xref: /openbmc/linux/fs/super.c (revision 80ecbd24)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include "internal.h"
38 
39 
40 LIST_HEAD(super_blocks);
41 DEFINE_SPINLOCK(sb_lock);
42 
43 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
44 	"sb_writers",
45 	"sb_pagefaults",
46 	"sb_internal",
47 };
48 
49 /*
50  * One thing we have to be careful of with a per-sb shrinker is that we don't
51  * drop the last active reference to the superblock from within the shrinker.
52  * If that happens we could trigger unregistering the shrinker from within the
53  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
54  * take a passive reference to the superblock to avoid this from occurring.
55  */
56 static int prune_super(struct shrinker *shrink, struct shrink_control *sc)
57 {
58 	struct super_block *sb;
59 	int	fs_objects = 0;
60 	int	total_objects;
61 
62 	sb = container_of(shrink, struct super_block, s_shrink);
63 
64 	/*
65 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
66 	 * to recurse into the FS that called us in clear_inode() and friends..
67 	 */
68 	if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS))
69 		return -1;
70 
71 	if (!grab_super_passive(sb))
72 		return -1;
73 
74 	if (sb->s_op && sb->s_op->nr_cached_objects)
75 		fs_objects = sb->s_op->nr_cached_objects(sb);
76 
77 	total_objects = sb->s_nr_dentry_unused +
78 			sb->s_nr_inodes_unused + fs_objects + 1;
79 
80 	if (sc->nr_to_scan) {
81 		int	dentries;
82 		int	inodes;
83 
84 		/* proportion the scan between the caches */
85 		dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) /
86 							total_objects;
87 		inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) /
88 							total_objects;
89 		if (fs_objects)
90 			fs_objects = (sc->nr_to_scan * fs_objects) /
91 							total_objects;
92 		/*
93 		 * prune the dcache first as the icache is pinned by it, then
94 		 * prune the icache, followed by the filesystem specific caches
95 		 */
96 		prune_dcache_sb(sb, dentries);
97 		prune_icache_sb(sb, inodes);
98 
99 		if (fs_objects && sb->s_op->free_cached_objects) {
100 			sb->s_op->free_cached_objects(sb, fs_objects);
101 			fs_objects = sb->s_op->nr_cached_objects(sb);
102 		}
103 		total_objects = sb->s_nr_dentry_unused +
104 				sb->s_nr_inodes_unused + fs_objects;
105 	}
106 
107 	total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure;
108 	drop_super(sb);
109 	return total_objects;
110 }
111 
112 static int init_sb_writers(struct super_block *s, struct file_system_type *type)
113 {
114 	int err;
115 	int i;
116 
117 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
118 		err = percpu_counter_init(&s->s_writers.counter[i], 0);
119 		if (err < 0)
120 			goto err_out;
121 		lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i],
122 				 &type->s_writers_key[i], 0);
123 	}
124 	init_waitqueue_head(&s->s_writers.wait);
125 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
126 	return 0;
127 err_out:
128 	while (--i >= 0)
129 		percpu_counter_destroy(&s->s_writers.counter[i]);
130 	return err;
131 }
132 
133 static void destroy_sb_writers(struct super_block *s)
134 {
135 	int i;
136 
137 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
138 		percpu_counter_destroy(&s->s_writers.counter[i]);
139 }
140 
141 /**
142  *	alloc_super	-	create new superblock
143  *	@type:	filesystem type superblock should belong to
144  *	@flags: the mount flags
145  *
146  *	Allocates and initializes a new &struct super_block.  alloc_super()
147  *	returns a pointer new superblock or %NULL if allocation had failed.
148  */
149 static struct super_block *alloc_super(struct file_system_type *type, int flags)
150 {
151 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
152 	static const struct super_operations default_op;
153 
154 	if (s) {
155 		if (security_sb_alloc(s)) {
156 			/*
157 			 * We cannot call security_sb_free() without
158 			 * security_sb_alloc() succeeding. So bail out manually
159 			 */
160 			kfree(s);
161 			s = NULL;
162 			goto out;
163 		}
164 #ifdef CONFIG_SMP
165 		s->s_files = alloc_percpu(struct list_head);
166 		if (!s->s_files)
167 			goto err_out;
168 		else {
169 			int i;
170 
171 			for_each_possible_cpu(i)
172 				INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
173 		}
174 #else
175 		INIT_LIST_HEAD(&s->s_files);
176 #endif
177 		if (init_sb_writers(s, type))
178 			goto err_out;
179 		s->s_flags = flags;
180 		s->s_bdi = &default_backing_dev_info;
181 		INIT_HLIST_NODE(&s->s_instances);
182 		INIT_HLIST_BL_HEAD(&s->s_anon);
183 		INIT_LIST_HEAD(&s->s_inodes);
184 		INIT_LIST_HEAD(&s->s_dentry_lru);
185 		INIT_LIST_HEAD(&s->s_inode_lru);
186 		spin_lock_init(&s->s_inode_lru_lock);
187 		INIT_LIST_HEAD(&s->s_mounts);
188 		init_rwsem(&s->s_umount);
189 		lockdep_set_class(&s->s_umount, &type->s_umount_key);
190 		/*
191 		 * sget() can have s_umount recursion.
192 		 *
193 		 * When it cannot find a suitable sb, it allocates a new
194 		 * one (this one), and tries again to find a suitable old
195 		 * one.
196 		 *
197 		 * In case that succeeds, it will acquire the s_umount
198 		 * lock of the old one. Since these are clearly distrinct
199 		 * locks, and this object isn't exposed yet, there's no
200 		 * risk of deadlocks.
