xref: /openbmc/linux/fs/super.c (revision 6aeadf78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/super.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  super.c contains code to handle: - mount structures
8  *                                   - super-block tables
9  *                                   - filesystem drivers list
10  *                                   - mount system call
11  *                                   - umount system call
12  *                                   - ustat system call
13  *
14  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
15  *
16  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18  *  Added options to /proc/mounts:
19  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22  */
23 
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/fscrypt.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include <linux/fs_context.h>
39 #include <uapi/linux/mount.h>
40 #include "internal.h"
41 
42 static int thaw_super_locked(struct super_block *sb);
43 
44 static LIST_HEAD(super_blocks);
45 static DEFINE_SPINLOCK(sb_lock);
46 
47 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
48 	"sb_writers",
49 	"sb_pagefaults",
50 	"sb_internal",
51 };
52 
53 /*
54  * One thing we have to be careful of with a per-sb shrinker is that we don't
55  * drop the last active reference to the superblock from within the shrinker.
56  * If that happens we could trigger unregistering the shrinker from within the
57  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
58  * take a passive reference to the superblock to avoid this from occurring.
59  */
60 static unsigned long super_cache_scan(struct shrinker *shrink,
61 				      struct shrink_control *sc)
62 {
63 	struct super_block *sb;
64 	long	fs_objects = 0;
65 	long	total_objects;
66 	long	freed = 0;
67 	long	dentries;
68 	long	inodes;
69 
70 	sb = container_of(shrink, struct super_block, s_shrink);
71 
72 	/*
73 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
74 	 * to recurse into the FS that called us in clear_inode() and friends..
75 	 */
76 	if (!(sc->gfp_mask & __GFP_FS))
77 		return SHRINK_STOP;
78 
79 	if (!trylock_super(sb))
80 		return SHRINK_STOP;
81 
82 	if (sb->s_op->nr_cached_objects)
83 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
84 
85 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
86 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
87 	total_objects = dentries + inodes + fs_objects + 1;
88 	if (!total_objects)
89 		total_objects = 1;
90 
91 	/* proportion the scan between the caches */
92 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
93 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
94 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
95 
96 	/*
97 	 * prune the dcache first as the icache is pinned by it, then
98 	 * prune the icache, followed by the filesystem specific caches
99 	 *
100 	 * Ensure that we always scan at least one object - memcg kmem
101 	 * accounting uses this to fully empty the caches.
102 	 */
103 	sc->nr_to_scan = dentries + 1;
104 	freed = prune_dcache_sb(sb, sc);
105 	sc->nr_to_scan = inodes + 1;
106 	freed += prune_icache_sb(sb, sc);
107 
108 	if (fs_objects) {
109 		sc->nr_to_scan = fs_objects + 1;
110 		freed += sb->s_op->free_cached_objects(sb, sc);
111 	}
112 
113 	up_read(&sb->s_umount);
114 	return freed;
115 }
116 
117 static unsigned long super_cache_count(struct shrinker *shrink,
118 				       struct shrink_control *sc)
119 {
120 	struct super_block *sb;
121 	long	total_objects = 0;
122 
123 	sb = container_of(shrink, struct super_block, s_shrink);
124 
125 	/*
126 	 * We don't call trylock_super() here as it is a scalability bottleneck,
127 	 * so we're exposed to partial setup state. The shrinker rwsem does not
128 	 * protect filesystem operations backing list_lru_shrink_count() or
129 	 * s_op->nr_cached_objects(). Counts can change between
130 	 * super_cache_count and super_cache_scan, so we really don't need locks
131 	 * here.
132 	 *
133 	 * However, if we are currently mounting the superblock, the underlying
134 	 * filesystem might be in a state of partial construction and hence it
135 	 * is dangerous to access it.  trylock_super() uses a SB_BORN check to
136 	 * avoid this situation, so do the same here. The memory barrier is
137 	 * matched with the one in mount_fs() as we don't hold locks here.
138 	 */
139 	if (!(sb->s_flags & SB_BORN))
140 		return 0;
141 	smp_rmb();
142 
143 	if (sb->s_op && sb->s_op->nr_cached_objects)
144 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
145 
146 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
147 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
148 
149 	if (!total_objects)
150 		return SHRINK_EMPTY;
151 
152 	total_objects = vfs_pressure_ratio(total_objects);
153 	return total_objects;
154 }
155 
156 static void destroy_super_work(struct work_struct *work)
157 {
158 	struct super_block *s = container_of(work, struct super_block,
159 							destroy_work);
160 	int i;
161 
162 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
163 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
164 	kfree(s);
165 }
166 
167 static void destroy_super_rcu(struct rcu_head *head)
168 {
169 	struct super_block *s = container_of(head, struct super_block, rcu);
170 	INIT_WORK(&s->destroy_work, destroy_super_work);
171 	schedule_work(&s->destroy_work);
172 }
173 
174 /* Free a superblock that has never been seen by anyone */
175 static void destroy_unused_super(struct super_block *s)
176 {
177 	if (!s)
178 		return;
179 	up_write(&s->s_umount);
180 	list_lru_destroy(&s->s_dentry_lru);
181 	list_lru_destroy(&s->s_inode_lru);
182 	security_sb_free(s);
183 	put_user_ns(s->s_user_ns);
184 	kfree(s->s_subtype);
185 	free_prealloced_shrinker(&s->s_shrink);
186 	/* no delays needed */
187 	destroy_super_work(&s->destroy_work);
188 }
189 
190 /**
191  *	alloc_super	-	create new superblock
192  *	@type:	filesystem type superblock should belong to
193  *	@flags: the mount flags
194  *	@user_ns: User namespace for the super_block
195  *
196  *	Allocates and initializes a new &struct super_block.  alloc_super()
197  *	returns a pointer new superblock or %NULL if allocation had failed.
198  */
199 static struct super_block *alloc_super(struct file_system_type *type, int flags,
200 				       struct user_namespace *user_ns)
201 {
202 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
203 	static const struct super_operations default_op;
204 	int i;
205 
206 	if (!s)
207 		return NULL;
208 
209 	INIT_LIST_HEAD(&s->s_mounts);
210 	s->s_user_ns = get_user_ns(user_ns);
211 	init_rwsem(&s->s_umount);
212 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
213 	/*
214 	 * sget() can have s_umount recursion.
215 	 *
216 	 * When it cannot find a suitable sb, it allocates a new
217 	 * one (this one), and tries again to find a suitable old
218 	 * one.
219 	 *
220 	 * In case that succeeds, it will acquire the s_umount
221 	 * lock of the old one. Since these are clearly distrinct
222 	 * locks, and this object isn't exposed yet, there's no
223 	 * risk of deadlocks.
224 	 *
225 	 * Annotate this by putting this lock in a different
226 	 * subclass.
