xref: /openbmc/linux/fs/super.c (revision 7fe2f639)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include "internal.h"
36 
37 
38 LIST_HEAD(super_blocks);
39 DEFINE_SPINLOCK(sb_lock);
40 
41 /**
42  *	alloc_super	-	create new superblock
43  *	@type:	filesystem type superblock should belong to
44  *
45  *	Allocates and initializes a new &struct super_block.  alloc_super()
46  *	returns a pointer new superblock or %NULL if allocation had failed.
47  */
48 static struct super_block *alloc_super(struct file_system_type *type)
49 {
50 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
51 	static const struct super_operations default_op;
52 
53 	if (s) {
54 		if (security_sb_alloc(s)) {
55 			kfree(s);
56 			s = NULL;
57 			goto out;
58 		}
59 #ifdef CONFIG_SMP
60 		s->s_files = alloc_percpu(struct list_head);
61 		if (!s->s_files) {
62 			security_sb_free(s);
63 			kfree(s);
64 			s = NULL;
65 			goto out;
66 		} else {
67 			int i;
68 
69 			for_each_possible_cpu(i)
70 				INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
71 		}
72 #else
73 		INIT_LIST_HEAD(&s->s_files);
74 #endif
75 		s->s_bdi = &default_backing_dev_info;
76 		INIT_LIST_HEAD(&s->s_instances);
77 		INIT_HLIST_BL_HEAD(&s->s_anon);
78 		INIT_LIST_HEAD(&s->s_inodes);
79 		INIT_LIST_HEAD(&s->s_dentry_lru);
80 		init_rwsem(&s->s_umount);
81 		mutex_init(&s->s_lock);
82 		lockdep_set_class(&s->s_umount, &type->s_umount_key);
83 		/*
84 		 * The locking rules for s_lock are up to the
85 		 * filesystem. For example ext3fs has different
86 		 * lock ordering than usbfs:
87 		 */
88 		lockdep_set_class(&s->s_lock, &type->s_lock_key);
89 		/*
90 		 * sget() can have s_umount recursion.
91 		 *
92 		 * When it cannot find a suitable sb, it allocates a new
93 		 * one (this one), and tries again to find a suitable old
94 		 * one.
95 		 *
96 		 * In case that succeeds, it will acquire the s_umount
97 		 * lock of the old one. Since these are clearly distrinct
98 		 * locks, and this object isn't exposed yet, there's no
99 		 * risk of deadlocks.
100 		 *
101 		 * Annotate this by putting this lock in a different
102 		 * subclass.
103 		 */
104 		down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
105 		s->s_count = 1;
106 		atomic_set(&s->s_active, 1);
107 		mutex_init(&s->s_vfs_rename_mutex);
108 		lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
109 		mutex_init(&s->s_dquot.dqio_mutex);
110 		mutex_init(&s->s_dquot.dqonoff_mutex);
111 		init_rwsem(&s->s_dquot.dqptr_sem);
112 		init_waitqueue_head(&s->s_wait_unfrozen);
113 		s->s_maxbytes = MAX_NON_LFS;
114 		s->s_op = &default_op;
115 		s->s_time_gran = 1000000000;
116 		s->cleancache_poolid = -1;
117 	}
118 out:
119 	return s;
120 }
121 
122 /**
123  *	destroy_super	-	frees a superblock
124  *	@s: superblock to free
125  *
126  *	Frees a superblock.
127  */
128 static inline void destroy_super(struct super_block *s)
129 {
130 #ifdef CONFIG_SMP
131 	free_percpu(s->s_files);
132 #endif
133 	security_sb_free(s);
134 	kfree(s->s_subtype);
135 	kfree(s->s_options);
136 	kfree(s);
137 }
138 
139 /* Superblock refcounting  */
140 
141 /*
142  * Drop a superblock's refcount.  The caller must hold sb_lock.
143  */
144 void __put_super(struct super_block *sb)
145 {
146 	if (!--sb->s_count) {
147 		list_del_init(&sb->s_list);
148 		destroy_super(sb);
149 	}
150 }
151 
152 /**
153  *	put_super	-	drop a temporary reference to superblock
154  *	@sb: superblock in question
155  *
156  *	Drops a temporary reference, frees superblock if there's no
157  *	references left.
