xref: /openbmc/linux/fs/super.c (revision 81d67439)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include "internal.h"
36 
37 
38 LIST_HEAD(super_blocks);
39 DEFINE_SPINLOCK(sb_lock);
40 
41 /*
42  * One thing we have to be careful of with a per-sb shrinker is that we don't
43  * drop the last active reference to the superblock from within the shrinker.
44  * If that happens we could trigger unregistering the shrinker from within the
45  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
46  * take a passive reference to the superblock to avoid this from occurring.
47  */
48 static int prune_super(struct shrinker *shrink, struct shrink_control *sc)
49 {
50 	struct super_block *sb;
51 	int	fs_objects = 0;
52 	int	total_objects;
53 
54 	sb = container_of(shrink, struct super_block, s_shrink);
55 
56 	/*
57 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
58 	 * to recurse into the FS that called us in clear_inode() and friends..
59 	 */
60 	if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS))
61 		return -1;
62 
63 	if (!grab_super_passive(sb))
64 		return -1;
65 
66 	if (sb->s_op && sb->s_op->nr_cached_objects)
67 		fs_objects = sb->s_op->nr_cached_objects(sb);
68 
69 	total_objects = sb->s_nr_dentry_unused +
70 			sb->s_nr_inodes_unused + fs_objects + 1;
71 
72 	if (sc->nr_to_scan) {
73 		int	dentries;
74 		int	inodes;
75 
76 		/* proportion the scan between the caches */
77 		dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) /
78 							total_objects;
79 		inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) /
80 							total_objects;
81 		if (fs_objects)
82 			fs_objects = (sc->nr_to_scan * fs_objects) /
83 							total_objects;
84 		/*
85 		 * prune the dcache first as the icache is pinned by it, then
86 		 * prune the icache, followed by the filesystem specific caches
87 		 */
88 		prune_dcache_sb(sb, dentries);
89 		prune_icache_sb(sb, inodes);
90 
91 		if (fs_objects && sb->s_op->free_cached_objects) {
92 			sb->s_op->free_cached_objects(sb, fs_objects);
93 			fs_objects = sb->s_op->nr_cached_objects(sb);
94 		}
95 		total_objects = sb->s_nr_dentry_unused +
96 				sb->s_nr_inodes_unused + fs_objects;
97 	}
98 
99 	total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure;
100 	drop_super(sb);
101 	return total_objects;
102 }
103 
104 /**
105  *	alloc_super	-	create new superblock
106  *	@type:	filesystem type superblock should belong to
107  *
108  *	Allocates and initializes a new &struct super_block.  alloc_super()
109  *	returns a pointer new superblock or %NULL if allocation had failed.
110  */
111 static struct super_block *alloc_super(struct file_system_type *type)
112 {
113 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
114 	static const struct super_operations default_op;
115 
116 	if (s) {
117 		if (security_sb_alloc(s)) {
118 			kfree(s);
119 			s = NULL;
120 			goto out;
121 		}
122 #ifdef CONFIG_SMP
123 		s->s_files = alloc_percpu(struct list_head);
124 		if (!s->s_files) {
125 			security_sb_free(s);
126 			kfree(s);
127 			s = NULL;
128 			goto out;
129 		} else {
130 			int i;
131 
132 			for_each_possible_cpu(i)
133 				INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
134 		}
135 #else
136 		INIT_LIST_HEAD(&s->s_files);
137 #endif
138 		s->s_bdi = &default_backing_dev_info;
139 		INIT_LIST_HEAD(&s->s_instances);
140 		INIT_HLIST_BL_HEAD(&s->s_anon);
141 		INIT_LIST_HEAD(&s->s_inodes);
142 		INIT_LIST_HEAD(&s->s_dentry_lru);
143 		INIT_LIST_HEAD(&s->s_inode_lru);
144 		spin_lock_init(&s->s_inode_lru_lock);
145 		init_rwsem(&s->s_umount);
146 		mutex_init(&s->s_lock);
147 		lockdep_set_class(&s->s_umount, &type->s_umount_key);
148 		/*
149 		 * The locking rules for s_lock are up to the
150 		 * filesystem. For example ext3fs has different
151 		 * lock ordering than usbfs:
152 		 */
153 		lockdep_set_class(&s->s_lock, &type->s_lock_key);
154 		/*
155 		 * sget() can have s_umount recursion.
156 		 *
157 		 * When it cannot find a suitable sb, it allocates a new
158 		 * one (this one), and tries again to find a suitable old
159 		 * one.
160 		 *
161 		 * In case that succeeds, it will acquire the s_umount
162 		 * lock of the old one. Since these are clearly distrinct
163 		 * locks, and this object isn't exposed yet, there's no
164 		 * risk of deadlocks.
