1 /* 2 * linux/fs/super.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * super.c contains code to handle: - mount structures 7 * - super-block tables 8 * - filesystem drivers list 9 * - mount system call 10 * - umount system call 11 * - ustat system call 12 * 13 * GK 2/5/95 - Changed to support mounting the root fs via NFS 14 * 15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 17 * Added options to /proc/mounts: 18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 21 */ 22 23 #include <linux/module.h> 24 #include <linux/slab.h> 25 #include <linux/acct.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/cleancache.h> 35 #include "internal.h" 36 37 38 LIST_HEAD(super_blocks); 39 DEFINE_SPINLOCK(sb_lock); 40 41 /* 42 * One thing we have to be careful of with a per-sb shrinker is that we don't 43 * drop the last active reference to the superblock from within the shrinker. 44 * If that happens we could trigger unregistering the shrinker from within the 45 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 46 * take a passive reference to the superblock to avoid this from occurring. 47 */ 48 static int prune_super(struct shrinker *shrink, struct shrink_control *sc) 49 { 50 struct super_block *sb; 51 int fs_objects = 0; 52 int total_objects; 53 54 sb = container_of(shrink, struct super_block, s_shrink); 55 56 /* 57 * Deadlock avoidance. We may hold various FS locks, and we don't want 58 * to recurse into the FS that called us in clear_inode() and friends.. 59 */ 60 if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS)) 61 return -1; 62 63 if (!grab_super_passive(sb)) 64 return -1; 65 66 if (sb->s_op && sb->s_op->nr_cached_objects) 67 fs_objects = sb->s_op->nr_cached_objects(sb); 68 69 total_objects = sb->s_nr_dentry_unused + 70 sb->s_nr_inodes_unused + fs_objects + 1; 71 72 if (sc->nr_to_scan) { 73 int dentries; 74 int inodes; 75 76 /* proportion the scan between the caches */ 77 dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) / 78 total_objects; 79 inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) / 80 total_objects; 81 if (fs_objects) 82 fs_objects = (sc->nr_to_scan * fs_objects) / 83 total_objects; 84 /* 85 * prune the dcache first as the icache is pinned by it, then 86 * prune the icache, followed by the filesystem specific caches 87 */ 88 prune_dcache_sb(sb, dentries); 89 prune_icache_sb(sb, inodes); 90 91 if (fs_objects && sb->s_op->free_cached_objects) { 92 sb->s_op->free_cached_objects(sb, fs_objects); 93 fs_objects = sb->s_op->nr_cached_objects(sb); 94 } 95 total_objects = sb->s_nr_dentry_unused + 96 sb->s_nr_inodes_unused + fs_objects; 97 } 98 99 total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure; 100 drop_super(sb); 101 return total_objects; 102 } 103 104 /** 105 * alloc_super - create new superblock 106 * @type: filesystem type superblock should belong to 107 * 108 * Allocates and initializes a new &struct super_block. alloc_super() 109 * returns a pointer new superblock or %NULL if allocation had failed. 110 */ 111 static struct super_block *alloc_super(struct file_system_type *type) 112 { 113 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 114 static const struct super_operations default_op; 115 116 if (s) { 117 if (security_sb_alloc(s)) { 118 kfree(s); 119 s = NULL; 120 goto out; 121 } 122 #ifdef CONFIG_SMP 123 s->s_files = alloc_percpu(struct list_head); 124 if (!s->s_files) { 125 security_sb_free(s); 126 kfree(s); 127 s = NULL; 128 goto out; 129 } else { 130 int i; 131 132 for_each_possible_cpu(i) 133 INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i)); 134 } 135 #else 136 INIT_LIST_HEAD(&s->s_files); 137 #endif 138 s->s_bdi = &default_backing_dev_info; 139 INIT_LIST_HEAD(&s->s_instances); 140 INIT_HLIST_BL_HEAD(&s->s_anon); 141 INIT_LIST_HEAD(&s->s_inodes); 142 INIT_LIST_HEAD(&s->s_dentry_lru); 143 INIT_LIST_HEAD(&s->s_inode_lru); 144 spin_lock_init(&s->s_inode_lru_lock); 145 init_rwsem(&s->s_umount); 146 mutex_init(&s->s_lock); 147 lockdep_set_class(&s->s_umount, &type->s_umount_key); 148 /* 149 * The locking rules for s_lock are up to the 150 * filesystem. For example ext3fs has different 151 * lock ordering than usbfs: 152 */ 153 lockdep_set_class(&s->s_lock, &type->s_lock_key); 154 /* 155 * sget() can have s_umount recursion. 