158  */
159 void put_super(struct super_block *sb)
160 {
161 	spin_lock(&sb_lock);
162 	__put_super(sb);
163 	spin_unlock(&sb_lock);
164 }
165 
166 
167 /**
168  *	deactivate_locked_super	-	drop an active reference to superblock
169  *	@s: superblock to deactivate
170  *
171  *	Drops an active reference to superblock, converting it into a temprory
172  *	one if there is no other active references left.  In that case we
173  *	tell fs driver to shut it down and drop the temporary reference we
174  *	had just acquired.
175  *
176  *	Caller holds exclusive lock on superblock; that lock is released.
177  */
178 void deactivate_locked_super(struct super_block *s)
179 {
180 	struct file_system_type *fs = s->s_type;
181 	if (atomic_dec_and_test(&s->s_active)) {
182 		cleancache_flush_fs(s);
183 		fs->kill_sb(s);
184 		/*
185 		 * We need to call rcu_barrier so all the delayed rcu free
186 		 * inodes are flushed before we release the fs module.
187 		 */
188 		rcu_barrier();
189 		put_filesystem(fs);
190 		put_super(s);
191 	} else {
192 		up_write(&s->s_umount);
193 	}
194 }
195 
196 EXPORT_SYMBOL(deactivate_locked_super);
197 
198 /**
199  *	deactivate_super	-	drop an active reference to superblock
200  *	@s: superblock to deactivate
201  *
202  *	Variant of deactivate_locked_super(), except that superblock is *not*
203  *	locked by caller.  If we are going to drop the final active reference,
204  *	lock will be acquired prior to that.
205  */
206 void deactivate_super(struct super_block *s)
207 {
208         if (!atomic_add_unless(&s->s_active, -1, 1)) {
209 		down_write(&s->s_umount);
210 		deactivate_locked_super(s);
211 	}
212 }
213 
214 EXPORT_SYMBOL(deactivate_super);
215 
216 /**
217  *	grab_super - acquire an active reference
218  *	@s: reference we are trying to make active
219  *
220  *	Tries to acquire an active reference.  grab_super() is used when we
221  * 	had just found a superblock in super_blocks or fs_type->fs_supers
222  *	and want to turn it into a full-blown active reference.  grab_super()
223  *	is called with sb_lock held and drops it.  Returns 1 in case of
224  *	success, 0 if we had failed (superblock contents was already dead or
225  *	dying when grab_super() had been called).
226  */
227 static int grab_super(struct super_block *s) __releases(sb_lock)
228 {
229 	if (atomic_inc_not_zero(&s->s_active)) {
230 		spin_unlock(&sb_lock);
231 		return 1;
232 	}
233 	/* it's going away */
234 	s->s_count++;
235 	spin_unlock(&sb_lock);
236 	/* wait for it to die */
237 	down_write(&s->s_umount);
238 	up_write(&s->s_umount);
239 	put_super(s);
240 	return 0;
241 }
242 
243 /*
244  * Superblock locking.  We really ought to get rid of these two.
245  */
246 void lock_super(struct super_block * sb)
247 {
248 	get_fs_excl();
249 	mutex_lock(&sb->s_lock);
250 }
251 
252 void unlock_super(struct super_block * sb)
253 {
254 	put_fs_excl();
255 	mutex_unlock(&sb->s_lock);
256 }
257 
258 EXPORT_SYMBOL(lock_super);
259 EXPORT_SYMBOL(unlock_super);
260 
261 /**
262  *	generic_shutdown_super	-	common helper for ->kill_sb()
263  *	@sb: superblock to kill
264  *
265  *	generic_shutdown_super() does all fs-independent work on superblock
266  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
267  *	that need destruction out of superblock, call generic_shutdown_super()
268  *	and release aforementioned objects.  Note: dentries and inodes _are_
269  *	taken care of and do not need specific handling.
