xref: /openbmc/linux/fs/super.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/super.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  super.c contains code to handle: - mount structures
8  *                                   - super-block tables
9  *                                   - filesystem drivers list
10  *                                   - mount system call
11  *                                   - umount system call
12  *                                   - ustat system call
13  *
14  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
15  *
16  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18  *  Added options to /proc/mounts:
19  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22  */
23 
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include "internal.h"
39 
40 
41 static LIST_HEAD(super_blocks);
42 static DEFINE_SPINLOCK(sb_lock);
43 
44 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
45 	"sb_writers",
46 	"sb_pagefaults",
47 	"sb_internal",
48 };
49 
50 /*
51  * One thing we have to be careful of with a per-sb shrinker is that we don't
52  * drop the last active reference to the superblock from within the shrinker.
53  * If that happens we could trigger unregistering the shrinker from within the
54  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
55  * take a passive reference to the superblock to avoid this from occurring.
56  */
57 static unsigned long super_cache_scan(struct shrinker *shrink,
58 				      struct shrink_control *sc)
59 {
60 	struct super_block *sb;
61 	long	fs_objects = 0;
62 	long	total_objects;
63 	long	freed = 0;
64 	long	dentries;
65 	long	inodes;
66 
67 	sb = container_of(shrink, struct super_block, s_shrink);
68 
69 	/*
70 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
71 	 * to recurse into the FS that called us in clear_inode() and friends..
72 	 */
73 	if (!(sc->gfp_mask & __GFP_FS))
74 		return SHRINK_STOP;
75 
76 	if (!trylock_super(sb))
77 		return SHRINK_STOP;
78 
79 	if (sb->s_op->nr_cached_objects)
80 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
81 
82 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
83 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
84 	total_objects = dentries + inodes + fs_objects + 1;
85 	if (!total_objects)
86 		total_objects = 1;
87 
88 	/* proportion the scan between the caches */
89 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
90 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
91 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
92 
93 	/*
94 	 * prune the dcache first as the icache is pinned by it, then
95 	 * prune the icache, followed by the filesystem specific caches
96 	 *
97 	 * Ensure that we always scan at least one object - memcg kmem
98 	 * accounting uses this to fully empty the caches.
99 	 */
100 	sc->nr_to_scan = dentries + 1;
101 	freed = prune_dcache_sb(sb, sc);
102 	sc->nr_to_scan = inodes + 1;
103 	freed += prune_icache_sb(sb, sc);
104 
105 	if (fs_objects) {
106 		sc->nr_to_scan = fs_objects + 1;
107 		freed += sb->s_op->free_cached_objects(sb, sc);
108 	}
109 
110 	up_read(&sb->s_umount);
111 	return freed;
112 }
113 
114 static unsigned long super_cache_count(struct shrinker *shrink,
115 				       struct shrink_control *sc)
116 {
117 	struct super_block *sb;
118 	long	total_objects = 0;
119 
120 	sb = container_of(shrink, struct super_block, s_shrink);
121 
122 	/*
123 	 * Don't call trylock_super as it is a potential
124 	 * scalability bottleneck. The counts could get updated
125 	 * between super_cache_count and super_cache_scan anyway.
126 	 * Call to super_cache_count with shrinker_rwsem held
127 	 * ensures the safety of call to list_lru_shrink_count() and
128 	 * s_op->nr_cached_objects().
129 	 */
130 	if (sb->s_op && sb->s_op->nr_cached_objects)
131 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
132 
133 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
134 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
135 
136 	total_objects = vfs_pressure_ratio(total_objects);
137 	return total_objects;
138 }
139 
140 static void destroy_super_work(struct work_struct *work)
141 {
142 	struct super_block *s = container_of(work, struct super_block,
143 							destroy_work);
144 	int i;
145 
146 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
147 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
148 	kfree(s);
149 }
150 
151 static void destroy_super_rcu(struct rcu_head *head)
152 {
153 	struct super_block *s = container_of(head, struct super_block, rcu);
154 	INIT_WORK(&s->destroy_work, destroy_super_work);
155 	schedule_work(&s->destroy_work);
156 }
157 
158 /* Free a superblock that has never been seen by anyone */
159 static void destroy_unused_super(struct super_block *s)
160 {
161 	if (!s)
162 		return;
163 	up_write(&s->s_umount);
164 	list_lru_destroy(&s->s_dentry_lru);
165 	list_lru_destroy(&s->s_inode_lru);
166 	security_sb_free(s);
167 	put_user_ns(s->s_user_ns);
168 	kfree(s->s_subtype);
169 	/* no delays needed */
170 	destroy_super_work(&s->destroy_work);
171 }
172 
173 /**
174  *	alloc_super	-	create new superblock
175  *	@type:	filesystem type superblock should belong to
176  *	@flags: the mount flags
177  *	@user_ns: User namespace for the super_block
178  *
179  *	Allocates and initializes a new &struct super_block.  alloc_super()
180  *	returns a pointer new superblock or %NULL if allocation had failed.
181  */
182 static struct super_block *alloc_super(struct file_system_type *type, int flags,
183 				       struct user_namespace *user_ns)
184 {
185 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
186 	static const struct super_operations default_op;
187 	int i;
188 
189 	if (!s)
190 		return NULL;
191 
192 	INIT_LIST_HEAD(&s->s_mounts);
193 	s->s_user_ns = get_user_ns(user_ns);
194 	init_rwsem(&s->s_umount);
195 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
196 	/*
197 	 * sget() can have s_umount recursion.
198 	 *
199 	 * When it cannot find a suitable sb, it allocates a new
200 	 * one (this one), and tries again to find a suitable old
201 	 * one.
202 	 *
203 	 * In case that succeeds, it will acquire the s_umount
204 	 * lock of the old one. Since these are clearly distrinct
205 	 * locks, and this object isn't exposed yet, there's no
206 	 * risk of deadlocks.
207 	 *
208 	 * Annotate this by putting this lock in a different
209 	 * subclass.
