1 /* 2 * linux/fs/super.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * super.c contains code to handle: - mount structures 7 * - super-block tables 8 * - filesystem drivers list 9 * - mount system call 10 * - umount system call 11 * - ustat system call 12 * 13 * GK 2/5/95 - Changed to support mounting the root fs via NFS 14 * 15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 17 * Added options to /proc/mounts: 18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 21 */ 22 23 #include <linux/export.h> 24 #include <linux/slab.h> 25 #include <linux/blkdev.h> 26 #include <linux/mount.h> 27 #include <linux/security.h> 28 #include <linux/writeback.h> /* for the emergency remount stuff */ 29 #include <linux/idr.h> 30 #include <linux/mutex.h> 31 #include <linux/backing-dev.h> 32 #include <linux/rculist_bl.h> 33 #include <linux/cleancache.h> 34 #include <linux/fsnotify.h> 35 #include <linux/lockdep.h> 36 #include <linux/user_namespace.h> 37 #include "internal.h" 38 39 40 static LIST_HEAD(super_blocks); 41 static DEFINE_SPINLOCK(sb_lock); 42 43 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 44 "sb_writers", 45 "sb_pagefaults", 46 "sb_internal", 47 }; 48 49 /* 50 * One thing we have to be careful of with a per-sb shrinker is that we don't 51 * drop the last active reference to the superblock from within the shrinker. 52 * If that happens we could trigger unregistering the shrinker from within the 53 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 54 * take a passive reference to the superblock to avoid this from occurring. 55 */ 56 static unsigned long super_cache_scan(struct shrinker *shrink, 57 struct shrink_control *sc) 58 { 59 struct super_block *sb; 60 long fs_objects = 0; 61 long total_objects; 62 long freed = 0; 63 long dentries; 64 long inodes; 65 66 sb = container_of(shrink, struct super_block, s_shrink); 67 68 /* 69 * Deadlock avoidance. We may hold various FS locks, and we don't want 70 * to recurse into the FS that called us in clear_inode() and friends.. 71 */ 72 if (!(sc->gfp_mask & __GFP_FS)) 73 return SHRINK_STOP; 74 75 if (!trylock_super(sb)) 76 return SHRINK_STOP; 77 78 if (sb->s_op->nr_cached_objects) 79 fs_objects = sb->s_op->nr_cached_objects(sb, sc); 80 81 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc); 82 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc); 83 total_objects = dentries + inodes + fs_objects + 1; 84 if (!total_objects) 85 total_objects = 1; 86 87 /* proportion the scan between the caches */ 88 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 89 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 90 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects); 91 92 /* 93 * prune the dcache first as the icache is pinned by it, then 94 * prune the icache, followed by the filesystem specific caches 95 * 96 * Ensure that we always scan at least one object - memcg kmem 97 * accounting uses this to fully empty the caches. 98 */ 99 sc->nr_to_scan = dentries + 1; 100 freed = prune_dcache_sb(sb, sc); 101 sc->nr_to_scan = inodes + 1; 102 freed += prune_icache_sb(sb, sc); 103 104 if (fs_objects) { 105 sc->nr_to_scan = fs_objects + 1; 106 freed += sb->s_op->free_cached_objects(sb, sc); 107 } 108 109 up_read(&sb->s_umount); 110 return freed; 111 } 112 113 static unsigned long super_cache_count(struct shrinker *shrink, 114 struct shrink_control *sc) 115 { 116 struct super_block *sb; 117 long total_objects = 0; 118 119 sb = container_of(shrink, struct super_block, s_shrink); 120 121 /* 122 * Don't call trylock_super as it is a potential 123 * scalability bottleneck. The counts could get updated 124 * between super_cache_count and super_cache_scan anyway. 125 * Call to super_cache_count with shrinker_rwsem held 126 * ensures the safety of call to list_lru_shrink_count() and 127 * s_op->nr_cached_objects(). 128 */ 129 if (sb->s_op && sb->s_op->nr_cached_objects) 130 total_objects = sb->s_op->nr_cached_objects(sb, sc); 131 132 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc); 133 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc); 134 135 total_objects = vfs_pressure_ratio(total_objects); 136 return total_objects; 137 } 138 139 static void destroy_super_work(struct work_struct *work) 140 { 141 struct super_block *s = container_of(work, struct super_block, 142 destroy_work); 143 int i; 144 145 for (i = 0; i < SB_FREEZE_LEVELS; i++) 146 percpu_free_rwsem(&s->s_writers.rw_sem[i]); 147 kfree(s); 148 } 149 150 static void destroy_super_rcu(struct rcu_head *head) 151 { 152 struct super_block *s = container_of(head, struct super_block, rcu); 153 INIT_WORK(&s->destroy_work, destroy_super_work); 154 schedule_work(&s->destroy_work); 155 } 156 157 /** 158 * destroy_super - frees a superblock 159 * @s: superblock to free 160 * 161 * Frees a superblock. 