270  *
271  *	Upon calling this function, the filesystem may no longer alter or
272  *	rearrange the set of dentries belonging to this super_block, nor may it
273  *	change the attachments of dentries to inodes.
274  */
275 void generic_shutdown_super(struct super_block *sb)
276 {
277 	const struct super_operations *sop = sb->s_op;
278 
279 
280 	if (sb->s_root) {
281 		shrink_dcache_for_umount(sb);
282 		sync_filesystem(sb);
283 		get_fs_excl();
284 		sb->s_flags &= ~MS_ACTIVE;
285 
286 		fsnotify_unmount_inodes(&sb->s_inodes);
287 
288 		evict_inodes(sb);
289 
290 		if (sop->put_super)
291 			sop->put_super(sb);
292 
293 		if (!list_empty(&sb->s_inodes)) {
294 			printk("VFS: Busy inodes after unmount of %s. "
295 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
296 			   sb->s_id);
297 		}
298 		put_fs_excl();
299 	}
300 	spin_lock(&sb_lock);
301 	/* should be initialized for __put_super_and_need_restart() */
302 	list_del_init(&sb->s_instances);
303 	spin_unlock(&sb_lock);
304 	up_write(&sb->s_umount);
305 }
306 
307 EXPORT_SYMBOL(generic_shutdown_super);
308 
309 /**
310  *	sget	-	find or create a superblock
311  *	@type:	filesystem type superblock should belong to
312  *	@test:	comparison callback
313  *	@set:	setup callback
314  *	@data:	argument to each of them
315  */
316 struct super_block *sget(struct file_system_type *type,
317 			int (*test)(struct super_block *,void *),
318 			int (*set)(struct super_block *,void *),
319 			void *data)
320 {
321 	struct super_block *s = NULL;
322 	struct super_block *old;
323 	int err;
324 
325 retry:
326 	spin_lock(&sb_lock);
327 	if (test) {
328 		list_for_each_entry(old, &type->fs_supers, s_instances) {
329 			if (!test(old, data))
330 				continue;
331 			if (!grab_super(old))
332 				goto retry;
333 			if (s) {
334 				up_write(&s->s_umount);
335 				destroy_super(s);
336 				s = NULL;
337 			}
338 			down_write(&old->s_umount);
339 			if (unlikely(!(old->s_flags & MS_BORN))) {
340 				deactivate_locked_super(old);
341 				goto retry;
342 			}
343 			return old;
344 		}
345 	}
346 	if (!s) {
347 		spin_unlock(&sb_lock);
348 		s = alloc_super(type);
349 		if (!s)
350 			return ERR_PTR(-ENOMEM);
351 		goto retry;
352 	}
353 
354 	err = set(s, data);
355 	if (err) {
356 		spin_unlock(&sb_lock);
357 		up_write(&s->s_umount);
358 		destroy_super(s);
359 		return ERR_PTR(err);
360 	}
361 	s->s_type = type;
362 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
363 	list_add_tail(&s->s_list, &super_blocks);
364 	list_add(&s->s_instances, &type->fs_supers);
365 	spin_unlock(&sb_lock);
366 	get_filesystem(type);
367 	return s;
368 }
369 
370 EXPORT_SYMBOL(sget);
371 
372 void drop_super(struct super_block *sb)
373 {
374 	up_read(&sb->s_umount);
375 	put_super(sb);
376 }
377 
378 EXPORT_SYMBOL(drop_super);
379 
380 /**
381  * sync_supers - helper for periodic superblock writeback
382  *
383  * Call the write_super method if present on all dirty superblocks in
384  * the system.  This is for the periodic writeback used by most older
385  * filesystems.  For data integrity superblock writeback use
386  * sync_filesystems() instead.
387  *
388  * Note: check the dirty flag before waiting, so we don't
389  * hold up the sync while mounting a device. (The newly
390  * mounted device won't need syncing.)
