1 /* 2 * linux/fs/super.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * super.c contains code to handle: - mount structures 7 * - super-block tables 8 * - filesystem drivers list 9 * - mount system call 10 * - umount system call 11 * - ustat system call 12 * 13 * GK 2/5/95 - Changed to support mounting the root fs via NFS 14 * 15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 17 * Added options to /proc/mounts: 18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 21 */ 22 23 #include <linux/export.h> 24 #include <linux/slab.h> 25 #include <linux/acct.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/cleancache.h> 35 #include <linux/fsnotify.h> 36 #include <linux/lockdep.h> 37 #include "internal.h" 38 39 40 LIST_HEAD(super_blocks); 41 DEFINE_SPINLOCK(sb_lock); 42 43 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 44 "sb_writers", 45 "sb_pagefaults", 46 "sb_internal", 47 }; 48 49 /* 50 * One thing we have to be careful of with a per-sb shrinker is that we don't 51 * drop the last active reference to the superblock from within the shrinker. 52 * If that happens we could trigger unregistering the shrinker from within the 53 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 54 * take a passive reference to the superblock to avoid this from occurring. 55 */ 56 static int prune_super(struct shrinker *shrink, struct shrink_control *sc) 57 { 58 struct super_block *sb; 59 int fs_objects = 0; 60 int total_objects; 61 62 sb = container_of(shrink, struct super_block, s_shrink); 63 64 /* 65 * Deadlock avoidance. We may hold various FS locks, and we don't want 66 * to recurse into the FS that called us in clear_inode() and friends.. 67 */ 68 if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS)) 69 return -1; 70 71 if (!grab_super_passive(sb)) 72 return -1; 73 74 if (sb->s_op && sb->s_op->nr_cached_objects) 75 fs_objects = sb->s_op->nr_cached_objects(sb); 76 77 total_objects = sb->s_nr_dentry_unused + 78 sb->s_nr_inodes_unused + fs_objects + 1; 79 80 if (sc->nr_to_scan) { 81 int dentries; 82 int inodes; 83 84 /* proportion the scan between the caches */ 85 dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) / 86 total_objects; 87 inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) / 88 total_objects; 89 if (fs_objects) 90 fs_objects = (sc->nr_to_scan * fs_objects) / 91 total_objects; 92 /* 93 * prune the dcache first as the icache is pinned by it, then 94 * prune the icache, followed by the filesystem specific caches 95 */ 96 prune_dcache_sb(sb, dentries); 97 prune_icache_sb(sb, inodes); 98 99 if (fs_objects && sb->s_op->free_cached_objects) { 100 sb->s_op->free_cached_objects(sb, fs_objects); 101 fs_objects = sb->s_op->nr_cached_objects(sb); 102 } 103 total_objects = sb->s_nr_dentry_unused + 104 sb->s_nr_inodes_unused + fs_objects; 105 } 106 107 total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure; 108 drop_super(sb); 109 return total_objects; 110 } 111 112 static int init_sb_writers(struct super_block *s, struct file_system_type *type) 113 { 114 int err; 115 int i; 116 117 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 118 err = percpu_counter_init(&s->s_writers.counter[i], 0); 119 if (err < 0) 120 goto err_out; 121 lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i], 122 &type->s_writers_key[i], 0); 123 } 124 init_waitqueue_head(&s->s_writers.wait); 125 init_waitqueue_head(&s->s_writers.wait_unfrozen); 126 return 0; 127 err_out: 128 while (--i >= 0) 129 percpu_counter_destroy(&s->s_writers.counter[i]); 130 return err; 131 } 132 133 static void destroy_sb_writers(struct super_block *s) 134 { 135 int i; 136 137 for (i = 0; i < SB_FREEZE_LEVELS; i++) 138 percpu_counter_destroy(&s->s_writers.counter[i]); 139 } 140 141 /** 142 * alloc_super - create new superblock 143 * @type: filesystem type superblock should belong to 144 * @flags: the mount flags 145 * 146 * Allocates and initializes a new &struct super_block. alloc_super() 147 * returns a pointer new superblock or %NULL if allocation had failed. 148 */ 149 static struct super_block *alloc_super(struct file_system_type *type, int flags) 150 { 151 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 152 static const struct super_operations default_op; 153 154 if (s) { 155 if (security_sb_alloc(s)) { 156 /* 157 * We cannot call security_sb_free() without 158 * security_sb_alloc() succeeding. So bail out manually 159 */ 160 kfree(s); 161 s = NULL; 162 goto out; 163 } 164 #ifdef CONFIG_SMP 165 s->s_files = alloc_percpu(struct list_head); 166 if (!s->s_files) 167 goto err_out; 168 else { 169 int i; 170 171 for_each_possible_cpu(i) 172 INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i)); 173 } 174 #else 175 INIT_LIST_HEAD(&s->s_files); 176 #endif 177 if (init_sb_writers(s, type)) 178 goto err_out; 179 s->s_flags = flags; 180 s->s_bdi = &default_backing_dev_info; 181 INIT_HLIST_NODE(&s->s_instances); 182 INIT_HLIST_BL_HEAD(&s->s_anon); 183 INIT_LIST_HEAD(&s->s_inodes); 184 INIT_LIST_HEAD(&s->s_dentry_lru); 185 INIT_LIST_HEAD(&s->s_inode_lru); 186 spin_lock_init(&s->s_inode_lru_lock); 187 INIT_LIST_HEAD(&s->s_mounts); 188 init_rwsem(&s->s_umount); 189 lockdep_set_class(&s->s_umount, &type->s_umount_key); 190 /* 191 * sget() can have s_umount recursion. 