xref: /openbmc/linux/fs/super.c (revision 6c870213d6f3a25981c10728f46294a3bed1703f)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include "internal.h"
38 
39 
40 LIST_HEAD(super_blocks);
41 DEFINE_SPINLOCK(sb_lock);
42 
43 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
44 	"sb_writers",
45 	"sb_pagefaults",
46 	"sb_internal",
47 };
48 
49 /*
50  * One thing we have to be careful of with a per-sb shrinker is that we don't
51  * drop the last active reference to the superblock from within the shrinker.
52  * If that happens we could trigger unregistering the shrinker from within the
53  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
54  * take a passive reference to the superblock to avoid this from occurring.
55  */
56 static unsigned long super_cache_scan(struct shrinker *shrink,
57 				      struct shrink_control *sc)
58 {
59 	struct super_block *sb;
60 	long	fs_objects = 0;
61 	long	total_objects;
62 	long	freed = 0;
63 	long	dentries;
64 	long	inodes;
65 
66 	sb = container_of(shrink, struct super_block, s_shrink);
67 
68 	/*
69 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
70 	 * to recurse into the FS that called us in clear_inode() and friends..
71 	 */
72 	if (!(sc->gfp_mask & __GFP_FS))
73 		return SHRINK_STOP;
74 
75 	if (!grab_super_passive(sb))
76 		return SHRINK_STOP;
77 
78 	if (sb->s_op->nr_cached_objects)
79 		fs_objects = sb->s_op->nr_cached_objects(sb, sc->nid);
80 
81 	inodes = list_lru_count_node(&sb->s_inode_lru, sc->nid);
82 	dentries = list_lru_count_node(&sb->s_dentry_lru, sc->nid);
83 	total_objects = dentries + inodes + fs_objects + 1;
84 
85 	/* proportion the scan between the caches */
86 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
87 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
88 
89 	/*
90 	 * prune the dcache first as the icache is pinned by it, then
91 	 * prune the icache, followed by the filesystem specific caches
92 	 */
93 	freed = prune_dcache_sb(sb, dentries, sc->nid);
94 	freed += prune_icache_sb(sb, inodes, sc->nid);
95 
96 	if (fs_objects) {
97 		fs_objects = mult_frac(sc->nr_to_scan, fs_objects,
98 								total_objects);
99 		freed += sb->s_op->free_cached_objects(sb, fs_objects,
100 						       sc->nid);
101 	}
102 
103 	drop_super(sb);
104 	return freed;
105 }
106 
107 static unsigned long super_cache_count(struct shrinker *shrink,
108 				       struct shrink_control *sc)
109 {
110 	struct super_block *sb;
111 	long	total_objects = 0;
112 
113 	sb = container_of(shrink, struct super_block, s_shrink);
114 
115 	if (!grab_super_passive(sb))
116 		return 0;
117 
118 	if (sb->s_op && sb->s_op->nr_cached_objects)
119 		total_objects = sb->s_op->nr_cached_objects(sb,
120 						 sc->nid);
121 
122 	total_objects += list_lru_count_node(&sb->s_dentry_lru,
123 						 sc->nid);
124 	total_objects += list_lru_count_node(&sb->s_inode_lru,
125 						 sc->nid);
126 
127 	total_objects = vfs_pressure_ratio(total_objects);
128 	drop_super(sb);
129 	return total_objects;
130 }
131 
132 /**
133  *	destroy_super	-	frees a superblock
134  *	@s: superblock to free
135  *
136  *	Frees a superblock.
137  */
138 static void destroy_super(struct super_block *s)
139 {
140 	int i;
141 	list_lru_destroy(&s->s_dentry_lru);
142 	list_lru_destroy(&s->s_inode_lru);
143 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
144 		percpu_counter_destroy(&s->s_writers.counter[i]);
145 	security_sb_free(s);
146 	WARN_ON(!list_empty(&s->s_mounts));
147 	kfree(s->s_subtype);
148 	kfree(s->s_options);
149 	kfree_rcu(s, rcu);
150 }
151 
152 /**
153  *	alloc_super	-	create new superblock
154  *	@type:	filesystem type superblock should belong to
155  *	@flags: the mount flags
156  *
157  *	Allocates and initializes a new &struct super_block.  alloc_super()
158  *	returns a pointer new superblock or %NULL if allocation had failed.
159  */
160 static struct super_block *alloc_super(struct file_system_type *type, int flags)
161 {
162 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
163 	static const struct super_operations default_op;
164 	int i;
165 
166 	if (!s)
167 		return NULL;
168 
169 	INIT_LIST_HEAD(&s->s_mounts);
170 
171 	if (security_sb_alloc(s))
172 		goto fail;
173 
174 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
175 		if (percpu_counter_init(&s->s_writers.counter[i], 0) < 0)
176 			goto fail;
177 		lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i],
178 				 &type->s_writers_key[i], 0);
179 	}
180 	init_waitqueue_head(&s->s_writers.wait);
181 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
182 	s->s_flags = flags;
183 	s->s_bdi = &default_backing_dev_info;
184 	INIT_HLIST_NODE(&s->s_instances);
185 	INIT_HLIST_BL_HEAD(&s->s_anon);
186 	INIT_LIST_HEAD(&s->s_inodes);
187 
188 	if (list_lru_init(&s->s_dentry_lru))
189 		goto fail;
190 	if (list_lru_init(&s->s_inode_lru))
191 		goto fail;
192 
193 	init_rwsem(&s->s_umount);
194 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
195 	/*
196 	 * sget() can have s_umount recursion.