162 */ 163 static void destroy_super(struct super_block *s) 164 { 165 list_lru_destroy(&s->s_dentry_lru); 166 list_lru_destroy(&s->s_inode_lru); 167 security_sb_free(s); 168 WARN_ON(!list_empty(&s->s_mounts)); 169 put_user_ns(s->s_user_ns); 170 kfree(s->s_subtype); 171 kfree(s->s_options); 172 call_rcu(&s->rcu, destroy_super_rcu); 173 } 174 175 /** 176 * alloc_super - create new superblock 177 * @type: filesystem type superblock should belong to 178 * @flags: the mount flags 179 * @user_ns: User namespace for the super_block 180 * 181 * Allocates and initializes a new &struct super_block. alloc_super() 182 * returns a pointer new superblock or %NULL if allocation had failed. 183 */ 184 static struct super_block *alloc_super(struct file_system_type *type, int flags, 185 struct user_namespace *user_ns) 186 { 187 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 188 static const struct super_operations default_op; 189 int i; 190 191 if (!s) 192 return NULL; 193 194 INIT_LIST_HEAD(&s->s_mounts); 195 s->s_user_ns = get_user_ns(user_ns); 196 197 if (security_sb_alloc(s)) 198 goto fail; 199 200 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 201 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i], 202 sb_writers_name[i], 203 &type->s_writers_key[i])) 204 goto fail; 205 } 206 init_waitqueue_head(&s->s_writers.wait_unfrozen); 207 s->s_bdi = &noop_backing_dev_info; 208 s->s_flags = flags; 209 if (s->s_user_ns != &init_user_ns) 210 s->s_iflags |= SB_I_NODEV; 211 INIT_HLIST_NODE(&s->s_instances); 212 INIT_HLIST_BL_HEAD(&s->s_anon); 213 mutex_init(&s->s_sync_lock); 214 INIT_LIST_HEAD(&s->s_inodes); 215 spin_lock_init(&s->s_inode_list_lock); 216 INIT_LIST_HEAD(&s->s_inodes_wb); 217 spin_lock_init(&s->s_inode_wblist_lock); 218 219 if (list_lru_init_memcg(&s->s_dentry_lru)) 220 goto fail; 221 if (list_lru_init_memcg(&s->s_inode_lru)) 222 goto fail; 223 224 init_rwsem(&s->s_umount); 225 lockdep_set_class(&s->s_umount, &type->s_umount_key); 226 /* 227 * sget() can have s_umount recursion. 228 * 229 * When it cannot find a suitable sb, it allocates a new 230 * one (this one), and tries again to find a suitable old 231 * one. 232 * 233 * In case that succeeds, it will acquire the s_umount 234 * lock of the old one. Since these are clearly distrinct 235 * locks, and this object isn't exposed yet, there's no 236 * risk of deadlocks. 237 * 238 * Annotate this by putting this lock in a different 239 * subclass. 240 */ 241 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 242 s->s_count = 1; 243 atomic_set(&s->s_active, 1); 244 mutex_init(&s->s_vfs_rename_mutex); 245 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 246 mutex_init(&s->s_dquot.dqio_mutex); 247 mutex_init(&s->s_dquot.dqonoff_mutex); 248 s->s_maxbytes = MAX_NON_LFS; 249 s->s_op = &default_op; 250 s->s_time_gran = 1000000000; 251 s->cleancache_poolid = CLEANCACHE_NO_POOL; 252 253 s->s_shrink.seeks = DEFAULT_SEEKS; 254 s->s_shrink.scan_objects = super_cache_scan; 255 s->s_shrink.count_objects = super_cache_count; 256 s->s_shrink.batch = 1024; 257 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE; 258 return s; 259 260 fail: 261 destroy_super(s); 262 return NULL; 263 } 264 265 /* Superblock refcounting */ 266 267 /* 268 * Drop a superblock's refcount. The caller must hold sb_lock. 269 */ 270 static void __put_super(struct super_block *sb) 271 { 272 if (!--sb->s_count) { 273 list_del_init(&sb->s_list); 274 destroy_super(sb); 275 } 276 } 277 278 /** 279 * put_super - drop a temporary reference to superblock 280 * @sb: superblock in question 281 * 282 * Drops a temporary reference, frees superblock if there's no 283 * references left. 284 */ 285 static void put_super(struct super_block *sb) 286 { 287 spin_lock(&sb_lock); 288 __put_super(sb); 289 spin_unlock(&sb_lock); 290 } 291 292 293 /** 294 * deactivate_locked_super - drop an active reference to superblock 295 * @s: superblock to deactivate 296 * 297 * Drops an active reference to superblock, converting it into a temporary 298 * one if there is no other active references left. In that case we 299 * tell fs driver to shut it down and drop the temporary reference we 300 * had just acquired. 301 * 302 * Caller holds exclusive lock on superblock; that lock is released. 303 */ 304 void deactivate_locked_super(struct super_block *s) 305 { 306 struct file_system_type *fs = s->s_type; 307 if (atomic_dec_and_test(&s->s_active)) { 308 cleancache_invalidate_fs(s); 309 unregister_shrinker(&s->s_shrink); 310 fs->kill_sb(s); 311 312 /* 313 * Since list_lru_destroy() may sleep, we cannot call it from 314 * put_super(), where we hold the sb_lock. Therefore we destroy 315 * the lru lists right now. 316 */ 317 list_lru_destroy(&s->s_dentry_lru); 318 list_lru_destroy(&s->s_inode_lru); 319 320 put_filesystem(fs); 321 put_super(s); 322 } else { 323 up_write(&s->s_umount); 324 } 325 } 326 327 EXPORT_SYMBOL(deactivate_locked_super); 328 329 /** 330 * deactivate_super - drop an active reference to superblock 331 * @s: superblock to deactivate 332 * 333 * Variant of deactivate_locked_super(), except that superblock is *not* 334 * locked by caller. If we are going to drop the final active reference, 335 * lock will be acquired prior to that. 336 */ 337 void deactivate_super(struct super_block *s) 338 { 339 if (!atomic_add_unless(&s->s_active, -1, 1)) { 340 down_write(&s->s_umount); 341 deactivate_locked_super(s); 342 } 343 } 344 345 EXPORT_SYMBOL(deactivate_super); 346 347 /** 