192 * 193 * When it cannot find a suitable sb, it allocates a new 194 * one (this one), and tries again to find a suitable old 195 * one. 196 * 197 * In case that succeeds, it will acquire the s_umount 198 * lock of the old one. Since these are clearly distrinct 199 * locks, and this object isn't exposed yet, there's no 200 * risk of deadlocks. 201 * 202 * Annotate this by putting this lock in a different 203 * subclass. 204 */ 205 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 206 s->s_count = 1; 207 atomic_set(&s->s_active, 1); 208 mutex_init(&s->s_vfs_rename_mutex); 209 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 210 mutex_init(&s->s_dquot.dqio_mutex); 211 mutex_init(&s->s_dquot.dqonoff_mutex); 212 init_rwsem(&s->s_dquot.dqptr_sem); 213 s->s_maxbytes = MAX_NON_LFS; 214 s->s_op = &default_op; 215 s->s_time_gran = 1000000000; 216 s->cleancache_poolid = -1; 217 218 s->s_shrink.seeks = DEFAULT_SEEKS; 219 s->s_shrink.shrink = prune_super; 220 s->s_shrink.batch = 1024; 221 } 222 out: 223 return s; 224 err_out: 225 security_sb_free(s); 226 #ifdef CONFIG_SMP 227 if (s->s_files) 228 free_percpu(s->s_files); 229 #endif 230 destroy_sb_writers(s); 231 kfree(s); 232 s = NULL; 233 goto out; 234 } 235 236 /** 237 * destroy_super - frees a superblock 238 * @s: superblock to free 239 * 240 * Frees a superblock. 241 */ 242 static inline void destroy_super(struct super_block *s) 243 { 244 #ifdef CONFIG_SMP 245 free_percpu(s->s_files); 246 #endif 247 destroy_sb_writers(s); 248 security_sb_free(s); 249 WARN_ON(!list_empty(&s->s_mounts)); 250 kfree(s->s_subtype); 251 kfree(s->s_options); 252 kfree(s); 253 } 254 255 /* Superblock refcounting */ 256 257 /* 258 * Drop a superblock's refcount. The caller must hold sb_lock. 259 */ 260 static void __put_super(struct super_block *sb) 261 { 262 if (!--sb->s_count) { 263 list_del_init(&sb->s_list); 264 destroy_super(sb); 265 } 266 } 267 268 /** 269 * put_super - drop a temporary reference to superblock 270 * @sb: superblock in question 271 * 272 * Drops a temporary reference, frees superblock if there's no 273 * references left. 274 */ 275 static void put_super(struct super_block *sb) 276 { 277 spin_lock(&sb_lock); 278 __put_super(sb); 279 spin_unlock(&sb_lock); 280 } 281 282 283 /** 284 * deactivate_locked_super - drop an active reference to superblock 285 * @s: superblock to deactivate 286 * 287 * Drops an active reference to superblock, converting it into a temprory 288 * one if there is no other active references left. In that case we 289 * tell fs driver to shut it down and drop the temporary reference we 290 * had just acquired. 291 * 292 * Caller holds exclusive lock on superblock; that lock is released. 293 */ 294 void deactivate_locked_super(struct super_block *s) 295 { 296 struct file_system_type *fs = s->s_type; 297 if (atomic_dec_and_test(&s->s_active)) { 298 cleancache_invalidate_fs(s); 299 fs->kill_sb(s); 300 301 /* caches are now gone, we can safely kill the shrinker now */ 302 unregister_shrinker(&s->s_shrink); 303 put_filesystem(fs); 304 put_super(s); 305 } else { 306 up_write(&s->s_umount); 307 } 308 } 309 310 EXPORT_SYMBOL(deactivate_locked_super); 311 312 /** 313 * deactivate_super - drop an active reference to superblock 314 * @s: superblock to deactivate 315 * 316 * Variant of deactivate_locked_super(), except that superblock is *not* 317 * locked by caller. If we are going to drop the final active reference, 318 * lock will be acquired prior to that. 319 */ 320 void deactivate_super(struct super_block *s) 321 { 322 if (!atomic_add_unless(&s->s_active, -1, 1)) { 323 down_write(&s->s_umount); 324 deactivate_locked_super(s); 325 } 326 } 327 328 EXPORT_SYMBOL(deactivate_super); 329 330 /** 331 * grab_super - acquire an active reference 332 * @s: reference we are trying to make active 333 * 334 * Tries to acquire an active reference. grab_super() is used when we 335 * had just found a superblock in super_blocks or fs_type->fs_supers 336 * and want to turn it into a full-blown active reference. grab_super() 337 * is called with sb_lock held and drops it. Returns 1 in case of 338 * success, 0 if we had failed (superblock contents was already dead or 339 * dying when grab_super() had been called). Note that this is only 340 * called for superblocks not in rundown mode (== ones still on ->fs_supers 341 * of their