197 	 *
198 	 * When it cannot find a suitable sb, it allocates a new
199 	 * one (this one), and tries again to find a suitable old
200 	 * one.
201 	 *
202 	 * In case that succeeds, it will acquire the s_umount
203 	 * lock of the old one. Since these are clearly distrinct
204 	 * locks, and this object isn't exposed yet, there's no
205 	 * risk of deadlocks.
206 	 *
207 	 * Annotate this by putting this lock in a different
208 	 * subclass.
209 	 */
210 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
211 	s->s_count = 1;
212 	atomic_set(&s->s_active, 1);
213 	mutex_init(&s->s_vfs_rename_mutex);
214 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
215 	mutex_init(&s->s_dquot.dqio_mutex);
216 	mutex_init(&s->s_dquot.dqonoff_mutex);
217 	init_rwsem(&s->s_dquot.dqptr_sem);
218 	s->s_maxbytes = MAX_NON_LFS;
219 	s->s_op = &default_op;
220 	s->s_time_gran = 1000000000;
221 	s->cleancache_poolid = -1;
222 
223 	s->s_shrink.seeks = DEFAULT_SEEKS;
224 	s->s_shrink.scan_objects = super_cache_scan;
225 	s->s_shrink.count_objects = super_cache_count;
226 	s->s_shrink.batch = 1024;
227 	s->s_shrink.flags = SHRINKER_NUMA_AWARE;
228 	return s;
229 
230 fail:
231 	destroy_super(s);
232 	return NULL;
233 }
234 
235 /* Superblock refcounting  */
236 
237 /*
238  * Drop a superblock's refcount.  The caller must hold sb_lock.
239  */
240 static void __put_super(struct super_block *sb)
241 {
242 	if (!--sb->s_count) {
243 		list_del_init(&sb->s_list);
244 		destroy_super(sb);
245 	}
246 }
247 
248 /**
249  *	put_super	-	drop a temporary reference to superblock
250  *	@sb: superblock in question
251  *
252  *	Drops a temporary reference, frees superblock if there's no
253  *	references left.
254  */
255 static void put_super(struct super_block *sb)
256 {
257 	spin_lock(&sb_lock);
258 	__put_super(sb);
259 	spin_unlock(&sb_lock);
260 }
261 
262 
263 /**
264  *	deactivate_locked_super	-	drop an active reference to superblock
265  *	@s: superblock to deactivate
266  *
267  *	Drops an active reference to superblock, converting it into a temprory
268  *	one if there is no other active references left.  In that case we
269  *	tell fs driver to shut it down and drop the temporary reference we
270  *	had just acquired.
271  *
272  *	Caller holds exclusive lock on superblock; that lock is released.
273  */
274 void deactivate_locked_super(struct super_block *s)
275 {
276 	struct file_system_type *fs = s->s_type;
277 	if (atomic_dec_and_test(&s->s_active)) {
278 		cleancache_invalidate_fs(s);
279 		fs->kill_sb(s);
280 
281 		/* caches are now gone, we can safely kill the shrinker now */
282 		unregister_shrinker(&s->s_shrink);
283 
284 		put_filesystem(fs);
285 		put_super(s);
286 	} else {
287 		up_write(&s->s_umount);
288 	}
289 }
290 
291 EXPORT_SYMBOL(deactivate_locked_super);
292 
293 /**
294  *	deactivate_super	-	drop an active reference to superblock
295  *	@s: superblock to deactivate
296  *
297  *	Variant of deactivate_locked_super(), except that superblock is *not*
298  *	locked by caller.  If we are going to drop the final active reference,
299  *	lock will be acquired prior to that.
300  */
301 void deactivate_super(struct super_block *s)
302 {
303         if (!atomic_add_unless(&s->s_active, -1, 1)) {
304 		down_write(&s->s_umount);
305 		deactivate_locked_super(s);
306 	}
307 }
308 
309 EXPORT_SYMBOL(deactivate_super);
310 
311 /**
312  *	grab_super - acquire an active reference
313  *	@s: reference we are trying to make active
314  *
315  *	Tries to acquire an active reference.  grab_super() is used when we
316  * 	had just found a superblock in super_blocks or fs_type->fs_supers
317  *	and want to turn it into a full-blown active reference.  grab_super()
318  *	is called with sb_lock held and drops it.  Returns 1 in case of
319  *	success, 0 if we had failed (superblock contents was already dead or
320  *	dying when grab_super() had been called).  Note that this is only
321  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
322  *	of their type), so increment of ->s_count is OK here.
323  */
324 static int grab_super(struct super_block *s) __releases(sb_lock)
325 {
326 	s->s_count++;
327 	spin_unlock(&sb_lock);
328 	down_write(&s->s_umount);
329 	if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
330 		put_super(s);
331 		return 1;
332 	}
333 	up_write(&s->s_umount);
334 	put_super(s);
335 	return 0;
336 }
337 
338 /*
339  *	grab_super_passive - acquire a passive reference
340  *	@sb: reference we are trying to grab
341  *
342  *	Tries to acquire a passive reference. This is used in places where we
343  *	cannot take an active reference but we need to ensure that the
344  *	superblock does not go away while we are working on it. It returns
345  *	false if a reference was not gained, and returns true with the s_umount
346  *	lock held in read mode if a reference is gained. On successful return,
347  *	the caller must drop the s_umount lock and the passive reference when
348  *	done.