165 		 *
166 		 * Annotate this by putting this lock in a different
167 		 * subclass.
168 		 */
169 		down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
170 		s->s_count = 1;
171 		atomic_set(&s->s_active, 1);
172 		mutex_init(&s->s_vfs_rename_mutex);
173 		lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
174 		mutex_init(&s->s_dquot.dqio_mutex);
175 		mutex_init(&s->s_dquot.dqonoff_mutex);
176 		init_rwsem(&s->s_dquot.dqptr_sem);
177 		init_waitqueue_head(&s->s_wait_unfrozen);
178 		s->s_maxbytes = MAX_NON_LFS;
179 		s->s_op = &default_op;
180 		s->s_time_gran = 1000000000;
181 		s->cleancache_poolid = -1;
182 
183 		s->s_shrink.seeks = DEFAULT_SEEKS;
184 		s->s_shrink.shrink = prune_super;
185 		s->s_shrink.batch = 1024;
186 	}
187 out:
188 	return s;
189 }
190 
191 /**
192  *	destroy_super	-	frees a superblock
193  *	@s: superblock to free
194  *
195  *	Frees a superblock.
196  */
197 static inline void destroy_super(struct super_block *s)
198 {
199 #ifdef CONFIG_SMP
200 	free_percpu(s->s_files);
201 #endif
202 	security_sb_free(s);
203 	kfree(s->s_subtype);
204 	kfree(s->s_options);
205 	kfree(s);
206 }
207 
208 /* Superblock refcounting  */
209 
210 /*
211  * Drop a superblock's refcount.  The caller must hold sb_lock.
212  */
213 void __put_super(struct super_block *sb)
214 {
215 	if (!--sb->s_count) {
216 		list_del_init(&sb->s_list);
217 		destroy_super(sb);
218 	}
219 }
220 
221 /**
222  *	put_super	-	drop a temporary reference to superblock
223  *	@sb: superblock in question
224  *
225  *	Drops a temporary reference, frees superblock if there's no
226  *	references left.
227  */
228 void put_super(struct super_block *sb)
229 {
230 	spin_lock(&sb_lock);
231 	__put_super(sb);
232 	spin_unlock(&sb_lock);
233 }
234 
235 
236 /**
237  *	deactivate_locked_super	-	drop an active reference to superblock
238  *	@s: superblock to deactivate
239  *
240  *	Drops an active reference to superblock, converting it into a temprory
241  *	one if there is no other active references left.  In that case we
242  *	tell fs driver to shut it down and drop the temporary reference we
243  *	had just acquired.
244  *
245  *	Caller holds exclusive lock on superblock; that lock is released.
246  */
247 void deactivate_locked_super(struct super_block *s)
248 {
249 	struct file_system_type *fs = s->s_type;
250 	if (atomic_dec_and_test(&s->s_active)) {
251 		cleancache_flush_fs(s);
252 		fs->kill_sb(s);
253 
254 		/* caches are now gone, we can safely kill the shrinker now */
255 		unregister_shrinker(&s->s_shrink);
256 
257 		/*
258 		 * We need to call rcu_barrier so all the delayed rcu free
259 		 * inodes are flushed before we release the fs module.
260 		 */
261 		rcu_barrier();
262 		put_filesystem(fs);
263 		put_super(s);
264 	} else {
265 		up_write(&s->s_umount);
266 	}
267 }
268 
269 EXPORT_SYMBOL(deactivate_locked_super);
270 
271 /**
272  *	deactivate_super	-	drop an active reference to superblock
273  *	@s: superblock to deactivate
274  *
275  *	Variant of deactivate_locked_super(), except that superblock is *not*
276  *	locked by caller.  If we are going to drop the final active reference,
277  *	lock will be acquired prior to that.
278  */
279 void deactivate_super(struct super_block *s)
280 {
281         if (!atomic_add_unless(&s->s_active, -1, 1)) {
282 		down_write(&s->s_umount);
283 		deactivate_locked_super(s);
284 	}
285 }
286 
287 EXPORT_SYMBOL(deactivate_super);
288 
289 /**
290  *	grab_super - acquire an active reference
291  *	@s: reference we are trying to make active
292  *
293  *	Tries to acquire an active reference.  grab_super() is used when we
294  * 	had just found a superblock in super_blocks or fs_type->fs_supers
295  *	and want to turn it into a full-blown active reference.  grab_super()
296  *	is called with sb_lock held and drops it.  Returns 1 in case of
297  *	success, 0 if we had failed (superblock contents was already dead or
298  *	dying when grab_super() had been called).