210 	 */
211 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
212 
213 	if (security_sb_alloc(s))
214 		goto fail;
215 
216 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
217 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
218 					sb_writers_name[i],
219 					&type->s_writers_key[i]))
220 			goto fail;
221 	}
222 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
223 	s->s_bdi = &noop_backing_dev_info;
224 	s->s_flags = flags;
225 	if (s->s_user_ns != &init_user_ns)
226 		s->s_iflags |= SB_I_NODEV;
227 	INIT_HLIST_NODE(&s->s_instances);
228 	INIT_HLIST_BL_HEAD(&s->s_roots);
229 	mutex_init(&s->s_sync_lock);
230 	INIT_LIST_HEAD(&s->s_inodes);
231 	spin_lock_init(&s->s_inode_list_lock);
232 	INIT_LIST_HEAD(&s->s_inodes_wb);
233 	spin_lock_init(&s->s_inode_wblist_lock);
234 
235 	if (list_lru_init_memcg(&s->s_dentry_lru))
236 		goto fail;
237 	if (list_lru_init_memcg(&s->s_inode_lru))
238 		goto fail;
239 	s->s_count = 1;
240 	atomic_set(&s->s_active, 1);
241 	mutex_init(&s->s_vfs_rename_mutex);
242 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
243 	init_rwsem(&s->s_dquot.dqio_sem);
244 	s->s_maxbytes = MAX_NON_LFS;
245 	s->s_op = &default_op;
246 	s->s_time_gran = 1000000000;
247 	s->cleancache_poolid = CLEANCACHE_NO_POOL;
248 
249 	s->s_shrink.seeks = DEFAULT_SEEKS;
250 	s->s_shrink.scan_objects = super_cache_scan;
251 	s->s_shrink.count_objects = super_cache_count;
252 	s->s_shrink.batch = 1024;
253 	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
254 	return s;
255 
256 fail:
257 	destroy_unused_super(s);
258 	return NULL;
259 }
260 
261 /* Superblock refcounting  */
262 
263 /*
264  * Drop a superblock's refcount.  The caller must hold sb_lock.
265  */
266 static void __put_super(struct super_block *s)
267 {
268 	if (!--s->s_count) {
269 		list_del_init(&s->s_list);
270 		WARN_ON(s->s_dentry_lru.node);
271 		WARN_ON(s->s_inode_lru.node);
272 		WARN_ON(!list_empty(&s->s_mounts));
273 		security_sb_free(s);
274 		put_user_ns(s->s_user_ns);
275 		kfree(s->s_subtype);
276 		call_rcu(&s->rcu, destroy_super_rcu);
277 	}
278 }
279 
280 /**
281  *	put_super	-	drop a temporary reference to superblock
282  *	@sb: superblock in question
283  *
284  *	Drops a temporary reference, frees superblock if there's no
285  *	references left.
286  */
287 static void put_super(struct super_block *sb)
288 {
289 	spin_lock(&sb_lock);
290 	__put_super(sb);
291 	spin_unlock(&sb_lock);
292 }
293 
294 
295 /**
296  *	deactivate_locked_super	-	drop an active reference to superblock
297  *	@s: superblock to deactivate
298  *
299  *	Drops an active reference to superblock, converting it into a temporary
300  *	one if there is no other active references left.  In that case we
301  *	tell fs driver to shut it down and drop the temporary reference we
302  *	had just acquired.
303  *
304  *	Caller holds exclusive lock on superblock; that lock is released.
305  */
306 void deactivate_locked_super(struct super_block *s)
307 {
308 	struct file_system_type *fs = s->s_type;
309 	if (atomic_dec_and_test(&s->s_active)) {
310 		cleancache_invalidate_fs(s);
311 		unregister_shrinker(&s->s_shrink);
312 		fs->kill_sb(s);
313 
314 		/*
315 		 * Since list_lru_destroy() may sleep, we cannot call it from
316 		 * put_super(), where we hold the sb_lock. Therefore we destroy
317 		 * the lru lists right now.
318 		 */
319 		list_lru_destroy(&s->s_dentry_lru);
320 		list_lru_destroy(&s->s_inode_lru);
321 
322 		put_filesystem(fs);
323 		put_super(s);
324 	} else {
325 		up_write(&s->s_umount);
326 	}
327 }
328 
329 EXPORT_SYMBOL(deactivate_locked_super);
330 
331 /**
332  *	deactivate_super	-	drop an active reference to superblock
333  *	@s: superblock to deactivate
334  *
335  *	Variant of deactivate_locked_super(), except that superblock is *not*
336  *	locked by caller.  If we are going to drop the final active reference,
337  *	lock will be acquired prior to that.
338  */
339 void deactivate_super(struct super_block *s)
340 {
341         if (!atomic_add_unless(&s->s_active, -1, 1)) {
342 		down_write(&s->s_umount);
343 		deactivate_locked_super(s);
344 	}
345 }
346 
347 EXPORT_SYMBOL(deactivate_super);
348 
349 /**
350  *	grab_super - acquire an active reference
351  *	@s: reference we are trying to make active
352  *
353  *	Tries to acquire an active reference.  grab_super() is used when we
354  * 	had just found a superblock in super_blocks or fs_type->fs_supers
355  *	and want to turn it into a full-blown active reference.  grab_super()
356  *	is called with sb_lock held and drops it.  Returns 1 in case of
357  *	success, 0 if we had failed (superblock contents was already dead or
358  *	dying when grab_super() had been called).  Note that this is only
359  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
360  *	of their type), so increment of ->s_count is OK here.
361  */
362 static int grab_super(struct super_block *s) __releases(sb_lock)
363 {
364 	s->s_count++;
365 	spin_unlock(&sb_lock);
366 	down_write(&s->s_umount);
367 	if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
368 		put_super(s);
369 		return 1;
370 	}
371 	up_write(&s->s_umount);
372 	put_super(s);
373 	return 0;
374 }
375 
376 /*
377  *	trylock_super - try to grab ->s_umount shared
378  *	@sb: reference we are trying to grab
379  *
380  *	Try to prevent fs shutdown.  This is used in places where we
381  *	cannot take an active reference but we need to ensure that the
382  *	filesystem is not shut down while we are working on it. It returns
383  *	false if we cannot acquire s_umount or if we lose the race and
384  *	filesystem already got into shutdown, and returns true with the s_umount
385  *	lock held in read mode in case of success. On successful return,
386  *	the caller must drop the s_umount lock when done.
