xref: /openbmc/linux/fs/super.c (revision 6724ed7f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/super.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  super.c contains code to handle: - mount structures
8  *                                   - super-block tables
9  *                                   - filesystem drivers list
10  *                                   - mount system call
11  *                                   - umount system call
12  *                                   - ustat system call
13  *
14  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
15  *
16  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18  *  Added options to /proc/mounts:
19  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22  */
23 
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include "internal.h"
39 
40 
41 static LIST_HEAD(super_blocks);
42 static DEFINE_SPINLOCK(sb_lock);
43 
44 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
45 	"sb_writers",
46 	"sb_pagefaults",
47 	"sb_internal",
48 };
49 
50 /*
51  * One thing we have to be careful of with a per-sb shrinker is that we don't
52  * drop the last active reference to the superblock from within the shrinker.
53  * If that happens we could trigger unregistering the shrinker from within the
54  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
55  * take a passive reference to the superblock to avoid this from occurring.
56  */
57 static unsigned long super_cache_scan(struct shrinker *shrink,
58 				      struct shrink_control *sc)
59 {
60 	struct super_block *sb;
61 	long	fs_objects = 0;
62 	long	total_objects;
63 	long	freed = 0;
64 	long	dentries;
65 	long	inodes;
66 
67 	sb = container_of(shrink, struct super_block, s_shrink);
68 
69 	/*
70 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
71 	 * to recurse into the FS that called us in clear_inode() and friends..
72 	 */
73 	if (!(sc->gfp_mask & __GFP_FS))
74 		return SHRINK_STOP;
75 
76 	if (!trylock_super(sb))
77 		return SHRINK_STOP;
78 
79 	if (sb->s_op->nr_cached_objects)
80 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
81 
82 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
83 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
84 	total_objects = dentries + inodes + fs_objects + 1;
85 	if (!total_objects)
86 		total_objects = 1;
87 
88 	/* proportion the scan between the caches */
89 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
90 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
91 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
92 
93 	/*
94 	 * prune the dcache first as the icache is pinned by it, then
95 	 * prune the icache, followed by the filesystem specific caches
96 	 *
97 	 * Ensure that we always scan at least one object - memcg kmem
98 	 * accounting uses this to fully empty the caches.
99 	 */
100 	sc->nr_to_scan = dentries + 1;
101 	freed = prune_dcache_sb(sb, sc);
102 	sc->nr_to_scan = inodes + 1;
103 	freed += prune_icache_sb(sb, sc);
104 
105 	if (fs_objects) {
106 		sc->nr_to_scan = fs_objects + 1;
107 		freed += sb->s_op->free_cached_objects(sb, sc);
108 	}
109 
110 	up_read(&sb->s_umount);
111 	return freed;
112 }
113 
114 static unsigned long super_cache_count(struct shrinker *shrink,
115 				       struct shrink_control *sc)
116 {
117 	struct super_block *sb;
118 	long	total_objects = 0;
119 
120 	sb = container_of(shrink, struct super_block, s_shrink);
121 
122 	/*
123 	 * Don't call trylock_super as it is a potential
124 	 * scalability bottleneck. The counts could get updated
125 	 * between super_cache_count and super_cache_scan anyway.
126 	 * Call to super_cache_count with shrinker_rwsem held
127 	 * ensures the safety of call to list_lru_shrink_count() and
128 	 * s_op->nr_cached_objects().
129 	 */
130 	if (sb->s_op && sb->s_op->nr_cached_objects)
131 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
132 
133 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
134 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
135 
136 	total_objects = vfs_pressure_ratio(total_objects);
137 	return total_objects;
138 }
139 
140 static void destroy_super_work(struct work_struct *work)
141 {
142 	struct super_block *s = container_of(work, struct super_block,
143 							destroy_work);
144 	int i;
145 
146 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
147 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
148 	kfree(s);
149 }
150 
151 static void destroy_super_rcu(struct rcu_head *head)
152 {
153 	struct super_block *s = container_of(head, struct super_block, rcu);
154 	INIT_WORK(&s->destroy_work, destroy_super_work);
155 	schedule_work(&s->destroy_work);
156 }
157 
158 /* Free a superblock that has never been seen by anyone */
159 static void destroy_unused_super(struct super_block *s)
160 {
161 	if (!s)
162 		return;
163 	up_write(&s->s_umount);
164 	list_lru_destroy(&s->s_dentry_lru);
165 	list_lru_destroy(&s->s_inode_lru);
166 	security_sb_free(s);
167 	put_user_ns(s->s_user_ns);
168 	kfree(s->s_subtype);
169 	/* no delays needed */
170 	destroy_super_work(&s->destroy_work);
171 }
172 
173 /**
174  *	alloc_super	-	create new superblock
175  *	@type:	filesystem type superblock should belong to
176  *	@flags: the mount flags
177  *	@user_ns: User namespace for the super_block
178  *
179  *	Allocates and initializes a new &struct super_block.  alloc_super()
180  *	returns a pointer new superblock or %NULL if allocation had failed.
181  */
182 static struct super_block *alloc_super(struct file_system_type *type, int flags,
183 				       struct user_namespace *user_ns)
184 {
185 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
186 	static const struct super_operations default_op;
187 	int i;
188 
189 	if (!s)
190 		return NULL;
191 
192 	INIT_LIST_HEAD(&s->s_mounts);
193 	s->s_user_ns = get_user_ns(user_ns);
194 	init_rwsem(&s->s_umount);
195 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
196 	/*
197 	 * sget() can have s_umount recursion.
198 	 *
199 	 * When it cannot find a suitable sb, it allocates a new
200 	 * one (this one), and tries again to find a suitable old
201 	 * one.
202 	 *
203 	 * In case that succeeds, it will acquire the s_umount
204 	 * lock of the old one. Since these are clearly distrinct
205 	 * locks, and this object isn't exposed yet, there's no
206 	 * risk of deadlocks.
207 	 *
208 	 * Annotate this by putting this lock in a different
209 	 * subclass.