156 * 157 * When it cannot find a suitable sb, it allocates a new 158 * one (this one), and tries again to find a suitable old 159 * one. 160 * 161 * In case that succeeds, it will acquire the s_umount 162 * lock of the old one. Since these are clearly distrinct 163 * locks, and this object isn't exposed yet, there's no 164 * risk of deadlocks. 165 * 166 * Annotate this by putting this lock in a different 167 * subclass. 168 */ 169 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 170 s->s_count = 1; 171 atomic_set(&s->s_active, 1); 172 mutex_init(&s->s_vfs_rename_mutex); 173 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 174 mutex_init(&s->s_dquot.dqio_mutex); 175 mutex_init(&s->s_dquot.dqonoff_mutex); 176 init_rwsem(&s->s_dquot.dqptr_sem); 177 init_waitqueue_head(&s->s_wait_unfrozen); 178 s->s_maxbytes = MAX_NON_LFS; 179 s->s_op = &default_op; 180 s->s_time_gran = 1000000000; 181 s->cleancache_poolid = -1; 182 183 s->s_shrink.seeks = DEFAULT_SEEKS; 184 s->s_shrink.shrink = prune_super; 185 s->s_shrink.batch = 1024; 186 } 187 out: 188 return s; 189 } 190 191 /** 192 * destroy_super - frees a superblock 193 * @s: superblock to free 194 * 195 * Frees a superblock. 196 */ 197 static inline void destroy_super(struct super_block *s) 198 { 199 #ifdef CONFIG_SMP 200 free_percpu(s->s_files); 201 #endif 202 security_sb_free(s); 203 kfree(s->s_subtype); 204 kfree(s->s_options); 205 kfree(s); 206 } 207 208 /* Superblock refcounting */ 209 210 /* 211 * Drop a superblock's refcount. The caller must hold sb_lock. 212 */ 213 void __put_super(struct super_block *sb) 214 { 215 if (!--sb->s_count) { 216 list_del_init(&sb->s_list); 217 destroy_super(sb); 218 } 219 } 220 221 /** 222 * put_super - drop a temporary reference to superblock 223 * @sb: superblock in question 224 * 225 * Drops a temporary reference, frees superblock if there's no 226 * references left. 227 */ 228 void put_super(struct super_block *sb) 229 { 230 spin_lock(&sb_lock); 231 __put_super(sb); 232 spin_unlock(&sb_lock); 233 } 234 235 236 /** 237 * deactivate_locked_super - drop an active reference to superblock 238 * @s: superblock to deactivate 239 * 240 * Drops an active reference to superblock, converting it into a temprory 241 * one if there is no other active references left. In that case we 242 * tell fs driver to shut it down and drop the temporary reference we 243 * had just acquired. 244 * 245 * Caller holds exclusive lock on superblock; that lock is released. 246 */ 247 void deactivate_locked_super(struct super_block *s) 248 { 249 struct file_system_type *fs = s->s_type; 250 if (atomic_dec_and_test(&s->s_active)) { 251 cleancache_flush_fs(s); 252 fs->kill_sb(s); 253 254 /* caches are now gone, we can safely kill the shrinker now */ 255 unregister_shrinker(&s->s_shrink); 256 257 /* 258 * We need to call rcu_barrier so all the delayed rcu free 259 * inodes are flushed before we release the fs module. 260 */ 261 rcu_barrier(); 262 put_filesystem(fs); 263 put_super(s); 264 } else { 265 up_write(&s->s_umount); 266 } 267 } 268 269 EXPORT_SYMBOL(deactivate_locked_super); 270 271 /** 272 * deactivate_super - drop an active reference to superblock 273 * @s: superblock to deactivate 274 * 275 * Variant of deactivate_locked_super(), except that superblock is *not* 276 * locked by caller. If we are going to drop the final active reference, 277 * lock will be acquired prior to that. 278 */ 279 void deactivate_super(struct super_block *s) 280 { 281 if (!atomic_add_unless(&s->s_active, -1, 1)) { 282 down_write(&s->s_umount); 283 deactivate_locked_super(s); 284 } 285 } 286 287 EXPORT_SYMBOL(deactivate_super); 288 289 /** 290 * grab_super - acquire an active reference 291 * @s: reference we are trying to make active 292 * 293 * Tries to acquire an active reference. grab_super() is used when we 294 * had just found a superblock in super_blocks or fs_type->fs_supers 295 * and want to turn it into a full-blown active reference. grab_super() 296 * is called with sb_lock held and drops it. Returns 1 in case of 297 * success, 0 if we had failed (superblock contents was already dead or 298 * dying when grab_super() had been called). 