391  */
392 void sync_supers(void)
393 {
394 	struct super_block *sb, *p = NULL;
395 
396 	spin_lock(&sb_lock);
397 	list_for_each_entry(sb, &super_blocks, s_list) {
398 		if (list_empty(&sb->s_instances))
399 			continue;
400 		if (sb->s_op->write_super && sb->s_dirt) {
401 			sb->s_count++;
402 			spin_unlock(&sb_lock);
403 
404 			down_read(&sb->s_umount);
405 			if (sb->s_root && sb->s_dirt)
406 				sb->s_op->write_super(sb);
407 			up_read(&sb->s_umount);
408 
409 			spin_lock(&sb_lock);
410 			if (p)
411 				__put_super(p);
412 			p = sb;
413 		}
414 	}
415 	if (p)
416 		__put_super(p);
417 	spin_unlock(&sb_lock);
418 }
419 
420 /**
421  *	iterate_supers - call function for all active superblocks
422  *	@f: function to call
423  *	@arg: argument to pass to it
424  *
425  *	Scans the superblock list and calls given function, passing it
426  *	locked superblock and given argument.
427  */
428 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
429 {
430 	struct super_block *sb, *p = NULL;
431 
432 	spin_lock(&sb_lock);
433 	list_for_each_entry(sb, &super_blocks, s_list) {
434 		if (list_empty(&sb->s_instances))
435 			continue;
436 		sb->s_count++;
437 		spin_unlock(&sb_lock);
438 
439 		down_read(&sb->s_umount);
440 		if (sb->s_root)
441 			f(sb, arg);
442 		up_read(&sb->s_umount);
443 
444 		spin_lock(&sb_lock);
445 		if (p)
446 			__put_super(p);
447 		p = sb;
448 	}
449 	if (p)
450 		__put_super(p);
451 	spin_unlock(&sb_lock);
452 }
453 
454 /**
455  *	get_super - get the superblock of a device
456  *	@bdev: device to get the superblock for
457  *
458  *	Scans the superblock list and finds the superblock of the file system
459  *	mounted on the device given. %NULL is returned if no match is found.
460  */
461 
462 struct super_block *get_super(struct block_device *bdev)
463 {
464 	struct super_block *sb;
465 
466 	if (!bdev)
467 		return NULL;
468 
469 	spin_lock(&sb_lock);
470 rescan:
471 	list_for_each_entry(sb, &super_blocks, s_list) {
472 		if (list_empty(&sb->s_instances))
473 			continue;
474 		if (sb->s_bdev == bdev) {
475 			sb->s_count++;
476 			spin_unlock(&sb_lock);
477 			down_read(&sb->s_umount);
478 			/* still alive? */
479 			if (sb->s_root)
480 				return sb;
481 			up_read(&sb->s_umount);
482 			/* nope, got unmounted */
483 			spin_lock(&sb_lock);
484 			__put_super(sb);
485 			goto rescan;
486 		}
487 	}
488 	spin_unlock(&sb_lock);
489 	return NULL;
490 }
491 
492 EXPORT_SYMBOL(get_super);
493 
494 /**
495  * get_active_super - get an active reference to the superblock of a device
496  * @bdev: device to get the superblock for
497  *
498  * Scans the superblock list and finds the superblock of the file system
499  * mounted on the device given.  Returns the superblock with an active
500  * reference or %NULL if none was found.
501  */
502 struct super_block *get_active_super(struct block_device *bdev)
503 {
504 	struct super_block *sb;
505 
506 	if (!bdev)
507 		return NULL;
508 
509 restart:
510 	spin_lock(&sb_lock);
511 	list_for_each_entry(sb, &super_blocks, s_list) {
512 		if (list_empty(&sb->s_instances))
513 			continue;
514 		if (sb->s_bdev == bdev) {
515 			if (grab_super(sb)) /* drops sb_lock */
516 				return sb;
517 			else
518 				goto restart;
519 		}
520 	}
521 	spin_unlock(&sb_lock);
522 	return NULL;
523 }
524 
525 struct super_block *user_get_super(dev_t dev)
526 {
527 	struct super_block *sb;
528 
529 	spin_lock(&sb_lock);
530 rescan:
531 	list_for_each_entry(sb, &super_blocks, s_list) {
532 		if (list_empty(&sb->s_instances))
533 			continue;
534 		if (sb->s_dev ==  dev) {
535 			sb->s_count++;
536 			spin_unlock(&sb_lock);
537 			down_read(&sb->s_umount);
538 			/* still alive? */
539 			if (sb->s_root)
540 				return sb;
541 			up_read(&sb->s_umount);
542 			/* nope, got unmounted */
543 			spin_lock(&sb_lock);
544 			__put_super(sb);
545 			goto rescan;
546 		}
547 	}
548 	spin_unlock(&sb_lock);
549 	return NULL;
550 }
551 
552 /**
553  *	do_remount_sb - asks filesystem to change mount options.