210 	 */
211 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
212 
213 	if (security_sb_alloc(s))
214 		goto fail;
215 
216 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
217 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
218 					sb_writers_name[i],
219 					&type->s_writers_key[i]))
220 			goto fail;
221 	}
222 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
223 	s->s_bdi = &noop_backing_dev_info;
224 	s->s_flags = flags;
225 	if (s->s_user_ns != &init_user_ns)
226 		s->s_iflags |= SB_I_NODEV;
227 	INIT_HLIST_NODE(&s->s_instances);
228 	INIT_HLIST_BL_HEAD(&s->s_anon);
229 	mutex_init(&s->s_sync_lock);
230 	INIT_LIST_HEAD(&s->s_inodes);
231 	spin_lock_init(&s->s_inode_list_lock);
232 	INIT_LIST_HEAD(&s->s_inodes_wb);
233 	spin_lock_init(&s->s_inode_wblist_lock);
234 
235 	if (list_lru_init_memcg(&s->s_dentry_lru))
236 		goto fail;
237 	if (list_lru_init_memcg(&s->s_inode_lru))
238 		goto fail;
239 	s->s_count = 1;
240 	atomic_set(&s->s_active, 1);
241 	mutex_init(&s->s_vfs_rename_mutex);
242 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
243 	init_rwsem(&s->s_dquot.dqio_sem);
244 	s->s_maxbytes = MAX_NON_LFS;
245 	s->s_op = &default_op;
246 	s->s_time_gran = 1000000000;
247 	s->cleancache_poolid = CLEANCACHE_NO_POOL;
248 
249 	s->s_shrink.seeks = DEFAULT_SEEKS;
250 	s->s_shrink.scan_objects = super_cache_scan;
251 	s->s_shrink.count_objects = super_cache_count;
252 	s->s_shrink.batch = 1024;
253 	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
254 	return s;
255 
256 fail:
257 	destroy_unused_super(s);
258 	return NULL;
259 }
260 
261 /* Superblock refcounting  */
262 
263 /*
264  * Drop a superblock's refcount.  The caller must hold sb_lock.
265  */
266 static void __put_super(struct super_block *s)
267 {
268 	if (!--s->s_count) {
269 		list_del_init(&s->s_list);
270 		WARN_ON(s->s_dentry_lru.node);
271 		WARN_ON(s->s_inode_lru.node);
272 		WARN_ON(!list_empty(&s->s_mounts));
273 		security_sb_free(s);
274 		put_user_ns(s->s_user_ns);
275 		kfree(s->s_subtype);
276 		call_rcu(&s->rcu, destroy_super_rcu);
277 	}
278 }
279 
280 /**
281  *	put_super	-	drop a temporary reference to superblock
282  *	@sb: superblock in question
283  *
284  *	Drops a temporary reference, frees superblock if there's no
285  *	references left.
286  */
287 static void put_super(struct super_block *sb)
288 {
289 	spin_lock(&sb_lock);
290 	__put_super(sb);
291 	spin_unlock(&sb_lock);
292 }
293 
294 
295 /**
296  *	deactivate_locked_super	-	drop an active reference to superblock
297  *	@s: superblock to deactivate
298  *
299  *	Drops an active reference to superblock, converting it into a temporary
300  *	one if there is no other active references left.  In that case we
301  *	tell fs driver to shut it down and drop the temporary reference we
302  *	had just acquired.
303  *
304  *	Caller holds exclusive lock on superblock; that lock is released.
305  */
306 void deactivate_locked_super(struct super_block *s)
307 {
308 	struct file_system_type *fs = s->s_type;
309 	if (atomic_dec_and_test(&s->s_active)) {
310 		cleancache_invalidate_fs(s);
311 		unregister_shrinker(&s->s_shrink);
312 		fs->kill_sb(s);
313 
314 		/*
315 		 * Since list_lru_destroy() may sleep, we cannot call it from
316 		 * put_super(), where we hold the sb_lock. Therefore we destroy
317 		 * the lru lists right now.
318 		 */
319 		list_lru_destroy(&s->s_dentry_lru);
320 		list_lru_destroy(&s->s_inode_lru);
321 
322 		put_filesystem(fs);
323 		put_super(s);
324 	} else {
325 		up_write(&s->s_umount);
326 	}
327 }
328 
329 EXPORT_SYMBOL(deactivate_locked_super);
330 
331 /**
332  *	deactivate_super	-	drop an active reference to superblock
333  *	@s: superblock to deactivate
334  *
335  *	Variant of deactivate_locked_super(), except that superblock is *not*
336  *	locked by caller.  If we are going to drop the final active reference,
337  *	lock will be acquired prior to that.
338  */
339 void deactivate_super(struct super_block *s)
340 {
341         if (!atomic_add_unless(&s->s_active, -1, 1)) {
342 		down_write(&s->s_umount);
343 		deactivate_locked_super(s);
344 	}
345 }
346 
347 EXPORT_SYMBOL(deactivate_super);
348 
349 /**
350  *	grab_super - acquire an active reference
351  *	@s: reference we are trying to make active
352  *
353  *	Tries to acquire an active reference.  grab_super() is used when we
354  * 	had just found a superblock in super_blocks or fs_type->fs_supers
355  *	and want to turn it into a full-blown active reference.  grab_super()
356  *	is called with sb_lock held and drops it.  Returns 1 in case of
357  *	success, 0 if we had failed (superblock contents was already dead or
358  *	dying when grab_super() had been called).  Note that this is only
359  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
360  *	of their type), so increment of ->s_count is OK here.
361  */
362 static int grab_super(struct super_block *s) __releases(sb_lock)
363 {
364 	s->s_count++;
365 	spin_unlock(&sb_lock);
366 	down_write(&s->s_umount);
367 	if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
368 		put_super(s);
369 		return 1;
370 	}
371 	up_write(&s->s_umount);
372 	put_super(s);
373 	return 0;
374 }
375 
376 /*
377  *	trylock_super - try to grab ->s_umount shared
378  *	@sb: reference we are trying to grab
379  *
380  *	Try to prevent fs shutdown.  This is used in places where we
381  *	cannot take an active reference but we need to ensure that the
382  *	filesystem is not shut down while we are working on it. It returns
383  *	false if we cannot acquire s_umount or if we lose the race and
384  *	filesystem already got into shutdown, and returns true with the s_umount
385  *	lock held in read mode in case of success. On successful return,
386  *	the caller must drop the s_umount lock when done.