299 */ 300 static int grab_super(struct super_block *s) __releases(sb_lock) 301 { 302 if (atomic_inc_not_zero(&s->s_active)) { 303 spin_unlock(&sb_lock); 304 return 1; 305 } 306 /* it's going away */ 307 s->s_count++; 308 spin_unlock(&sb_lock); 309 /* wait for it to die */ 310 down_write(&s->s_umount); 311 up_write(&s->s_umount); 312 put_super(s); 313 return 0; 314 } 315 316 /* 317 * grab_super_passive - acquire a passive reference 318 * @s: reference we are trying to grab 319 * 320 * Tries to acquire a passive reference. This is used in places where we 321 * cannot take an active reference but we need to ensure that the 322 * superblock does not go away while we are working on it. It returns 323 * false if a reference was not gained, and returns true with the s_umount 324 * lock held in read mode if a reference is gained. On successful return, 325 * the caller must drop the s_umount lock and the passive reference when 326 * done. 327 */ 328 bool grab_super_passive(struct super_block *sb) 329 { 330 spin_lock(&sb_lock); 331 if (list_empty(&sb->s_instances)) { 332 spin_unlock(&sb_lock); 333 return false; 334 } 335 336 sb->s_count++; 337 spin_unlock(&sb_lock); 338 339 if (down_read_trylock(&sb->s_umount)) { 340 if (sb->s_root) 341 return true; 342 up_read(&sb->s_umount); 343 } 344 345 put_super(sb); 346 return false; 347 } 348 349 /* 350 * Superblock locking. We really ought to get rid of these two. 351 */ 352 void lock_super(struct super_block * sb) 353 { 354 get_fs_excl(); 355 mutex_lock(&sb->s_lock); 356 } 357 358 void unlock_super(struct super_block * sb) 359 { 360 put_fs_excl(); 361 mutex_unlock(&sb->s_lock); 362 } 363 364 EXPORT_SYMBOL(lock_super); 365 EXPORT_SYMBOL(unlock_super); 366 367 /** 368 * generic_shutdown_super - common helper for ->kill_sb() 369 * @sb: superblock to kill 370 * 371 * generic_shutdown_super() does all fs-independent work on superblock 372 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 373 * that need destruction out of superblock, call generic_shutdown_super() 374 * and release aforementioned objects. Note: dentries and inodes _are_ 375 * taken care of and do not need specific handling. 376 * 377 * Upon calling this function, the filesystem may no longer alter or 378 * rearrange the set of dentries belonging to this super_block, nor may it 379 * change the attachments of dentries to inodes. 380 */ 381 void generic_shutdown_super(struct super_block *sb) 382 { 383 const struct super_operations *sop = sb->s_op; 384 385 if (sb->s_root) { 386 shrink_dcache_for_umount(sb); 387 sync_filesystem(sb); 388 get_fs_excl(); 389 sb->s_flags &= ~MS_ACTIVE; 390 391 fsnotify_unmount_inodes(&sb->s_inodes); 392 393 evict_inodes(sb); 394 395 if (sop->put_super) 396 sop->put_super(sb); 397 398 if (!list_empty(&sb->s_inodes)) { 399 printk("VFS: Busy inodes after unmount of %s. " 400 "Self-destruct in 5 seconds. Have a nice day...