type), so increment of ->s_count is OK here. 342 */ 343 static int grab_super(struct super_block *s) __releases(sb_lock) 344 { 345 s->s_count++; 346 spin_unlock(&sb_lock); 347 down_write(&s->s_umount); 348 if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) { 349 put_super(s); 350 return 1; 351 } 352 up_write(&s->s_umount); 353 put_super(s); 354 return 0; 355 } 356 357 /* 358 * grab_super_passive - acquire a passive reference 359 * @sb: reference we are trying to grab 360 * 361 * Tries to acquire a passive reference. This is used in places where we 362 * cannot take an active reference but we need to ensure that the 363 * superblock does not go away while we are working on it. It returns 364 * false if a reference was not gained, and returns true with the s_umount 365 * lock held in read mode if a reference is gained. On successful return, 366 * the caller must drop the s_umount lock and the passive reference when 367 * done. 368 */ 369 bool grab_super_passive(struct super_block *sb) 370 { 371 spin_lock(&sb_lock); 372 if (hlist_unhashed(&sb->s_instances)) { 373 spin_unlock(&sb_lock); 374 return false; 375 } 376 377 sb->s_count++; 378 spin_unlock(&sb_lock); 379 380 if (down_read_trylock(&sb->s_umount)) { 381 if (sb->s_root && (sb->s_flags & MS_BORN)) 382 return true; 383 up_read(&sb->s_umount); 384 } 385 386 put_super(sb); 387 return false; 388 } 389 390 /** 391 * generic_shutdown_super - common helper for ->kill_sb() 392 * @sb: superblock to kill 393 * 394 * generic_shutdown_super() does all fs-independent work on superblock 395 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 396 * that need destruction out of superblock, call generic_shutdown_super() 397 * and release aforementioned objects. Note: dentries and inodes _are_ 398 * taken care of and do not need specific handling. 399 * 400 * Upon calling this function, the filesystem may no longer alter or 401 * rearrange the set of dentries belonging to this super_block, nor may it 402 * change the attachments of dentries to inodes. 403 */ 404 void generic_shutdown_super(struct super_block *sb) 405 { 406 const struct super_operations *sop = sb->s_op; 407 408 if (sb->s_root) { 409 shrink_dcache_for_umount(sb); 410 sync_filesystem(sb); 411 sb->s_flags &= ~MS_ACTIVE; 412 413 fsnotify_unmount_inodes(&sb->s_inodes); 414 415 evict_inodes(sb); 416 417 if (sop->put_super) 418 sop->put_super(sb); 419 420 if (!list_empty(&sb->s_inodes)) { 421 printk("VFS: Busy inodes after unmount of %s. " 422 "Self-destruct in 5 seconds. Have a nice day...\n", 423 sb->s_id); 424 } 425 } 426 spin_lock(&sb_lock); 427 /* should be initialized for __put_super_and_need_restart() */ 428 hlist_del_init(&sb->s_instances); 429 spin_unlock(&sb_lock); 430 up_write(&sb->s_umount); 431 } 432 433 EXPORT_SYMBOL(generic_shutdown_super); 434 435 /** 436 * sget - find or create a superblock 437 * @type: filesystem type superblock should belong to 438 * @test: comparison callback 439 * @set: setup callback 440 * @flags: mount flags 441 * @data: argument to each of them 442 */ 443 struct super_block *sget(struct file_system_type *type, 444 int (*test)(struct super_block *,void *), 445 int (*set)(struct super_block *,void *), 446 int flags, 447 void *data) 448 { 449 struct super_block *s = NULL; 450 struct super_block *old; 451 int err; 452 453 retry: 454 spin_lock(&sb_lock); 455 if (test) { 456 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 457 if (!test(old, data)) 458 continue; 459 if (!grab_super(old)) 460 goto retry; 461 if (s) { 462 up_write(&s->s_umount); 463 destroy_super(s); 464 s = NULL; 465 } 466 return old; 467 } 468 } 469 if (!s) { 470 spin_unlock(&sb_lock); 471 s = alloc_super(type, flags); 472 if (!s) 473 return ERR_PTR(-ENOMEM); 474 goto retry; 475 } 476 477 err = set(s, data); 478 if (err) { 479 spin_unlock(&sb_lock); 480 up_write(&s->s_umount); 481 destroy_super(s); 482 return ERR_PTR(err); 483 } 484 s->s_type = type; 485 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 486 list_add_tail(&s->s_list, &super_blocks); 487 hlist_add_head(&s->s_instances, &type->fs_supers); 488 spin_unlock(&sb_lock); 489 get_filesystem(type); 490 register_shrinker(&s->s_shrink); 491 return s; 492 } 493 494 EXPORT_SYMBOL(sget); 495 496 void drop_super(struct super_block *sb) 497 { 498 up_read(&sb->s_umount); 499 put_super(sb); 500 } 501 502 EXPORT_SYMBOL(drop_super); 503 504 /** 505 * iterate_supers - call function for all active superblocks 506 * @f: function to call 507 * @arg: argument to pass to it 508 * 509 * Scans the superblock list and calls given function, passing it 510 * locked superblock and given argument. 