1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/super.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * super.c contains code to handle: - mount structures 8 * - super-block tables 9 * - filesystem drivers list 10 * - mount system call 11 * - umount system call 12 * - ustat system call 13 * 14 * GK 2/5/95 - Changed to support mounting the root fs via NFS 15 * 16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 18 * Added options to /proc/mounts: 19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 22 */ 23 24 #include <linux/export.h> 25 #include <linux/slab.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/cleancache.h> 35 #include <linux/fsnotify.h> 36 #include <linux/lockdep.h> 37 #include <linux/user_namespace.h> 38 #include "internal.h" 39 40 41 static LIST_HEAD(super_blocks); 42 static DEFINE_SPINLOCK(sb_lock); 43 44 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 45 "sb_writers", 46 "sb_pagefaults", 47 "sb_internal", 48 }; 49 50 /* 51 * One thing we have to be careful of with a per-sb shrinker is that we don't 52 * drop the last active reference to the superblock from within the shrinker. 53 * If that happens we could trigger unregistering the shrinker from within the 54 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 55 * take a passive reference to the superblock to avoid this from occurring. 56 */ 57 static unsigned long super_cache_scan(struct shrinker *shrink, 58 struct shrink_control *sc) 59 { 60 struct super_block *sb; 61 long fs_objects = 0; 62 long total_objects; 63 long freed = 0; 64 long dentries; 65 long inodes; 66 67 sb = container_of(shrink, struct super_block, s_shrink); 68 69 /* 70 * Deadlock avoidance. We may hold various FS locks, and we don't want 71 * to recurse into the FS that called us in clear_inode() and friends.. 72 */ 73 if (!(sc->gfp_mask & __GFP_FS)) 74 return SHRINK_STOP; 75 76 if (!trylock_super(sb)) 77 return SHRINK_STOP; 78 79 if (sb->s_op->nr_cached_objects) 80 fs_objects = sb->s_op->nr_cached_objects(sb, sc); 81 82 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc); 83 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc); 84 total_objects = dentries + inodes + fs_objects + 1; 85 if (!total_objects) 86 total_objects = 1; 87 88 /* proportion the scan between the caches */ 89 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 90 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 91 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects); 92 93 /* 94 * prune the dcache first as the icache is pinned by it, then 95 * prune the icache, followed by the filesystem specific caches 96 * 97 * Ensure that we always scan at least one object - memcg kmem 98 * accounting uses this to fully empty the caches. 99 */ 100 sc->nr_to_scan = dentries + 1; 101 freed = prune_dcache_sb(sb, sc); 102 sc->nr_to_scan = inodes + 1; 103 freed += prune_icache_sb(sb, sc); 104 105 if (fs_objects) { 106 sc->nr_to_scan = fs_objects + 1; 107 freed += sb->s_op->free_cached_objects(sb, sc); 108 } 109 110 up_read(&sb->s_umount); 111 return freed; 112 } 113 114 static unsigned long super_cache_count(struct shrinker *shrink, 115 struct shrink_control *sc) 116 { 117 struct super_block *sb; 118 long total_objects = 0; 119 120 sb = container_of(shrink, struct super_block, s_shrink); 121 122 /* 123 * Don't call trylock_super as it is a potential 124 * scalability bottleneck. The counts could get updated 125 * between super_cache_count and super_cache_scan anyway. 126 * Call to super_cache_count with shrinker_rwsem held 127 * ensures the safety of call to list_lru_shrink_count() and 128 * s_op->nr_cached_objects(). 