 1072 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left 1073 * or -ENOMEM if memory allocation failed. 1074 */ 1075 int get_anon_bdev(dev_t *p) 1076 { 1077 int dev; 1078 1079 /* 1080 * Many userspace utilities consider an FSID of 0 invalid. 1081 * Always return at least 1 from get_anon_bdev. 1082 */ 1083 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1, 1084 GFP_ATOMIC); 1085 if (dev == -ENOSPC) 1086 dev = -EMFILE; 1087 if (dev < 0) 1088 return dev; 1089 1090 *p = MKDEV(0, dev); 1091 return 0; 1092 } 1093 EXPORT_SYMBOL(get_anon_bdev); 1094 1095 void free_anon_bdev(dev_t dev) 1096 { 1097 ida_free(&unnamed_dev_ida, MINOR(dev)); 1098 } 1099 EXPORT_SYMBOL(free_anon_bdev); 1100 1101 int set_anon_super(struct super_block *s, void *data) 1102 { 1103 return get_anon_bdev(&s->s_dev); 1104 } 1105 EXPORT_SYMBOL(set_anon_super); 1106 1107 void kill_anon_super(struct super_block *sb) 1108 { 1109 dev_t dev = sb->s_dev; 1110 generic_shutdown_super(sb); 1111 free_anon_bdev(dev); 1112 } 1113 EXPORT_SYMBOL(kill_anon_super); 1114 1115 void kill_litter_super(struct super_block *sb) 1116 { 1117 if (sb->s_root) 1118 d_genocide(sb->s_root); 1119 kill_anon_super(sb); 1120 } 1121 EXPORT_SYMBOL(kill_litter_super); 1122 1123 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc) 1124 { 1125 return set_anon_super(sb, NULL); 1126 } 1127 EXPORT_SYMBOL(set_anon_super_fc); 1128 1129 static int test_keyed_super(struct super_block *sb, struct fs_context *fc) 1130 { 1131 return sb->s_fs_info == fc->s_fs_info; 1132 } 1133 1134 static int test_single_super(struct super_block *s, struct fs_context *fc) 1135 { 1136 return 1; 1137 } 1138 1139 static int vfs_get_super(struct fs_context *fc, bool reconf, 1140 int (*test)(struct super_block *, struct fs_context *), 1141 int (*fill_super)(struct super_block *sb, 1142 struct fs_context *fc)) 1143 { 1144 struct super_block *sb; 1145 int err; 1146 1147 sb = sget_fc(fc, test, set_anon_super_fc); 1148 if (IS_ERR(sb)) 1149 return PTR_ERR(sb); 1150 1151 if (!sb->s_root) { 1152 err = fill_super(sb, fc); 1153 if (err) 1154 goto error; 1155 1156 sb->s_flags |= SB_ACTIVE; 1157 fc->root = dget(sb->s_root); 1158 } else { 1159 fc->root = dget(sb->s_root); 1160 if (reconf) { 1161 err = reconfigure_super(fc); 1162 if (err < 0) { 1163 dput(fc->root); 1164 fc->root = NULL; 1165 goto error; 1166 } 1167 } 1168 } 1169 1170 return 0; 1171 1172 error: 1173 deactivate_locked_super(sb); 1174 return err; 1175 } 1176 1177 int get_tree_nodev(struct fs_context *fc, 1178 int (*fill_super)(struct super_block *sb, 1179 struct fs_context *fc)) 1180 { 1181 return vfs_get_super(fc, false, NULL, fill_super); 1182 } 1183 EXPORT_SYMBOL(get_tree_nodev); 1184 1185 int get_tree_single(struct fs_context *fc, 1186 int (*fill_super)(struct super_block *sb, 1187 struct fs_context *fc)) 1188 { 1189 return vfs_get_super(fc, false, test_single_super, fill_super); 1190 } 1191 EXPORT_SYMBOL(get_tree_single); 1192 1193 int get_tree_single_reconf(struct fs_context *fc, 1194 int (*fill_super)(struct super_block *sb, 1195 struct fs_context *fc)) 1196 { 1197 return vfs_get_super(fc, true, test_single_super, fill_super); 1198 } 1199 EXPORT_SYMBOL(get_tree_single_reconf); 1200 1201 int get_tree_keyed(struct fs_context *fc, 1202 int (*fill_super)(struct super_block *sb, 1203 struct fs_context *fc), 1204 void *key) 1205 { 1206 fc->s_fs_info = key; 1207 return vfs_get_super(fc, false, test_keyed_super, fill_super); 1208 } 1209 EXPORT_SYMBOL(get_tree_keyed); 1210 1211 #ifdef CONFIG_BLOCK 1212 static void fs_mark_dead(struct block_device *bdev) 1213 { 1214 struct super_block *sb; 1215 1216 sb = get_super(bdev); 1217 if (!sb) 1218 return; 1219 1220 if (sb->s_op->shutdown) 1221 sb->s_op->shutdown(sb); 1222 drop_super(sb); 1223 } 1224 1225 static const struct blk_holder_ops fs_holder_ops = { 1226 .mark_dead = fs_mark_dead, 1227 }; 1228 1229 static int set_bdev_super(struct super_block *s, void *data) 1230 { 1231 s->s_bdev = data; 1232 s->s_dev = s->s_bdev->bd_dev; 1233 s->s_bdi = bdi_get(s->s_bdev->bd_disk->bdi); 1234 1235 if (bdev_stable_writes(s->s_bdev)) 1236 s->s_iflags |= SB_I_STABLE_WRITES; 1237 return 0; 1238 } 1239 1240 static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc) 1241 { 1242 return set_bdev_super(s, fc->sget_key); 1243 } 1244 1245 static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc) 1246 { 1247 return !(s->s_iflags & SB_I_RETIRED) && s->s_bdev == fc->sget_key; 1248 } 1249 1250 /** 1251 * get_tree_bdev - Get a superblock based on a single block device 1252 * @fc: The filesystem context holding the parameters 1253 * @fill_super: Helper to initialise a new superblock 1254 */ 1255 int get_tree_bdev(struct fs_context *fc, 1256 int (*fill_super)(struct super_block *, 1257 struct fs_context *)) 1258 { 1259 struct block_device *bdev; 1260 struct super_block *s; 1261 int error = 0; 1262 1263 if (!fc->source) 1264 return invalf(fc, "No source specified"); 1265 1266 bdev = blkdev_get_by_path(fc->source, sb_open_mode(fc->sb_flags), 1267 fc->fs_type, &fs_holder_ops); 1268 if (IS_ERR(bdev)) { 1269 errorf(fc, "%s: Can't open blockdev", fc->source); 1270 return PTR_ERR(bdev); 1271 } 1272 1273 /* Once the superblock is inserted into the list by sget_fc(), s_umount 1274 * will protect the lockfs code from trying to start a snapshot while 1275 * we are mounting 1276 */ 1277 mutex_lock(&bdev->bd_fsfreeze_mutex); 1278 if (bdev->bd_fsfreeze_count > 0) { 1279 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1280 warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev); 1281 blkdev_put(bdev, fc->fs_type); 1282 return -EBUSY; 1283 } 1284 1285 fc->sb_flags |= SB_NOSEC; 1286 fc->sget_key = bdev; 1287 s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc); 1288 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1289 if (IS_ERR(s)) { 1290 blkdev_put(bdev, fc->fs_type); 1291 return PTR_ERR(s); 1292 } 1293 1294 if (s->s_root) { 1295 /* Don't summarily change the RO/RW state. */ 1296 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) { 1297 warnf(fc, "%pg: Can't mount, would change RO state", bdev); 1298 deactivate_locked_super(s); 1299 blkdev_put(bdev, fc->fs_type); 1300 return -EBUSY; 1301 } 1302 1303 /* 1304 * s_umount nests inside open_mutex during 1305 * __invalidate_device(). blkdev_put() acquires 1306 * open_mutex and can't be called under s_umount. Drop 1307 * s_umount temporarily. This is safe as we're 1308 * holding an active reference. 1309 */ 1310 up_write(&s->s_umount); 1311 blkdev_put(bdev, fc->fs_type); 1312 down_write(&s->s_umount); 1313 } else { 1314 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1315 shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s", 1316 fc->fs_type->name, s->s_id); 1317 sb_set_blocksize(s, block_size(bdev)); 1318 error = fill_super(s, fc); 1319 if (error) { 1320 deactivate_locked_super(s); 1321 return error; 1322 } 1323 1324 s->s_flags |= SB_ACTIVE; 1325 bdev->bd_super = s; 1326 } 1327 1328 BUG_ON(fc->root); 1329 fc->root = dget(s->s_root); 1330 return 0; 1331 } 1332 EXPORT_SYMBOL(get_tree_bdev); 1333 1334 static int test_bdev_super(struct super_block *s, void *data) 1335 { 1336 return !