511 */ 512 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 513 { 514 struct super_block *sb, *p = NULL; 515 516 spin_lock(&sb_lock); 517 list_for_each_entry(sb, &super_blocks, s_list) { 518 if (hlist_unhashed(&sb->s_instances)) 519 continue; 520 sb->s_count++; 521 spin_unlock(&sb_lock); 522 523 down_read(&sb->s_umount); 524 if (sb->s_root && (sb->s_flags & MS_BORN)) 525 f(sb, arg); 526 up_read(&sb->s_umount); 527 528 spin_lock(&sb_lock); 529 if (p) 530 __put_super(p); 531 p = sb; 532 } 533 if (p) 534 __put_super(p); 535 spin_unlock(&sb_lock); 536 } 537 538 /** 539 * iterate_supers_type - call function for superblocks of given type 540 * @type: fs type 541 * @f: function to call 542 * @arg: argument to pass to it 543 * 544 * Scans the superblock list and calls given function, passing it 545 * locked superblock and given argument. 546 */ 547 void iterate_supers_type(struct file_system_type *type, 548 void (*f)(struct super_block *, void *), void *arg) 549 { 550 struct super_block *sb, *p = NULL; 551 552 spin_lock(&sb_lock); 553 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 554 sb->s_count++; 555 spin_unlock(&sb_lock); 556 557 down_read(&sb->s_umount); 558 if (sb->s_root && (sb->s_flags & MS_BORN)) 559 f(sb, arg); 560 up_read(&sb->s_umount); 561 562 spin_lock(&sb_lock); 563 if (p) 564 __put_super(p); 565 p = sb; 566 } 567 if (p) 568 __put_super(p); 569 spin_unlock(&sb_lock); 570 } 571 572 EXPORT_SYMBOL(iterate_supers_type); 573 574 /** 575 * get_super - get the superblock of a device 576 * @bdev: device to get the superblock for 577 * 578 * Scans the superblock list and finds the superblock of the file system 579 * mounted on the device given. %NULL is returned if no match is found. 580 */ 581 582 struct super_block *get_super(struct block_device *bdev) 583 { 584 struct super_block *sb; 585 586 if (!bdev) 587 return NULL; 588 589 spin_lock(&sb_lock); 590 rescan: 591 list_for_each_entry(sb, &super_blocks, s_list) { 592 if (hlist_unhashed(&sb->s_instances)) 593 continue; 594 if (sb->s_bdev == bdev) { 595 sb->s_count++; 596 spin_unlock(&sb_lock); 597 down_read(&sb->s_umount); 598 /* still alive? */ 599 if (sb->s_root && (sb->s_flags & MS_BORN)) 600 return sb; 601 up_read(&sb->s_umount); 602 /* nope, got unmounted */ 603 spin_lock(&sb_lock); 604 __put_super(sb); 605 goto rescan; 606 } 607 } 608 spin_unlock(&sb_lock); 609 return NULL; 610 } 611 612 EXPORT_SYMBOL(get_super); 613 614 /** 615 * get_super_thawed - get thawed superblock of a device 616 * @bdev: device to get the superblock for 617 * 618 * Scans the superblock list and finds the superblock of the file system 619 * mounted on the device. The superblock is returned once it is thawed 620 * (or immediately if it was not frozen). %NULL is returned if no match 621 * is found. 622 */ 623 struct super_block *get_super_thawed(struct block_device *bdev) 624 { 625 while (1) { 626 struct super_block *s = get_super(bdev); 627 if (!s || s->s_writers.frozen == SB_UNFROZEN) 628 return s; 629 up_read(&s->s_umount); 630 wait_event(s->s_writers.wait_unfrozen, 631 s->s_writers.frozen == SB_UNFROZEN); 632 put_super(s); 633 } 634 } 635 EXPORT_SYMBOL(get_super_thawed); 636 637 /** 638 * get_active_super - get an active reference to the superblock of a device 639 * @bdev: device to get the superblock for 640 * 641 * Scans the superblock list and finds the superblock of the file system 642 * mounted on the device given. Returns the superblock with an active 643 * reference or %NULL if none was found. 644 */ 645 struct super_block *get_active_super(struct block_device *bdev) 646 { 647 struct super_block *sb; 648 649 if (!bdev) 650 return NULL; 651 652 restart: 653 spin_lock(&sb_lock); 654 list_for_each_entry(sb, &super_blocks, s_list) { 655 if (hlist_unhashed(&sb->s_instances)) 656 continue; 657 if (sb->s_bdev == bdev) { 658 if (!grab_super(sb)) 659 goto restart; 660 up_write(&sb->s_umount); 661 return sb; 662 } 663 } 664 spin_unlock(&sb_lock); 665 return NULL; 666 } 667 668 struct super_block *user_get_super(dev_t dev) 669 { 670 struct super_block *sb; 671 672 spin_lock(&sb_lock); 673 rescan: 674 list_for_each_entry(sb, &super_blocks, s_list) { 675 if (hlist_unhashed(&sb->s_instances)) 676 continue; 677 if (sb->s_dev == dev) { 678 sb->s_count++; 679 spin_unlock(&sb_lock); 680 down_read(&sb->s_umount); 681 /* still alive? */ 682 if (sb->s_root && (sb->s_flags & MS_BORN)) 683 return sb; 684 up_read(&sb->s_umount); 685 /* nope, got unmounted */ 686 spin_lock(&sb_lock); 687 __put_super(sb); 688 goto rescan; 689 } 690 } 691 spin_unlock(&sb_lock); 692 return NULL; 693 } 694 695 /** 696 * do_remount_sb - asks filesystem to change mount options. 697 * @sb: superblock in question 698 * @flags: numeric part of options 699 * @data: the rest of options 700 * @force: whether or not to force the change 701 * 702 * Alters the mount options of a mounted file system. 