349  */
350 bool grab_super_passive(struct super_block *sb)
351 {
352 	spin_lock(&sb_lock);
353 	if (hlist_unhashed(&sb->s_instances)) {
354 		spin_unlock(&sb_lock);
355 		return false;
356 	}
357 
358 	sb->s_count++;
359 	spin_unlock(&sb_lock);
360 
361 	if (down_read_trylock(&sb->s_umount)) {
362 		if (sb->s_root && (sb->s_flags & MS_BORN))
363 			return true;
364 		up_read(&sb->s_umount);
365 	}
366 
367 	put_super(sb);
368 	return false;
369 }
370 
371 /**
372  *	generic_shutdown_super	-	common helper for ->kill_sb()
373  *	@sb: superblock to kill
374  *
375  *	generic_shutdown_super() does all fs-independent work on superblock
376  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
377  *	that need destruction out of superblock, call generic_shutdown_super()
378  *	and release aforementioned objects.  Note: dentries and inodes _are_
379  *	taken care of and do not need specific handling.
380  *
381  *	Upon calling this function, the filesystem may no longer alter or
382  *	rearrange the set of dentries belonging to this super_block, nor may it
383  *	change the attachments of dentries to inodes.
384  */
385 void generic_shutdown_super(struct super_block *sb)
386 {
387 	const struct super_operations *sop = sb->s_op;
388 
389 	if (sb->s_root) {
390 		shrink_dcache_for_umount(sb);
391 		sync_filesystem(sb);
392 		sb->s_flags &= ~MS_ACTIVE;
393 
394 		fsnotify_unmount_inodes(&sb->s_inodes);
395 
396 		evict_inodes(sb);
397 
398 		if (sb->s_dio_done_wq) {
399 			destroy_workqueue(sb->s_dio_done_wq);
400 			sb->s_dio_done_wq = NULL;
401 		}
402 
403 		if (sop->put_super)
404 			sop->put_super(sb);
405 
406 		if (!list_empty(&sb->s_inodes)) {
407 			printk("VFS: Busy inodes after unmount of %s. "
408 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
409 			   sb->s_id);
410 		}
411 	}
412 	spin_lock(&sb_lock);
413 	/* should be initialized for __put_super_and_need_restart() */
414 	hlist_del_init(&sb->s_instances);
415 	spin_unlock(&sb_lock);
416 	up_write(&sb->s_umount);
417 }
418 
419 EXPORT_SYMBOL(generic_shutdown_super);
420 
421 /**
422  *	sget	-	find or create a superblock
423  *	@type:	filesystem type superblock should belong to
424  *	@test:	comparison callback
425  *	@set:	setup callback
426  *	@flags:	mount flags
427  *	@data:	argument to each of them
428  */
429 struct super_block *sget(struct file_system_type *type,
430 			int (*test)(struct super_block *,void *),
431 			int (*set)(struct super_block *,void *),
432 			int flags,
433 			void *data)
434 {
435 	struct super_block *s = NULL;
436 	struct super_block *old;
437 	int err;
438 
439 retry:
440 	spin_lock(&sb_lock);
441 	if (test) {
442 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
443 			if (!test(old, data))
444 				continue;
445 			if (!grab_super(old))
446 				goto retry;
447 			if (s) {
448 				up_write(&s->s_umount);
449 				destroy_super(s);
450 				s = NULL;
451 			}
452 			return old;
453 		}
454 	}
455 	if (!s) {
456 		spin_unlock(&sb_lock);
457 		s = alloc_super(type, flags);
458 		if (!s)
459 			return ERR_PTR(-ENOMEM);
460 		goto retry;
461 	}
462 
463 	err = set(s, data);
464 	if (err) {
465 		spin_unlock(&sb_lock);
466 		up_write(&s->s_umount);
467 		destroy_super(s);
468 		return ERR_PTR(err);
469 	}
470 	s->s_type = type;
471 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
472 	list_add_tail(&s->s_list, &super_blocks);
473 	hlist_add_head(&s->s_instances, &type->fs_supers);
474 	spin_unlock(&sb_lock);
475 	get_filesystem(type);
476 	register_shrinker(&s->s_shrink);
477 	return s;
478 }
479 
480 EXPORT_SYMBOL(sget);
481 
482 void drop_super(struct super_block *sb)
483 {
484 	up_read(&sb->s_umount);
485 	put_super(sb);
486 }
487 
488 EXPORT_SYMBOL(drop_super);
489 
490 /**
491  *	iterate_supers - call function for all active superblocks
492  *	@f: function to call
493  *	@arg: argument to pass to it
494  *
495  *	Scans the superblock list and calls given function, passing it
496  *	locked superblock and given argument.
497  */
498 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
499 {
500 	struct super_block *sb, *p = NULL;
501 
502 	spin_lock(&sb_lock);
503 	list_for_each_entry(sb, &super_blocks, s_list) {
504 		if (hlist_unhashed(&sb->s_instances))
505 			continue;
506 		sb->s_count++;
507 		spin_unlock(&sb_lock);
508 
509 		down_read(&sb->s_umount);
510 		if (sb->s_root && (sb->s_flags & MS_BORN))
511 			f(sb, arg);
512 		up_read(&sb->s_umount);
513 
514 		spin_lock(&sb_lock);
515 		if (p)
516 			__put_super(p);
517 		p = sb;
518 	}
519 	if (p)
520 		__put_super(p);
521 	spin_unlock(&sb_lock);
522 }
523 
524 /**
525  *	iterate_supers_type - call function for superblocks of given type
526  *	@type: fs type
527  *	@f: function to call
528  *	@arg: argument to pass to it
529  *
530  *	Scans the superblock list and calls given function, passing it
531  *	locked superblock and given argument.