(s->s_iflags & SB_I_RETIRED) && (void *)s->s_bdev == data; 1337 } 1338 1339 struct dentry *mount_bdev(struct file_system_type *fs_type, 1340 int flags, const char *dev_name, void *data, 1341 int (*fill_super)(struct super_block *, void *, int)) 1342 { 1343 struct block_device *bdev; 1344 struct super_block *s; 1345 int error = 0; 1346 1347 bdev = blkdev_get_by_path(dev_name, sb_open_mode(flags), fs_type, 1348 &fs_holder_ops); 1349 if (IS_ERR(bdev)) 1350 return ERR_CAST(bdev); 1351 1352 /* 1353 * once the super is inserted into the list by sget, s_umount 1354 * will protect the lockfs code from trying to start a snapshot 1355 * while we are mounting 1356 */ 1357 mutex_lock(&bdev->bd_fsfreeze_mutex); 1358 if (bdev->bd_fsfreeze_count > 0) { 1359 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1360 error = -EBUSY; 1361 goto error_bdev; 1362 } 1363 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC, 1364 bdev); 1365 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1366 if (IS_ERR(s)) 1367 goto error_s; 1368 1369 if (s->s_root) { 1370 if ((flags ^ s->s_flags) & SB_RDONLY) { 1371 deactivate_locked_super(s); 1372 error = -EBUSY; 1373 goto error_bdev; 1374 } 1375 1376 /* 1377 * s_umount nests inside open_mutex during 1378 * __invalidate_device(). blkdev_put() acquires 1379 * open_mutex and can't be called under s_umount. Drop 1380 * s_umount temporarily. This is safe as we're 1381 * holding an active reference. 1382 */ 1383 up_write(&s->s_umount); 1384 blkdev_put(bdev, fs_type); 1385 down_write(&s->s_umount); 1386 } else { 1387 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1388 shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s", 1389 fs_type->name, s->s_id); 1390 sb_set_blocksize(s, block_size(bdev)); 1391 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1392 if (error) { 1393 deactivate_locked_super(s); 1394 goto error; 1395 } 1396 1397 s->s_flags |= SB_ACTIVE; 1398 bdev->bd_super = s; 1399 } 1400 1401 return dget(s->s_root); 1402 1403 error_s: 1404 error = PTR_ERR(s); 1405 error_bdev: 1406 blkdev_put(bdev, fs_type); 1407 error: 1408 return ERR_PTR(error); 1409 } 1410 EXPORT_SYMBOL(mount_bdev); 1411 1412 void kill_block_super(struct super_block *sb) 1413 { 1414 struct block_device *bdev = sb->s_bdev; 1415 1416 bdev->bd_super = NULL; 1417 generic_shutdown_super(sb); 1418 sync_blockdev(bdev); 1419 blkdev_put(bdev, sb->s_type); 1420 } 1421 1422 EXPORT_SYMBOL(kill_block_super); 1423 #endif 1424 1425 struct dentry *mount_nodev(struct file_system_type *fs_type, 1426 int flags, void *data, 1427 int (*fill_super)(struct super_block *, void *, int)) 1428 { 1429 int error; 1430 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1431 1432 if (IS_ERR(s)) 1433 return ERR_CAST(s); 1434 1435 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1436 if (error) { 1437 deactivate_locked_super(s); 1438 return ERR_PTR(error); 1439 } 1440 s->s_flags |= SB_ACTIVE; 1441 return dget(s->s_root); 1442 } 1443 EXPORT_SYMBOL(mount_nodev); 1444 1445 int reconfigure_single(struct super_block *s, 1446 int flags, void *data) 1447 { 1448 struct fs_context *fc; 1449 int ret; 1450 1451 /* The caller really need to be passing fc down into mount_single(), 1452 * then a chunk of this can be removed. [Bollocks -- AV] 1453 * Better yet, reconfiguration shouldn't happen, but rather the second 1454 * mount should be rejected if the parameters are not compatible. 