703 */ 704 int do_remount_sb(struct super_block *sb, int flags, void *data, int force) 705 { 706 int retval; 707 int remount_ro; 708 709 if (sb->s_writers.frozen != SB_UNFROZEN) 710 return -EBUSY; 711 712 #ifdef CONFIG_BLOCK 713 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev)) 714 return -EACCES; 715 #endif 716 717 if (flags & MS_RDONLY) 718 acct_auto_close(sb); 719 shrink_dcache_sb(sb); 720 sync_filesystem(sb); 721 722 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY); 723 724 /* If we are remounting RDONLY and current sb is read/write, 725 make sure there are no rw files opened */ 726 if (remount_ro) { 727 if (force) { 728 mark_files_ro(sb); 729 } else { 730 retval = sb_prepare_remount_readonly(sb); 731 if (retval) 732 return retval; 733 } 734 } 735 736 if (sb->s_op->remount_fs) { 737 retval = sb->s_op->remount_fs(sb, &flags, data); 738 if (retval) { 739 if (!force) 740 goto cancel_readonly; 741 /* If forced remount, go ahead despite any errors */ 742 WARN(1, "forced remount of a %s fs returned %i\n", 743 sb->s_type->name, retval); 744 } 745 } 746 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK); 747 /* Needs to be ordered wrt mnt_is_readonly() */ 748 smp_wmb(); 749 sb->s_readonly_remount = 0; 750 751 /* 752 * Some filesystems modify their metadata via some other path than the 753 * bdev buffer cache (eg. use a private mapping, or directories in 754 * pagecache, etc). Also file data modifications go via their own 755 * mappings. So If we try to mount readonly then copy the filesystem 756 * from bdev, we could get stale data, so invalidate it to give a best 757 * effort at coherency. 758 */ 759 if (remount_ro && sb->s_bdev) 760 invalidate_bdev(sb->s_bdev); 761 return 0; 762 763 cancel_readonly: 764 sb->s_readonly_remount = 0; 765 return retval; 766 } 767 768 static void do_emergency_remount(struct work_struct *work) 769 { 770 struct super_block *sb, *p = NULL; 771 772 spin_lock(&sb_lock); 773 list_for_each_entry(sb, &super_blocks, s_list) { 774 if (hlist_unhashed(&sb->s_instances)) 775 continue; 776 sb->s_count++; 777 spin_unlock(&sb_lock); 778 down_write(&sb->s_umount); 779 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) && 780 !(sb->s_flags & MS_RDONLY)) { 781 /* 782 * What lock protects sb->s_flags?? 783 */ 784 do_remount_sb(sb, MS_RDONLY, NULL, 1); 785 } 786 up_write(&sb->s_umount); 787 spin_lock(&sb_lock); 788 if (p) 789 __put_super(p); 790 p = sb; 791 } 792 if (p) 793 __put_super(p); 794 spin_unlock(&sb_lock); 795 kfree(work); 796 printk("Emergency Remount complete\n"); 797 } 798 799 void emergency_remount(void) 800 { 801 struct work_struct *work; 802 803 work = kmalloc(sizeof(*work), GFP_ATOMIC); 804 if (work) { 805 INIT_WORK(work, do_emergency_remount); 806 schedule_work(work); 807 } 808 } 809 810 /* 811 * Unnamed block devices are dummy devices used by virtual 812 * filesystems which don't use real block-devices. -- jrs 813 */ 814 815 static DEFINE_IDA(unnamed_dev_ida); 816 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */ 817 static int unnamed_dev_start = 0; /* don't bother trying below it */ 818 819 int get_anon_bdev(dev_t *p) 820 { 821 int dev; 822 int error; 823 824 retry: 825 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0) 826 return -ENOMEM; 827 spin_lock(&unnamed_dev_lock); 828 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev); 829 if (!error) 830 unnamed_dev_start = dev + 1; 831 spin_unlock(&unnamed_dev_lock); 832 if (error == -EAGAIN) 833 /* We raced and lost with another CPU. */ 834 goto retry; 835 else if (error) 836 return -EAGAIN; 837 838 if (dev == (1 << MINORBITS)) { 839 spin_lock(&unnamed_dev_lock); 840 ida_remove(&unnamed_dev_ida, dev); 841 if (unnamed_dev_start > dev) 842 unnamed_dev_start = dev; 843 spin_unlock(&unnamed_dev_lock); 844 return -EMFILE; 845 } 846 *p = MKDEV(0, dev & MINORMASK); 847 return 0; 848 } 849 EXPORT_SYMBOL(get_anon_bdev); 850 851 void free_anon_bdev(dev_t dev) 852 { 853 int slot = MINOR(dev); 854 spin_lock(&unnamed_dev_lock); 855 ida_remove(&unnamed_dev_ida, slot); 856 if (slot < unnamed_dev_start) 857 unnamed_dev_start = slot; 858 spin_unlock(&unnamed_dev_lock); 859 } 860 EXPORT_SYMBOL(free_anon_bdev); 861 862 int set_anon_super(struct super_block *s, void *data) 863 { 864 int error = get_anon_bdev(&s->s_dev); 865 if (!error) 866 s->s_bdi = &noop_backing_dev_info; 867 return error; 868 } 869 870 EXPORT_SYMBOL(set_anon_super); 871 872 void kill_anon_super(struct super_block *sb) 873 { 874 dev_t dev = sb->s_dev; 875 generic_shutdown_super(sb); 876 free_anon_bdev(dev); 877 } 878 879 EXPORT_SYMBOL(kill_anon_super); 880 881 void kill_litter_super(struct super_block *sb) 882 { 883 if (sb->s_root) 884 d_genocide(sb->s_root); 885 kill_anon_super(sb); 886 } 887 888 EXPORT_SYMBOL(kill_litter_super); 889 890 static int ns_test_super(struct super_block *sb, void *data) 891 { 892 return sb->s_fs_info == data; 893 } 