299  */
300 static int grab_super(struct super_block *s) __releases(sb_lock)
301 {
302 	if (atomic_inc_not_zero(&s->s_active)) {
303 		spin_unlock(&sb_lock);
304 		return 1;
305 	}
306 	/* it's going away */
307 	s->s_count++;
308 	spin_unlock(&sb_lock);
309 	/* wait for it to die */
310 	down_write(&s->s_umount);
311 	up_write(&s->s_umount);
312 	put_super(s);
313 	return 0;
314 }
315 
316 /*
317  *	grab_super_passive - acquire a passive reference
318  *	@s: reference we are trying to grab
319  *
320  *	Tries to acquire a passive reference. This is used in places where we
321  *	cannot take an active reference but we need to ensure that the
322  *	superblock does not go away while we are working on it. It returns
323  *	false if a reference was not gained, and returns true with the s_umount
324  *	lock held in read mode if a reference is gained. On successful return,
325  *	the caller must drop the s_umount lock and the passive reference when
326  *	done.
327  */
328 bool grab_super_passive(struct super_block *sb)
329 {
330 	spin_lock(&sb_lock);
331 	if (list_empty(&sb->s_instances)) {
332 		spin_unlock(&sb_lock);
333 		return false;
334 	}
335 
336 	sb->s_count++;
337 	spin_unlock(&sb_lock);
338 
339 	if (down_read_trylock(&sb->s_umount)) {
340 		if (sb->s_root)
341 			return true;
342 		up_read(&sb->s_umount);
343 	}
344 
345 	put_super(sb);
346 	return false;
347 }
348 
349 /*
350  * Superblock locking.  We really ought to get rid of these two.
351  */
352 void lock_super(struct super_block * sb)
353 {
354 	get_fs_excl();
355 	mutex_lock(&sb->s_lock);
356 }
357 
358 void unlock_super(struct super_block * sb)
359 {
360 	put_fs_excl();
361 	mutex_unlock(&sb->s_lock);
362 }
363 
364 EXPORT_SYMBOL(lock_super);
365 EXPORT_SYMBOL(unlock_super);
366 
367 /**
368  *	generic_shutdown_super	-	common helper for ->kill_sb()
369  *	@sb: superblock to kill
370  *
371  *	generic_shutdown_super() does all fs-independent work on superblock
372  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
373  *	that need destruction out of superblock, call generic_shutdown_super()
374  *	and release aforementioned objects.  Note: dentries and inodes _are_
375  *	taken care of and do not need specific handling.
376  *
377  *	Upon calling this function, the filesystem may no longer alter or
378  *	rearrange the set of dentries belonging to this super_block, nor may it
379  *	change the attachments of dentries to inodes.
380  */
381 void generic_shutdown_super(struct super_block *sb)
382 {
383 	const struct super_operations *sop = sb->s_op;
384 
385 	if (sb->s_root) {
386 		shrink_dcache_for_umount(sb);
387 		sync_filesystem(sb);
388 		get_fs_excl();
389 		sb->s_flags &= ~MS_ACTIVE;
390 
391 		fsnotify_unmount_inodes(&sb->s_inodes);
392 
393 		evict_inodes(sb);
394 
395 		if (sop->put_super)
396 			sop->put_super(sb);
397 
398 		if (!list_empty(&sb->s_inodes)) {
399 			printk("VFS: Busy inodes after unmount of %s. "
400 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
401 			   sb->s_id);
402 		}
403 		put_fs_excl();
404 	}
405 	spin_lock(&sb_lock);
406 	/* should be initialized for __put_super_and_need_restart() */
407 	list_del_init(&sb->s_instances);
408 	spin_unlock(&sb_lock);
409 	up_write(&sb->s_umount);
410 }
411 
412 EXPORT_SYMBOL(generic_shutdown_super);
413 
414 /**
415  *	sget	-	find or create a superblock
416  *	@type:	filesystem type superblock should belong to
417  *	@test:	comparison callback
418  *	@set:	setup callback
419  *	@data:	argument to each of them
420  */
421 struct super_block *sget(struct file_system_type *type,
422 			int (*test)(struct super_block *,void *),
423 			int (*set)(struct super_block *,void *),
424 			void *data)
425 {
426 	struct super_block *s = NULL;
427 	struct super_block *old;
428 	int err;
429 
430 retry:
431 	spin_lock(&sb_lock);
432 	if (test) {
433 		list_for_each_entry(old, &type->fs_supers, s_instances) {
434 			if (!test(old, data))
435 				continue;
436 			if (!grab_super(old))
437 				goto retry;
438 			if (s) {
439 				up_write(&s->s_umount);
440 				destroy_super(s);
441 				s = NULL;
442 			}
443 			down_write(&old->s_umount);
444 			if (unlikely(!(old->s_flags & MS_BORN))) {
445 				deactivate_locked_super(old);
446 				goto retry;
447 			}
448 			return old;
449 		}
450 	}
451 	if (!s) {
452 		spin_unlock(&sb_lock);
453 		s = alloc_super(type);
454 		if (!s)
455 			return ERR_PTR(-ENOMEM);
456 		goto retry;
457 	}
458 
459 	err = set(s, data);
460 	if (err) {
461 		spin_unlock(&sb_lock);
462 		up_write(&s->s_umount);
463 		destroy_super(s);
464 		return ERR_PTR(err);
465 	}
466 	s->s_type = type;
467 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
468 	list_add_tail(&s->s_list, &super_blocks);
469 	list_add(&s->s_instances, &type->fs_supers);
470 	spin_unlock(&sb_lock);
471 	get_filesystem(type);
472 	register_shrinker(&s->s_shrink);
473 	return s;
474 }
475 
476 EXPORT_SYMBOL(sget);
477 
478 void drop_super(struct super_block *sb)
479 {
480 	up_read(&sb->s_umount);
481 	put_super(sb);
482 }
483 
484 EXPORT_SYMBOL(drop_super);
485 
486 /**
487  * sync_supers - helper for periodic superblock writeback
488  *
489  * Call the write_super method if present on all dirty superblocks in
490  * the system.  This is for the periodic writeback used by most older
491  * filesystems.  For data integrity superblock writeback use
492  * sync_filesystems() instead.