1455 */ 1456 fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK); 1457 if (IS_ERR(fc)) 1458 return PTR_ERR(fc); 1459 1460 ret = parse_monolithic_mount_data(fc, data); 1461 if (ret < 0) 1462 goto out; 1463 1464 ret = reconfigure_super(fc); 1465 out: 1466 put_fs_context(fc); 1467 return ret; 1468 } 1469 1470 static int compare_single(struct super_block *s, void *p) 1471 { 1472 return 1; 1473 } 1474 1475 struct dentry *mount_single(struct file_system_type *fs_type, 1476 int flags, void *data, 1477 int (*fill_super)(struct super_block *, void *, int)) 1478 { 1479 struct super_block *s; 1480 int error; 1481 1482 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1483 if (IS_ERR(s)) 1484 return ERR_CAST(s); 1485 if (!s->s_root) { 1486 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1487 if (!error) 1488 s->s_flags |= SB_ACTIVE; 1489 } else { 1490 error = reconfigure_single(s, flags, data); 1491 } 1492 if (unlikely(error)) { 1493 deactivate_locked_super(s); 1494 return ERR_PTR(error); 1495 } 1496 return dget(s->s_root); 1497 } 1498 EXPORT_SYMBOL(mount_single); 1499 1500 /** 1501 * vfs_get_tree - Get the mountable root 1502 * @fc: The superblock configuration context. 1503 * 1504 * The filesystem is invoked to get or create a superblock which can then later 1505 * be used for mounting. The filesystem places a pointer to the root to be 1506 * used for mounting in @fc->root. 1507 */ 1508 int vfs_get_tree(struct fs_context *fc) 1509 { 1510 struct super_block *sb; 1511 int error; 1512 1513 if (fc->root) 1514 return -EBUSY; 1515 1516 /* Get the mountable root in fc->root, with a ref on the root and a ref 1517 * on the superblock. 1518 */ 1519 error = fc->ops->get_tree(fc); 1520 if (error < 0) 1521 return error; 1522 1523 if (!fc->root) { 1524 pr_err("Filesystem %s get_tree() didn't set fc->root\n", 1525 fc->fs_type->name); 1526 /* We don't know what the locking state of the superblock is - 1527 * if there is a superblock. 1528 */ 1529 BUG(); 1530 } 1531 1532 sb = fc->root->d_sb; 1533 WARN_ON(!sb->s_bdi); 1534 1535 /* 1536 * Write barrier is for super_cache_count(). We place it before setting 1537 * SB_BORN as the data dependency between the two functions is the 1538 * superblock structure contents that we just set up, not the SB_BORN 1539 * flag. 1540 */ 1541 smp_wmb(); 1542 sb->s_flags |= SB_BORN; 1543 1544 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL); 1545 if (unlikely(error)) { 1546 fc_drop_locked(fc); 1547 return error; 1548 } 1549 1550 /* 1551 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1552 * but s_maxbytes was an unsigned long long for many releases. Throw 1553 * this warning for a little while to try and catch filesystems that 1554 * violate this rule. 1555 */ 1556 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1557 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes); 1558 1559 return 0; 1560 } 1561 EXPORT_SYMBOL(vfs_get_tree); 1562 1563 /* 1564 * Setup private BDI for given superblock. It gets automatically cleaned up 1565 * in generic_shutdown_super(). 1566 */ 1567 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...) 1568 { 1569 struct backing_dev_info *bdi; 1570 int err; 1571 va_list args; 1572 1573 bdi = bdi_alloc(NUMA_NO_NODE); 1574 if (!bdi) 1575 return -ENOMEM; 1576 1577 va_start(args, fmt); 1578 err = bdi_register_va(bdi, fmt, args); 1579 va_end(args); 1580 if (err) { 1581 bdi_put(bdi); 1582 return err; 1583 } 1584 WARN_ON(sb->s_bdi != &noop_backing_dev_info); 1585 sb->s_bdi = bdi; 1586 sb->s_iflags |= SB_I_PERSB_BDI; 1587 1588 return 0; 1589 } 1590 EXPORT_SYMBOL(super_setup_bdi_name); 1591 1592 /* 1593 * Setup private BDI for given superblock. I gets automatically cleaned up 1594 * in generic_shutdown_super(). 