387  *
388  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
389  *	The reason why it's safe is that we are OK with doing trylock instead
390  *	of down_read().  There's a couple of places that are OK with that, but
391  *	it's very much not a general-purpose interface.
392  */
393 bool trylock_super(struct super_block *sb)
394 {
395 	if (down_read_trylock(&sb->s_umount)) {
396 		if (!hlist_unhashed(&sb->s_instances) &&
397 		    sb->s_root && (sb->s_flags & SB_BORN))
398 			return true;
399 		up_read(&sb->s_umount);
400 	}
401 
402 	return false;
403 }
404 
405 /**
406  *	generic_shutdown_super	-	common helper for ->kill_sb()
407  *	@sb: superblock to kill
408  *
409  *	generic_shutdown_super() does all fs-independent work on superblock
410  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
411  *	that need destruction out of superblock, call generic_shutdown_super()
412  *	and release aforementioned objects.  Note: dentries and inodes _are_
413  *	taken care of and do not need specific handling.
414  *
415  *	Upon calling this function, the filesystem may no longer alter or
416  *	rearrange the set of dentries belonging to this super_block, nor may it
417  *	change the attachments of dentries to inodes.
418  */
419 void generic_shutdown_super(struct super_block *sb)
420 {
421 	const struct super_operations *sop = sb->s_op;
422 
423 	if (sb->s_root) {
424 		shrink_dcache_for_umount(sb);
425 		sync_filesystem(sb);
426 		sb->s_flags &= ~SB_ACTIVE;
427 
428 		fsnotify_unmount_inodes(sb);
429 		cgroup_writeback_umount();
430 
431 		evict_inodes(sb);
432 
433 		if (sb->s_dio_done_wq) {
434 			destroy_workqueue(sb->s_dio_done_wq);
435 			sb->s_dio_done_wq = NULL;
436 		}
437 
438 		if (sop->put_super)
439 			sop->put_super(sb);
440 
441 		if (!list_empty(&sb->s_inodes)) {
442 			printk("VFS: Busy inodes after unmount of %s. "
443 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
444 			   sb->s_id);
445 		}
446 	}
447 	spin_lock(&sb_lock);
448 	/* should be initialized for __put_super_and_need_restart() */
449 	hlist_del_init(&sb->s_instances);
450 	spin_unlock(&sb_lock);
451 	up_write(&sb->s_umount);
452 	if (sb->s_bdi != &noop_backing_dev_info) {
453 		bdi_put(sb->s_bdi);
454 		sb->s_bdi = &noop_backing_dev_info;
455 	}
456 }
457 
458 EXPORT_SYMBOL(generic_shutdown_super);
459 
460 /**
461  *	sget_userns -	find or create a superblock
462  *	@type:	filesystem type superblock should belong to
463  *	@test:	comparison callback
464  *	@set:	setup callback
465  *	@flags:	mount flags
466  *	@user_ns: User namespace for the super_block
467  *	@data:	argument to each of them
468  */
469 struct super_block *sget_userns(struct file_system_type *type,
470 			int (*test)(struct super_block *,void *),
471 			int (*set)(struct super_block *,void *),
472 			int flags, struct user_namespace *user_ns,
473 			void *data)
474 {
475 	struct super_block *s = NULL;
476 	struct super_block *old;
477 	int err;
478 
479 	if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) &&
480 	    !(type->fs_flags & FS_USERNS_MOUNT) &&
481 	    !capable(CAP_SYS_ADMIN))
482 		return ERR_PTR(-EPERM);
483 retry:
484 	spin_lock(&sb_lock);
485 	if (test) {
486 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
487 			if (!test(old, data))
488 				continue;
489 			if (user_ns != old->s_user_ns) {
490 				spin_unlock(&sb_lock);
491 				destroy_unused_super(s);
492 				return ERR_PTR(-EBUSY);
493 			}
494 			if (!grab_super(old))
495 				goto retry;
496 			destroy_unused_super(s);
497 			return old;
498 		}
499 	}
500 	if (!s) {
501 		spin_unlock(&sb_lock);
502 		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
503 		if (!s)
504 			return ERR_PTR(-ENOMEM);
505 		goto retry;
506 	}
507 
508 	err = set(s, data);
509 	if (err) {
510 		spin_unlock(&sb_lock);
511 		destroy_unused_super(s);
512 		return ERR_PTR(err);
513 	}
514 	s->s_type = type;
515 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
516 	list_add_tail(&s->s_list, &super_blocks);
517 	hlist_add_head(&s->s_instances, &type->fs_supers);
518 	spin_unlock(&sb_lock);
519 	get_filesystem(type);
520 	err = register_shrinker(&s->s_shrink);
521 	if (err) {
522 		deactivate_locked_super(s);
523 		s = ERR_PTR(err);
524 	}
525 	return s;
526 }
527 
528 EXPORT_SYMBOL(sget_userns);
529 
530 /**
531  *	sget	-	find or create a superblock
532  *	@type:	  filesystem type superblock should belong to
533  *	@test:	  comparison callback
534  *	@set:	  setup callback
535  *	@flags:	  mount flags
536  *	@data:	  argument to each of them
537  */
538 struct super_block *sget(struct file_system_type *type,
539 			int (*test)(struct super_block *,void *),
540 			int (*set)(struct super_block *,void *),
541 			int flags,
542 			void *data)
543 {
544 	struct user_namespace *user_ns = current_user_ns();
545 
546 	/* We don't yet pass the user namespace of the parent
547 	 * mount through to here so always use &init_user_ns
548 	 * until that changes.