348 * grab_super - acquire an active reference 349 * @s: reference we are trying to make active 350 * 351 * Tries to acquire an active reference. grab_super() is used when we 352 * had just found a superblock in super_blocks or fs_type->fs_supers 353 * and want to turn it into a full-blown active reference. grab_super() 354 * is called with sb_lock held and drops it. Returns 1 in case of 355 * success, 0 if we had failed (superblock contents was already dead or 356 * dying when grab_super() had been called). Note that this is only 357 * called for superblocks not in rundown mode (== ones still on ->fs_supers 358 * of their type), so increment of ->s_count is OK here. 359 */ 360 static int grab_super(struct super_block *s) __releases(sb_lock) 361 { 362 s->s_count++; 363 spin_unlock(&sb_lock); 364 down_write(&s->s_umount); 365 if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) { 366 put_super(s); 367 return 1; 368 } 369 up_write(&s->s_umount); 370 put_super(s); 371 return 0; 372 } 373 374 /* 375 * trylock_super - try to grab ->s_umount shared 376 * @sb: reference we are trying to grab 377 * 378 * Try to prevent fs shutdown. This is used in places where we 379 * cannot take an active reference but we need to ensure that the 380 * filesystem is not shut down while we are working on it. It returns 381 * false if we cannot acquire s_umount or if we lose the race and 382 * filesystem already got into shutdown, and returns true with the s_umount 383 * lock held in read mode in case of success. On successful return, 384 * the caller must drop the s_umount lock when done. 385 * 386 * Note that unlike get_super() et.al. this one does *not* bump ->s_count. 387 * The reason why it's safe is that we are OK with doing trylock instead 388 * of down_read(). There's a couple of places that are OK with that, but 389 * it's very much not a general-purpose interface. 390 */ 391 bool trylock_super(struct super_block *sb) 392 { 393 if (down_read_trylock(&sb->s_umount)) { 394 if (!hlist_unhashed(&sb->s_instances) && 395 sb->s_root && (sb->s_flags & MS_BORN)) 396 return true; 397 up_read(&sb->s_umount); 398 } 399 400 return false; 401 } 402 403 /** 404 * generic_shutdown_super - common helper for ->kill_sb() 405 * @sb: superblock to kill 406 * 407 * generic_shutdown_super() does all fs-independent work on superblock 408 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 409 * that need destruction out of superblock, call generic_shutdown_super() 410 * and release aforementioned objects. Note: dentries and inodes _are_ 411 * taken care of and do not need specific handling. 412 * 413 * Upon calling this function, the filesystem may no longer alter or 414 * rearrange the set of dentries belonging to this super_block, nor may it 415 * change the attachments of dentries to inodes. 416 */ 417 void generic_shutdown_super(struct super_block *sb) 418 { 419 const struct super_operations *sop = sb->s_op; 420 421 if (sb->s_root) { 422 shrink_dcache_for_umount(sb); 423 sync_filesystem(sb); 424 sb->s_flags &= ~MS_ACTIVE; 425 426 fsnotify_unmount_inodes(sb); 427 cgroup_writeback_umount(); 428 429 evict_inodes(sb); 430 431 if (sb->s_dio_done_wq) { 432 destroy_workqueue(sb->s_dio_done_wq); 433 sb->s_dio_done_wq = NULL; 434 } 435 436 if (sop->put_super) 437 sop->put_super(sb); 438 439 if (!list_empty(&sb->s_inodes)) { 440 printk("VFS: Busy inodes after unmount of %s. " 441 "Self-destruct in 5 seconds. Have a nice day...\n", 442 sb->s_id); 443 } 444 } 445 spin_lock(&sb_lock); 446 /* should be initialized for __put_super_and_need_restart() */ 447 hlist_del_init(&sb->s_instances); 448 spin_unlock(&sb_lock); 449 up_write(&sb->s_umount); 450 } 451 452 EXPORT_SYMBOL(generic_shutdown_super); 453 454 /** 455 * sget_userns - find or create a superblock 456 * @type: filesystem type superblock should belong to 457 * @test: comparison callback 458 * @set: setup callback 459 * @flags: mount flags 460 * @user_ns: User namespace for the super_block 461 * @data: argument to each of them 462 */ 463 struct super_block *sget_userns(struct file_system_type *type, 464 int (*test)(struct super_block *,void *), 465 int (*set)(struct super_block *,void *), 466 int flags, struct user_namespace *user_ns, 467 void *data) 468 { 469 struct super_block *s = NULL; 470 struct super_block *old; 471 int err; 472 473 if (!(flags & MS_KERNMOUNT) && 474 !