554  *	@sb:	superblock in question
555  *	@flags:	numeric part of options
556  *	@data:	the rest of options
557  *      @force: whether or not to force the change
558  *
559  *	Alters the mount options of a mounted file system.
560  */
561 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
562 {
563 	int retval;
564 	int remount_ro;
565 
566 	if (sb->s_frozen != SB_UNFROZEN)
567 		return -EBUSY;
568 
569 #ifdef CONFIG_BLOCK
570 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
571 		return -EACCES;
572 #endif
573 
574 	if (flags & MS_RDONLY)
575 		acct_auto_close(sb);
576 	shrink_dcache_sb(sb);
577 	sync_filesystem(sb);
578 
579 	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
580 
581 	/* If we are remounting RDONLY and current sb is read/write,
582 	   make sure there are no rw files opened */
583 	if (remount_ro) {
584 		if (force)
585 			mark_files_ro(sb);
586 		else if (!fs_may_remount_ro(sb))
587 			return -EBUSY;
588 	}
589 
590 	if (sb->s_op->remount_fs) {
591 		retval = sb->s_op->remount_fs(sb, &flags, data);
592 		if (retval)
593 			return retval;
594 	}
595 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
596 
597 	/*
598 	 * Some filesystems modify their metadata via some other path than the
599 	 * bdev buffer cache (eg. use a private mapping, or directories in
600 	 * pagecache, etc). Also file data modifications go via their own
601 	 * mappings. So If we try to mount readonly then copy the filesystem
602 	 * from bdev, we could get stale data, so invalidate it to give a best
603 	 * effort at coherency.
604 	 */
605 	if (remount_ro && sb->s_bdev)
606 		invalidate_bdev(sb->s_bdev);
607 	return 0;
608 }
609 
610 static void do_emergency_remount(struct work_struct *work)
611 {
612 	struct super_block *sb, *p = NULL;
613 
614 	spin_lock(&sb_lock);
615 	list_for_each_entry(sb, &super_blocks, s_list) {
616 		if (list_empty(&sb->s_instances))
617 			continue;
618 		sb->s_count++;
619 		spin_unlock(&sb_lock);
620 		down_write(&sb->s_umount);
621 		if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
622 			/*
623 			 * What lock protects sb->s_flags??
624 			 */
625 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
626 		}
627 		up_write(&sb->s_umount);
628 		spin_lock(&sb_lock);
629 		if (p)
630 			__put_super(p);
631 		p = sb;
632 	}
633 	if (p)
634 		__put_super(p);
635 	spin_unlock(&sb_lock);
636 	kfree(work);
637 	printk("Emergency Remount complete\n");
638 }
639 
640 void emergency_remount(void)
641 {
642 	struct work_struct *work;
643 
644 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
645 	if (work) {
646 		INIT_WORK(work, do_emergency_remount);
647 		schedule_work(work);
648 	}
649 }
650 
651 /*
652  * Unnamed block devices are dummy devices used by virtual
653  * filesystems which don't use real block-devices.  -- jrs
654  */
655 
656 static DEFINE_IDA(unnamed_dev_ida);
657 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
658 static int unnamed_dev_start = 0; /* don't bother trying below it */
659 
660 int set_anon_super(struct super_block *s, void *data)
661 {
662 	int dev;
663 	int error;
664 
665  retry:
666 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
667 		return -ENOMEM;
668 	spin_lock(&unnamed_dev_lock);
669 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
670 	if (!error)
671 		unnamed_dev_start = dev + 1;
672 	spin_unlock(&unnamed_dev_lock);
673 	if (error == -EAGAIN)
674 		/* We raced and lost with another CPU. */
675 		goto retry;
676 	else if (error)
677 		return -EAGAIN;
678 
679 	if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
680 		spin_lock(&unnamed_dev_lock);
681 		ida_remove(&unnamed_dev_ida, dev);