227 	 */
228 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
229 
230 	if (security_sb_alloc(s))
231 		goto fail;
232 
233 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
234 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
235 					sb_writers_name[i],
236 					&type->s_writers_key[i]))
237 			goto fail;
238 	}
239 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
240 	s->s_bdi = &noop_backing_dev_info;
241 	s->s_flags = flags;
242 	if (s->s_user_ns != &init_user_ns)
243 		s->s_iflags |= SB_I_NODEV;
244 	INIT_HLIST_NODE(&s->s_instances);
245 	INIT_HLIST_BL_HEAD(&s->s_roots);
246 	mutex_init(&s->s_sync_lock);
247 	INIT_LIST_HEAD(&s->s_inodes);
248 	spin_lock_init(&s->s_inode_list_lock);
249 	INIT_LIST_HEAD(&s->s_inodes_wb);
250 	spin_lock_init(&s->s_inode_wblist_lock);
251 
252 	s->s_count = 1;
253 	atomic_set(&s->s_active, 1);
254 	mutex_init(&s->s_vfs_rename_mutex);
255 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
256 	init_rwsem(&s->s_dquot.dqio_sem);
257 	s->s_maxbytes = MAX_NON_LFS;
258 	s->s_op = &default_op;
259 	s->s_time_gran = 1000000000;
260 	s->s_time_min = TIME64_MIN;
261 	s->s_time_max = TIME64_MAX;
262 
263 	s->s_shrink.seeks = DEFAULT_SEEKS;
264 	s->s_shrink.scan_objects = super_cache_scan;
265 	s->s_shrink.count_objects = super_cache_count;
266 	s->s_shrink.batch = 1024;
267 	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
268 	if (prealloc_shrinker(&s->s_shrink, "sb-%s", type->name))
269 		goto fail;
270 	if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
271 		goto fail;
272 	if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
273 		goto fail;
274 	return s;
275 
276 fail:
277 	destroy_unused_super(s);
278 	return NULL;
279 }
280 
281 /* Superblock refcounting  */
282 
283 /*
284  * Drop a superblock's refcount.  The caller must hold sb_lock.
285  */
286 static void __put_super(struct super_block *s)
287 {
288 	if (!--s->s_count) {
289 		list_del_init(&s->s_list);
290 		WARN_ON(s->s_dentry_lru.node);
291 		WARN_ON(s->s_inode_lru.node);
292 		WARN_ON(!list_empty(&s->s_mounts));
293 		security_sb_free(s);
294 		put_user_ns(s->s_user_ns);
295 		kfree(s->s_subtype);
296 		call_rcu(&s->rcu, destroy_super_rcu);
297 	}
298 }
299 
300 /**
301  *	put_super	-	drop a temporary reference to superblock
302  *	@sb: superblock in question
303  *
304  *	Drops a temporary reference, frees superblock if there's no
305  *	references left.
306  */
307 void put_super(struct super_block *sb)
308 {
309 	spin_lock(&sb_lock);
310 	__put_super(sb);
311 	spin_unlock(&sb_lock);
312 }
313 
314 
315 /**
316  *	deactivate_locked_super	-	drop an active reference to superblock
317  *	@s: superblock to deactivate
318  *
319  *	Drops an active reference to superblock, converting it into a temporary
320  *	one if there is no other active references left.  In that case we
321  *	tell fs driver to shut it down and drop the temporary reference we
322  *	had just acquired.
323  *
324  *	Caller holds exclusive lock on superblock; that lock is released.
325  */
326 void deactivate_locked_super(struct super_block *s)
327 {
328 	struct file_system_type *fs = s->s_type;
329 	if (atomic_dec_and_test(&s->s_active)) {
330 		unregister_shrinker(&s->s_shrink);
331 		fs->kill_sb(s);
332 
333 		/*
334 		 * Since list_lru_destroy() may sleep, we cannot call it from
335 		 * put_super(), where we hold the sb_lock. Therefore we destroy
336 		 * the lru lists right now.
337 		 */
338 		list_lru_destroy(&s->s_dentry_lru);
339 		list_lru_destroy(&s->s_inode_lru);
340 
341 		put_filesystem(fs);
342 		put_super(s);
343 	} else {
344 		up_write(&s->s_umount);
345 	}
346 }
347 
348 EXPORT_SYMBOL(deactivate_locked_super);
349 
350 /**
351  *	deactivate_super	-	drop an active reference to superblock
352  *	@s: superblock to deactivate
353  *
354  *	Variant of deactivate_locked_super(), except that superblock is *not*
355  *	locked by caller.  If we are going to drop the final active reference,
356  *	lock will be acquired prior to that.
357  */
358 void deactivate_super(struct super_block *s)
359 {
360 	if (!atomic_add_unless(&s->s_active, -1, 1)) {
361 		down_write(&s->s_umount);
362 		deactivate_locked_super(s);
363 	}
364 }
365 
366 EXPORT_SYMBOL(deactivate_super);
367 
368 /**
369  *	grab_super - acquire an active reference
370  *	@s: reference we are trying to make active
371  *
372  *	Tries to acquire an active reference.  grab_super() is used when we
373  * 	had just found a superblock in super_blocks or fs_type->fs_supers
374  *	and want to turn it into a full-blown active reference.  grab_super()
375  *	is called with sb_lock held and drops it.  Returns 1 in case of
376  *	success, 0 if we had failed (superblock contents was already dead or
377  *	dying when grab_super() had been called).  Note that this is only
378  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
379  *	of their type), so increment of ->s_count is OK here.
380  */
381 static int grab_super(struct super_block *s) __releases(sb_lock)
382 {
383 	s->s_count++;
384 	spin_unlock(&sb_lock);
385 	down_write(&s->s_umount);
386 	if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
387 		put_super(s);
388 		return 1;
389 	}
390 	up_write(&s->s_umount);
391 	put_super(s);
392 	return 0;
393 }
394 
395 /*
396  *	trylock_super - try to grab ->s_umount shared
397  *	@sb: reference we are trying to grab
398  *
399  *	Try to prevent fs shutdown.  This is used in places where we
400  *	cannot take an active reference but we need to ensure that the
401  *	filesystem is not shut down while we are working on it. It returns
402  *	false if we cannot acquire s_umount or if we lose the race and
403  *	filesystem already got into shutdown, and returns true with the s_umount
404  *	lock held in read mode in case of success. On successful return,
405  *	the caller must drop the s_umount lock when done.
406  *
407  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
408  *	The reason why it's safe is that we are OK with doing trylock instead
409  *	of down_read().  There's a couple of places that are OK with that, but
410  *	it's very much not a general-purpose interface.
411  */
412 bool trylock_super(struct super_block *sb)
413 {
414 	if (down_read_trylock(&sb->s_umount)) {
415 		if (!hlist_unhashed(&sb->s_instances) &&
416 		    sb->s_root && (sb->s_flags & SB_BORN))
417 			return true;
418 		up_read(&sb->s_umount);
419 	}
420 
421 	return false;
422 }
423 
424 /**
425  *	retire_super	-	prevents superblock from being reused
426  *	@sb: superblock to retire
427  *
428  *	The function marks superblock to be ignored in superblock test, which
429  *	prevents it from being reused for any new mounts.  If the superblock has
430  *	a private bdi, it also unregisters it, but doesn't reduce the refcount
431  *	of the superblock to prevent potential races.  The refcount is reduced
432  *	by generic_shutdown_super().  The function can not be called
433  *	concurrently with generic_shutdown_super().  It is safe to call the
434  *	function multiple times, subsequent calls have no effect.
435  *
436  *	The marker will affect the re-use only for block-device-based
437  *	superblocks.  Other superblocks will still get marked if this function
438  *	is used, but that will not affect their reusability.
439  */
440 void retire_super(struct super_block *sb)
441 {
442 	WARN_ON(!sb->s_bdev);
443 	down_write(&sb->s_umount);
444 	if (sb->s_iflags & SB_I_PERSB_BDI) {
445 		bdi_unregister(sb->s_bdi);
446 		sb->s_iflags &= ~SB_I_PERSB_BDI;
447 	}
448 	sb->s_iflags |= SB_I_RETIRED;
449 	up_write(&sb->s_umount);
450 }
451 EXPORT_SYMBOL(retire_super);
452 
453 /**
454  *	generic_shutdown_super	-	common helper for ->kill_sb()
455  *	@sb: superblock to kill
456  *
457  *	generic_shutdown_super() does all fs-independent work on superblock
458  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
459  *	that need destruction out of superblock, call generic_shutdown_super()
460  *	and release aforementioned objects.  Note: dentries and inodes _are_
461  *	taken care of and do not need specific handling.