387  *
388  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
389  *	The reason why it's safe is that we are OK with doing trylock instead
390  *	of down_read().  There's a couple of places that are OK with that, but
391  *	it's very much not a general-purpose interface.
392  */
393 bool trylock_super(struct super_block *sb)
394 {
395 	if (down_read_trylock(&sb->s_umount)) {
396 		if (!hlist_unhashed(&sb->s_instances) &&
397 		    sb->s_root && (sb->s_flags & SB_BORN))
398 			return true;
399 		up_read(&sb->s_umount);
400 	}
401 
402 	return false;
403 }
404 
405 /**
406  *	generic_shutdown_super	-	common helper for ->kill_sb()
407  *	@sb: superblock to kill
408  *
409  *	generic_shutdown_super() does all fs-independent work on superblock
410  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
411  *	that need destruction out of superblock, call generic_shutdown_super()
412  *	and release aforementioned objects.  Note: dentries and inodes _are_
413  *	taken care of and do not need specific handling.
414  *
415  *	Upon calling this function, the filesystem may no longer alter or
416  *	rearrange the set of dentries belonging to this super_block, nor may it
417  *	change the attachments of dentries to inodes.
418  */
419 void generic_shutdown_super(struct super_block *sb)
420 {
421 	const struct super_operations *sop = sb->s_op;
422 
423 	if (sb->s_root) {
424 		shrink_dcache_for_umount(sb);
425 		sync_filesystem(sb);
426 		sb->s_flags &= ~SB_ACTIVE;
427 
428 		fsnotify_unmount_inodes(sb);
429 		cgroup_writeback_umount();
430 
431 		evict_inodes(sb);
432 
433 		if (sb->s_dio_done_wq) {
434 			destroy_workqueue(sb->s_dio_done_wq);
435 			sb->s_dio_done_wq = NULL;
436 		}
437 
438 		if (sop->put_super)
439 			sop->put_super(sb);
440 
441 		if (!list_empty(&sb->s_inodes)) {
442 			printk("VFS: Busy inodes after unmount of %s. "
443 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
444 			   sb->s_id);
445 		}
446 	}
447 	spin_lock(&sb_lock);
448 	/* should be initialized for __put_super_and_need_restart() */
449 	hlist_del_init(&sb->s_instances);
450 	spin_unlock(&sb_lock);
451 	up_write(&sb->s_umount);
452 	if (sb->s_bdi != &noop_backing_dev_info) {
453 		bdi_put(sb->s_bdi);
454 		sb->s_bdi = &noop_backing_dev_info;
455 	}
456 }
457 
458 EXPORT_SYMBOL(generic_shutdown_super);
459 
460 /**
461  *	sget_userns -	find or create a superblock
462  *	@type:	filesystem type superblock should belong to
463  *	@test:	comparison callback
464  *	@set:	setup callback
465  *	@flags:	mount flags
466  *	@user_ns: User namespace for the super_block
467  *	@data:	argument to each of them
468  */
469 struct super_block *sget_userns(struct file_system_type *type,
470 			int (*test)(struct super_block *,void *),
471 			int (*set)(struct super_block *,void *),
472 			int flags, struct user_namespace *user_ns,
473 			void *data)
474 {
475 	struct super_block *s = NULL;
476 	struct super_block *old;
477 	int err;
478 
479 	if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) &&
480 	    !(type->fs_flags & FS_USERNS_MOUNT) &&
481 	    !capable(CAP_SYS_ADMIN))
482 		return ERR_PTR(-EPERM);
483 retry:
484 	spin_lock(&sb_lock);
485 	if (test) {
486 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
487 			if (!test(old, data))
488 				continue;
489 			if (user_ns != old->s_user_ns) {
490 				spin_unlock(&sb_lock);
491 				destroy_unused_super(s);
492 				return ERR_PTR(-EBUSY);
493 			}
494 			if (!grab_super(old))
495 				goto retry;
496 			destroy_unused_super(s);
497 			return old;
498 		}
499 	}
500 	if (!s) {
501 		spin_unlock(&sb_lock);
502 		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
503 		if (!s)
504 			return ERR_PTR(-ENOMEM);
505 		goto retry;
506 	}
507 
508 	err = set(s, data);
509 	if (err) {
510 		spin_unlock(&sb_lock);
511 		destroy_unused_super(s);
512 		return ERR_PTR(err);
513 	}
514 	s->s_type = type;
515 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
516 	list_add_tail(&s->s_list, &super_blocks);
517 	hlist_add_head(&s->s_instances, &type->fs_supers);
518 	spin_unlock(&sb_lock);
519 	get_filesystem(type);
520 	register_shrinker(&s->s_shrink);
521 	return s;
522 }
523 
524 EXPORT_SYMBOL(sget_userns);
525 
526 /**
527  *	sget	-	find or create a superblock
528  *	@type:	  filesystem type superblock should belong to
529  *	@test:	  comparison callback
530  *	@set:	  setup callback
531  *	@flags:	  mount flags
532  *	@data:	  argument to each of them
533  */
534 struct super_block *sget(struct file_system_type *type,
535 			int (*test)(struct super_block *,void *),
536 			int (*set)(struct super_block *,void *),
537 			int flags,
538 			void *data)
539 {
540 	struct user_namespace *user_ns = current_user_ns();
541 
542 	/* We don't yet pass the user namespace of the parent
543 	 * mount through to here so always use &init_user_ns
544 	 * until that changes.
545 	 */
546 	if (flags & SB_SUBMOUNT)
547 		user_ns = &init_user_ns;
548 
549 	/* Ensure the requestor has permissions over the target filesystem */
550 	if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN))
551 		return ERR_PTR(-EPERM);
552 
553 	return sget_userns(type, test, set, flags, user_ns, data);
554 }
555 
556 EXPORT_SYMBOL(sget);
557 
558 void drop_super(struct super_block *sb)
559 {
560 	up_read(&sb->s_umount);
561 	put_super(sb);
562 }
563 
564 EXPORT_SYMBOL(drop_super);
565 
566 void drop_super_exclusive(struct super_block *sb)
567 {
568 	up_write(&sb->s_umount);
569 	put_super(sb);
570 }
571 EXPORT_SYMBOL(drop_super_exclusive);
572 
573 /**
574  *	iterate_supers - call function for all active superblocks
575  *	@f: function to call
576  *	@arg: argument to pass to it
577  *
578  *	Scans the superblock list and calls given function, passing it
579  *	locked superblock and given argument.