(type->fs_flags & FS_USERNS_MOUNT) && 475 !capable(CAP_SYS_ADMIN)) 476 return ERR_PTR(-EPERM); 477 retry: 478 spin_lock(&sb_lock); 479 if (test) { 480 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 481 if (!test(old, data)) 482 continue; 483 if (user_ns != old->s_user_ns) { 484 spin_unlock(&sb_lock); 485 if (s) { 486 up_write(&s->s_umount); 487 destroy_super(s); 488 } 489 return ERR_PTR(-EBUSY); 490 } 491 if (!grab_super(old)) 492 goto retry; 493 if (s) { 494 up_write(&s->s_umount); 495 destroy_super(s); 496 s = NULL; 497 } 498 return old; 499 } 500 } 501 if (!s) { 502 spin_unlock(&sb_lock); 503 s = alloc_super(type, flags, user_ns); 504 if (!s) 505 return ERR_PTR(-ENOMEM); 506 goto retry; 507 } 508 509 err = set(s, data); 510 if (err) { 511 spin_unlock(&sb_lock); 512 up_write(&s->s_umount); 513 destroy_super(s); 514 return ERR_PTR(err); 515 } 516 s->s_type = type; 517 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 518 list_add_tail(&s->s_list, &super_blocks); 519 hlist_add_head(&s->s_instances, &type->fs_supers); 520 spin_unlock(&sb_lock); 521 get_filesystem(type); 522 register_shrinker(&s->s_shrink); 523 return s; 524 } 525 526 EXPORT_SYMBOL(sget_userns); 527 528 /** 529 * sget - find or create a superblock 530 * @type: filesystem type superblock should belong to 531 * @test: comparison callback 532 * @set: setup callback 533 * @flags: mount flags 534 * @data: argument to each of them 535 */ 536 struct super_block *sget(struct file_system_type *type, 537 int (*test)(struct super_block *,void *), 538 int (*set)(struct super_block *,void *), 539 int flags, 540 void *data) 541 { 542 struct user_namespace *user_ns = current_user_ns(); 543 544 /* Ensure the requestor has permissions over the target filesystem */ 545 if (!(flags & MS_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN)) 546 return ERR_PTR(-EPERM); 547 548 return sget_userns(type, test, set, flags, user_ns, data); 549 } 550 551 EXPORT_SYMBOL(sget); 552 553 void drop_super(struct super_block *sb) 554 { 555 up_read(&sb->s_umount); 556 put_super(sb); 557 } 558 559 EXPORT_SYMBOL(drop_super); 560 561 /** 562 * iterate_supers - call function for all active superblocks 563 * @f: function to call 564 * @arg: argument to pass to it 565 * 566 * Scans the superblock list and calls given function, passing it 567 * locked superblock and given argument. 568 */ 569 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 570 { 571 struct super_block *sb, *p = NULL; 572 573 spin_lock(&sb_lock); 574 list_for_each_entry(sb, &super_blocks, s_list) { 575 if (hlist_unhashed(&sb->s_instances)) 576 continue; 577 sb->s_count++; 578 spin_unlock(&sb_lock); 579 580 down_read(&sb->s_umount); 581 if (sb->s_root && (sb->s_flags & MS_BORN)) 582 f(sb, arg); 583 up_read(&sb->s_umount); 584 585 spin_lock(&sb_lock); 586 if (p) 587 __put_super(p); 588 p = sb; 589 } 590 if (p) 591 __put_super(p); 592 spin_unlock(&sb_lock); 593 } 594 595 /** 596 * iterate_supers_type - call function for superblocks of given type 597 * @type: fs type 598 * @f: function to call 599 * @arg: argument to pass to it 600 * 601 * Scans the superblock list and calls given function, passing it 602 * locked superblock and given argument. 603 */ 604 void iterate_supers_type(struct file_system_type *type, 605 void (*f)(struct super_block *, void *), void *arg) 606 { 607 struct super_block *sb, *p = NULL; 608 609 spin_lock(&sb_lock); 610 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 611 sb->s_count++; 612 spin_unlock(&sb_lock); 613 614 down_read(&sb->s_umount); 615 if (sb->s_root && (sb->s_flags & MS_BORN)) 616 f(sb, arg); 617 up_read(&sb->s_umount); 618 619 spin_lock(&sb_lock); 620 if (p) 621 __put_super(p); 622 p = sb; 623 } 624 if (p) 625 __put_super(p); 626 spin_unlock(&sb_lock); 627 } 628 629 EXPORT_SYMBOL(iterate_supers_type); 630 631 /** 632 * get_super - get the superblock of a device 633 * @bdev: device to get the superblock for 634 * 635 * Scans the superblock list and finds the superblock of the file system 636 * mounted on the device given. %NULL is returned if no match is found. 637 */ 638 639 struct super_block *get_super(struct block_device *bdev) 640 { 641 struct super_block *sb; 642 643 if (!bdev) 644 return NULL; 645 646 spin_lock(&sb_lock); 647 rescan: 648 list_for_each_entry(sb, &super_blocks, s_list) { 649 if (hlist_unhashed(&sb->s_instances)) 650 continue; 651 if (sb->s_bdev == bdev) { 652 sb->s_count++; 653 spin_unlock(&sb_lock); 654 down_read(&sb->s_umount); 655 /* still alive? */ 656 if (sb->s_root && (sb->s_flags & MS_BORN)) 657 return sb; 658 up_read(&sb->s_umount); 659 /* nope, got unmounted */ 660 spin_lock(&sb_lock); 661 __put_super(sb); 662 goto rescan; 663 } 664 } 665 spin_unlock(&sb_lock); 666 return NULL; 667 } 668 669 EXPORT_SYMBOL(get_super); 670 671 /** 672 * get_super_thawed - get thawed superblock of a device 673 * @bdev: device to get the superblock for 674 * 675 * Scans the superblock list and finds the superblock of the file system 676 * mounted on the device. The superblock is returned once it is thawed 677 * (or immediately if it was not frozen). %NULL is returned if no match 678 * is found. 679 */ 680 struct super_block *get_super_thawed(struct block_device *bdev) 681 { 682 while (1) { 683 struct super_block *s = get_super(bdev); 684 if (!s || s->s_writers.frozen == SB_UNFROZEN) 685 return s; 686 up_read(&s->s_umount); 687 wait_event(s->s_writers.wait_unfrozen, 688 s->s_writers.frozen == SB_UNFROZEN); 689 put_super(s); 690 } 691 } 692 EXPORT_SYMBOL(get_super_thawed); 693 694 /** 695 * get_active_super - get an active reference to the superblock of a device 696 * @bdev: device to get the superblock for 697 * 698 * Scans the superblock list and finds the superblock of the file system 699 * mounted on the device given. Returns the superblock with an active 700 * reference or %NULL if none was found. 