462  *
463  *	Upon calling this function, the filesystem may no longer alter or
464  *	rearrange the set of dentries belonging to this super_block, nor may it
465  *	change the attachments of dentries to inodes.
466  */
467 void generic_shutdown_super(struct super_block *sb)
468 {
469 	const struct super_operations *sop = sb->s_op;
470 
471 	if (sb->s_root) {
472 		shrink_dcache_for_umount(sb);
473 		sync_filesystem(sb);
474 		sb->s_flags &= ~SB_ACTIVE;
475 
476 		cgroup_writeback_umount();
477 
478 		/* Evict all inodes with zero refcount. */
479 		evict_inodes(sb);
480 
481 		/*
482 		 * Clean up and evict any inodes that still have references due
483 		 * to fsnotify or the security policy.
484 		 */
485 		fsnotify_sb_delete(sb);
486 		security_sb_delete(sb);
487 
488 		/*
489 		 * Now that all potentially-encrypted inodes have been evicted,
490 		 * the fscrypt keyring can be destroyed.
491 		 */
492 		fscrypt_destroy_keyring(sb);
493 
494 		if (sb->s_dio_done_wq) {
495 			destroy_workqueue(sb->s_dio_done_wq);
496 			sb->s_dio_done_wq = NULL;
497 		}
498 
499 		if (sop->put_super)
500 			sop->put_super(sb);
501 
502 		if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes),
503 				"VFS: Busy inodes after unmount of %s (%s)",
504 				sb->s_id, sb->s_type->name)) {
505 			/*
506 			 * Adding a proper bailout path here would be hard, but
507 			 * we can at least make it more likely that a later
508 			 * iput_final() or such crashes cleanly.
509 			 */
510 			struct inode *inode;
511 
512 			spin_lock(&sb->s_inode_list_lock);
513 			list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
514 				inode->i_op = VFS_PTR_POISON;
515 				inode->i_sb = VFS_PTR_POISON;
516 				inode->i_mapping = VFS_PTR_POISON;
517 			}
518 			spin_unlock(&sb->s_inode_list_lock);
519 		}
520 	}
521 	spin_lock(&sb_lock);
522 	/* should be initialized for __put_super_and_need_restart() */
523 	hlist_del_init(&sb->s_instances);
524 	spin_unlock(&sb_lock);
525 	up_write(&sb->s_umount);
526 	if (sb->s_bdi != &noop_backing_dev_info) {
527 		if (sb->s_iflags & SB_I_PERSB_BDI)
528 			bdi_unregister(sb->s_bdi);
529 		bdi_put(sb->s_bdi);
530 		sb->s_bdi = &noop_backing_dev_info;
531 	}
532 }
533 
534 EXPORT_SYMBOL(generic_shutdown_super);
535 
536 bool mount_capable(struct fs_context *fc)
537 {
538 	if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
539 		return capable(CAP_SYS_ADMIN);
540 	else
541 		return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
542 }
543 
544 /**
545  * sget_fc - Find or create a superblock
546  * @fc:	Filesystem context.
547  * @test: Comparison callback
548  * @set: Setup callback
549  *
550  * Find or create a superblock using the parameters stored in the filesystem
551  * context and the two callback functions.
552  *
553  * If an extant superblock is matched, then that will be returned with an
554  * elevated reference count that the caller must transfer or discard.
555  *
556  * If no match is made, a new superblock will be allocated and basic
557  * initialisation will be performed (s_type, s_fs_info and s_id will be set and
558  * the set() callback will be invoked), the superblock will be published and it
559  * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
560  * as yet unset.
561  */
562 struct super_block *sget_fc(struct fs_context *fc,
563 			    int (*test)(struct super_block *, struct fs_context *),
564 			    int (*set)(struct super_block *, struct fs_context *))
565 {
566 	struct super_block *s = NULL;
567 	struct super_block *old;
568 	struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
569 	int err;
570 
571 retry:
572 	spin_lock(&sb_lock);
573 	if (test) {
574 		hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
575 			if (test(old, fc))
576 				goto share_extant_sb;
577 		}
578 	}
579 	if (!s) {
580 		spin_unlock(&sb_lock);
581 		s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
582 		if (!s)
583 			return ERR_PTR(-ENOMEM);
584 		goto retry;
585 	}
586 
587 	s->s_fs_info = fc->s_fs_info;
588 	err = set(s, fc);
589 	if (err) {
590 		s->s_fs_info = NULL;
591 		spin_unlock(&sb_lock);
592 		destroy_unused_super(s);
593 		return ERR_PTR(err);
594 	}
595 	fc->s_fs_info = NULL;
596 	s->s_type = fc->fs_type;
597 	s->s_iflags |= fc->s_iflags;
598 	strscpy(s->s_id, s->s_type->name, sizeof(s->s_id));
599 	list_add_tail(&s->s_list, &super_blocks);
600 	hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
601 	spin_unlock(&sb_lock);
602 	get_filesystem(s->s_type);
603 	register_shrinker_prepared(&s->s_shrink);
604 	return s;
605 
606 share_extant_sb:
607 	if (user_ns != old->s_user_ns) {
608 		spin_unlock(&sb_lock);
609 		destroy_unused_super(s);
610 		return ERR_PTR(-EBUSY);
611 	}
612 	if (!grab_super(old))
613 		goto retry;
614 	destroy_unused_super(s);
615 	return old;
616 }
617 EXPORT_SYMBOL(sget_fc);
618 
619 /**
620  *	sget	-	find or create a superblock
621  *	@type:	  filesystem type superblock should belong to
622  *	@test:	  comparison callback
623  *	@set:	  setup callback
624  *	@flags:	  mount flags
625  *	@data:	  argument to each of them
626  */
627 struct super_block *sget(struct file_system_type *type,
628 			int (*test)(struct super_block *,void *),
629 			int (*set)(struct super_block *,void *),
630 			int flags,
631 			void *data)
632 {
633 	struct user_namespace *user_ns = current_user_ns();
634 	struct super_block *s = NULL;
635 	struct super_block *old;
636 	int err;
637 
638 	/* We don't yet pass the user namespace of the parent
639 	 * mount through to here so always use &init_user_ns
640 	 * until that changes.