580  */
581 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
582 {
583 	struct super_block *sb, *p = NULL;
584 
585 	spin_lock(&sb_lock);
586 	list_for_each_entry(sb, &super_blocks, s_list) {
587 		if (hlist_unhashed(&sb->s_instances))
588 			continue;
589 		sb->s_count++;
590 		spin_unlock(&sb_lock);
591 
592 		down_read(&sb->s_umount);
593 		if (sb->s_root && (sb->s_flags & SB_BORN))
594 			f(sb, arg);
595 		up_read(&sb->s_umount);
596 
597 		spin_lock(&sb_lock);
598 		if (p)
599 			__put_super(p);
600 		p = sb;
601 	}
602 	if (p)
603 		__put_super(p);
604 	spin_unlock(&sb_lock);
605 }
606 
607 /**
608  *	iterate_supers_type - call function for superblocks of given type
609  *	@type: fs type
610  *	@f: function to call
611  *	@arg: argument to pass to it
612  *
613  *	Scans the superblock list and calls given function, passing it
614  *	locked superblock and given argument.
615  */
616 void iterate_supers_type(struct file_system_type *type,
617 	void (*f)(struct super_block *, void *), void *arg)
618 {
619 	struct super_block *sb, *p = NULL;
620 
621 	spin_lock(&sb_lock);
622 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
623 		sb->s_count++;
624 		spin_unlock(&sb_lock);
625 
626 		down_read(&sb->s_umount);
627 		if (sb->s_root && (sb->s_flags & SB_BORN))
628 			f(sb, arg);
629 		up_read(&sb->s_umount);
630 
631 		spin_lock(&sb_lock);
632 		if (p)
633 			__put_super(p);
634 		p = sb;
635 	}
636 	if (p)
637 		__put_super(p);
638 	spin_unlock(&sb_lock);
639 }
640 
641 EXPORT_SYMBOL(iterate_supers_type);
642 
643 static struct super_block *__get_super(struct block_device *bdev, bool excl)
644 {
645 	struct super_block *sb;
646 
647 	if (!bdev)
648 		return NULL;
649 
650 	spin_lock(&sb_lock);
651 rescan:
652 	list_for_each_entry(sb, &super_blocks, s_list) {
653 		if (hlist_unhashed(&sb->s_instances))
654 			continue;
655 		if (sb->s_bdev == bdev) {
656 			sb->s_count++;
657 			spin_unlock(&sb_lock);
658 			if (!excl)
659 				down_read(&sb->s_umount);
660 			else
661 				down_write(&sb->s_umount);
662 			/* still alive? */
663 			if (sb->s_root && (sb->s_flags & SB_BORN))
664 				return sb;
665 			if (!excl)
666 				up_read(&sb->s_umount);
667 			else
668 				up_write(&sb->s_umount);
669 			/* nope, got unmounted */
670 			spin_lock(&sb_lock);
671 			__put_super(sb);
672 			goto rescan;
673 		}
674 	}
675 	spin_unlock(&sb_lock);
676 	return NULL;
677 }
678 
679 /**
680  *	get_super - get the superblock of a device
681  *	@bdev: device to get the superblock for
682  *
683  *	Scans the superblock list and finds the superblock of the file system
684  *	mounted on the device given. %NULL is returned if no match is found.
685  */
686 struct super_block *get_super(struct block_device *bdev)
687 {
688 	return __get_super(bdev, false);
689 }
690 EXPORT_SYMBOL(get_super);
691 
692 static struct super_block *__get_super_thawed(struct block_device *bdev,
693 					      bool excl)
694 {
695 	while (1) {
696 		struct super_block *s = __get_super(bdev, excl);
697 		if (!s || s->s_writers.frozen == SB_UNFROZEN)
698 			return s;
699 		if (!excl)
700 			up_read(&s->s_umount);
701 		else
702 			up_write(&s->s_umount);
703 		wait_event(s->s_writers.wait_unfrozen,
704 			   s->s_writers.frozen == SB_UNFROZEN);
705 		put_super(s);
706 	}
707 }
708 
709 /**
710  *	get_super_thawed - get thawed superblock of a device
711  *	@bdev: device to get the superblock for
712  *
713  *	Scans the superblock list and finds the superblock of the file system
714  *	mounted on the device. The superblock is returned once it is thawed
715  *	(or immediately if it was not frozen). %NULL is returned if no match
716  *	is found.
717  */
718 struct super_block *get_super_thawed(struct block_device *bdev)
719 {
720 	return __get_super_thawed(bdev, false);
721 }
722 EXPORT_SYMBOL(get_super_thawed);
723 
724 /**
725  *	get_super_exclusive_thawed - get thawed superblock of a device
726  *	@bdev: device to get the superblock for
727  *
728  *	Scans the superblock list and finds the superblock of the file system
729  *	mounted on the device. The superblock is returned once it is thawed
730  *	(or immediately if it was not frozen) and s_umount semaphore is held
731  *	in exclusive mode. %NULL is returned if no match is found.
732  */
733 struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
734 {
735 	return __get_super_thawed(bdev, true);
736 }
737 EXPORT_SYMBOL(get_super_exclusive_thawed);
738 
739 /**
740  * get_active_super - get an active reference to the superblock of a device
741  * @bdev: device to get the superblock for
742  *
743  * Scans the superblock list and finds the superblock of the file system
744  * mounted on the device given.  Returns the superblock with an active
745  * reference or %NULL if none was found.