682 		if (unnamed_dev_start > dev)
683 			unnamed_dev_start = dev;
684 		spin_unlock(&unnamed_dev_lock);
685 		return -EMFILE;
686 	}
687 	s->s_dev = MKDEV(0, dev & MINORMASK);
688 	s->s_bdi = &noop_backing_dev_info;
689 	return 0;
690 }
691 
692 EXPORT_SYMBOL(set_anon_super);
693 
694 void kill_anon_super(struct super_block *sb)
695 {
696 	int slot = MINOR(sb->s_dev);
697 
698 	generic_shutdown_super(sb);
699 	spin_lock(&unnamed_dev_lock);
700 	ida_remove(&unnamed_dev_ida, slot);
701 	if (slot < unnamed_dev_start)
702 		unnamed_dev_start = slot;
703 	spin_unlock(&unnamed_dev_lock);
704 }
705 
706 EXPORT_SYMBOL(kill_anon_super);
707 
708 void kill_litter_super(struct super_block *sb)
709 {
710 	if (sb->s_root)
711 		d_genocide(sb->s_root);
712 	kill_anon_super(sb);
713 }
714 
715 EXPORT_SYMBOL(kill_litter_super);
716 
717 static int ns_test_super(struct super_block *sb, void *data)
718 {
719 	return sb->s_fs_info == data;
720 }
721 
722 static int ns_set_super(struct super_block *sb, void *data)
723 {
724 	sb->s_fs_info = data;
725 	return set_anon_super(sb, NULL);
726 }
727 
728 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
729 	void *data, int (*fill_super)(struct super_block *, void *, int))
730 {
731 	struct super_block *sb;
732 
733 	sb = sget(fs_type, ns_test_super, ns_set_super, data);
734 	if (IS_ERR(sb))
735 		return ERR_CAST(sb);
736 
737 	if (!sb->s_root) {
738 		int err;
739 		sb->s_flags = flags;
740 		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
741 		if (err) {
742 			deactivate_locked_super(sb);
743 			return ERR_PTR(err);
744 		}
745 
746 		sb->s_flags |= MS_ACTIVE;
747 	}
748 
749 	return dget(sb->s_root);
750 }
751 
752 EXPORT_SYMBOL(mount_ns);
753 
754 #ifdef CONFIG_BLOCK
755 static int set_bdev_super(struct super_block *s, void *data)
756 {
757 	s->s_bdev = data;
758 	s->s_dev = s->s_bdev->bd_dev;
759 
760 	/*
761 	 * We set the bdi here to the queue backing, file systems can
762 	 * overwrite this in ->fill_super()
763 	 */
764 	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
765 	return 0;
766 }
767 
768 static int test_bdev_super(struct super_block *s, void *data)
769 {
770 	return (void *)s->s_bdev == data;
771 }
772 
773 struct dentry *mount_bdev(struct file_system_type *fs_type,
774 	int flags, const char *dev_name, void *data,
775 	int (*fill_super)(struct super_block *, void *, int))
776 {
777 	struct block_device *bdev;
778 	struct super_block *s;
779 	fmode_t mode = FMODE_READ | FMODE_EXCL;
780 	int error = 0;
781 
782 	if (!(flags & MS_RDONLY))
783 		mode |= FMODE_WRITE;
784 
785 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
786 	if (IS_ERR(bdev))
787 		return ERR_CAST(bdev);
788 
789 	/*
790 	 * once the super is inserted into the list by sget, s_umount
791 	 * will protect the lockfs code from trying to start a snapshot
792 	 * while we are mounting
793 	 */
794 	mutex_lock(&bdev->bd_fsfreeze_mutex);
795 	if (bdev->bd_fsfreeze_count > 0) {
796 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
797 		error = -EBUSY;
798 		goto error_bdev;
799 	}
800 	s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
801 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
802 	if (IS_ERR(s))
803 		goto error_s;
804 
805 	if (s->s_root) {
806 		if ((flags ^ s->s_flags) & MS_RDONLY) {
807 			deactivate_locked_super(s);
808 			error = -EBUSY;
809 			goto error_bdev;
810 		}
811 
812 		/*
813 		 * s_umount nests inside bd_mutex during
814 		 * __invalidate_device().  blkdev_put() acquires
815 		 * bd_mutex and can't be called under s_umount.  Drop
816 		 * s_umount temporarily.  This is safe as we're
817 		 * holding an active reference.