\n", 401 sb->s_id); 402 } 403 put_fs_excl(); 404 } 405 spin_lock(&sb_lock); 406 /* should be initialized for __put_super_and_need_restart() */ 407 list_del_init(&sb->s_instances); 408 spin_unlock(&sb_lock); 409 up_write(&sb->s_umount); 410 } 411 412 EXPORT_SYMBOL(generic_shutdown_super); 413 414 /** 415 * sget - find or create a superblock 416 * @type: filesystem type superblock should belong to 417 * @test: comparison callback 418 * @set: setup callback 419 * @data: argument to each of them 420 */ 421 struct super_block *sget(struct file_system_type *type, 422 int (*test)(struct super_block *,void *), 423 int (*set)(struct super_block *,void *), 424 void *data) 425 { 426 struct super_block *s = NULL; 427 struct super_block *old; 428 int err; 429 430 retry: 431 spin_lock(&sb_lock); 432 if (test) { 433 list_for_each_entry(old, &type->fs_supers, s_instances) { 434 if (!test(old, data)) 435 continue; 436 if (!grab_super(old)) 437 goto retry; 438 if (s) { 439 up_write(&s->s_umount); 440 destroy_super(s); 441 s = NULL; 442 } 443 down_write(&old->s_umount); 444 if (unlikely(!(old->s_flags & MS_BORN))) { 445 deactivate_locked_super(old); 446 goto retry; 447 } 448 return old; 449 } 450 } 451 if (!s) { 452 spin_unlock(&sb_lock); 453 s = alloc_super(type); 454 if (!s) 455 return ERR_PTR(-ENOMEM); 456 goto retry; 457 } 458 459 err = set(s, data); 460 if (err) { 461 spin_unlock(&sb_lock); 462 up_write(&s->s_umount); 463 destroy_super(s); 464 return ERR_PTR(err); 465 } 466 s->s_type = type; 467 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 468 list_add_tail(&s->s_list, &super_blocks); 469 list_add(&s->s_instances, &type->fs_supers); 470 spin_unlock(&sb_lock); 471 get_filesystem(type); 472 register_shrinker(&s->s_shrink); 473 return s; 474 } 475 476 EXPORT_SYMBOL(sget); 477 478 void drop_super(struct super_block *sb) 479 { 480 up_read(&sb->s_umount); 481 put_super(sb); 482 } 483 484 EXPORT_SYMBOL(drop_super); 485 486 /** 487 * sync_supers - helper for periodic superblock writeback 488 * 489 * Call the write_super method if present on all dirty superblocks in 490 * the system. This is for the periodic writeback used by most older 491 * filesystems. For data integrity superblock writeback use 492 * sync_filesystems() instead. 493 * 494 * Note: check the dirty flag before waiting, so we don't 495 * hold up the sync while mounting a device. (The newly 496 * mounted device won't need syncing.) 497 */ 498 void sync_supers(void) 499 { 500 struct super_block *sb, *p = NULL; 501 502 spin_lock(&sb_lock); 503 list_for_each_entry(sb, &super_blocks, s_list) { 504 if (list_empty(&sb->s_instances)) 505 continue; 506 if (sb->s_op->write_super && sb->s_dirt) { 507 sb->s_count++; 508 spin_unlock(&sb_lock); 509 510 down_read(&sb->s_umount); 511 if (sb->s_root && sb->s_dirt) 512 sb->s_op->write_super(sb); 513 up_read(&sb->s_umount); 514 515 spin_lock(&sb_lock); 516 if (p) 517 __put_super(p); 518 p = sb; 519 } 520 } 521 if (p) 522 __put_super(p); 523 spin_unlock(&sb_lock); 524 } 525 526 /** 527 * iterate_supers - call function for all active superblocks 528 * @f: function to call 529 * @arg: argument to pass to it 530 * 531 * Scans the superblock list and calls given function, passing it 532 * locked superblock and given argument. 533 */ 534 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 535 { 536 struct super_block *sb, *p = NULL; 537 538 spin_lock(&sb_lock); 539 list_for_each_entry(sb, &super_blocks, s_list) { 540 if (list_empty(&sb->s_instances)) 541 continue; 542 sb->s_count++; 543 spin_unlock(&sb_lock); 544 545 down_read(&sb->s_umount); 546 if (sb->s_root) 547 f(sb, arg); 548 up_read(&sb->s_umount); 549 550 spin_lock(&sb_lock); 551 if (p) 552 __put_super(p); 553 p = sb; 554 } 555 if (p) 556 __put_super(p); 557 spin_unlock(&sb_lock); 558 } 559 560 /** 561 * iterate_supers_type - call function for superblocks of given type 562 * @type: fs type 563 * @f: function to call 564 * @arg: argument to pass to it 565 * 566 * Scans the superblock list and calls given function, passing it 567 * locked superblock and given argument. 