1595 */ 1596 int super_setup_bdi(struct super_block *sb) 1597 { 1598 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0); 1599 1600 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name, 1601 atomic_long_inc_return(&bdi_seq)); 1602 } 1603 EXPORT_SYMBOL(super_setup_bdi); 1604 1605 /** 1606 * sb_wait_write - wait until all writers to given file system finish 1607 * @sb: the super for which we wait 1608 * @level: type of writers we wait for (normal vs page fault) 1609 * 1610 * This function waits until there are no writers of given type to given file 1611 * system. 1612 */ 1613 static void sb_wait_write(struct super_block *sb, int level) 1614 { 1615 percpu_down_write(sb->s_writers.rw_sem + level-1); 1616 } 1617 1618 /* 1619 * We are going to return to userspace and forget about these locks, the 1620 * ownership goes to the caller of thaw_super() which does unlock(). 1621 */ 1622 static void lockdep_sb_freeze_release(struct super_block *sb) 1623 { 1624 int level; 1625 1626 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1627 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1628 } 1629 1630 /* 1631 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb). 1632 */ 1633 static void lockdep_sb_freeze_acquire(struct super_block *sb) 1634 { 1635 int level; 1636 1637 for (level = 0; level < SB_FREEZE_LEVELS; ++level) 1638 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1639 } 1640 1641 static void sb_freeze_unlock(struct super_block *sb, int level) 1642 { 1643 for (level--; level >= 0; level--) 1644 percpu_up_write(sb->s_writers.rw_sem + level); 1645 } 1646 1647 /** 1648 * freeze_super - lock the filesystem and force it into a consistent state 1649 * @sb: the super to lock 1650 * 1651 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1652 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1653 * -EBUSY. 1654 * 1655 * During this function, sb->s_writers.frozen goes through these values: 1656 * 1657 * SB_UNFROZEN: File system is normal, all writes progress as usual. 1658 * 1659 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 1660 * writes should be blocked, though page faults are still allowed. We wait for 1661 * all writes to complete and then proceed to the next stage. 1662 * 1663 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 1664 * but internal fs threads can still modify the filesystem (although they 1665 * should not dirty new pages or inodes), writeback can run etc. After waiting 1666 * for all running page faults we sync the filesystem which will clean all 1667 * dirty pages and inodes (no new dirty pages or inodes can be created when 1668 * sync is running). 1669 * 1670 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 1671 * modification are blocked (e.g. XFS preallocation truncation on inode 1672 * reclaim). This is usually implemented by blocking new transactions for 1673 * filesystems that have them and need this additional guard. After all 1674 * internal writers are finished we call ->freeze_fs() to finish filesystem 1675 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 1676 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 1677 * 1678 * sb->s_writers.frozen is protected by sb->s_umount. 1679 */ 1680 int freeze_super(struct super_block *sb) 1681 { 1682 int ret; 1683 1684 atomic_inc(&sb->s_active); 1685 down_write(&sb->s_umount); 1686 if (sb->s_writers.frozen != SB_UNFROZEN) { 1687 deactivate_locked_super(sb); 1688 return -EBUSY; 1689 } 1690 1691 if (!