641 	 */
642 	if (flags & SB_SUBMOUNT)
643 		user_ns = &init_user_ns;
644 
645 retry:
646 	spin_lock(&sb_lock);
647 	if (test) {
648 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
649 			if (!test(old, data))
650 				continue;
651 			if (user_ns != old->s_user_ns) {
652 				spin_unlock(&sb_lock);
653 				destroy_unused_super(s);
654 				return ERR_PTR(-EBUSY);
655 			}
656 			if (!grab_super(old))
657 				goto retry;
658 			destroy_unused_super(s);
659 			return old;
660 		}
661 	}
662 	if (!s) {
663 		spin_unlock(&sb_lock);
664 		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
665 		if (!s)
666 			return ERR_PTR(-ENOMEM);
667 		goto retry;
668 	}
669 
670 	err = set(s, data);
671 	if (err) {
672 		spin_unlock(&sb_lock);
673 		destroy_unused_super(s);
674 		return ERR_PTR(err);
675 	}
676 	s->s_type = type;
677 	strscpy(s->s_id, type->name, sizeof(s->s_id));
678 	list_add_tail(&s->s_list, &super_blocks);
679 	hlist_add_head(&s->s_instances, &type->fs_supers);
680 	spin_unlock(&sb_lock);
681 	get_filesystem(type);
682 	register_shrinker_prepared(&s->s_shrink);
683 	return s;
684 }
685 EXPORT_SYMBOL(sget);
686 
687 void drop_super(struct super_block *sb)
688 {
689 	up_read(&sb->s_umount);
690 	put_super(sb);
691 }
692 
693 EXPORT_SYMBOL(drop_super);
694 
695 void drop_super_exclusive(struct super_block *sb)
696 {
697 	up_write(&sb->s_umount);
698 	put_super(sb);
699 }
700 EXPORT_SYMBOL(drop_super_exclusive);
701 
702 static void __iterate_supers(void (*f)(struct super_block *))
703 {
704 	struct super_block *sb, *p = NULL;
705 
706 	spin_lock(&sb_lock);
707 	list_for_each_entry(sb, &super_blocks, s_list) {
708 		if (hlist_unhashed(&sb->s_instances))
709 			continue;
710 		sb->s_count++;
711 		spin_unlock(&sb_lock);
712 
713 		f(sb);
714 
715 		spin_lock(&sb_lock);
716 		if (p)
717 			__put_super(p);
718 		p = sb;
719 	}
720 	if (p)
721 		__put_super(p);
722 	spin_unlock(&sb_lock);
723 }
724 /**
725  *	iterate_supers - call function for all active superblocks
726  *	@f: function to call
727  *	@arg: argument to pass to it
728  *
729  *	Scans the superblock list and calls given function, passing it
730  *	locked superblock and given argument.
731  */
732 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
733 {
734 	struct super_block *sb, *p = NULL;
735 
736 	spin_lock(&sb_lock);
737 	list_for_each_entry(sb, &super_blocks, s_list) {
738 		if (hlist_unhashed(&sb->s_instances))
739 			continue;
740 		sb->s_count++;
741 		spin_unlock(&sb_lock);
742 
743 		down_read(&sb->s_umount);
744 		if (sb->s_root && (sb->s_flags & SB_BORN))
745 			f(sb, arg);
746 		up_read(&sb->s_umount);
747 
748 		spin_lock(&sb_lock);
749 		if (p)
750 			__put_super(p);
751 		p = sb;
752 	}
753 	if (p)
754 		__put_super(p);
755 	spin_unlock(&sb_lock);
756 }
757 
758 /**
759  *	iterate_supers_type - call function for superblocks of given type
760  *	@type: fs type
761  *	@f: function to call
762  *	@arg: argument to pass to it
763  *
764  *	Scans the superblock list and calls given function, passing it
765  *	locked superblock and given argument.
766  */
767 void iterate_supers_type(struct file_system_type *type,
768 	void (*f)(struct super_block *, void *), void *arg)
769 {
770 	struct super_block *sb, *p = NULL;
771 
772 	spin_lock(&sb_lock);
773 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
774 		sb->s_count++;
775 		spin_unlock(&sb_lock);
776 
777 		down_read(&sb->s_umount);
778 		if (sb->s_root && (sb->s_flags & SB_BORN))
779 			f(sb, arg);
780 		up_read(&sb->s_umount);
781 
782 		spin_lock(&sb_lock);
783 		if (p)
784 			__put_super(p);
785 		p = sb;
786 	}
787 	if (p)
788 		__put_super(p);
789 	spin_unlock(&sb_lock);
790 }
791 
792 EXPORT_SYMBOL(iterate_supers_type);
793 
794 /**
795  * get_super - get the superblock of a device
796  * @bdev: device to get the superblock for
797  *
798  * Scans the superblock list and finds the superblock of the file system
799  * mounted on the device given. %NULL is returned if no match is found.
800  */
801 struct super_block *get_super(struct block_device *bdev)
802 {
803 	struct super_block *sb;
804 
805 	if (!bdev)
806 		return NULL;
807 
808 	spin_lock(&sb_lock);
809 rescan:
810 	list_for_each_entry(sb, &super_blocks, s_list) {
811 		if (hlist_unhashed(&sb->s_instances))
812 			continue;
813 		if (sb->s_bdev == bdev) {
814 			sb->s_count++;
815 			spin_unlock(&sb_lock);
816 			down_read(&sb->s_umount);
817 			/* still alive? */
818 			if (sb->s_root && (sb->s_flags & SB_BORN))
819 				return sb;
820 			up_read(&sb->s_umount);
821 			/* nope, got unmounted */
822 			spin_lock(&sb_lock);
823 			__put_super(sb);
824 			goto rescan;
825 		}
826 	}
827 	spin_unlock(&sb_lock);
828 	return NULL;
829 }
830 
831 /**
832  * get_active_super - get an active reference to the superblock of a device
833  * @bdev: device to get the superblock for
834  *
835  * Scans the superblock list and finds the superblock of the file system
836  * mounted on the device given.  Returns the superblock with an active
837  * reference or %NULL if none was found.
838  */
839 struct super_block *get_active_super(struct block_device *bdev)
840 {
841 	struct super_block *sb;
842 
843 	if (!bdev)
844 		return NULL;
845 
846 restart:
847 	spin_lock(&sb_lock);
848 	list_for_each_entry(sb, &super_blocks, s_list) {
849 		if (hlist_unhashed(&sb->s_instances))
850 			continue;
851 		if (sb->s_bdev == bdev) {
852 			if (!grab_super(sb))
853 				goto restart;
854 			up_write(&sb->s_umount);
855 			return sb;
856 		}
857 	}
858 	spin_unlock(&sb_lock);
859 	return NULL;
860 }
861 
862 struct super_block *user_get_super(dev_t dev, bool excl)
863 {
864 	struct super_block *sb;
865 
866 	spin_lock(&sb_lock);
867 rescan:
868 	list_for_each_entry(sb, &super_blocks, s_list) {
869 		if (hlist_unhashed(&sb->s_instances))
870 			continue;
871 		if (sb->s_dev ==  dev) {
872 			sb->s_count++;
873 			spin_unlock(&sb_lock);
874 			if (excl)
875 				down_write(&sb->s_umount);
876 			else
877 				down_read(&sb->s_umount);
878 			/* still alive? */
879 			if (sb->s_root && (sb->s_flags & SB_BORN))
880 				return sb;
881 			if (excl)
882 				up_write(&sb->s_umount);
883 			else
884 				up_read(&sb->s_umount);
885 			/* nope, got unmounted */
886 			spin_lock(&sb_lock);
887 			__put_super(sb);
888 			goto rescan;
889 		}
890 	}
891 	spin_unlock(&sb_lock);
892 	return NULL;
893 }
894 
895 /**
896  * reconfigure_super - asks filesystem to change superblock parameters
897  * @fc: The superblock and configuration
898  *
899  * Alters the configuration parameters of a live superblock.