568 */ 569 void iterate_supers_type(struct file_system_type *type, 570 void (*f)(struct super_block *, void *), void *arg) 571 { 572 struct super_block *sb, *p = NULL; 573 574 spin_lock(&sb_lock); 575 list_for_each_entry(sb, &type->fs_supers, s_instances) { 576 sb->s_count++; 577 spin_unlock(&sb_lock); 578 579 down_read(&sb->s_umount); 580 if (sb->s_root) 581 f(sb, arg); 582 up_read(&sb->s_umount); 583 584 spin_lock(&sb_lock); 585 if (p) 586 __put_super(p); 587 p = sb; 588 } 589 if (p) 590 __put_super(p); 591 spin_unlock(&sb_lock); 592 } 593 594 EXPORT_SYMBOL(iterate_supers_type); 595 596 /** 597 * get_super - get the superblock of a device 598 * @bdev: device to get the superblock for 599 * 600 * Scans the superblock list and finds the superblock of the file system 601 * mounted on the device given. %NULL is returned if no match is found. 602 */ 603 604 struct super_block *get_super(struct block_device *bdev) 605 { 606 struct super_block *sb; 607 608 if (!bdev) 609 return NULL; 610 611 spin_lock(&sb_lock); 612 rescan: 613 list_for_each_entry(sb, &super_blocks, s_list) { 614 if (list_empty(&sb->s_instances)) 615 continue; 616 if (sb->s_bdev == bdev) { 617 sb->s_count++; 618 spin_unlock(&sb_lock); 619 down_read(&sb->s_umount); 620 /* still alive? */ 621 if (sb->s_root) 622 return sb; 623 up_read(&sb->s_umount); 624 /* nope, got unmounted */ 625 spin_lock(&sb_lock); 626 __put_super(sb); 627 goto rescan; 628 } 629 } 630 spin_unlock(&sb_lock); 631 return NULL; 632 } 633 634 EXPORT_SYMBOL(get_super); 635 636 /** 637 * get_active_super - get an active reference to the superblock of a device 638 * @bdev: device to get the superblock for 639 * 640 * Scans the superblock list and finds the superblock of the file system 641 * mounted on the device given. Returns the superblock with an active 642 * reference or %NULL if none was found. 643 */ 644 struct super_block *get_active_super(struct block_device *bdev) 645 { 646 struct super_block *sb; 647 648 if (!bdev) 649 return NULL; 650 651 restart: 652 spin_lock(&sb_lock); 653 list_for_each_entry(sb, &super_blocks, s_list) { 654 if (list_empty(&sb->s_instances)) 655 continue; 656 if (sb->s_bdev == bdev) { 657 if (grab_super(sb)) /* drops sb_lock */ 658 return sb; 659 else 660 goto restart; 661 } 662 } 663 spin_unlock(&sb_lock); 664 return NULL; 665 } 666 667 struct super_block *user_get_super(dev_t dev) 668 { 669 struct super_block *sb; 670 671 spin_lock(&sb_lock); 672 rescan: 673 list_for_each_entry(sb, &super_blocks, s_list) { 674 if (list_empty(&sb->s_instances)) 675 continue; 676 if (sb->s_dev == dev) { 677 sb->s_count++; 678 spin_unlock(&sb_lock); 679 down_read(&sb->s_umount); 680 /* still alive? */ 681 if (sb->s_root) 682 return sb; 683 up_read(&sb->s_umount); 684 /* nope, got unmounted */ 685 spin_lock(&sb_lock); 686 __put_super(sb); 687 goto rescan; 688 } 689 } 690 spin_unlock(&sb_lock); 691 return NULL; 692 } 693 694 /** 695 * do_remount_sb - asks filesystem to change mount options. 696 * @sb: superblock in question 697 * @flags: numeric part of options 698 * @data: the rest of options 699 * @force: whether or not to force the change 700 * 701 * Alters the mount options of a mounted file system. 702 */ 703 int do_remount_sb(struct super_block *sb, int flags, void *data, int force) 704 { 705 int retval; 706 int remount_ro; 707 708 if (sb->s_frozen != SB_UNFROZEN) 709 return -EBUSY; 710 711 #ifdef CONFIG_BLOCK 712 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev)) 713 return -EACCES; 714 #endif 715 716 if (flags & MS_RDONLY) 717 acct_auto_close(sb); 718 shrink_dcache_sb(sb); 719 sync_filesystem(sb); 720 721 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY); 722 723 /* If we are remounting RDONLY and current sb is read/write, 724 make sure there are no rw files opened */ 725 if (remount_ro) { 726 if (force) 727 mark_files_ro(sb); 728 else if (!fs_may_remount_ro(sb)) 729 return -EBUSY; 730 } 731 732 if (sb->s_op->remount_fs) { 733 retval = sb->s_op->remount_fs(sb, &flags, data); 734 if (retval) 735 return retval; 736 } 737 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK); 738 739 /* 740 * Some filesystems modify their metadata via some other path than the 741 * bdev buffer cache (eg. use a private mapping, or directories in 742 * pagecache, etc). Also file data modifications go via their own 743 * mappings. So If we try to mount readonly then copy the filesystem 744 * from bdev, we could get stale data, so invalidate it to give a best 745 * effort at coherency. 