201 		 *
202 		 * Annotate this by putting this lock in a different
203 		 * subclass.
204 		 */
205 		down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
206 		s->s_count = 1;
207 		atomic_set(&s->s_active, 1);
208 		mutex_init(&s->s_vfs_rename_mutex);
209 		lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
210 		mutex_init(&s->s_dquot.dqio_mutex);
211 		mutex_init(&s->s_dquot.dqonoff_mutex);
212 		init_rwsem(&s->s_dquot.dqptr_sem);
213 		s->s_maxbytes = MAX_NON_LFS;
214 		s->s_op = &default_op;
215 		s->s_time_gran = 1000000000;
216 		s->cleancache_poolid = -1;
217 
218 		s->s_shrink.seeks = DEFAULT_SEEKS;
219 		s->s_shrink.shrink = prune_super;
220 		s->s_shrink.batch = 1024;
221 	}
222 out:
223 	return s;
224 err_out:
225 	security_sb_free(s);
226 #ifdef CONFIG_SMP
227 	if (s->s_files)
228 		free_percpu(s->s_files);
229 #endif
230 	destroy_sb_writers(s);
231 	kfree(s);
232 	s = NULL;
233 	goto out;
234 }
235 
236 /**
237  *	destroy_super	-	frees a superblock
238  *	@s: superblock to free
239  *
240  *	Frees a superblock.
241  */
242 static inline void destroy_super(struct super_block *s)
243 {
244 #ifdef CONFIG_SMP
245 	free_percpu(s->s_files);
246 #endif
247 	destroy_sb_writers(s);
248 	security_sb_free(s);
249 	WARN_ON(!list_empty(&s->s_mounts));
250 	kfree(s->s_subtype);
251 	kfree(s->s_options);
252 	kfree(s);
253 }
254 
255 /* Superblock refcounting  */
256 
257 /*
258  * Drop a superblock's refcount.  The caller must hold sb_lock.
259  */
260 static void __put_super(struct super_block *sb)
261 {
262 	if (!--sb->s_count) {
263 		list_del_init(&sb->s_list);
264 		destroy_super(sb);
265 	}
266 }
267 
268 /**
269  *	put_super	-	drop a temporary reference to superblock
270  *	@sb: superblock in question
271  *
272  *	Drops a temporary reference, frees superblock if there's no
273  *	references left.
274  */
275 static void put_super(struct super_block *sb)
276 {
277 	spin_lock(&sb_lock);
278 	__put_super(sb);
279 	spin_unlock(&sb_lock);
280 }
281 
282 
283 /**
284  *	deactivate_locked_super	-	drop an active reference to superblock
285  *	@s: superblock to deactivate
286  *
287  *	Drops an active reference to superblock, converting it into a temprory
288  *	one if there is no other active references left.  In that case we
289  *	tell fs driver to shut it down and drop the temporary reference we
290  *	had just acquired.
291  *
292  *	Caller holds exclusive lock on superblock; that lock is released.
293  */
294 void deactivate_locked_super(struct super_block *s)
295 {
296 	struct file_system_type *fs = s->s_type;
297 	if (atomic_dec_and_test(&s->s_active)) {
298 		cleancache_invalidate_fs(s);
299 		fs->kill_sb(s);
300 
301 		/* caches are now gone, we can safely kill the shrinker now */
302 		unregister_shrinker(&s->s_shrink);
303 		put_filesystem(fs);
304 		put_super(s);
305 	} else {
306 		up_write(&s->s_umount);
307 	}
308 }
309 
310 EXPORT_SYMBOL(deactivate_locked_super);
311 
312 /**
313  *	deactivate_super	-	drop an active reference to superblock
314  *	@s: superblock to deactivate
315  *
316  *	Variant of deactivate_locked_super(), except that superblock is *not*
317  *	locked by caller.  If we are going to drop the final active reference,
318  *	lock will be acquired prior to that.
319  */
320 void deactivate_super(struct super_block *s)
321 {
322         if (!atomic_add_unless(&s->s_active, -1, 1)) {
323 		down_write(&s->s_umount);
324 		deactivate_locked_super(s);
325 	}
326 }
327 
328 EXPORT_SYMBOL(deactivate_super);
329 
330 /**
331  *	grab_super - acquire an active reference
332  *	@s: reference we are trying to make active
333  *
334  *	Tries to acquire an active reference.  grab_super() is used when we
335  * 	had just found a superblock in super_blocks or fs_type->fs_supers
336  *	and want to turn it into a full-blown active reference.  grab_super()
337  *	is called with sb_lock held and drops it.  Returns 1 in case of
338  *	success, 0 if we had failed (superblock contents was already dead or
339  *	dying when grab_super() had been called).  Note that this is only
340  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
341  *	of their type), so increment of ->s_count is OK here.
342  */
343 static int grab_super(struct super_block *s) __releases(sb_lock)
344 {
345 	s->s_count++;
346 	spin_unlock(&sb_lock);
347 	down_write(&s->s_umount);
348 	if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
349 		put_super(s);
350 		return 1;
351 	}
352 	up_write(&s->s_umount);
353 	put_super(s);
354 	return 0;
355 }
356 
357 /*
358  *	grab_super_passive - acquire a passive reference
359  *	@sb: reference we are trying to grab
360  *
361  *	Tries to acquire a passive reference. This is used in places where we
362  *	cannot take an active reference but we need to ensure that the
363  *	superblock does not go away while we are working on it. It returns
364  *	false if a reference was not gained, and returns true with the s_umount
365  *	lock held in read mode if a reference is gained. On successful return,
366  *	the caller must drop the s_umount lock and the passive reference when
367  *	done.