900  */
901 int reconfigure_super(struct fs_context *fc)
902 {
903 	struct super_block *sb = fc->root->d_sb;
904 	int retval;
905 	bool remount_ro = false;
906 	bool remount_rw = false;
907 	bool force = fc->sb_flags & SB_FORCE;
908 
909 	if (fc->sb_flags_mask & ~MS_RMT_MASK)
910 		return -EINVAL;
911 	if (sb->s_writers.frozen != SB_UNFROZEN)
912 		return -EBUSY;
913 
914 	retval = security_sb_remount(sb, fc->security);
915 	if (retval)
916 		return retval;
917 
918 	if (fc->sb_flags_mask & SB_RDONLY) {
919 #ifdef CONFIG_BLOCK
920 		if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
921 		    bdev_read_only(sb->s_bdev))
922 			return -EACCES;
923 #endif
924 		remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb);
925 		remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
926 	}
927 
928 	if (remount_ro) {
929 		if (!hlist_empty(&sb->s_pins)) {
930 			up_write(&sb->s_umount);
931 			group_pin_kill(&sb->s_pins);
932 			down_write(&sb->s_umount);
933 			if (!sb->s_root)
934 				return 0;
935 			if (sb->s_writers.frozen != SB_UNFROZEN)
936 				return -EBUSY;
937 			remount_ro = !sb_rdonly(sb);
938 		}
939 	}
940 	shrink_dcache_sb(sb);
941 
942 	/* If we are reconfiguring to RDONLY and current sb is read/write,
943 	 * make sure there are no files open for writing.
944 	 */
945 	if (remount_ro) {
946 		if (force) {
947 			sb_start_ro_state_change(sb);
948 		} else {
949 			retval = sb_prepare_remount_readonly(sb);
950 			if (retval)
951 				return retval;
952 		}
953 	} else if (remount_rw) {
954 		/*
955 		 * Protect filesystem's reconfigure code from writes from
956 		 * userspace until reconfigure finishes.
957 		 */
958 		sb_start_ro_state_change(sb);
959 	}
960 
961 	if (fc->ops->reconfigure) {
962 		retval = fc->ops->reconfigure(fc);
963 		if (retval) {
964 			if (!force)
965 				goto cancel_readonly;
966 			/* If forced remount, go ahead despite any errors */
967 			WARN(1, "forced remount of a %s fs returned %i\n",
968 			     sb->s_type->name, retval);
969 		}
970 	}
971 
972 	WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
973 				 (fc->sb_flags & fc->sb_flags_mask)));
974 	sb_end_ro_state_change(sb);
975 
976 	/*
977 	 * Some filesystems modify their metadata via some other path than the
978 	 * bdev buffer cache (eg. use a private mapping, or directories in
979 	 * pagecache, etc). Also file data modifications go via their own
980 	 * mappings. So If we try to mount readonly then copy the filesystem
981 	 * from bdev, we could get stale data, so invalidate it to give a best
982 	 * effort at coherency.
983 	 */
984 	if (remount_ro && sb->s_bdev)
985 		invalidate_bdev(sb->s_bdev);
986 	return 0;
987 
988 cancel_readonly:
989 	sb_end_ro_state_change(sb);
990 	return retval;
991 }
992 
993 static void do_emergency_remount_callback(struct super_block *sb)
994 {
995 	down_write(&sb->s_umount);
996 	if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
997 	    !sb_rdonly(sb)) {
998 		struct fs_context *fc;
999 
1000 		fc = fs_context_for_reconfigure(sb->s_root,
1001 					SB_RDONLY | SB_FORCE, SB_RDONLY);
1002 		if (!IS_ERR(fc)) {
1003 			if (parse_monolithic_mount_data(fc, NULL) == 0)
1004 				(void)reconfigure_super(fc);
1005 			put_fs_context(fc);
1006 		}
1007 	}
1008 	up_write(&sb->s_umount);
1009 }
1010 
1011 static void do_emergency_remount(struct work_struct *work)
1012 {
1013 	__iterate_supers(do_emergency_remount_callback);
1014 	kfree(work);
1015 	printk("Emergency Remount complete\n");
1016 }
1017 
1018 void emergency_remount(void)
1019 {
1020 	struct work_struct *work;
1021 
1022 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1023 	if (work) {
1024 		INIT_WORK(work, do_emergency_remount);
1025 		schedule_work(work);
1026 	}
1027 }
1028 
1029 static void do_thaw_all_callback(struct super_block *sb)
1030 {
1031 	down_write(&sb->s_umount);
1032 	if (sb->s_root && sb->s_flags & SB_BORN) {
1033 		emergency_thaw_bdev(sb);
1034 		thaw_super_locked(sb);
1035 	} else {
1036 		up_write(&sb->s_umount);
1037 	}
1038 }
1039 
1040 static void do_thaw_all(struct work_struct *work)
1041 {
1042 	__iterate_supers(do_thaw_all_callback);
1043 	kfree(work);
1044 	printk(KERN_WARNING "Emergency Thaw complete\n");
1045 }
1046 
1047 /**
1048  * emergency_thaw_all -- forcibly thaw every frozen filesystem
1049  *
1050  * Used for emergency unfreeze of all filesystems via SysRq
1051  */
1052 void emergency_thaw_all(void)
1053 {
1054 	struct work_struct *work;
1055 
1056 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1057 	if (work) {
1058 		INIT_WORK(work, do_thaw_all);
1059 		schedule_work(work);
1060 	}
1061 }
1062 
1063 static DEFINE_IDA(unnamed_dev_ida);
1064 
1065 /**
1066  * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1067  * @p: Pointer to a dev_t.
1068  *
1069  * Filesystems which don't use real block devices can call this function
1070  * to allocate a virtual block device.
1071  *
1072  * Context: Any context.  Frequently called while holding sb_lock.
1073  * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1074  * or -ENOMEM if memory allocation failed.
1075  */
1076 int get_anon_bdev(dev_t *p)
1077 {
1078 	int dev;
1079 
1080 	/*
1081 	 * Many userspace utilities consider an FSID of 0 invalid.
1082 	 * Always return at least 1 from get_anon_bdev.