(sb->s_flags & SB_BORN)) { 1692 up_write(&sb->s_umount); 1693 return 0; /* sic - it's "nothing to do" */ 1694 } 1695 1696 if (sb_rdonly(sb)) { 1697 /* Nothing to do really... */ 1698 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1699 up_write(&sb->s_umount); 1700 return 0; 1701 } 1702 1703 sb->s_writers.frozen = SB_FREEZE_WRITE; 1704 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 1705 up_write(&sb->s_umount); 1706 sb_wait_write(sb, SB_FREEZE_WRITE); 1707 down_write(&sb->s_umount); 1708 1709 /* Now we go and block page faults... */ 1710 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 1711 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 1712 1713 /* All writers are done so after syncing there won't be dirty data */ 1714 ret = sync_filesystem(sb); 1715 if (ret) { 1716 sb->s_writers.frozen = SB_UNFROZEN; 1717 sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT); 1718 deactivate_locked_super(sb); 1719 return ret; 1720 } 1721 1722 /* Now wait for internal filesystem counter */ 1723 sb->s_writers.frozen = SB_FREEZE_FS; 1724 sb_wait_write(sb, SB_FREEZE_FS); 1725 1726 if (sb->s_op->freeze_fs) { 1727 ret = sb->s_op->freeze_fs(sb); 1728 if (ret) { 1729 printk(KERN_ERR 1730 "VFS:Filesystem freeze failed\n"); 1731 sb->s_writers.frozen = SB_UNFROZEN; 1732 sb_freeze_unlock(sb, SB_FREEZE_FS); 1733 deactivate_locked_super(sb); 1734 return ret; 1735 } 1736 } 1737 /* 1738 * For debugging purposes so that fs can warn if it sees write activity 1739 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super(). 1740 */ 1741 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1742 lockdep_sb_freeze_release(sb); 1743 up_write(&sb->s_umount); 1744 return 0; 1745 } 1746 EXPORT_SYMBOL(freeze_super); 1747 1748 static int thaw_super_locked(struct super_block *sb) 1749 { 1750 int error; 1751 1752 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) { 1753 up_write(&sb->s_umount); 1754 return -EINVAL; 1755 } 1756 1757 if (sb_rdonly(sb)) { 1758 sb->s_writers.frozen = SB_UNFROZEN; 1759 goto out; 1760 } 1761 1762 lockdep_sb_freeze_acquire(sb); 1763 1764 if (sb->s_op->unfreeze_fs) { 1765 error = sb->s_op->unfreeze_fs(sb); 1766 if (error) { 1767 printk(KERN_ERR 1768 "VFS:Filesystem thaw failed\n"); 1769 lockdep_sb_freeze_release(sb); 1770 up_write(&sb->s_umount); 1771 return error; 1772 } 1773 } 1774 1775 sb->s_writers.frozen = SB_UNFROZEN; 1776 sb_freeze_unlock(sb, SB_FREEZE_FS); 1777 out: 1778 deactivate_locked_super(sb); 1779 return 0; 1780 } 1781 1782 /** 1783 * thaw_super -- unlock filesystem 1784 * @sb: the super to thaw 1785 * 1786 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1787 */ 1788 int thaw_super(struct super_block *sb) 1789 { 1790 down_write(&sb->s_umount); 1791 return thaw_super_locked(sb); 1792 } 1793 EXPORT_SYMBOL(thaw_super); 1794 1795 /* 1796 * Create workqueue for deferred direct IO completions. We allocate the 1797 * workqueue when it's first needed. This avoids creating workqueue for 1798 * filesystems that don't need it and also allows us to create the workqueue 1799 * late enough so the we can include s_id in the name of the workqueue. 1800 */ 1801 int sb_init_dio_done_wq(struct super_block *sb) 1802 { 1803 struct workqueue_struct *old; 1804 struct workqueue_struct *wq = alloc_workqueue("dio/%s", 1805 WQ_MEM_RECLAIM, 0, 1806 sb->s_id); 1807 if (!wq) 1808 return -ENOMEM; 1809 /* 1810 * This has to be atomic as more DIOs can race to create the workqueue 1811 */ 1812 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); 1813 /* Someone created workqueue before us? Free ours... */ 1814 if (old) 1815 destroy_workqueue(wq); 1816 return 0; 1817 } 1818