818 		 */
819 		up_write(&s->s_umount);
820 		blkdev_put(bdev, mode);
821 		down_write(&s->s_umount);
822 	} else {
823 		char b[BDEVNAME_SIZE];
824 
825 		s->s_flags = flags | MS_NOSEC;
826 		s->s_mode = mode;
827 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
828 		sb_set_blocksize(s, block_size(bdev));
829 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
830 		if (error) {
831 			deactivate_locked_super(s);
832 			goto error;
833 		}
834 
835 		s->s_flags |= MS_ACTIVE;
836 		bdev->bd_super = s;
837 	}
838 
839 	return dget(s->s_root);
840 
841 error_s:
842 	error = PTR_ERR(s);
843 error_bdev:
844 	blkdev_put(bdev, mode);
845 error:
846 	return ERR_PTR(error);
847 }
848 EXPORT_SYMBOL(mount_bdev);
849 
850 void kill_block_super(struct super_block *sb)
851 {
852 	struct block_device *bdev = sb->s_bdev;
853 	fmode_t mode = sb->s_mode;
854 
855 	bdev->bd_super = NULL;
856 	generic_shutdown_super(sb);
857 	sync_blockdev(bdev);
858 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
859 	blkdev_put(bdev, mode | FMODE_EXCL);
860 }
861 
862 EXPORT_SYMBOL(kill_block_super);
863 #endif
864 
865 struct dentry *mount_nodev(struct file_system_type *fs_type,
866 	int flags, void *data,
867 	int (*fill_super)(struct super_block *, void *, int))
868 {
869 	int error;
870 	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
871 
872 	if (IS_ERR(s))
873 		return ERR_CAST(s);
874 
875 	s->s_flags = flags;
876 
877 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
878 	if (error) {
879 		deactivate_locked_super(s);
880 		return ERR_PTR(error);
881 	}
882 	s->s_flags |= MS_ACTIVE;
883 	return dget(s->s_root);
884 }
885 EXPORT_SYMBOL(mount_nodev);
886 
887 static int compare_single(struct super_block *s, void *p)
888 {
889 	return 1;
890 }
891 
892 struct dentry *mount_single(struct file_system_type *fs_type,
893 	int flags, void *data,
894 	int (*fill_super)(struct super_block *, void *, int))
895 {
896 	struct super_block *s;
897 	int error;
898 
899 	s = sget(fs_type, compare_single, set_anon_super, NULL);
900 	if (IS_ERR(s))
901 		return ERR_CAST(s);
902 	if (!s->s_root) {
903 		s->s_flags = flags;
904 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
905 		if (error) {
906 			deactivate_locked_super(s);
907 			return ERR_PTR(error);
908 		}
909 		s->s_flags |= MS_ACTIVE;
910 	} else {
911 		do_remount_sb(s, flags, data, 0);
912 	}
913 	return dget(s->s_root);
914 }
915 EXPORT_SYMBOL(mount_single);
916 
917 struct dentry *
918 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
919 {
920 	struct dentry *root;
921 	struct super_block *sb;
922 	char *secdata = NULL;
923 	int error = -ENOMEM;
924 
925 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
926 		secdata = alloc_secdata();
927 		if (!secdata)
928 			goto out;
929 
930 		error = security_sb_copy_data(data, secdata);
931 		if (error)
932 			goto out_free_secdata;
933 	}
934 
935 	root = type->mount(type, flags, name, data);
936 	if (IS_ERR(root)) {
937 		error = PTR_ERR(root);
938 		goto out_free_secdata;
939 	}
940 	sb = root->d_sb;
941 	BUG_ON(!sb);
942 	WARN_ON(!sb->s_bdi);
943 	WARN_ON(sb->s_bdi == &default_backing_dev_info);
944 	sb->s_flags |= MS_BORN;
945 
946 	error = security_sb_kern_mount(sb, flags, secdata);
947 	if (error)
948 		goto out_sb;
949 
950 	/*
951 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
952 	 * but s_maxbytes was an unsigned long long for many releases. Throw
953 	 * this warning for a little while to try and catch filesystems that
954 	 * violate this rule.