493  *
494  * Note: check the dirty flag before waiting, so we don't
495  * hold up the sync while mounting a device. (The newly
496  * mounted device won't need syncing.)
497  */
498 void sync_supers(void)
499 {
500 	struct super_block *sb, *p = NULL;
501 
502 	spin_lock(&sb_lock);
503 	list_for_each_entry(sb, &super_blocks, s_list) {
504 		if (list_empty(&sb->s_instances))
505 			continue;
506 		if (sb->s_op->write_super && sb->s_dirt) {
507 			sb->s_count++;
508 			spin_unlock(&sb_lock);
509 
510 			down_read(&sb->s_umount);
511 			if (sb->s_root && sb->s_dirt)
512 				sb->s_op->write_super(sb);
513 			up_read(&sb->s_umount);
514 
515 			spin_lock(&sb_lock);
516 			if (p)
517 				__put_super(p);
518 			p = sb;
519 		}
520 	}
521 	if (p)
522 		__put_super(p);
523 	spin_unlock(&sb_lock);
524 }
525 
526 /**
527  *	iterate_supers - call function for all active superblocks
528  *	@f: function to call
529  *	@arg: argument to pass to it
530  *
531  *	Scans the superblock list and calls given function, passing it
532  *	locked superblock and given argument.
533  */
534 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
535 {
536 	struct super_block *sb, *p = NULL;
537 
538 	spin_lock(&sb_lock);
539 	list_for_each_entry(sb, &super_blocks, s_list) {
540 		if (list_empty(&sb->s_instances))
541 			continue;
542 		sb->s_count++;
543 		spin_unlock(&sb_lock);
544 
545 		down_read(&sb->s_umount);
546 		if (sb->s_root)
547 			f(sb, arg);
548 		up_read(&sb->s_umount);
549 
550 		spin_lock(&sb_lock);
551 		if (p)
552 			__put_super(p);
553 		p = sb;
554 	}
555 	if (p)
556 		__put_super(p);
557 	spin_unlock(&sb_lock);
558 }
559 
560 /**
561  *	iterate_supers_type - call function for superblocks of given type
562  *	@type: fs type
563  *	@f: function to call
564  *	@arg: argument to pass to it
565  *
566  *	Scans the superblock list and calls given function, passing it
567  *	locked superblock and given argument.
568  */
569 void iterate_supers_type(struct file_system_type *type,
570 	void (*f)(struct super_block *, void *), void *arg)
571 {
572 	struct super_block *sb, *p = NULL;
573 
574 	spin_lock(&sb_lock);
575 	list_for_each_entry(sb, &type->fs_supers, s_instances) {
576 		sb->s_count++;
577 		spin_unlock(&sb_lock);
578 
579 		down_read(&sb->s_umount);
580 		if (sb->s_root)
581 			f(sb, arg);
582 		up_read(&sb->s_umount);
583 
584 		spin_lock(&sb_lock);
585 		if (p)
586 			__put_super(p);
587 		p = sb;
588 	}
589 	if (p)
590 		__put_super(p);
591 	spin_unlock(&sb_lock);
592 }
593 
594 EXPORT_SYMBOL(iterate_supers_type);
595 
596 /**
597  *	get_super - get the superblock of a device
598  *	@bdev: device to get the superblock for
599  *
600  *	Scans the superblock list and finds the superblock of the file system
601  *	mounted on the device given. %NULL is returned if no match is found.