532  */
533 void iterate_supers_type(struct file_system_type *type,
534 	void (*f)(struct super_block *, void *), void *arg)
535 {
536 	struct super_block *sb, *p = NULL;
537 
538 	spin_lock(&sb_lock);
539 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
540 		sb->s_count++;
541 		spin_unlock(&sb_lock);
542 
543 		down_read(&sb->s_umount);
544 		if (sb->s_root && (sb->s_flags & MS_BORN))
545 			f(sb, arg);
546 		up_read(&sb->s_umount);
547 
548 		spin_lock(&sb_lock);
549 		if (p)
550 			__put_super(p);
551 		p = sb;
552 	}
553 	if (p)
554 		__put_super(p);
555 	spin_unlock(&sb_lock);
556 }
557 
558 EXPORT_SYMBOL(iterate_supers_type);
559 
560 /**
561  *	get_super - get the superblock of a device
562  *	@bdev: device to get the superblock for
563  *
564  *	Scans the superblock list and finds the superblock of the file system
565  *	mounted on the device given. %NULL is returned if no match is found.
566  */
567 
568 struct super_block *get_super(struct block_device *bdev)
569 {
570 	struct super_block *sb;
571 
572 	if (!bdev)
573 		return NULL;
574 
575 	spin_lock(&sb_lock);
576 rescan:
577 	list_for_each_entry(sb, &super_blocks, s_list) {
578 		if (hlist_unhashed(&sb->s_instances))
579 			continue;
580 		if (sb->s_bdev == bdev) {
581 			sb->s_count++;
582 			spin_unlock(&sb_lock);
583 			down_read(&sb->s_umount);
584 			/* still alive? */
585 			if (sb->s_root && (sb->s_flags & MS_BORN))
586 				return sb;
587 			up_read(&sb->s_umount);
588 			/* nope, got unmounted */
589 			spin_lock(&sb_lock);
590 			__put_super(sb);
591 			goto rescan;
592 		}
593 	}
594 	spin_unlock(&sb_lock);
595 	return NULL;
596 }
597 
598 EXPORT_SYMBOL(get_super);
599 
600 /**
601  *	get_super_thawed - get thawed superblock of a device
602  *	@bdev: device to get the superblock for
603  *
604  *	Scans the superblock list and finds the superblock of the file system
605  *	mounted on the device. The superblock is returned once it is thawed
606  *	(or immediately if it was not frozen). %NULL is returned if no match
607  *	is found.
608  */
609 struct super_block *get_super_thawed(struct block_device *bdev)
610 {
611 	while (1) {
612 		struct super_block *s = get_super(bdev);
613 		if (!s || s->s_writers.frozen == SB_UNFROZEN)
614 			return s;
615 		up_read(&s->s_umount);
616 		wait_event(s->s_writers.wait_unfrozen,
617 			   s->s_writers.frozen == SB_UNFROZEN);
618 		put_super(s);
619 	}
620 }
621 EXPORT_SYMBOL(get_super_thawed);
622 
623 /**
624  * get_active_super - get an active reference to the superblock of a device
625  * @bdev: device to get the superblock for
626  *
627  * Scans the superblock list and finds the superblock of the file system
628  * mounted on the device given.  Returns the superblock with an active
629  * reference or %NULL if none was found.
630  */
631 struct super_block *get_active_super(struct block_device *bdev)
632 {
633 	struct super_block *sb;
634 
635 	if (!bdev)
636 		return NULL;
637 
638 restart:
639 	spin_lock(&sb_lock);
640 	list_for_each_entry(sb, &super_blocks, s_list) {
641 		if (hlist_unhashed(&sb->s_instances))
642 			continue;
643 		if (sb->s_bdev == bdev) {
644 			if (!grab_super(sb))
645 				goto restart;
646 			up_write(&sb->s_umount);
647 			return sb;
648 		}
649 	}
650 	spin_unlock(&sb_lock);
651 	return NULL;
652 }
653 
654 struct super_block *user_get_super(dev_t dev)
655 {
656 	struct super_block *sb;
657 
658 	spin_lock(&sb_lock);
659 rescan:
660 	list_for_each_entry(sb, &super_blocks, s_list) {
661 		if (hlist_unhashed(&sb->s_instances))
662 			continue;
663 		if (sb->s_dev ==  dev) {
664 			sb->s_count++;
665 			spin_unlock(&sb_lock);
666 			down_read(&sb->s_umount);
667 			/* still alive? */
668 			if (sb->s_root && (sb->s_flags & MS_BORN))
669 				return sb;
670 			up_read(&sb->s_umount);
671 			/* nope, got unmounted */
672 			spin_lock(&sb_lock);
673 			__put_super(sb);
674 			goto rescan;
675 		}
676 	}
677 	spin_unlock(&sb_lock);
678 	return NULL;
679 }
680 
681 /**
682  *	do_remount_sb - asks filesystem to change mount options.
683  *	@sb:	superblock in question
684  *	@flags:	numeric part of options
685  *	@data:	the rest of options
686  *      @force: whether or not to force the change
687  *
688  *	Alters the mount options of a mounted file system.