955 	 */
956 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
957 		"negative value (%lld)\n", type->name, sb->s_maxbytes);
958 
959 	up_write(&sb->s_umount);
960 	free_secdata(secdata);
961 	return root;
962 out_sb:
963 	dput(root);
964 	deactivate_locked_super(sb);
965 out_free_secdata:
966 	free_secdata(secdata);
967 out:
968 	return ERR_PTR(error);
969 }
970 
971 /**
972  * freeze_super - lock the filesystem and force it into a consistent state
973  * @sb: the super to lock
974  *
975  * Syncs the super to make sure the filesystem is consistent and calls the fs's
976  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
977  * -EBUSY.
978  */
979 int freeze_super(struct super_block *sb)
980 {
981 	int ret;
982 
983 	atomic_inc(&sb->s_active);
984 	down_write(&sb->s_umount);
985 	if (sb->s_frozen) {
986 		deactivate_locked_super(sb);
987 		return -EBUSY;
988 	}
989 
990 	if (sb->s_flags & MS_RDONLY) {
991 		sb->s_frozen = SB_FREEZE_TRANS;
992 		smp_wmb();
993 		up_write(&sb->s_umount);
994 		return 0;
995 	}
996 
997 	sb->s_frozen = SB_FREEZE_WRITE;
998 	smp_wmb();
999 
1000 	sync_filesystem(sb);
1001 
1002 	sb->s_frozen = SB_FREEZE_TRANS;
1003 	smp_wmb();
1004 
1005 	sync_blockdev(sb->s_bdev);
1006 	if (sb->s_op->freeze_fs) {
1007 		ret = sb->s_op->freeze_fs(sb);
1008 		if (ret) {
1009 			printk(KERN_ERR
1010 				"VFS:Filesystem freeze failed\n");
1011 			sb->s_frozen = SB_UNFROZEN;
1012 			deactivate_locked_super(sb);
1013 			return ret;
1014 		}
1015 	}
1016 	up_write(&sb->s_umount);
1017 	return 0;
1018 }
1019 EXPORT_SYMBOL(freeze_super);
1020 
1021 /**
1022  * thaw_super -- unlock filesystem
1023  * @sb: the super to thaw
1024  *
1025  * Unlocks the filesystem and marks it writeable again after freeze_super().
1026  */
1027 int thaw_super(struct super_block *sb)
1028 {
1029 	int error;
1030 
1031 	down_write(&sb->s_umount);
1032 	if (sb->s_frozen == SB_UNFROZEN) {
1033 		up_write(&sb->s_umount);
1034 		return -EINVAL;
1035 	}
1036 
1037 	if (sb->s_flags & MS_RDONLY)
1038 		goto out;
1039 
1040 	if (sb->s_op->unfreeze_fs) {
1041 		error = sb->s_op->unfreeze_fs(sb);
1042 		if (error) {
1043 			printk(KERN_ERR
1044 				"VFS:Filesystem thaw failed\n");
1045 			sb->s_frozen = SB_FREEZE_TRANS;
1046 			up_write(&sb->s_umount);
1047 			return error;
1048 		}
1049 	}
1050 
1051 out:
1052 	sb->s_frozen = SB_UNFROZEN;
1053 	smp_wmb();
1054 	wake_up(&sb->s_wait_unfrozen);
1055 	deactivate_locked_super(sb);
1056 
1057 	return 0;
1058 }
1059 EXPORT_SYMBOL(thaw_super);
1060