549 	 */
550 	if (flags & SB_SUBMOUNT)
551 		user_ns = &init_user_ns;
552 
553 	/* Ensure the requestor has permissions over the target filesystem */
554 	if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN))
555 		return ERR_PTR(-EPERM);
556 
557 	return sget_userns(type, test, set, flags, user_ns, data);
558 }
559 
560 EXPORT_SYMBOL(sget);
561 
562 void drop_super(struct super_block *sb)
563 {
564 	up_read(&sb->s_umount);
565 	put_super(sb);
566 }
567 
568 EXPORT_SYMBOL(drop_super);
569 
570 void drop_super_exclusive(struct super_block *sb)
571 {
572 	up_write(&sb->s_umount);
573 	put_super(sb);
574 }
575 EXPORT_SYMBOL(drop_super_exclusive);
576 
577 /**
578  *	iterate_supers - call function for all active superblocks
579  *	@f: function to call
580  *	@arg: argument to pass to it
581  *
582  *	Scans the superblock list and calls given function, passing it
583  *	locked superblock and given argument.
584  */
585 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
586 {
587 	struct super_block *sb, *p = NULL;
588 
589 	spin_lock(&sb_lock);
590 	list_for_each_entry(sb, &super_blocks, s_list) {
591 		if (hlist_unhashed(&sb->s_instances))
592 			continue;
593 		sb->s_count++;
594 		spin_unlock(&sb_lock);
595 
596 		down_read(&sb->s_umount);
597 		if (sb->s_root && (sb->s_flags & SB_BORN))
598 			f(sb, arg);
599 		up_read(&sb->s_umount);
600 
601 		spin_lock(&sb_lock);
602 		if (p)
603 			__put_super(p);
604 		p = sb;
605 	}
606 	if (p)
607 		__put_super(p);
608 	spin_unlock(&sb_lock);
609 }
610 
611 /**
612  *	iterate_supers_type - call function for superblocks of given type
613  *	@type: fs type
614  *	@f: function to call
615  *	@arg: argument to pass to it
616  *
617  *	Scans the superblock list and calls given function, passing it
618  *	locked superblock and given argument.
619  */
620 void iterate_supers_type(struct file_system_type *type,
621 	void (*f)(struct super_block *, void *), void *arg)
622 {
623 	struct super_block *sb, *p = NULL;
624 
625 	spin_lock(&sb_lock);
626 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
627 		sb->s_count++;
628 		spin_unlock(&sb_lock);
629 
630 		down_read(&sb->s_umount);
631 		if (sb->s_root && (sb->s_flags & SB_BORN))
632 			f(sb, arg);
633 		up_read(&sb->s_umount);
634 
635 		spin_lock(&sb_lock);
636 		if (p)
637 			__put_super(p);
638 		p = sb;
639 	}
640 	if (p)
641 		__put_super(p);
642 	spin_unlock(&sb_lock);
643 }
644 
645 EXPORT_SYMBOL(iterate_supers_type);
646 
647 static struct super_block *__get_super(struct block_device *bdev, bool excl)
648 {
649 	struct super_block *sb;
650 
651 	if (!bdev)
652 		return NULL;
653 
654 	spin_lock(&sb_lock);
655 rescan:
656 	list_for_each_entry(sb, &super_blocks, s_list) {
657 		if (hlist_unhashed(&sb->s_instances))
658 			continue;
659 		if (sb->s_bdev == bdev) {
660 			sb->s_count++;
661 			spin_unlock(&sb_lock);
662 			if (!excl)
663 				down_read(&sb->s_umount);
664 			else
665 				down_write(&sb->s_umount);
666 			/* still alive? */
667 			if (sb->s_root && (sb->s_flags & SB_BORN))
668 				return sb;
669 			if (!excl)
670 				up_read(&sb->s_umount);
671 			else
672 				up_write(&sb->s_umount);
673 			/* nope, got unmounted */
674 			spin_lock(&sb_lock);
675 			__put_super(sb);
676 			goto rescan;
677 		}
678 	}
679 	spin_unlock(&sb_lock);
680 	return NULL;
681 }
682 
683 /**
684  *	get_super - get the superblock of a device
685  *	@bdev: device to get the superblock for
686  *
687  *	Scans the superblock list and finds the superblock of the file system
688  *	mounted on the device given. %NULL is returned if no match is found.
689  */
690 struct super_block *get_super(struct block_device *bdev)
691 {
692 	return __get_super(bdev, false);
693 }
694 EXPORT_SYMBOL(get_super);
695 
696 static struct super_block *__get_super_thawed(struct block_device *bdev,
697 					      bool excl)
698 {
699 	while (1) {
700 		struct super_block *s = __get_super(bdev, excl);
701 		if (!s || s->s_writers.frozen == SB_UNFROZEN)
702 			return s;
703 		if (!excl)
704 			up_read(&s->s_umount);
705 		else
706 			up_write(&s->s_umount);
707 		wait_event(s->s_writers.wait_unfrozen,
708 			   s->s_writers.frozen == SB_UNFROZEN);
709 		put_super(s);
710 	}
711 }
712 
713 /**
714  *	get_super_thawed - get thawed superblock of a device
715  *	@bdev: device to get the superblock for
716  *
717  *	Scans the superblock list and finds the superblock of the file system
718  *	mounted on the device. The superblock is returned once it is thawed
719  *	(or immediately if it was not frozen). %NULL is returned if no match
720  *	is found.
721  */
722 struct super_block *get_super_thawed(struct block_device *bdev)
723 {
724 	return __get_super_thawed(bdev, false);
725 }
726 EXPORT_SYMBOL(get_super_thawed);
727 
728 /**
729  *	get_super_exclusive_thawed - get thawed superblock of a device
730  *	@bdev: device to get the superblock for
731  *
732  *	Scans the superblock list and finds the superblock of the file system
733  *	mounted on the device. The superblock is returned once it is thawed
734  *	(or immediately if it was not frozen) and s_umount semaphore is held
735  *	in exclusive mode. %NULL is returned if no match is found.
736  */
737 struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
738 {
739 	return __get_super_thawed(bdev, true);
740 }
741 EXPORT_SYMBOL(get_super_exclusive_thawed);
742 
743 /**
744  * get_active_super - get an active reference to the superblock of a device
745  * @bdev: device to get the superblock for
746  *
747  * Scans the superblock list and finds the superblock of the file system
748  * mounted on the device given.  Returns the superblock with an active
749  * reference or %NULL if none was found.