701 */ 702 struct super_block *get_active_super(struct block_device *bdev) 703 { 704 struct super_block *sb; 705 706 if (!bdev) 707 return NULL; 708 709 restart: 710 spin_lock(&sb_lock); 711 list_for_each_entry(sb, &super_blocks, s_list) { 712 if (hlist_unhashed(&sb->s_instances)) 713 continue; 714 if (sb->s_bdev == bdev) { 715 if (!grab_super(sb)) 716 goto restart; 717 up_write(&sb->s_umount); 718 return sb; 719 } 720 } 721 spin_unlock(&sb_lock); 722 return NULL; 723 } 724 725 struct super_block *user_get_super(dev_t dev) 726 { 727 struct super_block *sb; 728 729 spin_lock(&sb_lock); 730 rescan: 731 list_for_each_entry(sb, &super_blocks, s_list) { 732 if (hlist_unhashed(&sb->s_instances)) 733 continue; 734 if (sb->s_dev == dev) { 735 sb->s_count++; 736 spin_unlock(&sb_lock); 737 down_read(&sb->s_umount); 738 /* still alive? */ 739 if (sb->s_root && (sb->s_flags & MS_BORN)) 740 return sb; 741 up_read(&sb->s_umount); 742 /* nope, got unmounted */ 743 spin_lock(&sb_lock); 744 __put_super(sb); 745 goto rescan; 746 } 747 } 748 spin_unlock(&sb_lock); 749 return NULL; 750 } 751 752 /** 753 * do_remount_sb - asks filesystem to change mount options. 754 * @sb: superblock in question 755 * @flags: numeric part of options 756 * @data: the rest of options 757 * @force: whether or not to force the change 758 * 759 * Alters the mount options of a mounted file system. 760 */ 761 int do_remount_sb(struct super_block *sb, int flags, void *data, int force) 762 { 763 int retval; 764 int remount_ro; 765 766 if (sb->s_writers.frozen != SB_UNFROZEN) 767 return -EBUSY; 768 769 #ifdef CONFIG_BLOCK 770 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev)) 771 return -EACCES; 772 #endif 773 774 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY); 775 776 if (remount_ro) { 777 if (!hlist_empty(&sb->s_pins)) { 778 up_write(&sb->s_umount); 779 group_pin_kill(&sb->s_pins); 780 down_write(&sb->s_umount); 781 if (!sb->s_root) 782 return 0; 783 if (sb->s_writers.frozen != SB_UNFROZEN) 784 return -EBUSY; 785 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY); 786 } 787 } 788 shrink_dcache_sb(sb); 789 790 /* If we are remounting RDONLY and current sb is read/write, 791 make sure there are no rw files opened */ 792 if (remount_ro) { 793 if (force) { 794 sb->s_readonly_remount = 1; 795 smp_wmb(); 796 } else { 797 retval = sb_prepare_remount_readonly(sb); 798 if (retval) 799 return retval; 800 } 801 } 802 803 if (sb->s_op->remount_fs) { 804 retval = sb->s_op->remount_fs(sb, &flags, data); 805 if (retval) { 806 if (!force) 807 goto cancel_readonly; 808 /* If forced remount, go ahead despite any errors */ 809 WARN(1, "forced remount of a %s fs returned %i\n", 810 sb->s_type->name, retval); 811 } 812 } 813 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK); 814 /* Needs to be ordered wrt mnt_is_readonly() */ 815 smp_wmb(); 816 sb->s_readonly_remount = 0; 817 818 /* 819 * Some filesystems modify their metadata via some other path than the 820 * bdev buffer cache (eg. use a private mapping, or directories in 821 * pagecache, etc). Also file data modifications go via their own 822 * mappings. So If we try to mount readonly then copy the filesystem 823 * from bdev, we could get stale data, so invalidate it to give a best 824 * effort at coherency. 825 */ 826 if (remount_ro && sb->s_bdev) 827 invalidate_bdev(sb->s_bdev); 828 return 0; 829 830 cancel_readonly: 831 sb->s_readonly_remount = 0; 832 return retval; 833 } 834 835 static void do_emergency_remount(struct work_struct *work) 836 { 837 struct super_block *sb, *p = NULL; 838 839 spin_lock(&sb_lock); 840 list_for_each_entry(sb, &super_blocks, s_list) { 841 if (hlist_unhashed(&sb->s_instances)) 842 continue; 843 sb->s_count++; 844 spin_unlock(&sb_lock); 845 down_write(&sb->s_umount); 846 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) && 847 !(sb->s_flags & MS_RDONLY)) { 848 /* 849 * What lock protects sb->s_flags?? 850 */ 851 do_remount_sb(sb, MS_RDONLY, NULL, 1); 852 } 853 up_write(&sb->s_umount); 854 spin_lock(&sb_lock); 855 if (p) 856 __put_super(p); 857 p = sb; 858 } 859 if (p) 860 __put_super(p); 861 spin_unlock(&sb_lock); 862 kfree(work); 863 printk("Emergency Remount complete\n"); 864 } 865 866 void emergency_remount(void) 867 { 868 struct work_struct *work; 869 870 work = kmalloc(sizeof(*work), GFP_ATOMIC); 871 if (work) { 872 INIT_WORK(work, do_emergency_remount); 873 schedule_work(work); 874 } 875 } 876 877 /* 878 * Unnamed block devices are dummy devices used by virtual 879 * filesystems which don't use real block-devices. -- jrs 880 */ 881 882 static DEFINE_IDA(unnamed_dev_ida); 883 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */ 884 /* Many userspace utilities consider an FSID of 0 invalid. 