1083 	 */
1084 	dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1085 			GFP_ATOMIC);
1086 	if (dev == -ENOSPC)
1087 		dev = -EMFILE;
1088 	if (dev < 0)
1089 		return dev;
1090 
1091 	*p = MKDEV(0, dev);
1092 	return 0;
1093 }
1094 EXPORT_SYMBOL(get_anon_bdev);
1095 
1096 void free_anon_bdev(dev_t dev)
1097 {
1098 	ida_free(&unnamed_dev_ida, MINOR(dev));
1099 }
1100 EXPORT_SYMBOL(free_anon_bdev);
1101 
1102 int set_anon_super(struct super_block *s, void *data)
1103 {
1104 	return get_anon_bdev(&s->s_dev);
1105 }
1106 EXPORT_SYMBOL(set_anon_super);
1107 
1108 void kill_anon_super(struct super_block *sb)
1109 {
1110 	dev_t dev = sb->s_dev;
1111 	generic_shutdown_super(sb);
1112 	free_anon_bdev(dev);
1113 }
1114 EXPORT_SYMBOL(kill_anon_super);
1115 
1116 void kill_litter_super(struct super_block *sb)
1117 {
1118 	if (sb->s_root)
1119 		d_genocide(sb->s_root);
1120 	kill_anon_super(sb);
1121 }
1122 EXPORT_SYMBOL(kill_litter_super);
1123 
1124 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1125 {
1126 	return set_anon_super(sb, NULL);
1127 }
1128 EXPORT_SYMBOL(set_anon_super_fc);
1129 
1130 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1131 {
1132 	return sb->s_fs_info == fc->s_fs_info;
1133 }
1134 
1135 static int test_single_super(struct super_block *s, struct fs_context *fc)
1136 {
1137 	return 1;
1138 }
1139 
1140 static int vfs_get_super(struct fs_context *fc, bool reconf,
1141 		int (*test)(struct super_block *, struct fs_context *),
1142 		int (*fill_super)(struct super_block *sb,
1143 				  struct fs_context *fc))
1144 {
1145 	struct super_block *sb;
1146 	int err;
1147 
1148 	sb = sget_fc(fc, test, set_anon_super_fc);
1149 	if (IS_ERR(sb))
1150 		return PTR_ERR(sb);
1151 
1152 	if (!sb->s_root) {
1153 		err = fill_super(sb, fc);
1154 		if (err)
1155 			goto error;
1156 
1157 		sb->s_flags |= SB_ACTIVE;
1158 		fc->root = dget(sb->s_root);
1159 	} else {
1160 		fc->root = dget(sb->s_root);
1161 		if (reconf) {
1162 			err = reconfigure_super(fc);
1163 			if (err < 0) {
1164 				dput(fc->root);
1165 				fc->root = NULL;
1166 				goto error;
1167 			}
1168 		}
1169 	}
1170 
1171 	return 0;
1172 
1173 error:
1174 	deactivate_locked_super(sb);
1175 	return err;
1176 }
1177 
1178 int get_tree_nodev(struct fs_context *fc,
1179 		  int (*fill_super)(struct super_block *sb,
1180 				    struct fs_context *fc))
1181 {
1182 	return vfs_get_super(fc, false, NULL, fill_super);
1183 }
1184 EXPORT_SYMBOL(get_tree_nodev);
1185 
1186 int get_tree_single(struct fs_context *fc,
1187 		  int (*fill_super)(struct super_block *sb,
1188 				    struct fs_context *fc))
1189 {
1190 	return vfs_get_super(fc, false, test_single_super, fill_super);
1191 }
1192 EXPORT_SYMBOL(get_tree_single);
1193 
1194 int get_tree_single_reconf(struct fs_context *fc,
1195 		  int (*fill_super)(struct super_block *sb,
1196 				    struct fs_context *fc))
1197 {
1198 	return vfs_get_super(fc, true, test_single_super, fill_super);
1199 }
1200 EXPORT_SYMBOL(get_tree_single_reconf);
1201 
1202 int get_tree_keyed(struct fs_context *fc,
1203 		  int (*fill_super)(struct super_block *sb,
1204 				    struct fs_context *fc),
1205 		void *key)
1206 {
1207 	fc->s_fs_info = key;
1208 	return vfs_get_super(fc, false, test_keyed_super, fill_super);
1209 }
1210 EXPORT_SYMBOL(get_tree_keyed);
1211 
1212 #ifdef CONFIG_BLOCK
1213 static void fs_mark_dead(struct block_device *bdev)
1214 {
1215 	struct super_block *sb;
1216 
1217 	sb = get_super(bdev);
1218 	if (!sb)
1219 		return;
1220 
1221 	if (sb->s_op->shutdown)
1222 		sb->s_op->shutdown(sb);
1223 	drop_super(sb);
1224 }
1225 
1226 static const struct blk_holder_ops fs_holder_ops = {
1227 	.mark_dead		= fs_mark_dead,
1228 };
1229 
1230 static int set_bdev_super(struct super_block *s, void *data)
1231 {
1232 	s->s_bdev = data;
1233 	s->s_dev = s->s_bdev->bd_dev;
1234 	s->s_bdi = bdi_get(s->s_bdev->bd_disk->bdi);
1235 
1236 	if (bdev_stable_writes(s->s_bdev))
1237 		s->s_iflags |= SB_I_STABLE_WRITES;
1238 	return 0;
1239 }
1240 
1241 static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1242 {
1243 	return set_bdev_super(s, fc->sget_key);
1244 }
1245 
1246 static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1247 {
1248 	return !(s->s_iflags & SB_I_RETIRED) && s->s_bdev == fc->sget_key;
1249 }
1250 
1251 /**
1252  * get_tree_bdev - Get a superblock based on a single block device
1253  * @fc: The filesystem context holding the parameters
1254  * @fill_super: Helper to initialise a new superblock
1255  */
1256 int get_tree_bdev(struct fs_context *fc,
1257 		int (*fill_super)(struct super_block *,
1258 				  struct fs_context *))
1259 {
1260 	struct block_device *bdev;
1261 	struct super_block *s;
1262 	int error = 0;
1263 
1264 	if (!fc->source)
1265 		return invalf(fc, "No source specified");
1266 
1267 	bdev = blkdev_get_by_path(fc->source, sb_open_mode(fc->sb_flags),
1268 				  fc->fs_type, &fs_holder_ops);
1269 	if (IS_ERR(bdev)) {
1270 		errorf(fc, "%s: Can't open blockdev", fc->source);
1271 		return PTR_ERR(bdev);
1272 	}
1273 
1274 	/* Once the superblock is inserted into the list by sget_fc(), s_umount
1275 	 * will protect the lockfs code from trying to start a snapshot while
1276 	 * we are mounting
1277 	 */
1278 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1279 	if (bdev->bd_fsfreeze_count > 0) {
1280 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1281 		warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1282 		blkdev_put(bdev, fc->fs_type);
1283 		return -EBUSY;
1284 	}
1285 
1286 	fc->sb_flags |= SB_NOSEC;
1287 	fc->sget_key = bdev;
1288 	s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc);
1289 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1290 	if (IS_ERR(s)) {
1291 		blkdev_put(bdev, fc->fs_type);
1292 		return PTR_ERR(s);
1293 	}
1294 
1295 	if (s->s_root) {
1296 		/* Don't summarily change the RO/RW state. */
1297 		if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1298 			warnf(fc, "%pg: Can't mount, would change RO state", bdev);
1299 			deactivate_locked_super(s);
1300 			blkdev_put(bdev, fc->fs_type);
1301 			return -EBUSY;
1302 		}
1303 
1304 		/*
1305 		 * s_umount nests inside open_mutex during
1306 		 * __invalidate_device().  blkdev_put() acquires
1307 		 * open_mutex and can't be called under s_umount.  Drop
1308 		 * s_umount temporarily.  This is safe as we're
1309 		 * holding an active reference.
1310 		 */
1311 		up_write(&s->s_umount);
1312 		blkdev_put(bdev, fc->fs_type);
1313 		down_write(&s->s_umount);
1314 	} else {
1315 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1316 		shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s",
1317 					fc->fs_type->name, s->s_id);
1318 		sb_set_blocksize(s, block_size(bdev));
1319 		error = fill_super(s, fc);
1320 		if (error) {
1321 			deactivate_locked_super(s);
1322 			return error;
1323 		}
1324 
1325 		s->s_flags |= SB_ACTIVE;
1326 		bdev->bd_super = s;
1327 	}
1328 
1329 	BUG_ON(fc->root);
1330 	fc->root = dget(s->s_root);
1331 	return 0;
1332 }
1333 EXPORT_SYMBOL(get_tree_bdev);
1334 
1335 static int test_bdev_super(struct super_block *s, void *data)
1336 {
1337 	return !(s->s_iflags & SB_I_RETIRED) && (void *)s->s_bdev == data;
1338 }
1339 
1340 struct dentry *mount_bdev(struct file_system_type *fs_type,
1341 	int flags, const char *dev_name, void *data,
1342 	int (*fill_super)(struct super_block *, void *, int))
1343 {
1344 	struct block_device *bdev;
1345 	struct super_block *s;
1346 	int error = 0;
1347 
1348 	bdev = blkdev_get_by_path(dev_name, sb_open_mode(flags), fs_type,
1349 				  &fs_holder_ops);
1350 	if (IS_ERR(bdev))
1351 		return ERR_CAST(bdev);
1352 
1353 	/*
1354 	 * once the super is inserted into the list by sget, s_umount
1355 	 * will protect the lockfs code from trying to start a snapshot
1356 	 * while we are mounting
1357 	 */
1358 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1359 	if (bdev->bd_fsfreeze_count > 0) {
1360 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1361 		error = -EBUSY;
1362 		goto error_bdev;
1363 	}
1364 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1365 		 bdev);
1366 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1367 	if (IS_ERR(s))
1368 		goto error_s;
1369 
1370 	if (s->s_root) {
1371 		if ((flags ^ s->s_flags) & SB_RDONLY) {
1372 			deactivate_locked_super(s);
1373 			error = -EBUSY;
1374 			goto error_bdev;
1375 		}
1376 
1377 		/*
1378 		 * s_umount nests inside open_mutex during
1379 		 * __invalidate_device().  blkdev_put() acquires
1380 		 * open_mutex and can't be called under s_umount.  Drop
1381 		 * s_umount temporarily.  This is safe as we're
1382 		 * holding an active reference.