750  */
751 struct super_block *get_active_super(struct block_device *bdev)
752 {
753 	struct super_block *sb;
754 
755 	if (!bdev)
756 		return NULL;
757 
758 restart:
759 	spin_lock(&sb_lock);
760 	list_for_each_entry(sb, &super_blocks, s_list) {
761 		if (hlist_unhashed(&sb->s_instances))
762 			continue;
763 		if (sb->s_bdev == bdev) {
764 			if (!grab_super(sb))
765 				goto restart;
766 			up_write(&sb->s_umount);
767 			return sb;
768 		}
769 	}
770 	spin_unlock(&sb_lock);
771 	return NULL;
772 }
773 
774 struct super_block *user_get_super(dev_t dev)
775 {
776 	struct super_block *sb;
777 
778 	spin_lock(&sb_lock);
779 rescan:
780 	list_for_each_entry(sb, &super_blocks, s_list) {
781 		if (hlist_unhashed(&sb->s_instances))
782 			continue;
783 		if (sb->s_dev ==  dev) {
784 			sb->s_count++;
785 			spin_unlock(&sb_lock);
786 			down_read(&sb->s_umount);
787 			/* still alive? */
788 			if (sb->s_root && (sb->s_flags & SB_BORN))
789 				return sb;
790 			up_read(&sb->s_umount);
791 			/* nope, got unmounted */
792 			spin_lock(&sb_lock);
793 			__put_super(sb);
794 			goto rescan;
795 		}
796 	}
797 	spin_unlock(&sb_lock);
798 	return NULL;
799 }
800 
801 /**
802  *	do_remount_sb - asks filesystem to change mount options.
803  *	@sb:	superblock in question
804  *	@sb_flags: revised superblock flags
805  *	@data:	the rest of options
806  *      @force: whether or not to force the change
807  *
808  *	Alters the mount options of a mounted file system.
809  */
810 int do_remount_sb(struct super_block *sb, int sb_flags, void *data, int force)
811 {
812 	int retval;
813 	int remount_ro;
814 
815 	if (sb->s_writers.frozen != SB_UNFROZEN)
816 		return -EBUSY;
817 
818 #ifdef CONFIG_BLOCK
819 	if (!(sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
820 		return -EACCES;
821 #endif
822 
823 	remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
824 
825 	if (remount_ro) {
826 		if (!hlist_empty(&sb->s_pins)) {
827 			up_write(&sb->s_umount);
828 			group_pin_kill(&sb->s_pins);
829 			down_write(&sb->s_umount);
830 			if (!sb->s_root)
831 				return 0;
832 			if (sb->s_writers.frozen != SB_UNFROZEN)
833 				return -EBUSY;
834 			remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
835 		}
836 	}
837 	shrink_dcache_sb(sb);
838 
839 	/* If we are remounting RDONLY and current sb is read/write,
840 	   make sure there are no rw files opened */
841 	if (remount_ro) {
842 		if (force) {
843 			sb->s_readonly_remount = 1;
844 			smp_wmb();
845 		} else {
846 			retval = sb_prepare_remount_readonly(sb);
847 			if (retval)
848 				return retval;
849 		}
850 	}
851 
852 	if (sb->s_op->remount_fs) {
853 		retval = sb->s_op->remount_fs(sb, &sb_flags, data);
854 		if (retval) {
855 			if (!force)
856 				goto cancel_readonly;
857 			/* If forced remount, go ahead despite any errors */
858 			WARN(1, "forced remount of a %s fs returned %i\n",
859 			     sb->s_type->name, retval);
860 		}
861 	}
862 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (sb_flags & MS_RMT_MASK);
863 	/* Needs to be ordered wrt mnt_is_readonly() */
864 	smp_wmb();
865 	sb->s_readonly_remount = 0;
866 
867 	/*
868 	 * Some filesystems modify their metadata via some other path than the
869 	 * bdev buffer cache (eg. use a private mapping, or directories in
870 	 * pagecache, etc). Also file data modifications go via their own
871 	 * mappings. So If we try to mount readonly then copy the filesystem
872 	 * from bdev, we could get stale data, so invalidate it to give a best
873 	 * effort at coherency.
874 	 */
875 	if (remount_ro && sb->s_bdev)
876 		invalidate_bdev(sb->s_bdev);
877 	return 0;
878 
879 cancel_readonly:
880 	sb->s_readonly_remount = 0;
881 	return retval;
882 }
883 
884 static void do_emergency_remount(struct work_struct *work)
885 {
886 	struct super_block *sb, *p = NULL;
887 
888 	spin_lock(&sb_lock);
889 	list_for_each_entry(sb, &super_blocks, s_list) {
890 		if (hlist_unhashed(&sb->s_instances))
891 			continue;
892 		sb->s_count++;
893 		spin_unlock(&sb_lock);
894 		down_write(&sb->s_umount);
895 		if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
896 		    !sb_rdonly(sb)) {
897 			/*
898 			 * What lock protects sb->s_flags??
899 			 */
900 			do_remount_sb(sb, SB_RDONLY, NULL, 1);
901 		}
902 		up_write(&sb->s_umount);
903 		spin_lock(&sb_lock);
904 		if (p)
905 			__put_super(p);
906 		p = sb;
907 	}
908 	if (p)
909 		__put_super(p);
910 	spin_unlock(&sb_lock);
911 	kfree(work);
912 	printk("Emergency Remount complete\n");
913 }
914 
915 void emergency_remount(void)
916 {
917 	struct work_struct *work;
918 
919 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
920 	if (work) {
921 		INIT_WORK(work, do_emergency_remount);
922 		schedule_work(work);
923 	}
924 }
925 
926 /*
927  * Unnamed block devices are dummy devices used by virtual
928  * filesystems which don't use real block-devices.  -- jrs
929  */
930 
931 static DEFINE_IDA(unnamed_dev_ida);
932 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
933 /* Many userspace utilities consider an FSID of 0 invalid.
934  * Always return at least 1 from get_anon_bdev.