746  */
747 struct super_block *get_active_super(struct block_device *bdev)
748 {
749 	struct super_block *sb;
750 
751 	if (!bdev)
752 		return NULL;
753 
754 restart:
755 	spin_lock(&sb_lock);
756 	list_for_each_entry(sb, &super_blocks, s_list) {
757 		if (hlist_unhashed(&sb->s_instances))
758 			continue;
759 		if (sb->s_bdev == bdev) {
760 			if (!grab_super(sb))
761 				goto restart;
762 			up_write(&sb->s_umount);
763 			return sb;
764 		}
765 	}
766 	spin_unlock(&sb_lock);
767 	return NULL;
768 }
769 
770 struct super_block *user_get_super(dev_t dev)
771 {
772 	struct super_block *sb;
773 
774 	spin_lock(&sb_lock);
775 rescan:
776 	list_for_each_entry(sb, &super_blocks, s_list) {
777 		if (hlist_unhashed(&sb->s_instances))
778 			continue;
779 		if (sb->s_dev ==  dev) {
780 			sb->s_count++;
781 			spin_unlock(&sb_lock);
782 			down_read(&sb->s_umount);
783 			/* still alive? */
784 			if (sb->s_root && (sb->s_flags & SB_BORN))
785 				return sb;
786 			up_read(&sb->s_umount);
787 			/* nope, got unmounted */
788 			spin_lock(&sb_lock);
789 			__put_super(sb);
790 			goto rescan;
791 		}
792 	}
793 	spin_unlock(&sb_lock);
794 	return NULL;
795 }
796 
797 /**
798  *	do_remount_sb - asks filesystem to change mount options.
799  *	@sb:	superblock in question
800  *	@sb_flags: revised superblock flags
801  *	@data:	the rest of options
802  *      @force: whether or not to force the change
803  *
804  *	Alters the mount options of a mounted file system.
805  */
806 int do_remount_sb(struct super_block *sb, int sb_flags, void *data, int force)
807 {
808 	int retval;
809 	int remount_ro;
810 
811 	if (sb->s_writers.frozen != SB_UNFROZEN)
812 		return -EBUSY;
813 
814 #ifdef CONFIG_BLOCK
815 	if (!(sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
816 		return -EACCES;
817 #endif
818 
819 	remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
820 
821 	if (remount_ro) {
822 		if (!hlist_empty(&sb->s_pins)) {
823 			up_write(&sb->s_umount);
824 			group_pin_kill(&sb->s_pins);
825 			down_write(&sb->s_umount);
826 			if (!sb->s_root)
827 				return 0;
828 			if (sb->s_writers.frozen != SB_UNFROZEN)
829 				return -EBUSY;
830 			remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
831 		}
832 	}
833 	shrink_dcache_sb(sb);
834 
835 	/* If we are remounting RDONLY and current sb is read/write,
836 	   make sure there are no rw files opened */
837 	if (remount_ro) {
838 		if (force) {
839 			sb->s_readonly_remount = 1;
840 			smp_wmb();
841 		} else {
842 			retval = sb_prepare_remount_readonly(sb);
843 			if (retval)
844 				return retval;
845 		}
846 	}
847 
848 	if (sb->s_op->remount_fs) {
849 		retval = sb->s_op->remount_fs(sb, &sb_flags, data);
850 		if (retval) {
851 			if (!force)
852 				goto cancel_readonly;
853 			/* If forced remount, go ahead despite any errors */
854 			WARN(1, "forced remount of a %s fs returned %i\n",
855 			     sb->s_type->name, retval);
856 		}
857 	}
858 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (sb_flags & MS_RMT_MASK);
859 	/* Needs to be ordered wrt mnt_is_readonly() */
860 	smp_wmb();
861 	sb->s_readonly_remount = 0;
862 
863 	/*
864 	 * Some filesystems modify their metadata via some other path than the
865 	 * bdev buffer cache (eg. use a private mapping, or directories in
866 	 * pagecache, etc). Also file data modifications go via their own
867 	 * mappings. So If we try to mount readonly then copy the filesystem
868 	 * from bdev, we could get stale data, so invalidate it to give a best
869 	 * effort at coherency.
870 	 */
871 	if (remount_ro && sb->s_bdev)
872 		invalidate_bdev(sb->s_bdev);
873 	return 0;
874 
875 cancel_readonly:
876 	sb->s_readonly_remount = 0;
877 	return retval;
878 }
879 
880 static void do_emergency_remount(struct work_struct *work)
881 {
882 	struct super_block *sb, *p = NULL;
883 
884 	spin_lock(&sb_lock);
885 	list_for_each_entry(sb, &super_blocks, s_list) {
886 		if (hlist_unhashed(&sb->s_instances))
887 			continue;
888 		sb->s_count++;
889 		spin_unlock(&sb_lock);
890 		down_write(&sb->s_umount);
891 		if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
892 		    !sb_rdonly(sb)) {
893 			/*
894 			 * What lock protects sb->s_flags??
895 			 */
896 			do_remount_sb(sb, SB_RDONLY, NULL, 1);
897 		}
898 		up_write(&sb->s_umount);
899 		spin_lock(&sb_lock);
900 		if (p)
901 			__put_super(p);
902 		p = sb;
903 	}
904 	if (p)
905 		__put_super(p);
906 	spin_unlock(&sb_lock);
907 	kfree(work);
908 	printk("Emergency Remount complete\n");
909 }
910 
911 void emergency_remount(void)
912 {
913 	struct work_struct *work;
914 
915 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
916 	if (work) {
917 		INIT_WORK(work, do_emergency_remount);
918 		schedule_work(work);
919 	}
920 }
921 
922 /*
923  * Unnamed block devices are dummy devices used by virtual
924  * filesystems which don't use real block-devices.  -- jrs
925  */
926 
927 static DEFINE_IDA(unnamed_dev_ida);
928 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
929 /* Many userspace utilities consider an FSID of 0 invalid.
930  * Always return at least 1 from get_anon_bdev.