368  */
369 bool grab_super_passive(struct super_block *sb)
370 {
371 	spin_lock(&sb_lock);
372 	if (hlist_unhashed(&sb->s_instances)) {
373 		spin_unlock(&sb_lock);
374 		return false;
375 	}
376 
377 	sb->s_count++;
378 	spin_unlock(&sb_lock);
379 
380 	if (down_read_trylock(&sb->s_umount)) {
381 		if (sb->s_root && (sb->s_flags & MS_BORN))
382 			return true;
383 		up_read(&sb->s_umount);
384 	}
385 
386 	put_super(sb);
387 	return false;
388 }
389 
390 /**
391  *	generic_shutdown_super	-	common helper for ->kill_sb()
392  *	@sb: superblock to kill
393  *
394  *	generic_shutdown_super() does all fs-independent work on superblock
395  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
396  *	that need destruction out of superblock, call generic_shutdown_super()
397  *	and release aforementioned objects.  Note: dentries and inodes _are_
398  *	taken care of and do not need specific handling.
399  *
400  *	Upon calling this function, the filesystem may no longer alter or
401  *	rearrange the set of dentries belonging to this super_block, nor may it
402  *	change the attachments of dentries to inodes.
403  */
404 void generic_shutdown_super(struct super_block *sb)
405 {
406 	const struct super_operations *sop = sb->s_op;
407 
408 	if (sb->s_root) {
409 		shrink_dcache_for_umount(sb);
410 		sync_filesystem(sb);
411 		sb->s_flags &= ~MS_ACTIVE;
412 
413 		fsnotify_unmount_inodes(&sb->s_inodes);
414 
415 		evict_inodes(sb);
416 
417 		if (sop->put_super)
418 			sop->put_super(sb);
419 
420 		if (!list_empty(&sb->s_inodes)) {
421 			printk("VFS: Busy inodes after unmount of %s. "
422 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
423 			   sb->s_id);
424 		}
425 	}
426 	spin_lock(&sb_lock);
427 	/* should be initialized for __put_super_and_need_restart() */
428 	hlist_del_init(&sb->s_instances);
429 	spin_unlock(&sb_lock);
430 	up_write(&sb->s_umount);
431 }
432 
433 EXPORT_SYMBOL(generic_shutdown_super);
434 
435 /**
436  *	sget	-	find or create a superblock
437  *	@type:	filesystem type superblock should belong to
438  *	@test:	comparison callback
439  *	@set:	setup callback
440  *	@flags:	mount flags
441  *	@data:	argument to each of them
442  */
443 struct super_block *sget(struct file_system_type *type,
444 			int (*test)(struct super_block *,void *),
445 			int (*set)(struct super_block *,void *),
446 			int flags,
447 			void *data)
448 {
449 	struct super_block *s = NULL;
450 	struct super_block *old;
451 	int err;
452 
453 retry:
454 	spin_lock(&sb_lock);
455 	if (test) {
456 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
457 			if (!test(old, data))
458 				continue;
459 			if (!grab_super(old))
460 				goto retry;
461 			if (s) {
462 				up_write(&s->s_umount);
463 				destroy_super(s);
464 				s = NULL;
465 			}
466 			return old;
467 		}
468 	}
469 	if (!s) {
470 		spin_unlock(&sb_lock);
471 		s = alloc_super(type, flags);
472 		if (!s)
473 			return ERR_PTR(-ENOMEM);
474 		goto retry;
475 	}
476 
477 	err = set(s, data);
478 	if (err) {
479 		spin_unlock(&sb_lock);
480 		up_write(&s->s_umount);
481 		destroy_super(s);
482 		return ERR_PTR(err);
483 	}
484 	s->s_type = type;
485 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
486 	list_add_tail(&s->s_list, &super_blocks);
487 	hlist_add_head(&s->s_instances, &type->fs_supers);
488 	spin_unlock(&sb_lock);
489 	get_filesystem(type);
490 	register_shrinker(&s->s_shrink);
491 	return s;
492 }
493 
494 EXPORT_SYMBOL(sget);
495 
496 void drop_super(struct super_block *sb)
497 {
498 	up_read(&sb->s_umount);
499 	put_super(sb);
500 }
501 
502 EXPORT_SYMBOL(drop_super);
503 
504 /**
505  *	iterate_supers - call function for all active superblocks
506  *	@f: function to call
507  *	@arg: argument to pass to it
508  *
509  *	Scans the superblock list and calls given function, passing it
510  *	locked superblock and given argument.
511  */
512 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
513 {
514 	struct super_block *sb, *p = NULL;
515 
516 	spin_lock(&sb_lock);
517 	list_for_each_entry(sb, &super_blocks, s_list) {
518 		if (hlist_unhashed(&sb->s_instances))
519 			continue;
520 		sb->s_count++;
521 		spin_unlock(&sb_lock);
522 
523 		down_read(&sb->s_umount);
524 		if (sb->s_root && (sb->s_flags & MS_BORN))
525 			f(sb, arg);
526 		up_read(&sb->s_umount);
527 
528 		spin_lock(&sb_lock);
529 		if (p)
530 			__put_super(p);
531 		p = sb;
532 	}
533 	if (p)
534 		__put_super(p);
535 	spin_unlock(&sb_lock);
536 }
537 
538 /**
539  *	iterate_supers_type - call function for superblocks of given type
540  *	@type: fs type
541  *	@f: function to call
542  *	@arg: argument to pass to it
543  *
544  *	Scans the superblock list and calls given function, passing it
545  *	locked superblock and given argument.