746 */ 747 if (remount_ro && sb->s_bdev) 748 invalidate_bdev(sb->s_bdev); 749 return 0; 750 } 751 752 static void do_emergency_remount(struct work_struct *work) 753 { 754 struct super_block *sb, *p = NULL; 755 756 spin_lock(&sb_lock); 757 list_for_each_entry(sb, &super_blocks, s_list) { 758 if (list_empty(&sb->s_instances)) 759 continue; 760 sb->s_count++; 761 spin_unlock(&sb_lock); 762 down_write(&sb->s_umount); 763 if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) { 764 /* 765 * What lock protects sb->s_flags?? 766 */ 767 do_remount_sb(sb, MS_RDONLY, NULL, 1); 768 } 769 up_write(&sb->s_umount); 770 spin_lock(&sb_lock); 771 if (p) 772 __put_super(p); 773 p = sb; 774 } 775 if (p) 776 __put_super(p); 777 spin_unlock(&sb_lock); 778 kfree(work); 779 printk("Emergency Remount complete\n"); 780 } 781 782 void emergency_remount(void) 783 { 784 struct work_struct *work; 785 786 work = kmalloc(sizeof(*work), GFP_ATOMIC); 787 if (work) { 788 INIT_WORK(work, do_emergency_remount); 789 schedule_work(work); 790 } 791 } 792 793 /* 794 * Unnamed block devices are dummy devices used by virtual 795 * filesystems which don't use real block-devices. -- jrs 796 */ 797 798 static DEFINE_IDA(unnamed_dev_ida); 799 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */ 800 static int unnamed_dev_start = 0; /* don't bother trying below it */ 801 802 int get_anon_bdev(dev_t *p) 803 { 804 int dev; 805 int error; 806 807 retry: 808 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0) 809 return -ENOMEM; 810 spin_lock(&unnamed_dev_lock); 811 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev); 812 if (!error) 813 unnamed_dev_start = dev + 1; 814 spin_unlock(&unnamed_dev_lock); 815 if (error == -EAGAIN) 816 /* We raced and lost with another CPU. */ 817 goto retry; 818 else if (error) 819 return -EAGAIN; 820 821 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) { 822 spin_lock(&unnamed_dev_lock); 823 ida_remove(&unnamed_dev_ida, dev); 824 if (unnamed_dev_start > dev) 825 unnamed_dev_start = dev; 826 spin_unlock(&unnamed_dev_lock); 827 return -EMFILE; 828 } 829 *p = MKDEV(0, dev & MINORMASK); 830 return 0; 831 } 832 EXPORT_SYMBOL(get_anon_bdev); 833 834 void free_anon_bdev(dev_t dev) 835 { 836 int slot = MINOR(dev); 837 spin_lock(&unnamed_dev_lock); 838 ida_remove(&unnamed_dev_ida, slot); 839 if (slot < unnamed_dev_start) 840 unnamed_dev_start = slot; 841 spin_unlock(&unnamed_dev_lock); 842 } 843 EXPORT_SYMBOL(free_anon_bdev); 844 845 int set_anon_super(struct super_block *s, void *data) 846 { 847 int error = get_anon_bdev(&s->s_dev); 848 if (!error) 849 s->s_bdi = &noop_backing_dev_info; 850 return error; 851 } 852 853 EXPORT_SYMBOL(set_anon_super); 854 855 void kill_anon_super(struct super_block *sb) 856 { 857 dev_t dev = sb->s_dev; 858 generic_shutdown_super(sb); 859 free_anon_bdev(dev); 860 } 861 862 EXPORT_SYMBOL(kill_anon_super); 863 864 void kill_litter_super(struct super_block *sb) 865 { 866 if (sb->s_root) 867 d_genocide(sb->s_root); 868 kill_anon_super(sb); 869 } 870 871 EXPORT_SYMBOL(kill_litter_super); 872 873 static int ns_test_super(struct super_block *sb, void *data) 874 { 875 return sb->s_fs_info == data; 876 } 877 878 static int ns_set_super(struct super_block *sb, void *data) 879 { 880 sb->s_fs_info = data; 881 return set_anon_super(sb, NULL); 882 } 883 884 struct dentry *mount_ns(struct file_system_type *fs_type, int flags, 885 void *data, int (*fill_super)(struct super_block *, void *, int)) 886 { 887 struct super_block *sb; 888 889 sb = sget(fs_type, ns_test_super, ns_set_super, data); 890 if (IS_ERR(sb)) 891 return ERR_CAST(sb); 892 893 if (!sb->s_root) { 894 int err; 895 sb->s_flags = flags; 896 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 897 if (err) { 898 deactivate_locked_super(sb); 