689  */
690 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
691 {
692 	int retval;
693 	int remount_ro;
694 
695 	if (sb->s_writers.frozen != SB_UNFROZEN)
696 		return -EBUSY;
697 
698 #ifdef CONFIG_BLOCK
699 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
700 		return -EACCES;
701 #endif
702 
703 	if (flags & MS_RDONLY)
704 		acct_auto_close(sb);
705 	shrink_dcache_sb(sb);
706 
707 	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
708 
709 	/* If we are remounting RDONLY and current sb is read/write,
710 	   make sure there are no rw files opened */
711 	if (remount_ro) {
712 		if (force) {
713 			sb->s_readonly_remount = 1;
714 			smp_wmb();
715 		} else {
716 			retval = sb_prepare_remount_readonly(sb);
717 			if (retval)
718 				return retval;
719 		}
720 	}
721 
722 	if (sb->s_op->remount_fs) {
723 		retval = sb->s_op->remount_fs(sb, &flags, data);
724 		if (retval) {
725 			if (!force)
726 				goto cancel_readonly;
727 			/* If forced remount, go ahead despite any errors */
728 			WARN(1, "forced remount of a %s fs returned %i\n",
729 			     sb->s_type->name, retval);
730 		}
731 	}
732 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
733 	/* Needs to be ordered wrt mnt_is_readonly() */
734 	smp_wmb();
735 	sb->s_readonly_remount = 0;
736 
737 	/*
738 	 * Some filesystems modify their metadata via some other path than the
739 	 * bdev buffer cache (eg. use a private mapping, or directories in
740 	 * pagecache, etc). Also file data modifications go via their own
741 	 * mappings. So If we try to mount readonly then copy the filesystem
742 	 * from bdev, we could get stale data, so invalidate it to give a best
743 	 * effort at coherency.
744 	 */
745 	if (remount_ro && sb->s_bdev)
746 		invalidate_bdev(sb->s_bdev);
747 	return 0;
748 
749 cancel_readonly:
750 	sb->s_readonly_remount = 0;
751 	return retval;
752 }
753 
754 static void do_emergency_remount(struct work_struct *work)
755 {
756 	struct super_block *sb, *p = NULL;
757 
758 	spin_lock(&sb_lock);
759 	list_for_each_entry(sb, &super_blocks, s_list) {
760 		if (hlist_unhashed(&sb->s_instances))
761 			continue;
762 		sb->s_count++;
763 		spin_unlock(&sb_lock);
764 		down_write(&sb->s_umount);
765 		if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
766 		    !(sb->s_flags & MS_RDONLY)) {
767 			/*
768 			 * What lock protects sb->s_flags??
769 			 */
770 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
771 		}
772 		up_write(&sb->s_umount);
773 		spin_lock(&sb_lock);
774 		if (p)
775 			__put_super(p);
776 		p = sb;
777 	}
778 	if (p)
779 		__put_super(p);
780 	spin_unlock(&sb_lock);
781 	kfree(work);
782 	printk("Emergency Remount complete\n");
783 }
784 
785 void emergency_remount(void)
786 {
787 	struct work_struct *work;
788 
789 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
790 	if (work) {
791 		INIT_WORK(work, do_emergency_remount);
792 		schedule_work(work);
793 	}
794 }
795 
796 /*
797  * Unnamed block devices are dummy devices used by virtual
798  * filesystems which don't use real block-devices.  -- jrs
799  */
800 
801 static DEFINE_IDA(unnamed_dev_ida);
802 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
803 static int unnamed_dev_start = 0; /* don't bother trying below it */
804 
805 int get_anon_bdev(dev_t *p)
806 {
807 	int dev;
808 	int error;
809 
810  retry:
811 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
812 		return -ENOMEM;
813 	spin_lock(&unnamed_dev_lock);
814 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
815 	if (!error)
816 		unnamed_dev_start = dev + 1;
817 	spin_unlock(&unnamed_dev_lock);
818 	if (error == -EAGAIN)
819 		/* We raced and lost with another CPU. */
820 		goto retry;
821 	else if (error)
822 		return -EAGAIN;
823 
824 	if (dev == (1 << MINORBITS)) {
825 		spin_lock(&unnamed_dev_lock);
826 		ida_remove(&unnamed_dev_ida, dev);
827 		if (unnamed_dev_start > dev)
828 			unnamed_dev_start = dev;
829 		spin_unlock(&unnamed_dev_lock);
830 		return -EMFILE;
831 	}
832 	*p = MKDEV(0, dev & MINORMASK);
833 	return 0;
834 }
835 EXPORT_SYMBOL(get_anon_bdev);
836 
837 void free_anon_bdev(dev_t dev)
838 {
839 	int slot = MINOR(dev);
840 	spin_lock(&unnamed_dev_lock);
841 	ida_remove(&unnamed_dev_ida, slot);
842 	if (slot < unnamed_dev_start)
843 		unnamed_dev_start = slot;
844 	spin_unlock(&unnamed_dev_lock);
845 }
846 EXPORT_SYMBOL(free_anon_bdev);
847 
848 int set_anon_super(struct super_block *s, void *data)
849 {
850 	int error = get_anon_bdev(&s->s_dev);
851 	if (!error)
852 		s->s_bdi = &noop_backing_dev_info;
853 	return error;
854 }
855 
856 EXPORT_SYMBOL(set_anon_super);
857 
858 void kill_anon_super(struct super_block *sb)
859 {
860 	dev_t dev = sb->s_dev;
861 	generic_shutdown_super(sb);
862 	free_anon_bdev(dev);
863 }
864 
865 EXPORT_SYMBOL(kill_anon_super);
866 
867 void kill_litter_super(struct super_block *sb)