602  */
603 
604 struct super_block *get_super(struct block_device *bdev)
605 {
606 	struct super_block *sb;
607 
608 	if (!bdev)
609 		return NULL;
610 
611 	spin_lock(&sb_lock);
612 rescan:
613 	list_for_each_entry(sb, &super_blocks, s_list) {
614 		if (list_empty(&sb->s_instances))
615 			continue;
616 		if (sb->s_bdev == bdev) {
617 			sb->s_count++;
618 			spin_unlock(&sb_lock);
619 			down_read(&sb->s_umount);
620 			/* still alive? */
621 			if (sb->s_root)
622 				return sb;
623 			up_read(&sb->s_umount);
624 			/* nope, got unmounted */
625 			spin_lock(&sb_lock);
626 			__put_super(sb);
627 			goto rescan;
628 		}
629 	}
630 	spin_unlock(&sb_lock);
631 	return NULL;
632 }
633 
634 EXPORT_SYMBOL(get_super);
635 
636 /**
637  * get_active_super - get an active reference to the superblock of a device
638  * @bdev: device to get the superblock for
639  *
640  * Scans the superblock list and finds the superblock of the file system
641  * mounted on the device given.  Returns the superblock with an active
642  * reference or %NULL if none was found.
643  */
644 struct super_block *get_active_super(struct block_device *bdev)
645 {
646 	struct super_block *sb;
647 
648 	if (!bdev)
649 		return NULL;
650 
651 restart:
652 	spin_lock(&sb_lock);
653 	list_for_each_entry(sb, &super_blocks, s_list) {
654 		if (list_empty(&sb->s_instances))
655 			continue;
656 		if (sb->s_bdev == bdev) {
657 			if (grab_super(sb)) /* drops sb_lock */
658 				return sb;
659 			else
660 				goto restart;
661 		}
662 	}
663 	spin_unlock(&sb_lock);
664 	return NULL;
665 }
666 
667 struct super_block *user_get_super(dev_t dev)
668 {
669 	struct super_block *sb;
670 
671 	spin_lock(&sb_lock);
672 rescan:
673 	list_for_each_entry(sb, &super_blocks, s_list) {
674 		if (list_empty(&sb->s_instances))
675 			continue;
676 		if (sb->s_dev ==  dev) {
677 			sb->s_count++;
678 			spin_unlock(&sb_lock);
679 			down_read(&sb->s_umount);
680 			/* still alive? */
681 			if (sb->s_root)
682 				return sb;
683 			up_read(&sb->s_umount);
684 			/* nope, got unmounted */
685 			spin_lock(&sb_lock);
686 			__put_super(sb);
687 			goto rescan;
688 		}
689 	}
690 	spin_unlock(&sb_lock);
691 	return NULL;
692 }
693 
694 /**
695  *	do_remount_sb - asks filesystem to change mount options.
696  *	@sb:	superblock in question
697  *	@flags:	numeric part of options
698  *	@data:	the rest of options
699  *      @force: whether or not to force the change
700  *
701  *	Alters the mount options of a mounted file system.
702  */
703 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
704 {
705 	int retval;
706 	int remount_ro;
707 
708 	if (sb->s_frozen != SB_UNFROZEN)
709 		return -EBUSY;
710 
711 #ifdef CONFIG_BLOCK
712 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
713 		return -EACCES;
714 #endif
715 
716 	if (flags & MS_RDONLY)
717 		acct_auto_close(sb);
718 	shrink_dcache_sb(sb);
719 	sync_filesystem(sb);
720 
721 	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
722 
723 	/* If we are remounting RDONLY and current sb is read/write,
724 	   make sure there are no rw files opened */
725 	if (remount_ro) {
726 		if (force)
727 			mark_files_ro(sb);
728 		else if (!fs_may_remount_ro(sb))
729 			return -EBUSY;
730 	}
731 
732 	if (sb->s_op->remount_fs) {
733 		retval = sb->s_op->remount_fs(sb, &flags, data);
734 		if (retval)
735 			return retval;
736 	}
737 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
738 
739 	/*
740 	 * Some filesystems modify their metadata via some other path than the
741 	 * bdev buffer cache (eg. use a private mapping, or directories in
742 	 * pagecache, etc). Also file data modifications go via their own
743 	 * mappings. So If we try to mount readonly then copy the filesystem
744 	 * from bdev, we could get stale data, so invalidate it to give a best
745 	 * effort at coherency.
746 	 */
747 	if (remount_ro && sb->s_bdev)
748 		invalidate_bdev(sb->s_bdev);
749 	return 0;
750 }
751 
752 static void do_emergency_remount(struct work_struct *work)
753 {
754 	struct super_block *sb, *p = NULL;
755 
756 	spin_lock(&sb_lock);
757 	list_for_each_entry(sb, &super_blocks, s_list) {
758 		if (list_empty(&sb->s_instances))
759 			continue;
760 		sb->s_count++;
761 		spin_unlock(&sb_lock);
762 		down_write(&sb->s_umount);
763 		if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
764 			/*
765 			 * What lock protects sb->s_flags??