894 895 static int ns_set_super(struct super_block *sb, void *data) 896 { 897 sb->s_fs_info = data; 898 return set_anon_super(sb, NULL); 899 } 900 901 struct dentry *mount_ns(struct file_system_type *fs_type, int flags, 902 void *data, int (*fill_super)(struct super_block *, void *, int)) 903 { 904 struct super_block *sb; 905 906 sb = sget(fs_type, ns_test_super, ns_set_super, flags, data); 907 if (IS_ERR(sb)) 908 return ERR_CAST(sb); 909 910 if (!sb->s_root) { 911 int err; 912 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 913 if (err) { 914 deactivate_locked_super(sb); 915 return ERR_PTR(err); 916 } 917 918 sb->s_flags |= MS_ACTIVE; 919 } 920 921 return dget(sb->s_root); 922 } 923 924 EXPORT_SYMBOL(mount_ns); 925 926 #ifdef CONFIG_BLOCK 927 static int set_bdev_super(struct super_block *s, void *data) 928 { 929 s->s_bdev = data; 930 s->s_dev = s->s_bdev->bd_dev; 931 932 /* 933 * We set the bdi here to the queue backing, file systems can 934 * overwrite this in ->fill_super() 935 */ 936 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info; 937 return 0; 938 } 939 940 static int test_bdev_super(struct super_block *s, void *data) 941 { 942 return (void *)s->s_bdev == data; 943 } 944 945 struct dentry *mount_bdev(struct file_system_type *fs_type, 946 int flags, const char *dev_name, void *data, 947 int (*fill_super)(struct super_block *, void *, int)) 948 { 949 struct block_device *bdev; 950 struct super_block *s; 951 fmode_t mode = FMODE_READ | FMODE_EXCL; 952 int error = 0; 953 954 if (!(flags & MS_RDONLY)) 955 mode |= FMODE_WRITE; 956 957 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 958 if (IS_ERR(bdev)) 959 return ERR_CAST(bdev); 960 961 /* 962 * once the super is inserted into the list by sget, s_umount 963 * will protect the lockfs code from trying to start a snapshot 964 * while we are mounting 965 */ 966 mutex_lock(&bdev->bd_fsfreeze_mutex); 967 if (bdev->bd_fsfreeze_count > 0) { 968 mutex_unlock(&bdev->bd_fsfreeze_mutex); 969 error = -EBUSY; 970 goto error_bdev; 971 } 972 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC, 973 bdev); 974 mutex_unlock(&bdev->bd_fsfreeze_mutex); 975 if (IS_ERR(s)) 976 goto error_s; 977 978 if (s->s_root) { 979 if ((flags ^ s->s_flags) & MS_RDONLY) { 980 deactivate_locked_super(s); 981 error = -EBUSY; 982 goto error_bdev; 983 } 984 985 /* 986 * s_umount nests inside bd_mutex during 987 * __invalidate_device(). blkdev_put() acquires 988 * bd_mutex and can't be called under s_umount. Drop 989 * s_umount temporarily. This is safe as we're 990 * holding an active reference. 991 */ 992 up_write(&s->s_umount); 993 blkdev_put(bdev, mode); 994 down_write(&s->s_umount); 995 } else { 996 char b[BDEVNAME_SIZE]; 997 998 s->s_mode = mode; 999 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); 1000 sb_set_blocksize(s, block_size(bdev)); 1001 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1002 if (error) { 1003 deactivate_locked_super(s); 1004 goto error; 1005 } 1006 1007 s->s_flags |= MS_ACTIVE; 1008 bdev->bd_super = s; 1009 } 1010 1011 return dget(s->s_root); 1012 1013 error_s: 1014 error = PTR_ERR(s); 1015 error_bdev: 1016 blkdev_put(bdev, mode); 1017 error: 1018 return ERR_PTR(error); 1019 } 1020 EXPORT_SYMBOL(mount_bdev); 1021 1022 void kill_block_super(struct super_block *sb) 1023 { 1024 struct block_device *bdev = sb->s_bdev; 1025 fmode_t mode = sb->s_mode; 1026 1027 bdev->bd_super = NULL; 1028 generic_shutdown_super(sb); 1029 sync_blockdev(bdev); 1030 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 1031 blkdev_put(bdev, mode | FMODE_EXCL); 1032 } 1033 1034 EXPORT_SYMBOL(kill_block_super); 1035 #endif 1036 1037 struct dentry *mount_nodev(struct file_system_type *fs_type, 1038 int flags, void *data, 1039 int (*fill_super)(struct super_block *, void *, int)) 1040 { 1041 int error; 1042 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1043 1044 if (IS_ERR(s)) 1045 return ERR_CAST(s); 1046 1047 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1048 if (error) { 1049 deactivate_locked_super(s); 1050 return ERR_PTR(error); 1051 } 1052 s->s_flags |= MS_ACTIVE; 1053 return dget(s->s_root); 1054 } 1055 EXPORT_SYMBOL(mount_nodev); 1056 1057 static int compare_single(struct super_block *s, void *p) 1058 { 1059 return 1; 1060 } 1061 1062 struct dentry *mount_single(struct file_system_type *fs_type, 1063 int flags, void *data, 1064 int (*fill_super)(struct super_block *, void *, int)) 1065 { 1066 struct super_block *s; 1067 int error; 1068 1069 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1070 if (IS_ERR(s)) 1071 return ERR_CAST(s); 1072 if (!s->s_root) { 1073 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1074 if (error) { 1075 deactivate_locked_super(s); 1076 return ERR_PTR(error); 1077 } 1078 s->s_flags |= MS_ACTIVE; 1079 } else { 1080 do_remount_sb(s, flags, data, 0); 1081 } 1082 return dget(s->s_root); 1083 } 1084 EXPORT_SYMBOL(mount_single); 1085 1086 struct dentry * 1087 mount_fs(struct file_system_type *type, int flags, const char *name, void *data) 1088 { 1089 struct dentry *root; 1090 struct super_block *sb; 1091 char *secdata = NULL; 1092 int error = -ENOMEM; 1093 1094 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) { 1095 secdata = alloc_secdata(); 1096 if (!secdata) 1097 goto out; 1098 1099 error = security_sb_copy_data(data, secdata); 1100 if (error) 1101 goto out_free_secdata; 1102 } 1103 1104 root = type->mount(type, flags, name, data); 1105 if (IS_ERR(root)) { 1106 error = PTR_ERR(root); 1107 goto out_free_secdata; 1108 } 1109 sb = root->d_sb; 1110 BUG_ON(!sb); 1111 WARN_ON(!sb->s_bdi); 1112 WARN_ON(sb->s_bdi == &default_backing_dev_info); 1113 sb->s_flags |= MS_BORN; 1114 1115 error = security_sb_kern_mount(sb, flags, secdata); 1116 if (error) 1117 goto out_sb; 1118 1119 /* 1120 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1121 * but s_maxbytes was an unsigned long long for many releases. Throw 1122 * this warning for a little while to try and catch filesystems that 1123 * violate this rule. 1124 */ 1125 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1126 "negative value (%lld)\n", type->name, sb->s_maxbytes); 1127 1128 up_write(&sb->s_umount); 1129 free_secdata(secdata); 1130 return root; 1131 out_sb: 1132 dput(root); 1133 deactivate_locked_super(sb); 1134 out_free_secdata: 1135 free_secdata(secdata); 1136 out: 1137 return ERR_PTR(error); 1138 } 1139 1140 /* 1141 * This is an internal function, please use sb_end_{write,pagefault,intwrite} 1142 * instead. 1143 */ 1144 void __sb_end_write(struct super_block *sb, int level) 1145 { 1146 percpu_counter_dec(&sb->s_writers.counter[level-1]); 1147 /* 1148 * Make sure s_writers are updated before we wake up waiters in 1149 * freeze_super(). 1150 */ 1151 smp_mb(); 1152 if (waitqueue_active(&sb->s_writers.wait)) 1153 wake_up(&sb->s_writers.wait); 1154 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_); 1155 } 1156 EXPORT_SYMBOL(__sb_end_write); 1157 1158 #ifdef CONFIG_LOCKDEP 1159 /* 1160 * We want lockdep to tell us about possible deadlocks with freezing but 1161 * it's it bit tricky to properly instrument it. Getting a freeze protection 1162 * works as getting a read lock but there are subtle problems. XFS for example 1163 * gets freeze protection on internal level twice in some cases, which is OK 1164 * only because we already hold a freeze protection also on higher level. Due 1165 * to these cases we have to tell lockdep we are doing trylock when we 1166 * already hold a freeze protection for a higher freeze level. 1167 */ 1168 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock, 1169 unsigned long ip) 1170 { 1171 int i; 1172 1173 if (!trylock) { 1174 for (i = 0; i < level - 1; i++) 1175 if (lock_is_held(&sb->s_writers.lock_map[i])) { 1176 trylock = true; 1177 break; 1178 } 1179 } 1180 rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip); 1181 } 1182 #endif 1183 1184 /* 1185 * This is an internal function, please use sb_start_{write,pagefault,intwrite} 1186 * instead. 1187 */ 1188 int __sb_start_write(struct super_block *sb, int level, bool wait) 1189 { 1190 retry: 1191 if (unlikely(sb->s_writers.frozen >= level)) { 1192 if (!wait) 1193 return 0; 1194 wait_event(sb->s_writers.wait_unfrozen, 1195 sb->s_writers.frozen < level); 1196 } 1197 1198 #ifdef CONFIG_LOCKDEP 1199 acquire_freeze_lock(sb, level, !wait, _RET_IP_); 1200 #endif 1201 percpu_counter_inc(&sb->s_writers.counter[level-1]); 1202 /* 1203 * Make sure counter is updated before we check for frozen. 1204 * freeze_super() first sets frozen and then checks the counter. 1205 */ 1206 smp_mb(); 1207 if (unlikely(sb->s_writers.frozen >= level)) { 1208 __sb_end_write(sb, level); 1209 goto retry; 1210 } 1211 return 1; 1212 } 1213 EXPORT_SYMBOL(__sb_start_write); 1214 1215 /** 1216 * sb_wait_write - wait until all writers to given file system finish 1217 * @sb: the super for which we wait 1218 * @level: type of writers we wait for (normal vs page fault) 1219 * 1220 * This function waits until there are no writers of given type to given file 1221 * system. Caller of this function should make sure there can be no new writers 1222 * of type @level before calling this function. Otherwise this function can 1223 * livelock. 