546  */
547 void iterate_supers_type(struct file_system_type *type,
548 	void (*f)(struct super_block *, void *), void *arg)
549 {
550 	struct super_block *sb, *p = NULL;
551 
552 	spin_lock(&sb_lock);
553 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
554 		sb->s_count++;
555 		spin_unlock(&sb_lock);
556 
557 		down_read(&sb->s_umount);
558 		if (sb->s_root && (sb->s_flags & MS_BORN))
559 			f(sb, arg);
560 		up_read(&sb->s_umount);
561 
562 		spin_lock(&sb_lock);
563 		if (p)
564 			__put_super(p);
565 		p = sb;
566 	}
567 	if (p)
568 		__put_super(p);
569 	spin_unlock(&sb_lock);
570 }
571 
572 EXPORT_SYMBOL(iterate_supers_type);
573 
574 /**
575  *	get_super - get the superblock of a device
576  *	@bdev: device to get the superblock for
577  *
578  *	Scans the superblock list and finds the superblock of the file system
579  *	mounted on the device given. %NULL is returned if no match is found.
580  */
581 
582 struct super_block *get_super(struct block_device *bdev)
583 {
584 	struct super_block *sb;
585 
586 	if (!bdev)
587 		return NULL;
588 
589 	spin_lock(&sb_lock);
590 rescan:
591 	list_for_each_entry(sb, &super_blocks, s_list) {
592 		if (hlist_unhashed(&sb->s_instances))
593 			continue;
594 		if (sb->s_bdev == bdev) {
595 			sb->s_count++;
596 			spin_unlock(&sb_lock);
597 			down_read(&sb->s_umount);
598 			/* still alive? */
599 			if (sb->s_root && (sb->s_flags & MS_BORN))
600 				return sb;
601 			up_read(&sb->s_umount);
602 			/* nope, got unmounted */
603 			spin_lock(&sb_lock);
604 			__put_super(sb);
605 			goto rescan;
606 		}
607 	}
608 	spin_unlock(&sb_lock);
609 	return NULL;
610 }
611 
612 EXPORT_SYMBOL(get_super);
613 
614 /**
615  *	get_super_thawed - get thawed superblock of a device
616  *	@bdev: device to get the superblock for
617  *
618  *	Scans the superblock list and finds the superblock of the file system
619  *	mounted on the device. The superblock is returned once it is thawed
620  *	(or immediately if it was not frozen). %NULL is returned if no match
621  *	is found.
622  */
623 struct super_block *get_super_thawed(struct block_device *bdev)
624 {
625 	while (1) {
626 		struct super_block *s = get_super(bdev);
627 		if (!s || s->s_writers.frozen == SB_UNFROZEN)
628 			return s;
629 		up_read(&s->s_umount);
630 		wait_event(s->s_writers.wait_unfrozen,
631 			   s->s_writers.frozen == SB_UNFROZEN);
632 		put_super(s);
633 	}
634 }
635 EXPORT_SYMBOL(get_super_thawed);
636 
637 /**
638  * get_active_super - get an active reference to the superblock of a device
639  * @bdev: device to get the superblock for
640  *
641  * Scans the superblock list and finds the superblock of the file system
642  * mounted on the device given.  Returns the superblock with an active
643  * reference or %NULL if none was found.
644  */
645 struct super_block *get_active_super(struct block_device *bdev)
646 {
647 	struct super_block *sb;
648 
649 	if (!bdev)
650 		return NULL;
651 
652 restart:
653 	spin_lock(&sb_lock);
654 	list_for_each_entry(sb, &super_blocks, s_list) {
655 		if (hlist_unhashed(&sb->s_instances))
656 			continue;
657 		if (sb->s_bdev == bdev) {
658 			if (!grab_super(sb))
659 				goto restart;
660 			up_write(&sb->s_umount);
661 			return sb;
662 		}
663 	}
664 	spin_unlock(&sb_lock);
665 	return NULL;
666 }
667 
668 struct super_block *user_get_super(dev_t dev)
669 {
670 	struct super_block *sb;
671 
672 	spin_lock(&sb_lock);
673 rescan:
674 	list_for_each_entry(sb, &super_blocks, s_list) {
675 		if (hlist_unhashed(&sb->s_instances))
676 			continue;
677 		if (sb->s_dev ==  dev) {
678 			sb->s_count++;
679 			spin_unlock(&sb_lock);
680 			down_read(&sb->s_umount);
681 			/* still alive? */
682 			if (sb->s_root && (sb->s_flags & MS_BORN))
683 				return sb;
684 			up_read(&sb->s_umount);
685 			/* nope, got unmounted */
686 			spin_lock(&sb_lock);
687 			__put_super(sb);
688 			goto rescan;
689 		}
690 	}
691 	spin_unlock(&sb_lock);
692 	return NULL;
693 }
694 
695 /**
696  *	do_remount_sb - asks filesystem to change mount options.
697  *	@sb:	superblock in question
698  *	@flags:	numeric part of options
699  *	@data:	the rest of options
700  *      @force: whether or not to force the change
701  *
702  *	Alters the mount options of a mounted file system.