931  */
932 static int unnamed_dev_start = 1;
933 
934 int get_anon_bdev(dev_t *p)
935 {
936 	int dev;
937 	int error;
938 
939  retry:
940 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
941 		return -ENOMEM;
942 	spin_lock(&unnamed_dev_lock);
943 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
944 	if (!error)
945 		unnamed_dev_start = dev + 1;
946 	spin_unlock(&unnamed_dev_lock);
947 	if (error == -EAGAIN)
948 		/* We raced and lost with another CPU. */
949 		goto retry;
950 	else if (error)
951 		return -EAGAIN;
952 
953 	if (dev >= (1 << MINORBITS)) {
954 		spin_lock(&unnamed_dev_lock);
955 		ida_remove(&unnamed_dev_ida, dev);
956 		if (unnamed_dev_start > dev)
957 			unnamed_dev_start = dev;
958 		spin_unlock(&unnamed_dev_lock);
959 		return -EMFILE;
960 	}
961 	*p = MKDEV(0, dev & MINORMASK);
962 	return 0;
963 }
964 EXPORT_SYMBOL(get_anon_bdev);
965 
966 void free_anon_bdev(dev_t dev)
967 {
968 	int slot = MINOR(dev);
969 	spin_lock(&unnamed_dev_lock);
970 	ida_remove(&unnamed_dev_ida, slot);
971 	if (slot < unnamed_dev_start)
972 		unnamed_dev_start = slot;
973 	spin_unlock(&unnamed_dev_lock);
974 }
975 EXPORT_SYMBOL(free_anon_bdev);
976 
977 int set_anon_super(struct super_block *s, void *data)
978 {
979 	return get_anon_bdev(&s->s_dev);
980 }
981 
982 EXPORT_SYMBOL(set_anon_super);
983 
984 void kill_anon_super(struct super_block *sb)
985 {
986 	dev_t dev = sb->s_dev;
987 	generic_shutdown_super(sb);
988 	free_anon_bdev(dev);
989 }
990 
991 EXPORT_SYMBOL(kill_anon_super);
992 
993 void kill_litter_super(struct super_block *sb)
994 {
995 	if (sb->s_root)
996 		d_genocide(sb->s_root);
997 	kill_anon_super(sb);
998 }
999 
1000 EXPORT_SYMBOL(kill_litter_super);
1001 
1002 static int ns_test_super(struct super_block *sb, void *data)
1003 {
1004 	return sb->s_fs_info == data;
1005 }
1006 
1007 static int ns_set_super(struct super_block *sb, void *data)
1008 {
1009 	sb->s_fs_info = data;
1010 	return set_anon_super(sb, NULL);
1011 }
1012 
1013 struct dentry *mount_ns(struct file_system_type *fs_type,
1014 	int flags, void *data, void *ns, struct user_namespace *user_ns,
1015 	int (*fill_super)(struct super_block *, void *, int))
1016 {
1017 	struct super_block *sb;
1018 
1019 	/* Don't allow mounting unless the caller has CAP_SYS_ADMIN
1020 	 * over the namespace.
1021 	 */
1022 	if (!(flags & SB_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
1023 		return ERR_PTR(-EPERM);
1024 
1025 	sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags,
1026 			 user_ns, ns);
1027 	if (IS_ERR(sb))
1028 		return ERR_CAST(sb);
1029 
1030 	if (!sb->s_root) {
1031 		int err;
1032 		err = fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
1033 		if (err) {
1034 			deactivate_locked_super(sb);
1035 			return ERR_PTR(err);
1036 		}
1037 
1038 		sb->s_flags |= SB_ACTIVE;
1039 	}
1040 
1041 	return dget(sb->s_root);
1042 }
1043 
1044 EXPORT_SYMBOL(mount_ns);
1045 
1046 #ifdef CONFIG_BLOCK
1047 static int set_bdev_super(struct super_block *s, void *data)
1048 {
1049 	s->s_bdev = data;
1050 	s->s_dev = s->s_bdev->bd_dev;
1051 	s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1052 
1053 	return 0;
1054 }
1055 
1056 static int test_bdev_super(struct super_block *s, void *data)
1057 {
1058 	return (void *)s->s_bdev == data;
1059 }
1060 
1061 struct dentry *mount_bdev(struct file_system_type *fs_type,
1062 	int flags, const char *dev_name, void *data,
1063 	int (*fill_super)(struct super_block *, void *, int))
1064 {
1065 	struct block_device *bdev;
1066 	struct super_block *s;
1067 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1068 	int error = 0;
1069 
1070 	if (!(flags & SB_RDONLY))
1071 		mode |= FMODE_WRITE;
1072 
1073 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1074 	if (IS_ERR(bdev))
1075 		return ERR_CAST(bdev);
1076 
1077 	/*
1078 	 * once the super is inserted into the list by sget, s_umount
1079 	 * will protect the lockfs code from trying to start a snapshot
1080 	 * while we are mounting
1081 	 */
1082 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1083 	if (bdev->bd_fsfreeze_count > 0) {
1084 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1085 		error = -EBUSY;
1086 		goto error_bdev;
1087 	}
1088 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1089 		 bdev);
1090 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1091 	if (IS_ERR(s))
1092 		goto error_s;
1093 
1094 	if (s->s_root) {
1095 		if ((flags ^ s->s_flags) & SB_RDONLY) {
1096 			deactivate_locked_super(s);
1097 			error = -EBUSY;
1098 			goto error_bdev;
1099 		}
1100 
1101 		/*
1102 		 * s_umount nests inside bd_mutex during
1103 		 * __invalidate_device().  blkdev_put() acquires
1104 		 * bd_mutex and can't be called under s_umount.  Drop
1105 		 * s_umount temporarily.  This is safe as we're
1106 		 * holding an active reference.