1224 */ 1225 static void sb_wait_write(struct super_block *sb, int level) 1226 { 1227 s64 writers; 1228 1229 /* 1230 * We just cycle-through lockdep here so that it does not complain 1231 * about returning with lock to userspace 1232 */ 1233 rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_); 1234 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_); 1235 1236 do { 1237 DEFINE_WAIT(wait); 1238 1239 /* 1240 * We use a barrier in prepare_to_wait() to separate setting 1241 * of frozen and checking of the counter 1242 */ 1243 prepare_to_wait(&sb->s_writers.wait, &wait, 1244 TASK_UNINTERRUPTIBLE); 1245 1246 writers = percpu_counter_sum(&sb->s_writers.counter[level-1]); 1247 if (writers) 1248 schedule(); 1249 1250 finish_wait(&sb->s_writers.wait, &wait); 1251 } while (writers); 1252 } 1253 1254 /** 1255 * freeze_super - lock the filesystem and force it into a consistent state 1256 * @sb: the super to lock 1257 * 1258 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1259 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1260 * -EBUSY. 1261 * 1262 * During this function, sb->s_writers.frozen goes through these values: 1263 * 1264 * SB_UNFROZEN: File system is normal, all writes progress as usual. 1265 * 1266 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 1267 * writes should be blocked, though page faults are still allowed. We wait for 1268 * all writes to complete and then proceed to the next stage. 1269 * 1270 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 1271 * but internal fs threads can still modify the filesystem (although they 1272 * should not dirty new pages or inodes), writeback can run etc. After waiting 1273 * for all running page faults we sync the filesystem which will clean all 1274 * dirty pages and inodes (no new dirty pages or inodes can be created when 1275 * sync is running). 1276 * 1277 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 1278 * modification are blocked (e.g. XFS preallocation truncation on inode 1279 * reclaim). This is usually implemented by blocking new transactions for 1280 * filesystems that have them and need this additional guard. After all 1281 * internal writers are finished we call ->freeze_fs() to finish filesystem 1282 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 1283 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 1284 * 1285 * sb->s_writers.frozen is protected by sb->s_umount. 1286 */ 1287 int freeze_super(struct super_block *sb) 1288 { 1289 int ret; 1290 1291 atomic_inc(&sb->s_active); 1292 down_write(&sb->s_umount); 1293 if (sb->s_writers.frozen != SB_UNFROZEN) { 1294 deactivate_locked_super(sb); 1295 return -EBUSY; 1296 } 1297 1298 if (!(sb->s_flags & MS_BORN)) { 1299 up_write(&sb->s_umount); 1300 return 0; /* sic - it's "nothing to do" */ 1301 } 1302 1303 if (sb->s_flags & MS_RDONLY) { 1304 /* Nothing to do really... */ 1305 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1306 up_write(&sb->s_umount); 1307 return 0; 1308 } 1309 1310 /* From now on, no new normal writers can start */ 1311 sb->s_writers.frozen = SB_FREEZE_WRITE; 1312 smp_wmb(); 1313 1314 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 1315 up_write(&sb->s_umount); 1316 1317 sb_wait_write(sb, SB_FREEZE_WRITE); 1318 1319 /* Now we go and block page faults... */ 1320 down_write(&sb->s_umount); 1321 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 1322 smp_wmb(); 1323 1324 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 1325 1326 /* All writers are done so after syncing there won't be dirty data */ 1327 sync_filesystem(sb); 1328 1329 /* Now wait for internal filesystem counter */ 1330 sb->s_writers.frozen = SB_FREEZE_FS; 1331 smp_wmb(); 1332 sb_wait_write(sb, SB_FREEZE_FS); 1333 1334 if (sb->s_op->freeze_fs) { 1335 ret = sb->s_op->freeze_fs(sb); 1336 if (ret) { 1337 printk(KERN_ERR 1338 "VFS:Filesystem freeze failed\n"); 1339 sb->s_writers.frozen = SB_UNFROZEN; 1340 smp_wmb(); 1341 wake_up(&sb->s_writers.wait_unfrozen); 1342 deactivate_locked_super(sb); 1343 return ret; 1344 } 1345 } 1346 /* 1347 * This is just for debugging purposes so that fs can warn if it 1348 * sees write activity when frozen is set to SB_FREEZE_COMPLETE. 1349 */ 1350 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1351 up_write(&sb->s_umount); 1352 return 0; 1353 } 1354 EXPORT_SYMBOL(freeze_super); 1355 1356 /** 1357 * thaw_super -- unlock filesystem 1358 * @sb: the super to thaw 1359 * 1360 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1361 */ 1362 int thaw_super(struct super_block *sb) 1363 { 1364 int error; 1365 1366 down_write(&sb->s_umount); 1367 if (sb->s_writers.frozen == SB_UNFROZEN) { 1368 up_write(&sb->s_umount); 1369 return -EINVAL; 1370 } 1371 1372 if (sb->s_flags & MS_RDONLY) 1373 goto out; 1374 1375 if (sb->s_op->unfreeze_fs) { 1376 error = sb->s_op->unfreeze_fs(sb); 1377 if (error) { 1378 printk(KERN_ERR 1379 "VFS:Filesystem thaw failed\n"); 1380 up_write(&sb->s_umount); 1381 return error; 1382 } 1383 } 1384 1385 out: 1386 sb->s_writers.frozen = SB_UNFROZEN; 1387 smp_wmb(); 1388 wake_up(&sb->s_writers.wait_unfrozen); 1389 deactivate_locked_super(sb); 1390 1391 return 0; 1392 } 1393 EXPORT_SYMBOL(thaw_super); 1394