129 */ 130 if (sb->s_op && sb->s_op->nr_cached_objects) 131 total_objects = sb->s_op->nr_cached_objects(sb, sc); 132 133 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc); 134 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc); 135 136 total_objects = vfs_pressure_ratio(total_objects); 137 return total_objects; 138 } 139 140 static void destroy_super_work(struct work_struct *work) 141 { 142 struct super_block *s = container_of(work, struct super_block, 143 destroy_work); 144 int i; 145 146 for (i = 0; i < SB_FREEZE_LEVELS; i++) 147 percpu_free_rwsem(&s->s_writers.rw_sem[i]); 148 kfree(s); 149 } 150 151 static void destroy_super_rcu(struct rcu_head *head) 152 { 153 struct super_block *s = container_of(head, struct super_block, rcu); 154 INIT_WORK(&s->destroy_work, destroy_super_work); 155 schedule_work(&s->destroy_work); 156 } 157 158 /* Free a superblock that has never been seen by anyone */ 159 static void destroy_unused_super(struct super_block *s) 160 { 161 if (!s) 162 return; 163 up_write(&s->s_umount); 164 list_lru_destroy(&s->s_dentry_lru); 165 list_lru_destroy(&s->s_inode_lru); 166 security_sb_free(s); 167 put_user_ns(s->s_user_ns); 168 kfree(s->s_subtype); 169 /* no delays needed */ 170 destroy_super_work(&s->destroy_work); 171 } 172 173 /** 174 * alloc_super - create new superblock 175 * @type: filesystem type superblock should belong to 176 * @flags: the mount flags 177 * @user_ns: User namespace for the super_block 178 * 179 * Allocates and initializes a new &struct super_block. alloc_super() 180 * returns a pointer new superblock or %NULL if allocation had failed. 181 */ 182 static struct super_block *alloc_super(struct file_system_type *type, int flags, 183 struct user_namespace *user_ns) 184 { 185 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 186 static const struct super_operations default_op; 187 int i; 188 189 if (!s) 190 return NULL; 191 192 INIT_LIST_HEAD(&s->s_mounts); 193 s->s_user_ns = get_user_ns(user_ns); 194 init_rwsem(&s->s_umount); 195 lockdep_set_class(&s->s_umount, &type->s_umount_key); 196 /* 197 * sget() can have s_umount recursion. 198 * 199 * When it cannot find a suitable sb, it allocates a new 200 * one (this one), and tries again to find a suitable old 201 * one. 202 * 203 * In case that succeeds, it will acquire the s_umount 204 * lock of the old one. Since these are clearly distrinct 205 * locks, and this object isn't exposed yet, there's no 206 * risk of deadlocks. 207 * 208 * Annotate this by putting this lock in a different 209 * subclass. 210 */ 211 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 212 213 if (security_sb_alloc(s)) 214 goto fail; 215 216 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 217 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i], 218 sb_writers_name[i], 219 &type->s_writers_key[i])) 220 goto fail; 221 } 222 init_waitqueue_head(&s->s_writers.wait_unfrozen); 223 s->s_bdi = &noop_backing_dev_info; 224 s->s_flags = flags; 225 if (s->s_user_ns != &init_user_ns) 226 s->s_iflags |= SB_I_NODEV; 227 INIT_HLIST_NODE(&s->s_instances); 228 INIT_HLIST_BL_HEAD(&s->s_anon); 229 mutex_init(&s->s_sync_lock); 230 INIT_LIST_HEAD(&s->s_inodes); 231 spin_lock_init(&s->s_inode_list_lock); 232 INIT_LIST_HEAD(&s->s_inodes_wb); 233 spin_lock_init(&s->s_inode_wblist_lock); 234 235 if (list_lru_init_memcg(&s->s_dentry_lru)) 236 goto fail; 237 if (list_lru_init_memcg(&s->s_inode_lru)) 238 goto fail; 239 s->s_count = 1; 240 atomic_set(&s->s_active, 1); 241 mutex_init(&s->s_vfs_rename_mutex); 242 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 243 init_rwsem(&s->s_dquot.dqio_sem); 244 s->s_maxbytes = MAX_NON_LFS; 245 s->s_op = &default_op; 246 s->s_time_gran = 1000000000; 247 s->cleancache_poolid = CLEANCACHE_NO_POOL; 248 249 s->s_shrink.seeks = DEFAULT_SEEKS; 250 s->s_shrink.scan_objects = super_cache_scan; 251 s->s_shrink.count_objects = super_cache_count; 252 s->s_shrink.batch = 1024; 253 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE; 254 return s; 255 256 fail: 257 destroy_unused_super(s); 258 return NULL; 259 } 260 261 /* Superblock refcounting */ 262 263 /* 264 * Drop a superblock's refcount. The caller must hold sb_lock. 265 */ 266 static void __put_super(struct super_block *s) 267 { 268 if (!