885 * Always return at least 1 from get_anon_bdev. 886 */ 887 static int unnamed_dev_start = 1; 888 889 int get_anon_bdev(dev_t *p) 890 { 891 int dev; 892 int error; 893 894 retry: 895 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0) 896 return -ENOMEM; 897 spin_lock(&unnamed_dev_lock); 898 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev); 899 if (!error) 900 unnamed_dev_start = dev + 1; 901 spin_unlock(&unnamed_dev_lock); 902 if (error == -EAGAIN) 903 /* We raced and lost with another CPU. */ 904 goto retry; 905 else if (error) 906 return -EAGAIN; 907 908 if (dev >= (1 << MINORBITS)) { 909 spin_lock(&unnamed_dev_lock); 910 ida_remove(&unnamed_dev_ida, dev); 911 if (unnamed_dev_start > dev) 912 unnamed_dev_start = dev; 913 spin_unlock(&unnamed_dev_lock); 914 return -EMFILE; 915 } 916 *p = MKDEV(0, dev & MINORMASK); 917 return 0; 918 } 919 EXPORT_SYMBOL(get_anon_bdev); 920 921 void free_anon_bdev(dev_t dev) 922 { 923 int slot = MINOR(dev); 924 spin_lock(&unnamed_dev_lock); 925 ida_remove(&unnamed_dev_ida, slot); 926 if (slot < unnamed_dev_start) 927 unnamed_dev_start = slot; 928 spin_unlock(&unnamed_dev_lock); 929 } 930 EXPORT_SYMBOL(free_anon_bdev); 931 932 int set_anon_super(struct super_block *s, void *data) 933 { 934 return get_anon_bdev(&s->s_dev); 935 } 936 937 EXPORT_SYMBOL(set_anon_super); 938 939 void kill_anon_super(struct super_block *sb) 940 { 941 dev_t dev = sb->s_dev; 942 generic_shutdown_super(sb); 943 free_anon_bdev(dev); 944 } 945 946 EXPORT_SYMBOL(kill_anon_super); 947 948 void kill_litter_super(struct super_block *sb) 949 { 950 if (sb->s_root) 951 d_genocide(sb->s_root); 952 kill_anon_super(sb); 953 } 954 955 EXPORT_SYMBOL(kill_litter_super); 956 957 static int ns_test_super(struct super_block *sb, void *data) 958 { 959 return sb->s_fs_info == data; 960 } 961 962 static int ns_set_super(struct super_block *sb, void *data) 963 { 964 sb->s_fs_info = data; 965 return set_anon_super(sb, NULL); 966 } 967 968 struct dentry *mount_ns(struct file_system_type *fs_type, 969 int flags, void *data, void *ns, struct user_namespace *user_ns, 970 int (*fill_super)(struct super_block *, void *, int)) 971 { 972 struct super_block *sb; 973 974 /* Don't allow mounting unless the caller has CAP_SYS_ADMIN 975 * over the namespace. 976 */ 977 if (!(flags & MS_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN)) 978 return ERR_PTR(-EPERM); 979 980 sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags, 981 user_ns, ns); 982 if (IS_ERR(sb)) 983 return ERR_CAST(sb); 984 985 if (!sb->s_root) { 986 int err; 987 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 988 if (err) { 989 deactivate_locked_super(sb); 990 return ERR_PTR(err); 991 } 992 993 sb->s_flags |= MS_ACTIVE; 994 } 995 996 return dget(sb->s_root); 997 } 998 999 EXPORT_SYMBOL(mount_ns); 1000 1001 #ifdef CONFIG_BLOCK 1002 static int set_bdev_super(struct super_block *s, void *data) 1003 { 1004 s->s_bdev = data; 1005 s->s_dev = s->s_bdev->bd_dev; 1006 1007 /* 1008 * We set the bdi here to the queue backing, file systems can 1009 * overwrite this in ->fill_super() 1010 */ 1011 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info; 1012 return 0; 1013 } 1014 1015 static int test_bdev_super(struct super_block *s, void *data) 1016 { 1017 return (void *)s->s_bdev == data; 1018 } 1019 1020 struct dentry *mount_bdev(struct file_system_type *fs_type, 1021 int flags, const char *dev_name, void *data, 1022 int (*fill_super)(struct super_block *, void *, int)) 1023 { 1024 struct block_device *bdev; 1025 struct super_block *s; 1026 fmode_t mode = FMODE_READ | FMODE_EXCL; 1027 int error = 0; 1028 1029 if (!(flags & MS_RDONLY)) 1030 mode |= FMODE_WRITE; 1031 1032 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 1033 if (IS_ERR(bdev)) 1034 return ERR_CAST(bdev); 1035 1036 /* 1037 * once the super is inserted into the list by sget, s_umount 1038 * will protect the lockfs code from trying to start a snapshot 1039 * while we are mounting 1040 */ 1041 mutex_lock(&bdev->bd_fsfreeze_mutex); 1042 if (bdev->bd_fsfreeze_count > 0) { 1043 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1044 error = -EBUSY; 1045 goto error_bdev; 1046 } 1047 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC, 1048 bdev); 1049 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1050 if (IS_ERR(s)) 1051 goto error_s; 1052 1053 if (s->s_root) { 1054 if ((flags ^ s->s_flags) & MS_RDONLY) { 1055 deactivate_locked_super(s); 1056 error = -EBUSY; 1057 goto error_bdev; 1058 } 1059 1060 /* 1061 * s_umount nests inside bd_mutex during 1062 * __invalidate_device(). blkdev_put() acquires 1063 * bd_mutex and can't be called under s_umount. Drop 1064 * s_umount temporarily. This is safe as we're 1065 * holding an active reference. 1066 */ 1067 up_write(&s->s_umount); 1068 blkdev_put(bdev, mode); 1069 down_write(&s->s_umount); 1070 } else { 1071 s->s_mode = mode; 1072 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1073 sb_set_blocksize(s, block_size(bdev)); 1074 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1075 if (error) { 1076 deactivate_locked_super(s); 1077 goto error; 1078 } 1079 1080 s->s_flags |= MS_ACTIVE; 1081 bdev->bd_super = s; 1082 } 1083 1084 return dget(s->s_root); 1085 1086 error_s: 1087 error = PTR_ERR(s); 1088 error_bdev: 1089 blkdev_put(bdev, mode); 1090 error: 1091 return ERR_PTR(error); 1092 } 1093 EXPORT_SYMBOL(mount_bdev); 1094 1095 void kill_block_super(struct super_block *sb) 1096 { 1097 struct block_device *bdev = sb->s_bdev; 1098 fmode_t mode = sb->s_mode; 1099 1100 bdev->bd_super = NULL; 1101 generic_shutdown_super(sb); 1102 sync_blockdev(bdev); 1103 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 1104 blkdev_put(bdev, mode | FMODE_EXCL); 1105 } 1106 1107 EXPORT_SYMBOL(kill_block_super); 1108 #endif 1109 1110 struct dentry *mount_nodev(struct file_system_type *fs_type, 1111 int flags, void *data, 1112 int (*fill_super)(struct super_block *, void *, int)) 1113 { 1114 int error; 1115 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1116 1117 if (IS_ERR(s)) 1118 return ERR_CAST(s); 1119 1120 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1121 if (error) { 1122 deactivate_locked_super(s); 1123 return ERR_PTR(error); 1124 } 1125 s->s_flags |= MS_ACTIVE; 1126 return dget(s->s_root); 1127 } 1128 EXPORT_SYMBOL(mount_nodev); 1129 1130 static int compare_single(struct super_block *s, void *p) 1131 { 1132 return 1; 1133 } 1134 1135 struct dentry *mount_single(struct file_system_type *fs_type, 1136 int flags, void *data, 1137 int (*fill_super)(struct super_block *, void *, int)) 1138 { 1139 struct super_block *s; 1140 int error; 1141 1142 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1143 if (IS_ERR(s)) 1144 return ERR_CAST(s); 1145 if (!s->s_root) { 1146 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1147 if (error) { 1148 deactivate_locked_super(s); 1149 return ERR_PTR(error); 1150 } 1151 s->s_flags |= MS_ACTIVE; 1152 } else { 1153 do_remount_sb(s, flags, data, 0); 1154 } 1155 return dget(s->s_root); 1156 } 1157 EXPORT_SYMBOL(mount_single); 1158 1159 struct dentry * 1160 mount_fs(struct file_system_type *type, int flags, const char *name, void *data) 1161 { 1162 struct dentry *root; 1163 struct super_block *sb; 1164 char *secdata = NULL; 1165 int error = -ENOMEM; 1166 1167 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) { 1168 secdata = alloc_secdata(); 1169 if (!secdata) 1170 goto out; 1171 1172 error = security_sb_copy_data(data, secdata); 1173 if (error) 1174 goto out_free_secdata; 1175 } 1176 1177 root = type->mount(type, flags, name, data); 1178 if (IS_ERR(root)) { 1179 error = PTR_ERR(root); 1180 goto out_free_secdata; 1181 } 1182 sb = root->d_sb; 1183 BUG_ON(!sb); 1184 WARN_ON(!sb->s_bdi); 1185 sb->s_flags |= MS_BORN; 1186 1187 error = security_sb_kern_mount(sb, flags, secdata); 1188 if (error) 1189 goto out_sb; 1190 1191 /* 1192 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1193 * but s_maxbytes was an unsigned long long for many releases. Throw 1194 * this warning for a little while to try and catch filesystems that 1195 * violate this rule. 1196 */ 1197 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1198 "negative value (%lld)\n", type->name, sb->s_maxbytes); 1199 1200 up_write(&sb->s_umount); 1201 free_secdata(secdata); 1202 return root; 1203 out_sb: 1204 dput(root); 1205 deactivate_locked_super(sb); 1206 out_free_secdata: 1207 free_secdata(secdata); 1208 out: 1209 return ERR_PTR(error); 1210 } 1211 1212 /* 1213 * This is an internal function, please use sb_end_{write,pagefault,intwrite} 1214 * instead. 1215 */ 1216 void __sb_end_write(struct super_block *sb, int level) 1217 { 1218 percpu_up_read(sb->s_writers.rw_sem + level-1); 1219 } 1220 EXPORT_SYMBOL(__sb_end_write); 1221 1222 /* 1223 * This is an internal function, please use sb_start_{write,pagefault,intwrite} 1224 * instead. 1225 */ 1226 int __sb_start_write(struct super_block *sb, int level, bool wait) 1227 { 1228 bool force_trylock = false; 1229 int ret = 1; 1230 1231 #ifdef CONFIG_LOCKDEP 1232 /* 1233 * We want lockdep to tell us about possible deadlocks with freezing 1234 * but it's it bit tricky to properly instrument it. Getting a freeze 1235 * protection works as getting a read lock but there are subtle 1236 * problems. XFS for example gets freeze protection on internal level 1237 * twice in some cases, which is OK only because we already hold a 1238 * freeze protection also on higher level. Due to these cases we have 1239 * to use wait == F (trylock mode) which must not fail. 1240 */ 1241 if (wait) { 1242 int i; 1243 1244 for (i = 0; i < level - 1; i++) 1245 if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) { 1246 force_trylock = true; 1247 break; 1248 } 1249 } 1250 #endif 1251 if (wait && !force_trylock) 1252 percpu_down_read(sb->s_writers.rw_sem + level-1); 1253 else 1254 ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1); 1255 1256 WARN_ON(force_trylock && !ret); 1257 return ret; 1258 } 1259 EXPORT_SYMBOL(__sb_start_write); 1260 1261 /** 1262 * sb_wait_write - wait until all writers to given file system finish 1263 * @sb: the super for which we wait 1264 * @level: type of writers we wait for (normal vs page fault) 1265 * 1266 * This function waits until there are no writers of given type to given file 1267 * system. 1268 */ 1269 static void sb_wait_write(struct super_block *sb, int level) 1270 { 1271 percpu_down_write(sb->s_writers.rw_sem + level-1); 1272 } 1273 1274 /* 1275 * We are going to return to userspace and forget about these locks, the 1276 * ownership goes to the caller of thaw_super() which does unlock(). 