935  */
936 static int unnamed_dev_start = 1;
937 
938 int get_anon_bdev(dev_t *p)
939 {
940 	int dev;
941 	int error;
942 
943  retry:
944 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
945 		return -ENOMEM;
946 	spin_lock(&unnamed_dev_lock);
947 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
948 	if (!error)
949 		unnamed_dev_start = dev + 1;
950 	spin_unlock(&unnamed_dev_lock);
951 	if (error == -EAGAIN)
952 		/* We raced and lost with another CPU. */
953 		goto retry;
954 	else if (error)
955 		return -EAGAIN;
956 
957 	if (dev >= (1 << MINORBITS)) {
958 		spin_lock(&unnamed_dev_lock);
959 		ida_remove(&unnamed_dev_ida, dev);
960 		if (unnamed_dev_start > dev)
961 			unnamed_dev_start = dev;
962 		spin_unlock(&unnamed_dev_lock);
963 		return -EMFILE;
964 	}
965 	*p = MKDEV(0, dev & MINORMASK);
966 	return 0;
967 }
968 EXPORT_SYMBOL(get_anon_bdev);
969 
970 void free_anon_bdev(dev_t dev)
971 {
972 	int slot = MINOR(dev);
973 	spin_lock(&unnamed_dev_lock);
974 	ida_remove(&unnamed_dev_ida, slot);
975 	if (slot < unnamed_dev_start)
976 		unnamed_dev_start = slot;
977 	spin_unlock(&unnamed_dev_lock);
978 }
979 EXPORT_SYMBOL(free_anon_bdev);
980 
981 int set_anon_super(struct super_block *s, void *data)
982 {
983 	return get_anon_bdev(&s->s_dev);
984 }
985 
986 EXPORT_SYMBOL(set_anon_super);
987 
988 void kill_anon_super(struct super_block *sb)
989 {
990 	dev_t dev = sb->s_dev;
991 	generic_shutdown_super(sb);
992 	free_anon_bdev(dev);
993 }
994 
995 EXPORT_SYMBOL(kill_anon_super);
996 
997 void kill_litter_super(struct super_block *sb)
998 {
999 	if (sb->s_root)
1000 		d_genocide(sb->s_root);
1001 	kill_anon_super(sb);
1002 }
1003 
1004 EXPORT_SYMBOL(kill_litter_super);
1005 
1006 static int ns_test_super(struct super_block *sb, void *data)
1007 {
1008 	return sb->s_fs_info == data;
1009 }
1010 
1011 static int ns_set_super(struct super_block *sb, void *data)
1012 {
1013 	sb->s_fs_info = data;
1014 	return set_anon_super(sb, NULL);
1015 }
1016 
1017 struct dentry *mount_ns(struct file_system_type *fs_type,
1018 	int flags, void *data, void *ns, struct user_namespace *user_ns,
1019 	int (*fill_super)(struct super_block *, void *, int))
1020 {
1021 	struct super_block *sb;
1022 
1023 	/* Don't allow mounting unless the caller has CAP_SYS_ADMIN
1024 	 * over the namespace.
1025 	 */
1026 	if (!(flags & SB_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
1027 		return ERR_PTR(-EPERM);
1028 
1029 	sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags,
1030 			 user_ns, ns);
1031 	if (IS_ERR(sb))
1032 		return ERR_CAST(sb);
1033 
1034 	if (!sb->s_root) {
1035 		int err;
1036 		err = fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
1037 		if (err) {
1038 			deactivate_locked_super(sb);
1039 			return ERR_PTR(err);
1040 		}
1041 
1042 		sb->s_flags |= SB_ACTIVE;
1043 	}
1044 
1045 	return dget(sb->s_root);
1046 }
1047 
1048 EXPORT_SYMBOL(mount_ns);
1049 
1050 #ifdef CONFIG_BLOCK
1051 static int set_bdev_super(struct super_block *s, void *data)
1052 {
1053 	s->s_bdev = data;
1054 	s->s_dev = s->s_bdev->bd_dev;
1055 	s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1056 
1057 	return 0;
1058 }
1059 
1060 static int test_bdev_super(struct super_block *s, void *data)
1061 {
1062 	return (void *)s->s_bdev == data;
1063 }
1064 
1065 struct dentry *mount_bdev(struct file_system_type *fs_type,
1066 	int flags, const char *dev_name, void *data,
1067 	int (*fill_super)(struct super_block *, void *, int))
1068 {
1069 	struct block_device *bdev;
1070 	struct super_block *s;
1071 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1072 	int error = 0;
1073 
1074 	if (!(flags & SB_RDONLY))
1075 		mode |= FMODE_WRITE;
1076 
1077 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1078 	if (IS_ERR(bdev))
1079 		return ERR_CAST(bdev);
1080 
1081 	/*
1082 	 * once the super is inserted into the list by sget, s_umount
1083 	 * will protect the lockfs code from trying to start a snapshot
1084 	 * while we are mounting
1085 	 */
1086 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1087 	if (bdev->bd_fsfreeze_count > 0) {
1088 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1089 		error = -EBUSY;
1090 		goto error_bdev;
1091 	}
1092 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1093 		 bdev);
1094 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1095 	if (IS_ERR(s))
1096 		goto error_s;
1097 
1098 	if (s->s_root) {
1099 		if ((flags ^ s->s_flags) & SB_RDONLY) {
1100 			deactivate_locked_super(s);
1101 			error = -EBUSY;
1102 			goto error_bdev;
1103 		}
1104 
1105 		/*
1106 		 * s_umount nests inside bd_mutex during
1107 		 * __invalidate_device().  blkdev_put() acquires
1108 		 * bd_mutex and can't be called under s_umount.  Drop
1109 		 * s_umount temporarily.  This is safe as we're
1110 		 * holding an active reference.