868 {
869 	if (sb->s_root)
870 		d_genocide(sb->s_root);
871 	kill_anon_super(sb);
872 }
873 
874 EXPORT_SYMBOL(kill_litter_super);
875 
876 static int ns_test_super(struct super_block *sb, void *data)
877 {
878 	return sb->s_fs_info == data;
879 }
880 
881 static int ns_set_super(struct super_block *sb, void *data)
882 {
883 	sb->s_fs_info = data;
884 	return set_anon_super(sb, NULL);
885 }
886 
887 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
888 	void *data, int (*fill_super)(struct super_block *, void *, int))
889 {
890 	struct super_block *sb;
891 
892 	sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
893 	if (IS_ERR(sb))
894 		return ERR_CAST(sb);
895 
896 	if (!sb->s_root) {
897 		int err;
898 		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
899 		if (err) {
900 			deactivate_locked_super(sb);
901 			return ERR_PTR(err);
902 		}
903 
904 		sb->s_flags |= MS_ACTIVE;
905 	}
906 
907 	return dget(sb->s_root);
908 }
909 
910 EXPORT_SYMBOL(mount_ns);
911 
912 #ifdef CONFIG_BLOCK
913 static int set_bdev_super(struct super_block *s, void *data)
914 {
915 	s->s_bdev = data;
916 	s->s_dev = s->s_bdev->bd_dev;
917 
918 	/*
919 	 * We set the bdi here to the queue backing, file systems can
920 	 * overwrite this in ->fill_super()
921 	 */
922 	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
923 	return 0;
924 }
925 
926 static int test_bdev_super(struct super_block *s, void *data)
927 {
928 	return (void *)s->s_bdev == data;
929 }
930 
931 struct dentry *mount_bdev(struct file_system_type *fs_type,
932 	int flags, const char *dev_name, void *data,
933 	int (*fill_super)(struct super_block *, void *, int))
934 {
935 	struct block_device *bdev;
936 	struct super_block *s;
937 	fmode_t mode = FMODE_READ | FMODE_EXCL;
938 	int error = 0;
939 
940 	if (!(flags & MS_RDONLY))
941 		mode |= FMODE_WRITE;
942 
943 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
944 	if (IS_ERR(bdev))
945 		return ERR_CAST(bdev);
946 
947 	/*
948 	 * once the super is inserted into the list by sget, s_umount
949 	 * will protect the lockfs code from trying to start a snapshot
950 	 * while we are mounting
951 	 */
952 	mutex_lock(&bdev->bd_fsfreeze_mutex);
953 	if (bdev->bd_fsfreeze_count > 0) {
954 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
955 		error = -EBUSY;
956 		goto error_bdev;
957 	}
958 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
959 		 bdev);
960 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
961 	if (IS_ERR(s))
962 		goto error_s;
963 
964 	if (s->s_root) {
965 		if ((flags ^ s->s_flags) & MS_RDONLY) {
966 			deactivate_locked_super(s);
967 			error = -EBUSY;
968 			goto error_bdev;
969 		}
970 
971 		/*
972 		 * s_umount nests inside bd_mutex during
973 		 * __invalidate_device().  blkdev_put() acquires
974 		 * bd_mutex and can't be called under s_umount.  Drop
975 		 * s_umount temporarily.  This is safe as we're
976 		 * holding an active reference.
977 		 */
978 		up_write(&s->s_umount);
979 		blkdev_put(bdev, mode);
980 		down_write(&s->s_umount);
981 	} else {
982 		char b[BDEVNAME_SIZE];
983 
984 		s->s_mode = mode;
985 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
986 		sb_set_blocksize(s, block_size(bdev));
987 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
988 		if (error) {
989 			deactivate_locked_super(s);
990 			goto error;
991 		}
992 
993 		s->s_flags |= MS_ACTIVE;
994 		bdev->bd_super = s;
995 	}
996 
997 	return dget(s->s_root);
998 
999 error_s:
1000 	error = PTR_ERR(s);
1001 error_bdev:
1002 	blkdev_put(bdev, mode);
1003 error:
1004 	return ERR_PTR(error);
1005 }
1006 EXPORT_SYMBOL(mount_bdev);
1007 
1008 void kill_block_super(struct super_block *sb)
1009 {
1010 	struct block_device *bdev = sb->s_bdev;
1011 	fmode_t mode = sb->s_mode;
1012 
1013 	bdev->bd_super = NULL;
1014 	generic_shutdown_super(sb);
1015 	sync_blockdev(bdev);
1016 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1017 	blkdev_put(bdev, mode | FMODE_EXCL);
1018 }
1019 
1020 EXPORT_SYMBOL(kill_block_super);
1021 #endif
1022 
1023 struct dentry *mount_nodev(struct file_system_type *fs_type,
1024 	int flags, void *data,
1025 	int (*fill_super)(struct super_block *, void *, int))
1026 {
1027 	int error;
1028 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1029 
1030 	if (IS_ERR(s))
1031 		return ERR_CAST(s);
1032 
1033 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1034 	if (error) {
1035 		deactivate_locked_super(s);
1036 		return ERR_PTR(error);
1037 	}
1038 	s->s_flags |= MS_ACTIVE;
1039 	return dget(s->s_root);
1040 }
1041 EXPORT_SYMBOL(mount_nodev);
1042 
1043 static int compare_single(struct super_block *s, void *p)
1044 {
1045 	return 1;
1046 }
1047 
1048 struct dentry *mount_single(struct file_system_type *fs_type,
1049 	int flags, void *data,
1050 	int (*fill_super)(struct super_block *, void *, int))
1051 {