703  */
704 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
705 {
706 	int retval;
707 	int remount_ro;
708 
709 	if (sb->s_writers.frozen != SB_UNFROZEN)
710 		return -EBUSY;
711 
712 #ifdef CONFIG_BLOCK
713 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
714 		return -EACCES;
715 #endif
716 
717 	if (flags & MS_RDONLY)
718 		acct_auto_close(sb);
719 	shrink_dcache_sb(sb);
720 	sync_filesystem(sb);
721 
722 	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
723 
724 	/* If we are remounting RDONLY and current sb is read/write,
725 	   make sure there are no rw files opened */
726 	if (remount_ro) {
727 		if (force) {
728 			mark_files_ro(sb);
729 		} else {
730 			retval = sb_prepare_remount_readonly(sb);
731 			if (retval)
732 				return retval;
733 		}
734 	}
735 
736 	if (sb->s_op->remount_fs) {
737 		retval = sb->s_op->remount_fs(sb, &flags, data);
738 		if (retval) {
739 			if (!force)
740 				goto cancel_readonly;
741 			/* If forced remount, go ahead despite any errors */
742 			WARN(1, "forced remount of a %s fs returned %i\n",
743 			     sb->s_type->name, retval);
744 		}
745 	}
746 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
747 	/* Needs to be ordered wrt mnt_is_readonly() */
748 	smp_wmb();
749 	sb->s_readonly_remount = 0;
750 
751 	/*
752 	 * Some filesystems modify their metadata via some other path than the
753 	 * bdev buffer cache (eg. use a private mapping, or directories in
754 	 * pagecache, etc). Also file data modifications go via their own
755 	 * mappings. So If we try to mount readonly then copy the filesystem
756 	 * from bdev, we could get stale data, so invalidate it to give a best
757 	 * effort at coherency.
758 	 */
759 	if (remount_ro && sb->s_bdev)
760 		invalidate_bdev(sb->s_bdev);
761 	return 0;
762 
763 cancel_readonly:
764 	sb->s_readonly_remount = 0;
765 	return retval;
766 }
767 
768 static void do_emergency_remount(struct work_struct *work)
769 {
770 	struct super_block *sb, *p = NULL;
771 
772 	spin_lock(&sb_lock);
773 	list_for_each_entry(sb, &super_blocks, s_list) {
774 		if (hlist_unhashed(&sb->s_instances))
775 			continue;
776 		sb->s_count++;
777 		spin_unlock(&sb_lock);
778 		down_write(&sb->s_umount);
779 		if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
780 		    !(sb->s_flags & MS_RDONLY)) {
781 			/*
782 			 * What lock protects sb->s_flags??
783 			 */
784 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
785 		}
786 		up_write(&sb->s_umount);
787 		spin_lock(&sb_lock);
788 		if (p)
789 			__put_super(p);
790 		p = sb;
791 	}
792 	if (p)
793 		__put_super(p);
794 	spin_unlock(&sb_lock);
795 	kfree(work);
796 	printk("Emergency Remount complete\n");
797 }
798 
799 void emergency_remount(void)
800 {
801 	struct work_struct *work;
802 
803 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
804 	if (work) {
805 		INIT_WORK(work, do_emergency_remount);
806 		schedule_work(work);
807 	}
808 }
809 
810 /*
811  * Unnamed block devices are dummy devices used by virtual
812  * filesystems which don't use real block-devices.  -- jrs
813  */
814 
815 static DEFINE_IDA(unnamed_dev_ida);
816 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
817 static int unnamed_dev_start = 0; /* don't bother trying below it */
818 
819 int get_anon_bdev(dev_t *p)
820 {
821 	int dev;
822 	int error;
823 
824  retry:
825 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
826 		return -ENOMEM;
827 	spin_lock(&unnamed_dev_lock);
828 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
829 	if (!error)
830 		unnamed_dev_start = dev + 1;
831 	spin_unlock(&unnamed_dev_lock);
832 	if (error == -EAGAIN)
833 		/* We raced and lost with another CPU. */
834 		goto retry;
835 	else if (error)
836 		return -EAGAIN;
837 
838 	if (dev == (1 << MINORBITS)) {
839 		spin_lock(&unnamed_dev_lock);
840 		ida_remove(&unnamed_dev_ida, dev);
841 		if (unnamed_dev_start > dev)
842 			unnamed_dev_start = dev;
843 		spin_unlock(&unnamed_dev_lock);
844 		return -EMFILE;
845 	}
846 	*p = MKDEV(0, dev & MINORMASK);
847 	return 0;
848 }
849 EXPORT_SYMBOL(get_anon_bdev);
850 
851 void free_anon_bdev(dev_t dev)
852 {
853 	int slot = MINOR(dev);
854 	spin_lock(&unnamed_dev_lock);
855 	ida_remove(&unnamed_dev_ida, slot);
856 	if (slot < unnamed_dev_start)
857 		unnamed_dev_start = slot;
858 	spin_unlock(&unnamed_dev_lock);
859 }
860 EXPORT_SYMBOL(free_anon_bdev);
861 
862 int set_anon_super(struct super_block *s, void *data)
863 {
864 	int error = get_anon_bdev(&s->s_dev);
865 	if (!error)
866 		s->s_bdi = &noop_backing_dev_info;
867 	return error;
868 }
869 
870 EXPORT_SYMBOL(set_anon_super);
871 
872 void kill_anon_super(struct super_block *sb)
873 {
874 	dev_t dev = sb->s_dev;
875 	generic_shutdown_super(sb);
876 	free_anon_bdev(dev);
877 }
878 
879 EXPORT_SYMBOL(kill_anon_super);
880 
881 void kill_litter_super(struct super_block *sb)