899 return ERR_PTR(err); 900 } 901 902 sb->s_flags |= MS_ACTIVE; 903 } 904 905 return dget(sb->s_root); 906 } 907 908 EXPORT_SYMBOL(mount_ns); 909 910 #ifdef CONFIG_BLOCK 911 static int set_bdev_super(struct super_block *s, void *data) 912 { 913 s->s_bdev = data; 914 s->s_dev = s->s_bdev->bd_dev; 915 916 /* 917 * We set the bdi here to the queue backing, file systems can 918 * overwrite this in ->fill_super() 919 */ 920 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info; 921 return 0; 922 } 923 924 static int test_bdev_super(struct super_block *s, void *data) 925 { 926 return (void *)s->s_bdev == data; 927 } 928 929 struct dentry *mount_bdev(struct file_system_type *fs_type, 930 int flags, const char *dev_name, void *data, 931 int (*fill_super)(struct super_block *, void *, int)) 932 { 933 struct block_device *bdev; 934 struct super_block *s; 935 fmode_t mode = FMODE_READ | FMODE_EXCL; 936 int error = 0; 937 938 if (!(flags & MS_RDONLY)) 939 mode |= FMODE_WRITE; 940 941 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 942 if (IS_ERR(bdev)) 943 return ERR_CAST(bdev); 944 945 /* 946 * once the super is inserted into the list by sget, s_umount 947 * will protect the lockfs code from trying to start a snapshot 948 * while we are mounting 949 */ 950 mutex_lock(&bdev->bd_fsfreeze_mutex); 951 if (bdev->bd_fsfreeze_count > 0) { 952 mutex_unlock(&bdev->bd_fsfreeze_mutex); 953 error = -EBUSY; 954 goto error_bdev; 955 } 956 s = sget(fs_type, test_bdev_super, set_bdev_super, bdev); 957 mutex_unlock(&bdev->bd_fsfreeze_mutex); 958 if (IS_ERR(s)) 959 goto error_s; 960 961 if (s->s_root) { 962 if ((flags ^ s->s_flags) & MS_RDONLY) { 963 deactivate_locked_super(s); 964 error = -EBUSY; 965 goto error_bdev; 966 } 967 968 /* 969 * s_umount nests inside bd_mutex during 970 * __invalidate_device(). blkdev_put() acquires 971 * bd_mutex and can't be called under s_umount. Drop 972 * s_umount temporarily. This is safe as we're 973 * holding an active reference. 974 */ 975 up_write(&s->s_umount); 976 blkdev_put(bdev, mode); 977 down_write(&s->s_umount); 978 } else { 979 char b[BDEVNAME_SIZE]; 980 981 s->s_flags = flags | MS_NOSEC; 982 s->s_mode = mode; 983 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); 984 sb_set_blocksize(s, block_size(bdev)); 985 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 986 if (error) { 987 deactivate_locked_super(s); 988 goto error; 989 } 990 991 s->s_flags |= MS_ACTIVE; 992 bdev->bd_super = s; 993 } 994 995 return dget(s->s_root); 996 997 error_s: 998 error = PTR_ERR(s); 999 error_bdev: 1000 blkdev_put(bdev, mode); 1001 error: 1002 return ERR_PTR(error); 1003 } 1004 EXPORT_SYMBOL(mount_bdev); 1005 1006 void kill_block_super(struct super_block *sb) 1007 { 1008 struct block_device *bdev = sb->s_bdev; 1009 fmode_t mode = sb->s_mode; 1010 1011 bdev->bd_super = NULL; 1012 generic_shutdown_super(sb); 1013 sync_blockdev(bdev); 1014 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 1015 blkdev_put(bdev, mode | FMODE_EXCL); 1016 } 1017 1018 EXPORT_SYMBOL(kill_block_super); 1019 #endif 1020 1021 struct dentry *mount_nodev(struct file_system_type *fs_type, 1022 int flags, void *data, 1023 int (*fill_super)(struct super_block *, void *, int)) 1024 { 1025 int error; 1026 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL); 1027 1028 if (IS_ERR(s)) 1029 return ERR_CAST(s); 1030 1031 s->s_flags = flags; 1032 1033 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1034 if (error) { 1035 deactivate_locked_super(s); 1036 return ERR_PTR(error); 1037 } 1038 s->s_flags |= MS_ACTIVE; 1039 return dget(s->s_root); 1040 } 1041 EXPORT_SYMBOL(mount_nodev); 1042 1043 static int compare_single(struct super_block *s, void *p) 1044 { 1045 return 1; 1046 } 1047 1048 struct dentry *mount_single(struct file_system_type *fs_type, 1049 int flags, void *data, 1050 int (*fill_super)(struct super_block *, void *, int)) 1051 { 1052 struct super_block *s; 1053 int error; 