1107 		 */
1108 		up_write(&s->s_umount);
1109 		blkdev_put(bdev, mode);
1110 		down_write(&s->s_umount);
1111 	} else {
1112 		s->s_mode = mode;
1113 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1114 		sb_set_blocksize(s, block_size(bdev));
1115 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1116 		if (error) {
1117 			deactivate_locked_super(s);
1118 			goto error;
1119 		}
1120 
1121 		s->s_flags |= SB_ACTIVE;
1122 		bdev->bd_super = s;
1123 	}
1124 
1125 	return dget(s->s_root);
1126 
1127 error_s:
1128 	error = PTR_ERR(s);
1129 error_bdev:
1130 	blkdev_put(bdev, mode);
1131 error:
1132 	return ERR_PTR(error);
1133 }
1134 EXPORT_SYMBOL(mount_bdev);
1135 
1136 void kill_block_super(struct super_block *sb)
1137 {
1138 	struct block_device *bdev = sb->s_bdev;
1139 	fmode_t mode = sb->s_mode;
1140 
1141 	bdev->bd_super = NULL;
1142 	generic_shutdown_super(sb);
1143 	sync_blockdev(bdev);
1144 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1145 	blkdev_put(bdev, mode | FMODE_EXCL);
1146 }
1147 
1148 EXPORT_SYMBOL(kill_block_super);
1149 #endif
1150 
1151 struct dentry *mount_nodev(struct file_system_type *fs_type,
1152 	int flags, void *data,
1153 	int (*fill_super)(struct super_block *, void *, int))
1154 {
1155 	int error;
1156 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1157 
1158 	if (IS_ERR(s))
1159 		return ERR_CAST(s);
1160 
1161 	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1162 	if (error) {
1163 		deactivate_locked_super(s);
1164 		return ERR_PTR(error);
1165 	}
1166 	s->s_flags |= SB_ACTIVE;
1167 	return dget(s->s_root);
1168 }
1169 EXPORT_SYMBOL(mount_nodev);
1170 
1171 static int compare_single(struct super_block *s, void *p)
1172 {
1173 	return 1;
1174 }
1175 
1176 struct dentry *mount_single(struct file_system_type *fs_type,
1177 	int flags, void *data,
1178 	int (*fill_super)(struct super_block *, void *, int))
1179 {
1180 	struct super_block *s;
1181 	int error;
1182 
1183 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1184 	if (IS_ERR(s))
1185 		return ERR_CAST(s);
1186 	if (!s->s_root) {
1187 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1188 		if (error) {
1189 			deactivate_locked_super(s);
1190 			return ERR_PTR(error);
1191 		}
1192 		s->s_flags |= SB_ACTIVE;
1193 	} else {
1194 		do_remount_sb(s, flags, data, 0);
1195 	}
1196 	return dget(s->s_root);
1197 }
1198 EXPORT_SYMBOL(mount_single);
1199 
1200 struct dentry *
1201 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1202 {
1203 	struct dentry *root;
1204 	struct super_block *sb;
1205 	char *secdata = NULL;
1206 	int error = -ENOMEM;
1207 
1208 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1209 		secdata = alloc_secdata();
1210 		if (!secdata)
1211 			goto out;
1212 
1213 		error = security_sb_copy_data(data, secdata);
1214 		if (error)
1215 			goto out_free_secdata;
1216 	}
1217 
1218 	root = type->mount(type, flags, name, data);
1219 	if (IS_ERR(root)) {
1220 		error = PTR_ERR(root);
1221 		goto out_free_secdata;
1222 	}
1223 	sb = root->d_sb;
1224 	BUG_ON(!sb);
1225 	WARN_ON(!sb->s_bdi);
1226 	sb->s_flags |= SB_BORN;
1227 
1228 	error = security_sb_kern_mount(sb, flags, secdata);
1229 	if (error)
1230 		goto out_sb;
1231 
1232 	/*
1233 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1234 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1235 	 * this warning for a little while to try and catch filesystems that
1236 	 * violate this rule.
1237 	 */
1238 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1239 		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1240 
1241 	up_write(&sb->s_umount);
1242 	free_secdata(secdata);
1243 	return root;
1244 out_sb:
1245 	dput(root);
1246 	deactivate_locked_super(sb);
1247 out_free_secdata:
1248 	free_secdata(secdata);
1249 out:
1250 	return ERR_PTR(error);
1251 }
1252 
1253 /*
1254  * Setup private BDI for given superblock. It gets automatically cleaned up
1255  * in generic_shutdown_super().
1256  */
1257 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1258 {
1259 	struct backing_dev_info *bdi;
1260 	int err;
1261 	va_list args;
1262 
1263 	bdi = bdi_alloc(GFP_KERNEL);
1264 	if (!bdi)
1265 		return -ENOMEM;
1266 
1267 	bdi->name = sb->s_type->name;
1268 
1269 	va_start(args, fmt);
1270 	err = bdi_register_va(bdi, fmt, args);
1271 	va_end(args);
1272 	if (err) {
1273 		bdi_put(bdi);
1274 		return err;
1275 	}
1276 	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1277 	sb->s_bdi = bdi;
1278 
1279 	return 0;
1280 }
1281 EXPORT_SYMBOL(super_setup_bdi_name);
1282 
1283 /*
1284  * Setup private BDI for given superblock. I gets automatically cleaned up
1285  * in generic_shutdown_super().
1286  */
1287 int super_setup_bdi(struct super_block *sb)
1288 {
1289 	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1290 
1291 	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1292 				    atomic_long_inc_return(&bdi_seq));
1293 }
1294 EXPORT_SYMBOL(super_setup_bdi);
1295 
1296 /*
1297  * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1298  * instead.
1299  */
1300 void __sb_end_write(struct super_block *sb, int level)
1301 {
1302 	percpu_up_read(sb->s_writers.rw_sem + level-1);
1303 }
1304 EXPORT_SYMBOL(__sb_end_write);
1305 
1306 /*
1307  * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1308  * instead.
1309  */
1310 int __sb_start_write(struct super_block *sb, int level, bool wait)
1311 {
1312 	bool force_trylock = false;
1313 	int ret = 1;
1314 
1315 #ifdef CONFIG_LOCKDEP
1316 	/*
1317 	 * We want lockdep to tell us about possible deadlocks with freezing
1318 	 * but it's it bit tricky to properly instrument it. Getting a freeze
1319 	 * protection works as getting a read lock but there are subtle
1320 	 * problems. XFS for example gets freeze protection on internal level
1321 	 * twice in some cases, which is OK only because we already hold a
1322 	 * freeze protection also on higher level. Due to these cases we have
1323 	 * to use wait == F (trylock mode) which must not fail.