1383 		 */
1384 		up_write(&s->s_umount);
1385 		blkdev_put(bdev, fs_type);
1386 		down_write(&s->s_umount);
1387 	} else {
1388 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1389 		shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s",
1390 					fs_type->name, s->s_id);
1391 		sb_set_blocksize(s, block_size(bdev));
1392 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1393 		if (error) {
1394 			deactivate_locked_super(s);
1395 			goto error;
1396 		}
1397 
1398 		s->s_flags |= SB_ACTIVE;
1399 		bdev->bd_super = s;
1400 	}
1401 
1402 	return dget(s->s_root);
1403 
1404 error_s:
1405 	error = PTR_ERR(s);
1406 error_bdev:
1407 	blkdev_put(bdev, fs_type);
1408 error:
1409 	return ERR_PTR(error);
1410 }
1411 EXPORT_SYMBOL(mount_bdev);
1412 
1413 void kill_block_super(struct super_block *sb)
1414 {
1415 	struct block_device *bdev = sb->s_bdev;
1416 
1417 	bdev->bd_super = NULL;
1418 	generic_shutdown_super(sb);
1419 	sync_blockdev(bdev);
1420 	blkdev_put(bdev, sb->s_type);
1421 }
1422 
1423 EXPORT_SYMBOL(kill_block_super);
1424 #endif
1425 
1426 struct dentry *mount_nodev(struct file_system_type *fs_type,
1427 	int flags, void *data,
1428 	int (*fill_super)(struct super_block *, void *, int))
1429 {
1430 	int error;
1431 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1432 
1433 	if (IS_ERR(s))
1434 		return ERR_CAST(s);
1435 
1436 	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1437 	if (error) {
1438 		deactivate_locked_super(s);
1439 		return ERR_PTR(error);
1440 	}
1441 	s->s_flags |= SB_ACTIVE;
1442 	return dget(s->s_root);
1443 }
1444 EXPORT_SYMBOL(mount_nodev);
1445 
1446 int reconfigure_single(struct super_block *s,
1447 		       int flags, void *data)
1448 {
1449 	struct fs_context *fc;
1450 	int ret;
1451 
1452 	/* The caller really need to be passing fc down into mount_single(),
1453 	 * then a chunk of this can be removed.  [Bollocks -- AV]
1454 	 * Better yet, reconfiguration shouldn't happen, but rather the second
1455 	 * mount should be rejected if the parameters are not compatible.
1456 	 */
1457 	fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1458 	if (IS_ERR(fc))
1459 		return PTR_ERR(fc);
1460 
1461 	ret = parse_monolithic_mount_data(fc, data);
1462 	if (ret < 0)
1463 		goto out;
1464 
1465 	ret = reconfigure_super(fc);
1466 out:
1467 	put_fs_context(fc);
1468 	return ret;
1469 }
1470 
1471 static int compare_single(struct super_block *s, void *p)
1472 {
1473 	return 1;
1474 }
1475 
1476 struct dentry *mount_single(struct file_system_type *fs_type,
1477 	int flags, void *data,
1478 	int (*fill_super)(struct super_block *, void *, int))
1479 {
1480 	struct super_block *s;
1481 	int error;
1482 
1483 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1484 	if (IS_ERR(s))
1485 		return ERR_CAST(s);
1486 	if (!s->s_root) {
1487 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1488 		if (!error)
1489 			s->s_flags |= SB_ACTIVE;
1490 	} else {
1491 		error = reconfigure_single(s, flags, data);
1492 	}
1493 	if (unlikely(error)) {
1494 		deactivate_locked_super(s);
1495 		return ERR_PTR(error);
1496 	}
1497 	return dget(s->s_root);
1498 }
1499 EXPORT_SYMBOL(mount_single);
1500 
1501 /**
1502  * vfs_get_tree - Get the mountable root
1503  * @fc: The superblock configuration context.
1504  *
1505  * The filesystem is invoked to get or create a superblock which can then later
1506  * be used for mounting.  The filesystem places a pointer to the root to be
1507  * used for mounting in @fc->root.
1508  */
1509 int vfs_get_tree(struct fs_context *fc)
1510 {
1511 	struct super_block *sb;
1512 	int error;
1513 
1514 	if (fc->root)
1515 		return -EBUSY;
1516 
1517 	/* Get the mountable root in fc->root, with a ref on the root and a ref
1518 	 * on the superblock.
1519 	 */
1520 	error = fc->ops->get_tree(fc);
1521 	if (error < 0)
1522 		return error;
1523 
1524 	if (!fc->root) {
1525 		pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1526 		       fc->fs_type->name);
1527 		/* We don't know what the locking state of the superblock is -
1528 		 * if there is a superblock.
1529 		 */
1530 		BUG();
1531 	}
1532 
1533 	sb = fc->root->d_sb;
1534 	WARN_ON(!sb->s_bdi);
1535 
1536 	/*
1537 	 * Write barrier is for super_cache_count(). We place it before setting
1538 	 * SB_BORN as the data dependency between the two functions is the
1539 	 * superblock structure contents that we just set up, not the SB_BORN
1540 	 * flag.
1541 	 */
1542 	smp_wmb();
1543 	sb->s_flags |= SB_BORN;
1544 
1545 	error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1546 	if (unlikely(error)) {
1547 		fc_drop_locked(fc);
1548 		return error;
1549 	}
1550 
1551 	/*
1552 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1553 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1554 	 * this warning for a little while to try and catch filesystems that
1555 	 * violate this rule.
1556 	 */
1557 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1558 		"negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1559 
1560 	return 0;
1561 }
1562 EXPORT_SYMBOL(vfs_get_tree);
1563 
1564 /*
1565  * Setup private BDI for given superblock. It gets automatically cleaned up
1566  * in generic_shutdown_super().
1567  */
1568 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1569 {
1570 	struct backing_dev_info *bdi;
1571 	int err;
1572 	va_list args;
1573 
1574 	bdi = bdi_alloc(NUMA_NO_NODE);
1575 	if (!bdi)
1576 		return -ENOMEM;
1577 
1578 	va_start(args, fmt);
1579 	err = bdi_register_va(bdi, fmt, args);
1580 	va_end(args);
1581 	if (err) {
1582 		bdi_put(bdi);
1583 		return err;
1584 	}
1585 	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1586 	sb->s_bdi = bdi;
1587 	sb->s_iflags |= SB_I_PERSB_BDI;
1588 
1589 	return 0;
1590 }
1591 EXPORT_SYMBOL(super_setup_bdi_name);
1592 
1593 /*
1594  * Setup private BDI for given superblock. I gets automatically cleaned up
1595  * in generic_shutdown_super().