882 {
883 	if (sb->s_root)
884 		d_genocide(sb->s_root);
885 	kill_anon_super(sb);
886 }
887 
888 EXPORT_SYMBOL(kill_litter_super);
889 
890 static int ns_test_super(struct super_block *sb, void *data)
891 {
892 	return sb->s_fs_info == data;
893 }
894 
895 static int ns_set_super(struct super_block *sb, void *data)
896 {
897 	sb->s_fs_info = data;
898 	return set_anon_super(sb, NULL);
899 }
900 
901 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
902 	void *data, int (*fill_super)(struct super_block *, void *, int))
903 {
904 	struct super_block *sb;
905 
906 	sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
907 	if (IS_ERR(sb))
908 		return ERR_CAST(sb);
909 
910 	if (!sb->s_root) {
911 		int err;
912 		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
913 		if (err) {
914 			deactivate_locked_super(sb);
915 			return ERR_PTR(err);
916 		}
917 
918 		sb->s_flags |= MS_ACTIVE;
919 	}
920 
921 	return dget(sb->s_root);
922 }
923 
924 EXPORT_SYMBOL(mount_ns);
925 
926 #ifdef CONFIG_BLOCK
927 static int set_bdev_super(struct super_block *s, void *data)
928 {
929 	s->s_bdev = data;
930 	s->s_dev = s->s_bdev->bd_dev;
931 
932 	/*
933 	 * We set the bdi here to the queue backing, file systems can
934 	 * overwrite this in ->fill_super()
935 	 */
936 	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
937 	return 0;
938 }
939 
940 static int test_bdev_super(struct super_block *s, void *data)
941 {
942 	return (void *)s->s_bdev == data;
943 }
944 
945 struct dentry *mount_bdev(struct file_system_type *fs_type,
946 	int flags, const char *dev_name, void *data,
947 	int (*fill_super)(struct super_block *, void *, int))
948 {
949 	struct block_device *bdev;
950 	struct super_block *s;
951 	fmode_t mode = FMODE_READ | FMODE_EXCL;
952 	int error = 0;
953 
954 	if (!(flags & MS_RDONLY))
955 		mode |= FMODE_WRITE;
956 
957 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
958 	if (IS_ERR(bdev))
959 		return ERR_CAST(bdev);
960 
961 	/*
962 	 * once the super is inserted into the list by sget, s_umount
963 	 * will protect the lockfs code from trying to start a snapshot
964 	 * while we are mounting
965 	 */
966 	mutex_lock(&bdev->bd_fsfreeze_mutex);
967 	if (bdev->bd_fsfreeze_count > 0) {
968 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
969 		error = -EBUSY;
970 		goto error_bdev;
971 	}
972 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
973 		 bdev);
974 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
975 	if (IS_ERR(s))
976 		goto error_s;
977 
978 	if (s->s_root) {
979 		if ((flags ^ s->s_flags) & MS_RDONLY) {
980 			deactivate_locked_super(s);
981 			error = -EBUSY;
982 			goto error_bdev;
983 		}
984 
985 		/*
986 		 * s_umount nests inside bd_mutex during
987 		 * __invalidate_device().  blkdev_put() acquires
988 		 * bd_mutex and can't be called under s_umount.  Drop
989 		 * s_umount temporarily.  This is safe as we're
990 		 * holding an active reference.
991 		 */
992 		up_write(&s->s_umount);
993 		blkdev_put(bdev, mode);
994 		down_write(&s->s_umount);
995 	} else {
996 		char b[BDEVNAME_SIZE];
997 
998 		s->s_mode = mode;
999 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1000 		sb_set_blocksize(s, block_size(bdev));
1001 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1002 		if (error) {
1003 			deactivate_locked_super(s);
1004 			goto error;
1005 		}
1006 
1007 		s->s_flags |= MS_ACTIVE;
1008 		bdev->bd_super = s;
1009 	}
1010 
1011 	return dget(s->s_root);
1012 
1013 error_s:
1014 	error = PTR_ERR(s);
1015 error_bdev:
1016 	blkdev_put(bdev, mode);
1017 error:
1018 	return ERR_PTR(error);
1019 }
1020 EXPORT_SYMBOL(mount_bdev);
1021 
1022 void kill_block_super(struct super_block *sb)
1023 {
1024 	struct block_device *bdev = sb->s_bdev;
1025 	fmode_t mode = sb->s_mode;
1026 
1027 	bdev->bd_super = NULL;
1028 	generic_shutdown_super(sb);
1029 	sync_blockdev(bdev);
1030 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1031 	blkdev_put(bdev, mode | FMODE_EXCL);
1032 }
1033 
1034 EXPORT_SYMBOL(kill_block_super);
1035 #endif
1036 
1037 struct dentry *mount_nodev(struct file_system_type *fs_type,
1038 	int flags, void *data,
1039 	int (*fill_super)(struct super_block *, void *, int))
1040 {
1041 	int error;
1042 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1043 
1044 	if (IS_ERR(s))
1045 		return ERR_CAST(s);
1046 
1047 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1048 	if (error) {
1049 		deactivate_locked_super(s);
1050 		return ERR_PTR(error);
1051 	}
1052 	s->s_flags |= MS_ACTIVE;
1053 	return dget(s->s_root);
1054 }
1055 EXPORT_SYMBOL(mount_nodev);
1056 
1057 static int compare_single(struct super_block *s, void *p)
1058 {
1059 	return 1;
1060 }
1061 
1062 struct dentry *mount_single(struct file_system_type *fs_type,
1063 	int flags, void *data,
1064 	int (*fill_super)(struct super_block *, void *, int))