766 			 */
767 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
768 		}
769 		up_write(&sb->s_umount);
770 		spin_lock(&sb_lock);
771 		if (p)
772 			__put_super(p);
773 		p = sb;
774 	}
775 	if (p)
776 		__put_super(p);
777 	spin_unlock(&sb_lock);
778 	kfree(work);
779 	printk("Emergency Remount complete\n");
780 }
781 
782 void emergency_remount(void)
783 {
784 	struct work_struct *work;
785 
786 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
787 	if (work) {
788 		INIT_WORK(work, do_emergency_remount);
789 		schedule_work(work);
790 	}
791 }
792 
793 /*
794  * Unnamed block devices are dummy devices used by virtual
795  * filesystems which don't use real block-devices.  -- jrs
796  */
797 
798 static DEFINE_IDA(unnamed_dev_ida);
799 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
800 static int unnamed_dev_start = 0; /* don't bother trying below it */
801 
802 int get_anon_bdev(dev_t *p)
803 {
804 	int dev;
805 	int error;
806 
807  retry:
808 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
809 		return -ENOMEM;
810 	spin_lock(&unnamed_dev_lock);
811 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
812 	if (!error)
813 		unnamed_dev_start = dev + 1;
814 	spin_unlock(&unnamed_dev_lock);
815 	if (error == -EAGAIN)
816 		/* We raced and lost with another CPU. */
817 		goto retry;
818 	else if (error)
819 		return -EAGAIN;
820 
821 	if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
822 		spin_lock(&unnamed_dev_lock);
823 		ida_remove(&unnamed_dev_ida, dev);
824 		if (unnamed_dev_start > dev)
825 			unnamed_dev_start = dev;
826 		spin_unlock(&unnamed_dev_lock);
827 		return -EMFILE;
828 	}
829 	*p = MKDEV(0, dev & MINORMASK);
830 	return 0;
831 }
832 EXPORT_SYMBOL(get_anon_bdev);
833 
834 void free_anon_bdev(dev_t dev)
835 {
836 	int slot = MINOR(dev);
837 	spin_lock(&unnamed_dev_lock);
838 	ida_remove(&unnamed_dev_ida, slot);
839 	if (slot < unnamed_dev_start)
840 		unnamed_dev_start = slot;
841 	spin_unlock(&unnamed_dev_lock);
842 }
843 EXPORT_SYMBOL(free_anon_bdev);
844 
845 int set_anon_super(struct super_block *s, void *data)
846 {
847 	int error = get_anon_bdev(&s->s_dev);
848 	if (!error)
849 		s->s_bdi = &noop_backing_dev_info;
850 	return error;
851 }
852 
853 EXPORT_SYMBOL(set_anon_super);
854 
855 void kill_anon_super(struct super_block *sb)
856 {
857 	dev_t dev = sb->s_dev;
858 	generic_shutdown_super(sb);
859 	free_anon_bdev(dev);
860 }
861 
862 EXPORT_SYMBOL(kill_anon_super);
863 
864 void kill_litter_super(struct super_block *sb)
865 {
866 	if (sb->s_root)
867 		d_genocide(sb->s_root);
868 	kill_anon_super(sb);
869 }
870 
871 EXPORT_SYMBOL(kill_litter_super);
872 
873 static int ns_test_super(struct super_block *sb, void *data)
874 {
875 	return sb->s_fs_info == data;
876 }
877 
878 static int ns_set_super(struct super_block *sb, void *data)
879 {
880 	sb->s_fs_info = data;
881 	return set_anon_super(sb, NULL);
882 }
883 
884 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
885 	void *data, int (*fill_super)(struct super_block *, void *, int))
886 {
887 	struct super_block *sb;
888 
889 	sb = sget(fs_type, ns_test_super, ns_set_super, data);
890 	if (IS_ERR(sb))
891 		return ERR_CAST(sb);
892 
893 	if (!sb->s_root) {
894 		int err;
895 		sb->s_flags = flags;
896 		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
897 		if (err) {
898 			deactivate_locked_super(sb);
899 			return ERR_PTR(err);
900 		}
901 
902 		sb->s_flags |= MS_ACTIVE;
903 	}
904 
905 	return dget(sb->s_root);
906 }
907 
908 EXPORT_SYMBOL(mount_ns);
909 
910 #ifdef CONFIG_BLOCK
911 static int set_bdev_super(struct super_block *s, void *data)
912 {
913 	s->s_bdev = data;
914 	s->s_dev = s->s_bdev->bd_dev;
915 
916 	/*
917 	 * We set the bdi here to the queue backing, file systems can
918 	 * overwrite this in ->fill_super()
919 	 */
920 	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
921 	return 0;
922 }
923 
924 static int test_bdev_super(struct super_block *s, void *data)
925 {
926 	return (void *)s->s_bdev == data;
927 }
928 
929 struct dentry *mount_bdev(struct file_system_type *fs_type,
930 	int flags, const char *dev_name, void *data,
931 	int (*fill_super)(struct super_block *, void *, int))
932 {
933 	struct block_device *bdev;
934 	struct super_block *s;
935 	fmode_t mode = FMODE_READ | FMODE_EXCL;
936 	int error = 0;
937 
938 	if (!(flags & MS_RDONLY))
939 		mode |= FMODE_WRITE;
940 
941 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
942 	if (IS_ERR(bdev))
943 		return ERR_CAST(bdev);
944 
945 	/*