1052 	struct super_block *s;
1053 	int error;
1054 
1055 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1056 	if (IS_ERR(s))
1057 		return ERR_CAST(s);
1058 	if (!s->s_root) {
1059 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1060 		if (error) {
1061 			deactivate_locked_super(s);
1062 			return ERR_PTR(error);
1063 		}
1064 		s->s_flags |= MS_ACTIVE;
1065 	} else {
1066 		do_remount_sb(s, flags, data, 0);
1067 	}
1068 	return dget(s->s_root);
1069 }
1070 EXPORT_SYMBOL(mount_single);
1071 
1072 struct dentry *
1073 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1074 {
1075 	struct dentry *root;
1076 	struct super_block *sb;
1077 	char *secdata = NULL;
1078 	int error = -ENOMEM;
1079 
1080 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1081 		secdata = alloc_secdata();
1082 		if (!secdata)
1083 			goto out;
1084 
1085 		error = security_sb_copy_data(data, secdata);
1086 		if (error)
1087 			goto out_free_secdata;
1088 	}
1089 
1090 	root = type->mount(type, flags, name, data);
1091 	if (IS_ERR(root)) {
1092 		error = PTR_ERR(root);
1093 		goto out_free_secdata;
1094 	}
1095 	sb = root->d_sb;
1096 	BUG_ON(!sb);
1097 	WARN_ON(!sb->s_bdi);
1098 	WARN_ON(sb->s_bdi == &default_backing_dev_info);
1099 	sb->s_flags |= MS_BORN;
1100 
1101 	error = security_sb_kern_mount(sb, flags, secdata);
1102 	if (error)
1103 		goto out_sb;
1104 
1105 	/*
1106 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1107 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1108 	 * this warning for a little while to try and catch filesystems that
1109 	 * violate this rule.
1110 	 */
1111 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1112 		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1113 
1114 	up_write(&sb->s_umount);
1115 	free_secdata(secdata);
1116 	return root;
1117 out_sb:
1118 	dput(root);
1119 	deactivate_locked_super(sb);
1120 out_free_secdata:
1121 	free_secdata(secdata);
1122 out:
1123 	return ERR_PTR(error);
1124 }
1125 
1126 /*
1127  * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1128  * instead.
1129  */
1130 void __sb_end_write(struct super_block *sb, int level)
1131 {
1132 	percpu_counter_dec(&sb->s_writers.counter[level-1]);
1133 	/*
1134 	 * Make sure s_writers are updated before we wake up waiters in
1135 	 * freeze_super().
1136 	 */
1137 	smp_mb();
1138 	if (waitqueue_active(&sb->s_writers.wait))
1139 		wake_up(&sb->s_writers.wait);
1140 	rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_);
1141 }
1142 EXPORT_SYMBOL(__sb_end_write);
1143 
1144 #ifdef CONFIG_LOCKDEP
1145 /*
1146  * We want lockdep to tell us about possible deadlocks with freezing but
1147  * it's it bit tricky to properly instrument it. Getting a freeze protection
1148  * works as getting a read lock but there are subtle problems. XFS for example
1149  * gets freeze protection on internal level twice in some cases, which is OK
1150  * only because we already hold a freeze protection also on higher level. Due
1151  * to these cases we have to tell lockdep we are doing trylock when we
1152  * already hold a freeze protection for a higher freeze level.
1153  */
1154 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock,
1155 				unsigned long ip)
1156 {
1157 	int i;
1158 
1159 	if (!trylock) {
1160 		for (i = 0; i < level - 1; i++)
1161 			if (lock_is_held(&sb->s_writers.lock_map[i])) {
1162 				trylock = true;
1163 				break;
1164 			}
1165 	}
1166 	rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip);
1167 }
1168 #endif
1169 
1170 /*
1171  * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1172  * instead.
1173  */
1174 int __sb_start_write(struct super_block *sb, int level, bool wait)
1175 {
1176 retry:
1177 	if (unlikely(sb->s_writers.frozen >= level)) {
1178 		if (!wait)
1179 			return 0;
1180 		wait_event(sb->s_writers.wait_unfrozen,
1181 			   sb->s_writers.frozen < level);
1182 	}
1183 
1184 #ifdef CONFIG_LOCKDEP
1185 	acquire_freeze_lock(sb, level, !wait, _RET_IP_);
1186 #endif
1187 	percpu_counter_inc(&sb->s_writers.counter[level-1]);
1188 	/*
1189 	 * Make sure counter is updated before we check for frozen.
1190 	 * freeze_super() first sets frozen and then checks the counter.
1191 	 */
1192 	smp_mb();
1193 	if (unlikely(sb->s_writers.frozen >= level)) {
1194 		__sb_end_write(sb, level);
1195 		goto retry;
1196 	}
1197 	return 1;
1198 }
1199 EXPORT_SYMBOL(__sb_start_write);
1200 
1201 /**
1202  * sb_wait_write - wait until all writers to given file system finish
1203  * @sb: the super for which we wait
1204  * @level: type of writers we wait for (normal vs page fault)
1205  *
1206  * This function waits until there are no writers of given type to given file
1207  * system. Caller of this function should make sure there can be no new writers
1208  * of type @level before calling this function. Otherwise this function can
1209  * livelock.