1596  */
1597 int super_setup_bdi(struct super_block *sb)
1598 {
1599 	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1600 
1601 	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1602 				    atomic_long_inc_return(&bdi_seq));
1603 }
1604 EXPORT_SYMBOL(super_setup_bdi);
1605 
1606 /**
1607  * sb_wait_write - wait until all writers to given file system finish
1608  * @sb: the super for which we wait
1609  * @level: type of writers we wait for (normal vs page fault)
1610  *
1611  * This function waits until there are no writers of given type to given file
1612  * system.
1613  */
1614 static void sb_wait_write(struct super_block *sb, int level)
1615 {
1616 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1617 }
1618 
1619 /*
1620  * We are going to return to userspace and forget about these locks, the
1621  * ownership goes to the caller of thaw_super() which does unlock().
1622  */
1623 static void lockdep_sb_freeze_release(struct super_block *sb)
1624 {
1625 	int level;
1626 
1627 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1628 		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1629 }
1630 
1631 /*
1632  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1633  */
1634 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1635 {
1636 	int level;
1637 
1638 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1639 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1640 }
1641 
1642 static void sb_freeze_unlock(struct super_block *sb, int level)
1643 {
1644 	for (level--; level >= 0; level--)
1645 		percpu_up_write(sb->s_writers.rw_sem + level);
1646 }
1647 
1648 /**
1649  * freeze_super - lock the filesystem and force it into a consistent state
1650  * @sb: the super to lock
1651  *
1652  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1653  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1654  * -EBUSY.
1655  *
1656  * During this function, sb->s_writers.frozen goes through these values:
1657  *
1658  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1659  *
1660  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1661  * writes should be blocked, though page faults are still allowed. We wait for
1662  * all writes to complete and then proceed to the next stage.
1663  *
1664  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1665  * but internal fs threads can still modify the filesystem (although they
1666  * should not dirty new pages or inodes), writeback can run etc. After waiting
1667  * for all running page faults we sync the filesystem which will clean all
1668  * dirty pages and inodes (no new dirty pages or inodes can be created when
1669  * sync is running).
1670  *
1671  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1672  * modification are blocked (e.g. XFS preallocation truncation on inode
1673  * reclaim). This is usually implemented by blocking new transactions for
1674  * filesystems that have them and need this additional guard. After all
1675  * internal writers are finished we call ->freeze_fs() to finish filesystem
1676  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1677  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1678  *
1679  * sb->s_writers.frozen is protected by sb->s_umount.
1680  */
1681 int freeze_super(struct super_block *sb)
1682 {
1683 	int ret;
1684 
1685 	atomic_inc(&sb->s_active);
1686 	down_write(&sb->s_umount);
1687 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1688 		deactivate_locked_super(sb);
1689 		return -EBUSY;
1690 	}
1691 
1692 	if (!(sb->s_flags & SB_BORN)) {
1693 		up_write(&sb->s_umount);
1694 		return 0;	/* sic - it's "nothing to do" */
1695 	}
1696 
1697 	if (sb_rdonly(sb)) {
1698 		/* Nothing to do really... */
1699 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1700 		up_write(&sb->s_umount);
1701 		return 0;
1702 	}
1703 
1704 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1705 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1706 	up_write(&sb->s_umount);
1707 	sb_wait_write(sb, SB_FREEZE_WRITE);
1708 	down_write(&sb->s_umount);
1709 
1710 	/* Now we go and block page faults... */
1711 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1712 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1713 
1714 	/* All writers are done so after syncing there won't be dirty data */
1715 	ret = sync_filesystem(sb);
1716 	if (ret) {
1717 		sb->s_writers.frozen = SB_UNFROZEN;
1718 		sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
1719 		wake_up(&sb->s_writers.wait_unfrozen);
1720 		deactivate_locked_super(sb);
1721 		return ret;
1722 	}
1723 
1724 	/* Now wait for internal filesystem counter */
1725 	sb->s_writers.frozen = SB_FREEZE_FS;
1726 	sb_wait_write(sb, SB_FREEZE_FS);
1727 
1728 	if (sb->s_op->freeze_fs) {
1729 		ret = sb->s_op->freeze_fs(sb);
1730 		if (ret) {
1731 			printk(KERN_ERR
1732 				"VFS:Filesystem freeze failed\n");
1733 			sb->s_writers.frozen = SB_UNFROZEN;
1734 			sb_freeze_unlock(sb, SB_FREEZE_FS);
1735 			wake_up(&sb->s_writers.wait_unfrozen);
1736 			deactivate_locked_super(sb);
1737 			return ret;
1738 		}
1739 	}
1740 	/*
1741 	 * For debugging purposes so that fs can warn if it sees write activity
1742 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1743 	 */
1744 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1745 	lockdep_sb_freeze_release(sb);
1746 	up_write(&sb->s_umount);
1747 	return 0;
1748 }
1749 EXPORT_SYMBOL(freeze_super);
1750 
1751 static int thaw_super_locked(struct super_block *sb)
1752 {
1753 	int error;
1754 
1755 	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1756 		up_write(&sb->s_umount);
1757 		return -EINVAL;
1758 	}
1759 
1760 	if (sb_rdonly(sb)) {
1761 		sb->s_writers.frozen = SB_UNFROZEN;
1762 		goto out;
1763 	}
1764 
1765 	lockdep_sb_freeze_acquire(sb);
1766 
1767 	if (sb->s_op->unfreeze_fs) {
1768 		error = sb->s_op->unfreeze_fs(sb);
1769 		if (error) {
1770 			printk(KERN_ERR
1771 				"VFS:Filesystem thaw failed\n");
1772 			lockdep_sb_freeze_release(sb);
1773 			up_write(&sb->s_umount);
1774 			return error;
1775 		}
1776 	}
1777 
1778 	sb->s_writers.frozen = SB_UNFROZEN;
1779 	sb_freeze_unlock(sb, SB_FREEZE_FS);
1780 out:
1781 	wake_up(&sb->s_writers.wait_unfrozen);
1782 	deactivate_locked_super(sb);
1783 	return 0;
1784 }
1785 
1786 /**
1787  * thaw_super -- unlock filesystem
1788  * @sb: the super to thaw
1789  *
1790  * Unlocks the filesystem and marks it writeable again after freeze_super().
1791  */
1792 int thaw_super(struct super_block *sb)
1793 {
1794 	down_write(&sb->s_umount);
1795 	return thaw_super_locked(sb);
1796 }
1797 EXPORT_SYMBOL(thaw_super);
1798 
1799 /*
1800  * Create workqueue for deferred direct IO completions. We allocate the
1801  * workqueue when it's first needed. This avoids creating workqueue for
1802  * filesystems that don't need it and also allows us to create the workqueue
1803  * late enough so the we can include s_id in the name of the workqueue.
1804  */
1805 int sb_init_dio_done_wq(struct super_block *sb)
1806 {
1807 	struct workqueue_struct *old;
1808 	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
1809 						      WQ_MEM_RECLAIM, 0,
1810 						      sb->s_id);
1811 	if (!wq)
1812 		return -ENOMEM;
1813 	/*
1814 	 * This has to be atomic as more DIOs can race to create the workqueue
1815 	 */
1816 	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
1817 	/* Someone created workqueue before us? Free ours... */
1818 	if (old)
1819 		destroy_workqueue(wq);
1820 	return 0;
1821 }
1822