946 	 * once the super is inserted into the list by sget, s_umount
947 	 * will protect the lockfs code from trying to start a snapshot
948 	 * while we are mounting
949 	 */
950 	mutex_lock(&bdev->bd_fsfreeze_mutex);
951 	if (bdev->bd_fsfreeze_count > 0) {
952 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
953 		error = -EBUSY;
954 		goto error_bdev;
955 	}
956 	s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
957 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
958 	if (IS_ERR(s))
959 		goto error_s;
960 
961 	if (s->s_root) {
962 		if ((flags ^ s->s_flags) & MS_RDONLY) {
963 			deactivate_locked_super(s);
964 			error = -EBUSY;
965 			goto error_bdev;
966 		}
967 
968 		/*
969 		 * s_umount nests inside bd_mutex during
970 		 * __invalidate_device().  blkdev_put() acquires
971 		 * bd_mutex and can't be called under s_umount.  Drop
972 		 * s_umount temporarily.  This is safe as we're
973 		 * holding an active reference.
974 		 */
975 		up_write(&s->s_umount);
976 		blkdev_put(bdev, mode);
977 		down_write(&s->s_umount);
978 	} else {
979 		char b[BDEVNAME_SIZE];
980 
981 		s->s_flags = flags | MS_NOSEC;
982 		s->s_mode = mode;
983 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
984 		sb_set_blocksize(s, block_size(bdev));
985 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
986 		if (error) {
987 			deactivate_locked_super(s);
988 			goto error;
989 		}
990 
991 		s->s_flags |= MS_ACTIVE;
992 		bdev->bd_super = s;
993 	}
994 
995 	return dget(s->s_root);
996 
997 error_s:
998 	error = PTR_ERR(s);
999 error_bdev:
1000 	blkdev_put(bdev, mode);
1001 error:
1002 	return ERR_PTR(error);
1003 }
1004 EXPORT_SYMBOL(mount_bdev);
1005 
1006 void kill_block_super(struct super_block *sb)
1007 {
1008 	struct block_device *bdev = sb->s_bdev;
1009 	fmode_t mode = sb->s_mode;
1010 
1011 	bdev->bd_super = NULL;
1012 	generic_shutdown_super(sb);
1013 	sync_blockdev(bdev);
1014 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1015 	blkdev_put(bdev, mode | FMODE_EXCL);
1016 }
1017 
1018 EXPORT_SYMBOL(kill_block_super);
1019 #endif
1020 
1021 struct dentry *mount_nodev(struct file_system_type *fs_type,
1022 	int flags, void *data,
1023 	int (*fill_super)(struct super_block *, void *, int))
1024 {
1025 	int error;
1026 	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
1027 
1028 	if (IS_ERR(s))
1029 		return ERR_CAST(s);
1030 
1031 	s->s_flags = flags;
1032 
1033 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1034 	if (error) {
1035 		deactivate_locked_super(s);
1036 		return ERR_PTR(error);
1037 	}
1038 	s->s_flags |= MS_ACTIVE;
1039 	return dget(s->s_root);
1040 }
1041 EXPORT_SYMBOL(mount_nodev);
1042 
1043 static int compare_single(struct super_block *s, void *p)
1044 {
1045 	return 1;
1046 }
1047 
1048 struct dentry *mount_single(struct file_system_type *fs_type,
1049 	int flags, void *data,
1050 	int (*fill_super)(struct super_block *, void *, int))
1051 {
1052 	struct super_block *s;
1053 	int error;
1054 
1055 	s = sget(fs_type, compare_single, set_anon_super, NULL);
1056 	if (IS_ERR(s))
1057 		return ERR_CAST(s);
1058 	if (!s->s_root) {
1059 		s->s_flags = flags;
1060 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1061 		if (error) {
1062 			deactivate_locked_super(s);
1063 			return ERR_PTR(error);
1064 		}
1065 		s->s_flags |= MS_ACTIVE;
1066 	} else {
1067 		do_remount_sb(s, flags, data, 0);
1068 	}
1069 	return dget(s->s_root);
1070 }
1071 EXPORT_SYMBOL(mount_single);
1072 
1073 struct dentry *
1074 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1075 {
1076 	struct dentry *root;
1077 	struct super_block *sb;
1078 	char *secdata = NULL;
1079 	int error = -ENOMEM;
1080 
1081 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1082 		secdata = alloc_secdata();
1083 		if (!secdata)
1084 			goto out;
1085 
1086 		error = security_sb_copy_data(data, secdata);
1087 		if (error)
1088 			goto out_free_secdata;
1089 	}
1090 
1091 	root = type->mount(type, flags, name, data);
1092 	if (IS_ERR(root)) {
1093 		error = PTR_ERR(root);
1094 		goto out_free_secdata;
1095 	}
1096 	sb = root->d_sb;
1097 	BUG_ON(!sb);
1098 	WARN_ON(!sb->s_bdi);
1099 	WARN_ON(sb->s_bdi == &default_backing_dev_info);
1100 	sb->s_flags |= MS_BORN;
1101 
1102 	error = security_sb_kern_mount(sb, flags, secdata);
1103 	if (error)
1104 		goto out_sb;
1105 
1106 	/*
1107 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1108 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1109 	 * this warning for a little while to try and catch filesystems that
1110 	 * violate this rule.