1324 	 */
1325 	if (wait) {
1326 		int i;
1327 
1328 		for (i = 0; i < level - 1; i++)
1329 			if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1330 				force_trylock = true;
1331 				break;
1332 			}
1333 	}
1334 #endif
1335 	if (wait && !force_trylock)
1336 		percpu_down_read(sb->s_writers.rw_sem + level-1);
1337 	else
1338 		ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1339 
1340 	WARN_ON(force_trylock && !ret);
1341 	return ret;
1342 }
1343 EXPORT_SYMBOL(__sb_start_write);
1344 
1345 /**
1346  * sb_wait_write - wait until all writers to given file system finish
1347  * @sb: the super for which we wait
1348  * @level: type of writers we wait for (normal vs page fault)
1349  *
1350  * This function waits until there are no writers of given type to given file
1351  * system.
1352  */
1353 static void sb_wait_write(struct super_block *sb, int level)
1354 {
1355 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1356 }
1357 
1358 /*
1359  * We are going to return to userspace and forget about these locks, the
1360  * ownership goes to the caller of thaw_super() which does unlock().
1361  */
1362 static void lockdep_sb_freeze_release(struct super_block *sb)
1363 {
1364 	int level;
1365 
1366 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1367 		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1368 }
1369 
1370 /*
1371  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1372  */
1373 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1374 {
1375 	int level;
1376 
1377 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1378 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1379 }
1380 
1381 static void sb_freeze_unlock(struct super_block *sb)
1382 {
1383 	int level;
1384 
1385 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1386 		percpu_up_write(sb->s_writers.rw_sem + level);
1387 }
1388 
1389 /**
1390  * freeze_super - lock the filesystem and force it into a consistent state
1391  * @sb: the super to lock
1392  *
1393  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1394  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1395  * -EBUSY.
1396  *
1397  * During this function, sb->s_writers.frozen goes through these values:
1398  *
1399  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1400  *
1401  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1402  * writes should be blocked, though page faults are still allowed. We wait for
1403  * all writes to complete and then proceed to the next stage.
1404  *
1405  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1406  * but internal fs threads can still modify the filesystem (although they
1407  * should not dirty new pages or inodes), writeback can run etc. After waiting
1408  * for all running page faults we sync the filesystem which will clean all
1409  * dirty pages and inodes (no new dirty pages or inodes can be created when
1410  * sync is running).
1411  *
1412  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1413  * modification are blocked (e.g. XFS preallocation truncation on inode
1414  * reclaim). This is usually implemented by blocking new transactions for
1415  * filesystems that have them and need this additional guard. After all
1416  * internal writers are finished we call ->freeze_fs() to finish filesystem
1417  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1418  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1419  *
1420  * sb->s_writers.frozen is protected by sb->s_umount.
1421  */
1422 int freeze_super(struct super_block *sb)
1423 {
1424 	int ret;
1425 
1426 	atomic_inc(&sb->s_active);
1427 	down_write(&sb->s_umount);
1428 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1429 		deactivate_locked_super(sb);
1430 		return -EBUSY;
1431 	}
1432 
1433 	if (!(sb->s_flags & SB_BORN)) {
1434 		up_write(&sb->s_umount);
1435 		return 0;	/* sic - it's "nothing to do" */
1436 	}
1437 
1438 	if (sb_rdonly(sb)) {
1439 		/* Nothing to do really... */
1440 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1441 		up_write(&sb->s_umount);
1442 		return 0;
1443 	}
1444 
1445 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1446 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1447 	up_write(&sb->s_umount);
1448 	sb_wait_write(sb, SB_FREEZE_WRITE);
1449 	down_write(&sb->s_umount);
1450 
1451 	/* Now we go and block page faults... */
1452 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1453 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1454 
1455 	/* All writers are done so after syncing there won't be dirty data */
1456 	sync_filesystem(sb);
1457 
1458 	/* Now wait for internal filesystem counter */
1459 	sb->s_writers.frozen = SB_FREEZE_FS;
1460 	sb_wait_write(sb, SB_FREEZE_FS);
1461 
1462 	if (sb->s_op->freeze_fs) {
1463 		ret = sb->s_op->freeze_fs(sb);
1464 		if (ret) {
1465 			printk(KERN_ERR
1466 				"VFS:Filesystem freeze failed\n");
1467 			sb->s_writers.frozen = SB_UNFROZEN;
1468 			sb_freeze_unlock(sb);
1469 			wake_up(&sb->s_writers.wait_unfrozen);
1470 			deactivate_locked_super(sb);
1471 			return ret;
1472 		}
1473 	}
1474 	/*
1475 	 * For debugging purposes so that fs can warn if it sees write activity
1476 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1477 	 */
1478 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1479 	lockdep_sb_freeze_release(sb);
1480 	up_write(&sb->s_umount);
1481 	return 0;
1482 }
1483 EXPORT_SYMBOL(freeze_super);
1484 
1485 /**
1486  * thaw_super -- unlock filesystem
1487  * @sb: the super to thaw
1488  *
1489  * Unlocks the filesystem and marks it writeable again after freeze_super().
1490  */
1491 int thaw_super(struct super_block *sb)
1492 {
1493 	int error;
1494 
1495 	down_write(&sb->s_umount);
1496 	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1497 		up_write(&sb->s_umount);
1498 		return -EINVAL;
1499 	}
1500 
1501 	if (sb_rdonly(sb)) {
1502 		sb->s_writers.frozen = SB_UNFROZEN;
1503 		goto out;
1504 	}
1505 
1506 	lockdep_sb_freeze_acquire(sb);
1507 
1508 	if (sb->s_op->unfreeze_fs) {
1509 		error = sb->s_op->unfreeze_fs(sb);
1510 		if (error) {
1511 			printk(KERN_ERR
1512 				"VFS:Filesystem thaw failed\n");
1513 			lockdep_sb_freeze_release(sb);
1514 			up_write(&sb->s_umount);
1515 			return error;
1516 		}
1517 	}
1518 
1519 	sb->s_writers.frozen = SB_UNFROZEN;
1520 	sb_freeze_unlock(sb);
1521 out:
1522 	wake_up(&sb->s_writers.wait_unfrozen);
1523 	deactivate_locked_super(sb);
1524 	return 0;
1525 }
1526 EXPORT_SYMBOL(thaw_super);
1527