--s->s_count) { 269 list_del_init(&s->s_list); 270 WARN_ON(s->s_dentry_lru.node); 271 WARN_ON(s->s_inode_lru.node); 272 WARN_ON(!list_empty(&s->s_mounts)); 273 security_sb_free(s); 274 put_user_ns(s->s_user_ns); 275 kfree(s->s_subtype); 276 call_rcu(&s->rcu, destroy_super_rcu); 277 } 278 } 279 280 /** 281 * put_super - drop a temporary reference to superblock 282 * @sb: superblock in question 283 * 284 * Drops a temporary reference, frees superblock if there's no 285 * references left. 286 */ 287 static void put_super(struct super_block *sb) 288 { 289 spin_lock(&sb_lock); 290 __put_super(sb); 291 spin_unlock(&sb_lock); 292 } 293 294 295 /** 296 * deactivate_locked_super - drop an active reference to superblock 297 * @s: superblock to deactivate 298 * 299 * Drops an active reference to superblock, converting it into a temporary 300 * one if there is no other active references left. In that case we 301 * tell fs driver to shut it down and drop the temporary reference we 302 * had just acquired. 303 * 304 * Caller holds exclusive lock on superblock; that lock is released. 305 */ 306 void deactivate_locked_super(struct super_block *s) 307 { 308 struct file_system_type *fs = s->s_type; 309 if (atomic_dec_and_test(&s->s_active)) { 310 cleancache_invalidate_fs(s); 311 unregister_shrinker(&s->s_shrink); 312 fs->kill_sb(s); 313 314 /* 315 * Since list_lru_destroy() may sleep, we cannot call it from 316 * put_super(), where we hold the sb_lock. Therefore we destroy 317 * the lru lists right now. 318 */ 319 list_lru_destroy(&s->s_dentry_lru); 320 list_lru_destroy(&s->s_inode_lru); 321 322 put_filesystem(fs); 323 put_super(s); 324 } else { 325 up_write(&s->s_umount); 326 } 327 } 328 329 EXPORT_SYMBOL(deactivate_locked_super); 330 331 /** 332 * deactivate_super - drop an active reference to superblock 333 * @s: superblock to deactivate 334 * 335 * Variant of deactivate_locked_super(), except that superblock is *not* 336 * locked by caller. If we are going to drop the final active reference, 337 * lock will be acquired prior to that. 338 */ 339 void deactivate_super(struct super_block *s) 340 { 341 if (!atomic_add_unless(&s->s_active, -1, 1)) { 342 down_write(&s->s_umount); 343 deactivate_locked_super(s); 344 } 345 } 346 347 EXPORT_SYMBOL(deactivate_super); 348 349 /** 350 * grab_super - acquire an active reference 351 * @s: reference we are trying to make active 352 * 353 * Tries to acquire an active reference. grab_super() is used when we 354 * had just found a superblock in super_blocks or fs_type->fs_supers 355 * and want to turn it into a full-blown active reference. grab_super() 356 * is called with sb_lock held and drops it. Returns 1 in case of 357 * success, 0 if we had failed (superblock contents was already dead or 358 * dying when grab_super() had been called). Note that this is only 359 * called for superblocks not in rundown mode (== ones still on ->fs_supers 360 * of their type), so increment of ->s_count is OK here. 361 */ 362 static int grab_super(struct super_block *s) __releases(sb_lock) 363 { 364 s->s_count++; 365 spin_unlock(&sb_lock); 366 down_write(&s->s_umount); 367 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) { 368 put_super(s); 369 return 1; 370 } 371 up_write(&s->s_umount); 372 put_super(s); 373 return 0; 374 } 375 376 /* 377 * trylock_super - try to grab ->s_umount shared 378 * @sb: reference we are trying to grab 379 * 380 * Try to prevent fs shutdown. This is used in places where we 381 * cannot take an active reference but we need to ensure that the 382 * filesystem is not shut down while we are working on it. It returns 383 * false if we cannot acquire s_umount or if we lose the race and 384 * filesystem already got into shutdown, and returns true with the s_umount 385 * lock held in read mode in case of success. On successful return, 386 * the caller must drop the s_umount lock when done. 387 * 388 * Note that unlike get_super() et.al. this one does *not* bump ->s_count. 