1277 */ 1278 static void lockdep_sb_freeze_release(struct super_block *sb) 1279 { 1280 int level; 1281 1282 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1283 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1284 } 1285 1286 /* 1287 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb). 1288 */ 1289 static void lockdep_sb_freeze_acquire(struct super_block *sb) 1290 { 1291 int level; 1292 1293 for (level = 0; level < SB_FREEZE_LEVELS; ++level) 1294 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1295 } 1296 1297 static void sb_freeze_unlock(struct super_block *sb) 1298 { 1299 int level; 1300 1301 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1302 percpu_up_write(sb->s_writers.rw_sem + level); 1303 } 1304 1305 /** 1306 * freeze_super - lock the filesystem and force it into a consistent state 1307 * @sb: the super to lock 1308 * 1309 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1310 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1311 * -EBUSY. 1312 * 1313 * During this function, sb->s_writers.frozen goes through these values: 1314 * 1315 * SB_UNFROZEN: File system is normal, all writes progress as usual. 1316 * 1317 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 1318 * writes should be blocked, though page faults are still allowed. We wait for 1319 * all writes to complete and then proceed to the next stage. 1320 * 1321 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 1322 * but internal fs threads can still modify the filesystem (although they 1323 * should not dirty new pages or inodes), writeback can run etc. After waiting 1324 * for all running page faults we sync the filesystem which will clean all 1325 * dirty pages and inodes (no new dirty pages or inodes can be created when 1326 * sync is running). 1327 * 1328 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 1329 * modification are blocked (e.g. XFS preallocation truncation on inode 1330 * reclaim). This is usually implemented by blocking new transactions for 1331 * filesystems that have them and need this additional guard. After all 1332 * internal writers are finished we call ->freeze_fs() to finish filesystem 1333 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 1334 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 1335 * 1336 * sb->s_writers.frozen is protected by sb->s_umount. 1337 */ 1338 int freeze_super(struct super_block *sb) 1339 { 1340 int ret; 1341 1342 atomic_inc(&sb->s_active); 1343 down_write(&sb->s_umount); 1344 if (sb->s_writers.frozen != SB_UNFROZEN) { 1345 deactivate_locked_super(sb); 1346 return -EBUSY; 1347 } 1348 1349 if (!(sb->s_flags & MS_BORN)) { 1350 up_write(&sb->s_umount); 1351 return 0; /* sic - it's "nothing to do" */ 1352 } 1353 1354 if (sb->s_flags & MS_RDONLY) { 1355 /* Nothing to do really... */ 1356 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1357 up_write(&sb->s_umount); 1358 return 0; 1359 } 1360 1361 sb->s_writers.frozen = SB_FREEZE_WRITE; 1362 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 1363 up_write(&sb->s_umount); 1364 sb_wait_write(sb, SB_FREEZE_WRITE); 1365 down_write(&sb->s_umount); 1366 1367 /* Now we go and block page faults... */ 1368 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 1369 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 1370 1371 /* All writers are done so after syncing there won't be dirty data */ 1372 sync_filesystem(sb); 1373 1374 /* Now wait for internal filesystem counter */ 1375 sb->s_writers.frozen = SB_FREEZE_FS; 1376 sb_wait_write(sb, SB_FREEZE_FS); 1377 1378 if (sb->s_op->freeze_fs) { 1379 ret = sb->s_op->freeze_fs(sb); 1380 if (ret) { 1381 printk(KERN_ERR 1382 "VFS:Filesystem freeze failed\n"); 1383 sb->s_writers.frozen = SB_UNFROZEN; 1384 sb_freeze_unlock(sb); 1385 wake_up(&sb->s_writers.wait_unfrozen); 1386 deactivate_locked_super(sb); 1387 return ret; 1388 } 1389 } 1390 /* 1391 * For debugging purposes so that fs can warn if it sees write activity 1392 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super(). 1393 */ 1394 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1395 lockdep_sb_freeze_release(sb); 1396 up_write(&sb->s_umount); 1397 return 0; 1398 } 1399 EXPORT_SYMBOL(freeze_super); 1400 1401 /** 1402 * thaw_super -- unlock filesystem 1403 * @sb: the super to thaw 1404 * 1405 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1406 */ 1407 int thaw_super(struct super_block *sb) 1408 { 1409 int error; 1410 1411 down_write(&sb->s_umount); 1412 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) { 1413 up_write(&sb->s_umount); 1414 return -EINVAL; 1415 } 1416 1417 if (sb->s_flags & MS_RDONLY) { 1418 sb->s_writers.frozen = SB_UNFROZEN; 1419 goto out; 1420 } 1421 1422 lockdep_sb_freeze_acquire(sb); 1423 1424 if (sb->s_op->unfreeze_fs) { 1425 error = sb->s_op->unfreeze_fs(sb); 1426 if (error) { 1427 printk(KERN_ERR 1428 "VFS:Filesystem thaw failed\n"); 1429 lockdep_sb_freeze_release(sb); 1430 up_write(&sb->s_umount); 1431 return error; 1432 } 1433 } 1434 1435 sb->s_writers.frozen = SB_UNFROZEN; 1436 sb_freeze_unlock(sb); 1437 out: 1438 wake_up(&sb->s_writers.wait_unfrozen); 1439 deactivate_locked_super(sb); 1440 return 0; 1441 } 1442 EXPORT_SYMBOL(thaw_super); 1443