1054 1055 s = sget(fs_type, compare_single, set_anon_super, NULL); 1056 if (IS_ERR(s)) 1057 return ERR_CAST(s); 1058 if (!s->s_root) { 1059 s->s_flags = flags; 1060 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1061 if (error) { 1062 deactivate_locked_super(s); 1063 return ERR_PTR(error); 1064 } 1065 s->s_flags |= MS_ACTIVE; 1066 } else { 1067 do_remount_sb(s, flags, data, 0); 1068 } 1069 return dget(s->s_root); 1070 } 1071 EXPORT_SYMBOL(mount_single); 1072 1073 struct dentry * 1074 mount_fs(struct file_system_type *type, int flags, const char *name, void *data) 1075 { 1076 struct dentry *root; 1077 struct super_block *sb; 1078 char *secdata = NULL; 1079 int error = -ENOMEM; 1080 1081 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) { 1082 secdata = alloc_secdata(); 1083 if (!secdata) 1084 goto out; 1085 1086 error = security_sb_copy_data(data, secdata); 1087 if (error) 1088 goto out_free_secdata; 1089 } 1090 1091 root = type->mount(type, flags, name, data); 1092 if (IS_ERR(root)) { 1093 error = PTR_ERR(root); 1094 goto out_free_secdata; 1095 } 1096 sb = root->d_sb; 1097 BUG_ON(!sb); 1098 WARN_ON(!sb->s_bdi); 1099 WARN_ON(sb->s_bdi == &default_backing_dev_info); 1100 sb->s_flags |= MS_BORN; 1101 1102 error = security_sb_kern_mount(sb, flags, secdata); 1103 if (error) 1104 goto out_sb; 1105 1106 /* 1107 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1108 * but s_maxbytes was an unsigned long long for many releases. Throw 1109 * this warning for a little while to try and catch filesystems that 1110 * violate this rule. 1111 */ 1112 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1113 "negative value (%lld)\n", type->name, sb->s_maxbytes); 1114 1115 up_write(&sb->s_umount); 1116 free_secdata(secdata); 1117 return root; 1118 out_sb: 1119 dput(root); 1120 deactivate_locked_super(sb); 1121 out_free_secdata: 1122 free_secdata(secdata); 1123 out: 1124 return ERR_PTR(error); 1125 } 1126 1127 /** 1128 * freeze_super - lock the filesystem and force it into a consistent state 1129 * @sb: the super to lock 1130 * 1131 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1132 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1133 * -EBUSY. 1134 */ 1135 int freeze_super(struct super_block *sb) 1136 { 1137 int ret; 1138 1139 atomic_inc(&sb->s_active); 1140 down_write(&sb->s_umount); 1141 if (sb->s_frozen) { 1142 deactivate_locked_super(sb); 1143 return -EBUSY; 1144 } 1145 1146 if (sb->s_flags & MS_RDONLY) { 1147 sb->s_frozen = SB_FREEZE_TRANS; 1148 smp_wmb(); 1149 up_write(&sb->s_umount); 1150 return 0; 1151 } 1152 1153 sb->s_frozen = SB_FREEZE_WRITE; 1154 smp_wmb(); 1155 1156 sync_filesystem(sb); 1157 1158 sb->s_frozen = SB_FREEZE_TRANS; 1159 smp_wmb(); 1160 1161 sync_blockdev(sb->s_bdev); 1162 if (sb->s_op->freeze_fs) { 1163 ret = sb->s_op->freeze_fs(sb); 1164 if (ret) { 1165 printk(KERN_ERR 1166 "VFS:Filesystem freeze failed\n"); 1167 sb->s_frozen = SB_UNFROZEN; 1168 deactivate_locked_super(sb); 1169 return ret; 1170 } 1171 } 1172 up_write(&sb->s_umount); 1173 return 0; 1174 } 1175 EXPORT_SYMBOL(freeze_super); 1176 1177 /** 1178 * thaw_super -- unlock filesystem 1179 * @sb: the super to thaw 1180 * 1181 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1182 */ 1183 int thaw_super(struct super_block *sb) 1184 { 1185 int error; 1186 1187 down_write(&sb->s_umount); 1188 if (sb->s_frozen == SB_UNFROZEN) { 1189 up_write(&sb->s_umount); 1190 return -EINVAL; 1191 } 1192 1193 if (sb->s_flags & MS_RDONLY) 1194 goto out; 1195 1196 if (sb->s_op->unfreeze_fs) { 1197 error = sb->s_op->unfreeze_fs(sb); 1198 if (error) { 1199 printk(KERN_ERR 1200 "VFS:Filesystem thaw failed\n"); 1201 sb->s_frozen = SB_FREEZE_TRANS; 1202 up_write(&sb->s_umount); 1203 return error; 1204 } 1205 } 1206 1207 out: 1208 sb->s_frozen = SB_UNFROZEN; 1209 smp_wmb(); 1210 wake_up(&sb->s_wait_unfrozen); 1211 deactivate_locked_super(sb); 1212 1213 return 0; 1214 } 1215 EXPORT_SYMBOL(thaw_super); 1216