1111 	 */
1112 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1113 		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1114 
1115 	up_write(&sb->s_umount);
1116 	free_secdata(secdata);
1117 	return root;
1118 out_sb:
1119 	dput(root);
1120 	deactivate_locked_super(sb);
1121 out_free_secdata:
1122 	free_secdata(secdata);
1123 out:
1124 	return ERR_PTR(error);
1125 }
1126 
1127 /**
1128  * freeze_super - lock the filesystem and force it into a consistent state
1129  * @sb: the super to lock
1130  *
1131  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1132  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1133  * -EBUSY.
1134  */
1135 int freeze_super(struct super_block *sb)
1136 {
1137 	int ret;
1138 
1139 	atomic_inc(&sb->s_active);
1140 	down_write(&sb->s_umount);
1141 	if (sb->s_frozen) {
1142 		deactivate_locked_super(sb);
1143 		return -EBUSY;
1144 	}
1145 
1146 	if (sb->s_flags & MS_RDONLY) {
1147 		sb->s_frozen = SB_FREEZE_TRANS;
1148 		smp_wmb();
1149 		up_write(&sb->s_umount);
1150 		return 0;
1151 	}
1152 
1153 	sb->s_frozen = SB_FREEZE_WRITE;
1154 	smp_wmb();
1155 
1156 	sync_filesystem(sb);
1157 
1158 	sb->s_frozen = SB_FREEZE_TRANS;
1159 	smp_wmb();
1160 
1161 	sync_blockdev(sb->s_bdev);
1162 	if (sb->s_op->freeze_fs) {
1163 		ret = sb->s_op->freeze_fs(sb);
1164 		if (ret) {
1165 			printk(KERN_ERR
1166 				"VFS:Filesystem freeze failed\n");
1167 			sb->s_frozen = SB_UNFROZEN;
1168 			deactivate_locked_super(sb);
1169 			return ret;
1170 		}
1171 	}
1172 	up_write(&sb->s_umount);
1173 	return 0;
1174 }
1175 EXPORT_SYMBOL(freeze_super);
1176 
1177 /**
1178  * thaw_super -- unlock filesystem
1179  * @sb: the super to thaw
1180  *
1181  * Unlocks the filesystem and marks it writeable again after freeze_super().
1182  */
1183 int thaw_super(struct super_block *sb)
1184 {
1185 	int error;
1186 
1187 	down_write(&sb->s_umount);
1188 	if (sb->s_frozen == SB_UNFROZEN) {
1189 		up_write(&sb->s_umount);
1190 		return -EINVAL;
1191 	}
1192 
1193 	if (sb->s_flags & MS_RDONLY)
1194 		goto out;
1195 
1196 	if (sb->s_op->unfreeze_fs) {
1197 		error = sb->s_op->unfreeze_fs(sb);
1198 		if (error) {
1199 			printk(KERN_ERR
1200 				"VFS:Filesystem thaw failed\n");
1201 			sb->s_frozen = SB_FREEZE_TRANS;
1202 			up_write(&sb->s_umount);
1203 			return error;
1204 		}
1205 	}
1206 
1207 out:
1208 	sb->s_frozen = SB_UNFROZEN;
1209 	smp_wmb();
1210 	wake_up(&sb->s_wait_unfrozen);
1211 	deactivate_locked_super(sb);
1212 
1213 	return 0;
1214 }
1215 EXPORT_SYMBOL(thaw_super);
1216