1111 		 */
1112 		up_write(&s->s_umount);
1113 		blkdev_put(bdev, mode);
1114 		down_write(&s->s_umount);
1115 	} else {
1116 		s->s_mode = mode;
1117 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1118 		sb_set_blocksize(s, block_size(bdev));
1119 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1120 		if (error) {
1121 			deactivate_locked_super(s);
1122 			goto error;
1123 		}
1124 
1125 		s->s_flags |= SB_ACTIVE;
1126 		bdev->bd_super = s;
1127 	}
1128 
1129 	return dget(s->s_root);
1130 
1131 error_s:
1132 	error = PTR_ERR(s);
1133 error_bdev:
1134 	blkdev_put(bdev, mode);
1135 error:
1136 	return ERR_PTR(error);
1137 }
1138 EXPORT_SYMBOL(mount_bdev);
1139 
1140 void kill_block_super(struct super_block *sb)
1141 {
1142 	struct block_device *bdev = sb->s_bdev;
1143 	fmode_t mode = sb->s_mode;
1144 
1145 	bdev->bd_super = NULL;
1146 	generic_shutdown_super(sb);
1147 	sync_blockdev(bdev);
1148 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1149 	blkdev_put(bdev, mode | FMODE_EXCL);
1150 }
1151 
1152 EXPORT_SYMBOL(kill_block_super);
1153 #endif
1154 
1155 struct dentry *mount_nodev(struct file_system_type *fs_type,
1156 	int flags, void *data,
1157 	int (*fill_super)(struct super_block *, void *, int))
1158 {
1159 	int error;
1160 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1161 
1162 	if (IS_ERR(s))
1163 		return ERR_CAST(s);
1164 
1165 	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1166 	if (error) {
1167 		deactivate_locked_super(s);
1168 		return ERR_PTR(error);
1169 	}
1170 	s->s_flags |= SB_ACTIVE;
1171 	return dget(s->s_root);
1172 }
1173 EXPORT_SYMBOL(mount_nodev);
1174 
1175 static int compare_single(struct super_block *s, void *p)
1176 {
1177 	return 1;
1178 }
1179 
1180 struct dentry *mount_single(struct file_system_type *fs_type,
1181 	int flags, void *data,
1182 	int (*fill_super)(struct super_block *, void *, int))
1183 {
1184 	struct super_block *s;
1185 	int error;
1186 
1187 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1188 	if (IS_ERR(s))
1189 		return ERR_CAST(s);
1190 	if (!s->s_root) {
1191 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1192 		if (error) {
1193 			deactivate_locked_super(s);
1194 			return ERR_PTR(error);
1195 		}
1196 		s->s_flags |= SB_ACTIVE;
1197 	} else {
1198 		do_remount_sb(s, flags, data, 0);
1199 	}
1200 	return dget(s->s_root);
1201 }
1202 EXPORT_SYMBOL(mount_single);
1203 
1204 struct dentry *
1205 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1206 {
1207 	struct dentry *root;
1208 	struct super_block *sb;
1209 	char *secdata = NULL;
1210 	int error = -ENOMEM;
1211 
1212 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1213 		secdata = alloc_secdata();
1214 		if (!secdata)
1215 			goto out;
1216 
1217 		error = security_sb_copy_data(data, secdata);
1218 		if (error)
1219 			goto out_free_secdata;
1220 	}
1221 
1222 	root = type->mount(type, flags, name, data);
1223 	if (IS_ERR(root)) {
1224 		error = PTR_ERR(root);
1225 		goto out_free_secdata;
1226 	}
1227 	sb = root->d_sb;
1228 	BUG_ON(!sb);
1229 	WARN_ON(!sb->s_bdi);
1230 	sb->s_flags |= SB_BORN;
1231 
1232 	error = security_sb_kern_mount(sb, flags, secdata);
1233 	if (error)
1234 		goto out_sb;
1235 
1236 	/*
1237 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1238 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1239 	 * this warning for a little while to try and catch filesystems that
1240 	 * violate this rule.
1241 	 */
1242 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1243 		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1244 
1245 	up_write(&sb->s_umount);
1246 	free_secdata(secdata);
1247 	return root;
1248 out_sb:
1249 	dput(root);
1250 	deactivate_locked_super(sb);
1251 out_free_secdata:
1252 	free_secdata(secdata);
1253 out:
1254 	return ERR_PTR(error);
1255 }
1256 
1257 /*
1258  * Setup private BDI for given superblock. It gets automatically cleaned up
1259  * in generic_shutdown_super().
1260  */
1261 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1262 {
1263 	struct backing_dev_info *bdi;
1264 	int err;
1265 	va_list args;
1266 
1267 	bdi = bdi_alloc(GFP_KERNEL);
1268 	if (!bdi)
1269 		return -ENOMEM;
1270 
1271 	bdi->name = sb->s_type->name;
1272 
1273 	va_start(args, fmt);
1274 	err = bdi_register_va(bdi, fmt, args);
1275 	va_end(args);
1276 	if (err) {
1277 		bdi_put(bdi);
1278 		return err;
1279 	}
1280 	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1281 	sb->s_bdi = bdi;
1282 
1283 	return 0;
1284 }
1285 EXPORT_SYMBOL(super_setup_bdi_name);
1286 
1287 /*
1288  * Setup private BDI for given superblock. I gets automatically cleaned up
1289  * in generic_shutdown_super().
1290  */
1291 int super_setup_bdi(struct super_block *sb)
1292 {
1293 	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1294 
1295 	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1296 				    atomic_long_inc_return(&bdi_seq));
1297 }
1298 EXPORT_SYMBOL(super_setup_bdi);
1299 
1300 /*
1301  * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1302  * instead.
1303  */
1304 void __sb_end_write(struct super_block *sb, int level)
1305 {
1306 	percpu_up_read(sb->s_writers.rw_sem + level-1);
1307 }
1308 EXPORT_SYMBOL(__sb_end_write);
1309 
1310 /*
1311  * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1312  * instead.
1313  */
1314 int __sb_start_write(struct super_block *sb, int level, bool wait)
1315 {
1316 	bool force_trylock = false;
1317 	int ret = 1;
1318 
1319 #ifdef CONFIG_LOCKDEP
1320 	/*
1321 	 * We want lockdep to tell us about possible deadlocks with freezing
1322 	 * but it's it bit tricky to properly instrument it. Getting a freeze
1323 	 * protection works as getting a read lock but there are subtle
1324 	 * problems. XFS for example gets freeze protection on internal level
1325 	 * twice in some cases, which is OK only because we already hold a
1326 	 * freeze protection also on higher level. Due to these cases we have
1327 	 * to use wait == F (trylock mode) which must not fail.