1065 {
1066 	struct super_block *s;
1067 	int error;
1068 
1069 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1070 	if (IS_ERR(s))
1071 		return ERR_CAST(s);
1072 	if (!s->s_root) {
1073 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1074 		if (error) {
1075 			deactivate_locked_super(s);
1076 			return ERR_PTR(error);
1077 		}
1078 		s->s_flags |= MS_ACTIVE;
1079 	} else {
1080 		do_remount_sb(s, flags, data, 0);
1081 	}
1082 	return dget(s->s_root);
1083 }
1084 EXPORT_SYMBOL(mount_single);
1085 
1086 struct dentry *
1087 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1088 {
1089 	struct dentry *root;
1090 	struct super_block *sb;
1091 	char *secdata = NULL;
1092 	int error = -ENOMEM;
1093 
1094 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1095 		secdata = alloc_secdata();
1096 		if (!secdata)
1097 			goto out;
1098 
1099 		error = security_sb_copy_data(data, secdata);
1100 		if (error)
1101 			goto out_free_secdata;
1102 	}
1103 
1104 	root = type->mount(type, flags, name, data);
1105 	if (IS_ERR(root)) {
1106 		error = PTR_ERR(root);
1107 		goto out_free_secdata;
1108 	}
1109 	sb = root->d_sb;
1110 	BUG_ON(!sb);
1111 	WARN_ON(!sb->s_bdi);
1112 	WARN_ON(sb->s_bdi == &default_backing_dev_info);
1113 	sb->s_flags |= MS_BORN;
1114 
1115 	error = security_sb_kern_mount(sb, flags, secdata);
1116 	if (error)
1117 		goto out_sb;
1118 
1119 	/*
1120 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1121 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1122 	 * this warning for a little while to try and catch filesystems that
1123 	 * violate this rule.
1124 	 */
1125 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1126 		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1127 
1128 	up_write(&sb->s_umount);
1129 	free_secdata(secdata);
1130 	return root;
1131 out_sb:
1132 	dput(root);
1133 	deactivate_locked_super(sb);
1134 out_free_secdata:
1135 	free_secdata(secdata);
1136 out:
1137 	return ERR_PTR(error);
1138 }
1139 
1140 /*
1141  * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1142  * instead.
1143  */
1144 void __sb_end_write(struct super_block *sb, int level)
1145 {
1146 	percpu_counter_dec(&sb->s_writers.counter[level-1]);
1147 	/*
1148 	 * Make sure s_writers are updated before we wake up waiters in
1149 	 * freeze_super().
1150 	 */
1151 	smp_mb();
1152 	if (waitqueue_active(&sb->s_writers.wait))
1153 		wake_up(&sb->s_writers.wait);
1154 	rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_);
1155 }
1156 EXPORT_SYMBOL(__sb_end_write);
1157 
1158 #ifdef CONFIG_LOCKDEP
1159 /*
1160  * We want lockdep to tell us about possible deadlocks with freezing but
1161  * it's it bit tricky to properly instrument it. Getting a freeze protection
1162  * works as getting a read lock but there are subtle problems. XFS for example
1163  * gets freeze protection on internal level twice in some cases, which is OK
1164  * only because we already hold a freeze protection also on higher level. Due
1165  * to these cases we have to tell lockdep we are doing trylock when we
1166  * already hold a freeze protection for a higher freeze level.
1167  */
1168 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock,
1169 				unsigned long ip)
1170 {
1171 	int i;
1172 
1173 	if (!trylock) {
1174 		for (i = 0; i < level - 1; i++)
1175 			if (lock_is_held(&sb->s_writers.lock_map[i])) {
1176 				trylock = true;
1177 				break;
1178 			}
1179 	}
1180 	rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip);
1181 }
1182 #endif
1183 
1184 /*
1185  * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1186  * instead.
1187  */
1188 int __sb_start_write(struct super_block *sb, int level, bool wait)
1189 {
1190 retry:
1191 	if (unlikely(sb->s_writers.frozen >= level)) {
1192 		if (!wait)
1193 			return 0;
1194 		wait_event(sb->s_writers.wait_unfrozen,
1195 			   sb->s_writers.frozen < level);
1196 	}
1197 
1198 #ifdef CONFIG_LOCKDEP
1199 	acquire_freeze_lock(sb, level, !wait, _RET_IP_);
1200 #endif
1201 	percpu_counter_inc(&sb->s_writers.counter[level-1]);
1202 	/*
1203 	 * Make sure counter is updated before we check for frozen.
1204 	 * freeze_super() first sets frozen and then checks the counter.
1205 	 */
1206 	smp_mb();
1207 	if (unlikely(sb->s_writers.frozen >= level)) {
1208 		__sb_end_write(sb, level);
1209 		goto retry;
1210 	}
1211 	return 1;
1212 }
1213 EXPORT_SYMBOL(__sb_start_write);
1214 
1215 /**
1216  * sb_wait_write - wait until all writers to given file system finish
1217  * @sb: the super for which we wait
1218  * @level: type of writers we wait for (normal vs page fault)
1219  *
1220  * This function waits until there are no writers of given type to given file
1221  * system. Caller of this function should make sure there can be no new writers
1222  * of type @level before calling this function. Otherwise this function can
1223  * livelock.