1210  */
1211 static void sb_wait_write(struct super_block *sb, int level)
1212 {
1213 	s64 writers;
1214 
1215 	/*
1216 	 * We just cycle-through lockdep here so that it does not complain
1217 	 * about returning with lock to userspace
1218 	 */
1219 	rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_);
1220 	rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_);
1221 
1222 	do {
1223 		DEFINE_WAIT(wait);
1224 
1225 		/*
1226 		 * We use a barrier in prepare_to_wait() to separate setting
1227 		 * of frozen and checking of the counter
1228 		 */
1229 		prepare_to_wait(&sb->s_writers.wait, &wait,
1230 				TASK_UNINTERRUPTIBLE);
1231 
1232 		writers = percpu_counter_sum(&sb->s_writers.counter[level-1]);
1233 		if (writers)
1234 			schedule();
1235 
1236 		finish_wait(&sb->s_writers.wait, &wait);
1237 	} while (writers);
1238 }
1239 
1240 /**
1241  * freeze_super - lock the filesystem and force it into a consistent state
1242  * @sb: the super to lock
1243  *
1244  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1245  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1246  * -EBUSY.
1247  *
1248  * During this function, sb->s_writers.frozen goes through these values:
1249  *
1250  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1251  *
1252  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1253  * writes should be blocked, though page faults are still allowed. We wait for
1254  * all writes to complete and then proceed to the next stage.
1255  *
1256  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1257  * but internal fs threads can still modify the filesystem (although they
1258  * should not dirty new pages or inodes), writeback can run etc. After waiting
1259  * for all running page faults we sync the filesystem which will clean all
1260  * dirty pages and inodes (no new dirty pages or inodes can be created when
1261  * sync is running).
1262  *
1263  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1264  * modification are blocked (e.g. XFS preallocation truncation on inode
1265  * reclaim). This is usually implemented by blocking new transactions for
1266  * filesystems that have them and need this additional guard. After all
1267  * internal writers are finished we call ->freeze_fs() to finish filesystem
1268  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1269  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1270  *
1271  * sb->s_writers.frozen is protected by sb->s_umount.
1272  */
1273 int freeze_super(struct super_block *sb)
1274 {
1275 	int ret;
1276 
1277 	atomic_inc(&sb->s_active);
1278 	down_write(&sb->s_umount);
1279 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1280 		deactivate_locked_super(sb);
1281 		return -EBUSY;
1282 	}
1283 
1284 	if (!(sb->s_flags & MS_BORN)) {
1285 		up_write(&sb->s_umount);
1286 		return 0;	/* sic - it's "nothing to do" */
1287 	}
1288 
1289 	if (sb->s_flags & MS_RDONLY) {
1290 		/* Nothing to do really... */
1291 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1292 		up_write(&sb->s_umount);
1293 		return 0;
1294 	}
1295 
1296 	/* From now on, no new normal writers can start */
1297 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1298 	smp_wmb();
1299 
1300 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1301 	up_write(&sb->s_umount);
1302 
1303 	sb_wait_write(sb, SB_FREEZE_WRITE);
1304 
1305 	/* Now we go and block page faults... */
1306 	down_write(&sb->s_umount);
1307 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1308 	smp_wmb();
1309 
1310 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1311 
1312 	/* All writers are done so after syncing there won't be dirty data */
1313 	sync_filesystem(sb);
1314 
1315 	/* Now wait for internal filesystem counter */
1316 	sb->s_writers.frozen = SB_FREEZE_FS;
1317 	smp_wmb();
1318 	sb_wait_write(sb, SB_FREEZE_FS);
1319 
1320 	if (sb->s_op->freeze_fs) {
1321 		ret = sb->s_op->freeze_fs(sb);
1322 		if (ret) {
1323 			printk(KERN_ERR
1324 				"VFS:Filesystem freeze failed\n");
1325 			sb->s_writers.frozen = SB_UNFROZEN;
1326 			smp_wmb();
1327 			wake_up(&sb->s_writers.wait_unfrozen);
1328 			deactivate_locked_super(sb);
1329 			return ret;
1330 		}
1331 	}
1332 	/*
1333 	 * This is just for debugging purposes so that fs can warn if it
1334 	 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1335 	 */
1336 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1337 	up_write(&sb->s_umount);
1338 	return 0;
1339 }
1340 EXPORT_SYMBOL(freeze_super);
1341 
1342 /**
1343  * thaw_super -- unlock filesystem
1344  * @sb: the super to thaw
1345  *
1346  * Unlocks the filesystem and marks it writeable again after freeze_super().
1347  */
1348 int thaw_super(struct super_block *sb)
1349 {
1350 	int error;
1351 
1352 	down_write(&sb->s_umount);
1353 	if (sb->s_writers.frozen == SB_UNFROZEN) {
1354 		up_write(&sb->s_umount);
1355 		return -EINVAL;
1356 	}
1357 
1358 	if (sb->s_flags & MS_RDONLY)
1359 		goto out;
1360 
1361 	if (sb->s_op->unfreeze_fs) {
1362 		error = sb->s_op->unfreeze_fs(sb);
1363 		if (error) {
1364 			printk(KERN_ERR
1365 				"VFS:Filesystem thaw failed\n");
1366 			up_write(&sb->s_umount);
1367 			return error;
1368 		}
1369 	}
1370 
1371 out:
1372 	sb->s_writers.frozen = SB_UNFROZEN;
1373 	smp_wmb();
1374 	wake_up(&sb->s_writers.wait_unfrozen);
1375 	deactivate_locked_super(sb);
1376 
1377 	return 0;
1378 }
1379 EXPORT_SYMBOL(thaw_super);
1380