1328 	 */
1329 	if (wait) {
1330 		int i;
1331 
1332 		for (i = 0; i < level - 1; i++)
1333 			if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1334 				force_trylock = true;
1335 				break;
1336 			}
1337 	}
1338 #endif
1339 	if (wait && !force_trylock)
1340 		percpu_down_read(sb->s_writers.rw_sem + level-1);
1341 	else
1342 		ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1343 
1344 	WARN_ON(force_trylock && !ret);
1345 	return ret;
1346 }
1347 EXPORT_SYMBOL(__sb_start_write);
1348 
1349 /**
1350  * sb_wait_write - wait until all writers to given file system finish
1351  * @sb: the super for which we wait
1352  * @level: type of writers we wait for (normal vs page fault)
1353  *
1354  * This function waits until there are no writers of given type to given file
1355  * system.
1356  */
1357 static void sb_wait_write(struct super_block *sb, int level)
1358 {
1359 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1360 }
1361 
1362 /*
1363  * We are going to return to userspace and forget about these locks, the
1364  * ownership goes to the caller of thaw_super() which does unlock().
1365  */
1366 static void lockdep_sb_freeze_release(struct super_block *sb)
1367 {
1368 	int level;
1369 
1370 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1371 		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1372 }
1373 
1374 /*
1375  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1376  */
1377 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1378 {
1379 	int level;
1380 
1381 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1382 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1383 }
1384 
1385 static void sb_freeze_unlock(struct super_block *sb)
1386 {
1387 	int level;
1388 
1389 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1390 		percpu_up_write(sb->s_writers.rw_sem + level);
1391 }
1392 
1393 /**
1394  * freeze_super - lock the filesystem and force it into a consistent state
1395  * @sb: the super to lock
1396  *
1397  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1398  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1399  * -EBUSY.
1400  *
1401  * During this function, sb->s_writers.frozen goes through these values:
1402  *
1403  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1404  *
1405  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1406  * writes should be blocked, though page faults are still allowed. We wait for
1407  * all writes to complete and then proceed to the next stage.
1408  *
1409  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1410  * but internal fs threads can still modify the filesystem (although they
1411  * should not dirty new pages or inodes), writeback can run etc. After waiting
1412  * for all running page faults we sync the filesystem which will clean all
1413  * dirty pages and inodes (no new dirty pages or inodes can be created when
1414  * sync is running).
1415  *
1416  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1417  * modification are blocked (e.g. XFS preallocation truncation on inode
1418  * reclaim). This is usually implemented by blocking new transactions for
1419  * filesystems that have them and need this additional guard. After all
1420  * internal writers are finished we call ->freeze_fs() to finish filesystem
1421  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1422  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1423  *
1424  * sb->s_writers.frozen is protected by sb->s_umount.
1425  */
1426 int freeze_super(struct super_block *sb)
1427 {
1428 	int ret;
1429 
1430 	atomic_inc(&sb->s_active);
1431 	down_write(&sb->s_umount);
1432 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1433 		deactivate_locked_super(sb);
1434 		return -EBUSY;
1435 	}
1436 
1437 	if (!(sb->s_flags & SB_BORN)) {
1438 		up_write(&sb->s_umount);
1439 		return 0;	/* sic - it's "nothing to do" */
1440 	}
1441 
1442 	if (sb_rdonly(sb)) {
1443 		/* Nothing to do really... */
1444 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1445 		up_write(&sb->s_umount);
1446 		return 0;
1447 	}
1448 
1449 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1450 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1451 	up_write(&sb->s_umount);
1452 	sb_wait_write(sb, SB_FREEZE_WRITE);
1453 	down_write(&sb->s_umount);
1454 
1455 	/* Now we go and block page faults... */
1456 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1457 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1458 
1459 	/* All writers are done so after syncing there won't be dirty data */
1460 	sync_filesystem(sb);
1461 
1462 	/* Now wait for internal filesystem counter */
1463 	sb->s_writers.frozen = SB_FREEZE_FS;
1464 	sb_wait_write(sb, SB_FREEZE_FS);
1465 
1466 	if (sb->s_op->freeze_fs) {
1467 		ret = sb->s_op->freeze_fs(sb);
1468 		if (ret) {
1469 			printk(KERN_ERR
1470 				"VFS:Filesystem freeze failed\n");
1471 			sb->s_writers.frozen = SB_UNFROZEN;
1472 			sb_freeze_unlock(sb);
1473 			wake_up(&sb->s_writers.wait_unfrozen);
1474 			deactivate_locked_super(sb);
1475 			return ret;
1476 		}
1477 	}
1478 	/*
1479 	 * For debugging purposes so that fs can warn if it sees write activity
1480 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1481 	 */
1482 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1483 	lockdep_sb_freeze_release(sb);
1484 	up_write(&sb->s_umount);
1485 	return 0;
1486 }
1487 EXPORT_SYMBOL(freeze_super);
1488 
1489 /**
1490  * thaw_super -- unlock filesystem
1491  * @sb: the super to thaw
1492  *
1493  * Unlocks the filesystem and marks it writeable again after freeze_super().
1494  */
1495 int thaw_super(struct super_block *sb)
1496 {
1497 	int error;
1498 
1499 	down_write(&sb->s_umount);
1500 	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1501 		up_write(&sb->s_umount);
1502 		return -EINVAL;
1503 	}
1504 
1505 	if (sb_rdonly(sb)) {
1506 		sb->s_writers.frozen = SB_UNFROZEN;
1507 		goto out;
1508 	}
1509 
1510 	lockdep_sb_freeze_acquire(sb);
1511 
1512 	if (sb->s_op->unfreeze_fs) {
1513 		error = sb->s_op->unfreeze_fs(sb);
1514 		if (error) {
1515 			printk(KERN_ERR
1516 				"VFS:Filesystem thaw failed\n");
1517 			lockdep_sb_freeze_release(sb);
1518 			up_write(&sb->s_umount);
1519 			return error;
1520 		}
1521 	}
1522 
1523 	sb->s_writers.frozen = SB_UNFROZEN;
1524 	sb_freeze_unlock(sb);
1525 out:
1526 	wake_up(&sb->s_writers.wait_unfrozen);
1527 	deactivate_locked_super(sb);
1528 	return 0;
1529 }
1530 EXPORT_SYMBOL(thaw_super);
1531