1224  */
1225 static void sb_wait_write(struct super_block *sb, int level)
1226 {
1227 	s64 writers;
1228 
1229 	/*
1230 	 * We just cycle-through lockdep here so that it does not complain
1231 	 * about returning with lock to userspace
1232 	 */
1233 	rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_);
1234 	rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_);
1235 
1236 	do {
1237 		DEFINE_WAIT(wait);
1238 
1239 		/*
1240 		 * We use a barrier in prepare_to_wait() to separate setting
1241 		 * of frozen and checking of the counter
1242 		 */
1243 		prepare_to_wait(&sb->s_writers.wait, &wait,
1244 				TASK_UNINTERRUPTIBLE);
1245 
1246 		writers = percpu_counter_sum(&sb->s_writers.counter[level-1]);
1247 		if (writers)
1248 			schedule();
1249 
1250 		finish_wait(&sb->s_writers.wait, &wait);
1251 	} while (writers);
1252 }
1253 
1254 /**
1255  * freeze_super - lock the filesystem and force it into a consistent state
1256  * @sb: the super to lock
1257  *
1258  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1259  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1260  * -EBUSY.
1261  *
1262  * During this function, sb->s_writers.frozen goes through these values:
1263  *
1264  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1265  *
1266  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1267  * writes should be blocked, though page faults are still allowed. We wait for
1268  * all writes to complete and then proceed to the next stage.
1269  *
1270  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1271  * but internal fs threads can still modify the filesystem (although they
1272  * should not dirty new pages or inodes), writeback can run etc. After waiting
1273  * for all running page faults we sync the filesystem which will clean all
1274  * dirty pages and inodes (no new dirty pages or inodes can be created when
1275  * sync is running).
1276  *
1277  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1278  * modification are blocked (e.g. XFS preallocation truncation on inode
1279  * reclaim). This is usually implemented by blocking new transactions for
1280  * filesystems that have them and need this additional guard. After all
1281  * internal writers are finished we call ->freeze_fs() to finish filesystem
1282  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1283  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1284  *
1285  * sb->s_writers.frozen is protected by sb->s_umount.
1286  */
1287 int freeze_super(struct super_block *sb)
1288 {
1289 	int ret;
1290 
1291 	atomic_inc(&sb->s_active);
1292 	down_write(&sb->s_umount);
1293 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1294 		deactivate_locked_super(sb);
1295 		return -EBUSY;
1296 	}
1297 
1298 	if (!(sb->s_flags & MS_BORN)) {
1299 		up_write(&sb->s_umount);
1300 		return 0;	/* sic - it's "nothing to do" */
1301 	}
1302 
1303 	if (sb->s_flags & MS_RDONLY) {
1304 		/* Nothing to do really... */
1305 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1306 		up_write(&sb->s_umount);
1307 		return 0;
1308 	}
1309 
1310 	/* From now on, no new normal writers can start */
1311 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1312 	smp_wmb();
1313 
1314 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1315 	up_write(&sb->s_umount);
1316 
1317 	sb_wait_write(sb, SB_FREEZE_WRITE);
1318 
1319 	/* Now we go and block page faults... */
1320 	down_write(&sb->s_umount);
1321 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1322 	smp_wmb();
1323 
1324 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1325 
1326 	/* All writers are done so after syncing there won't be dirty data */
1327 	sync_filesystem(sb);
1328 
1329 	/* Now wait for internal filesystem counter */
1330 	sb->s_writers.frozen = SB_FREEZE_FS;
1331 	smp_wmb();
1332 	sb_wait_write(sb, SB_FREEZE_FS);
1333 
1334 	if (sb->s_op->freeze_fs) {
1335 		ret = sb->s_op->freeze_fs(sb);
1336 		if (ret) {
1337 			printk(KERN_ERR
1338 				"VFS:Filesystem freeze failed\n");
1339 			sb->s_writers.frozen = SB_UNFROZEN;
1340 			smp_wmb();
1341 			wake_up(&sb->s_writers.wait_unfrozen);
1342 			deactivate_locked_super(sb);
1343 			return ret;
1344 		}
1345 	}
1346 	/*
1347 	 * This is just for debugging purposes so that fs can warn if it
1348 	 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1349 	 */
1350 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1351 	up_write(&sb->s_umount);
1352 	return 0;
1353 }
1354 EXPORT_SYMBOL(freeze_super);
1355 
1356 /**
1357  * thaw_super -- unlock filesystem
1358  * @sb: the super to thaw
1359  *
1360  * Unlocks the filesystem and marks it writeable again after freeze_super().
1361  */
1362 int thaw_super(struct super_block *sb)
1363 {
1364 	int error;
1365 
1366 	down_write(&sb->s_umount);
1367 	if (sb->s_writers.frozen == SB_UNFROZEN) {
1368 		up_write(&sb->s_umount);
1369 		return -EINVAL;
1370 	}
1371 
1372 	if (sb->s_flags & MS_RDONLY)
1373 		goto out;
1374 
1375 	if (sb->s_op->unfreeze_fs) {
1376 		error = sb->s_op->unfreeze_fs(sb);
1377 		if (error) {
1378 			printk(KERN_ERR
1379 				"VFS:Filesystem thaw failed\n");
1380 			up_write(&sb->s_umount);
1381 			return error;
1382 		}
1383 	}
1384 
1385 out:
1386 	sb->s_writers.frozen = SB_UNFROZEN;
1387 	smp_wmb();
1388 	wake_up(&sb->s_writers.wait_unfrozen);
1389 	deactivate_locked_super(sb);
1390 
1391 	return 0;
1392 }
1393 EXPORT_SYMBOL(thaw_super);
1394