389 * The reason why it's safe is that we are OK with doing trylock instead 390 * of down_read(). There's a couple of places that are OK with that, but 391 * it's very much not a general-purpose interface. 392 */ 393 bool trylock_super(struct super_block *sb) 394 { 395 if (down_read_trylock(&sb->s_umount)) { 396 if (!hlist_unhashed(&sb->s_instances) && 397 sb->s_root && (sb->s_flags & SB_BORN)) 398 return true; 399 up_read(&sb->s_umount); 400 } 401 402 return false; 403 } 404 405 /** 406 * generic_shutdown_super - common helper for ->kill_sb() 407 * @sb: superblock to kill 408 * 409 * generic_shutdown_super() does all fs-independent work on superblock 410 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 411 * that need destruction out of superblock, call generic_shutdown_super() 412 * and release aforementioned objects. Note: dentries and inodes _are_ 413 * taken care of and do not need specific handling. 414 * 415 * Upon calling this function, the filesystem may no longer alter or 416 * rearrange the set of dentries belonging to this super_block, nor may it 417 * change the attachments of dentries to inodes. 418 */ 419 void generic_shutdown_super(struct super_block *sb) 420 { 421 const struct super_operations *sop = sb->s_op; 422 423 if (sb->s_root) { 424 shrink_dcache_for_umount(sb); 425 sync_filesystem(sb); 426 sb->s_flags &= ~SB_ACTIVE; 427 428 fsnotify_unmount_inodes(sb); 429 cgroup_writeback_umount(); 430 431 evict_inodes(sb); 432 433 if (sb->s_dio_done_wq) { 434 destroy_workqueue(sb->s_dio_done_wq); 435 sb->s_dio_done_wq = NULL; 436 } 437 438 if (sop->put_super) 439 sop->put_super(sb); 440 441 if (!list_empty(&sb->s_inodes)) { 442 printk("VFS: Busy inodes after unmount of %s. " 443 "Self-destruct in 5 seconds. Have a nice day...\n", 444 sb->s_id); 445 } 446 } 447 spin_lock(&sb_lock); 448 /* should be initialized for __put_super_and_need_restart() */ 449 hlist_del_init(&sb->s_instances); 450 spin_unlock(&sb_lock); 451 up_write(&sb->s_umount); 452 if (sb->s_bdi != &noop_backing_dev_info) { 453 bdi_put(sb->s_bdi); 454 sb->s_bdi = &noop_backing_dev_info; 455 } 456 } 457 458 EXPORT_SYMBOL(generic_shutdown_super); 459 460 /** 461 * sget_userns - find or create a superblock 462 * @type: filesystem type superblock should belong to 463 * @test: comparison callback 464 * @set: setup callback 465 * @flags: mount flags 466 * @user_ns: User namespace for the super_block 467 * @data: argument to each of them 468 */ 469 struct super_block *sget_userns(struct file_system_type *type, 470 int (*test)(struct super_block *,void *), 471 int (*set)(struct super_block *,void *), 472 int flags, struct user_namespace *user_ns, 473 void *data) 474 { 475 struct super_block *s = NULL; 476 struct super_block *old; 477 int err; 478 479 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && 480 !(type->fs_flags & FS_USERNS_MOUNT) && 481 !capable(CAP_SYS_ADMIN)) 482 return ERR_PTR(-EPERM); 483 retry: 484 spin_lock(&sb_lock); 485 if (test) { 486 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 487 if (!test(old, data)) 488 continue; 489 if (user_ns != old->s_user_ns) { 490 spin_unlock(&sb_lock); 491 destroy_unused_super(s); 492 return ERR_PTR(-EBUSY); 493 } 494 if (!grab_super(old)) 495 goto retry; 496 destroy_unused_super(s); 497 return old; 498 } 499 } 500 if (!s) { 501 spin_unlock(&sb_lock); 502 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns); 503 if (!s) 504 return ERR_PTR(-ENOMEM); 505 goto retry; 506 } 507 508 err = set(s, data); 509 if (err) { 510 spin_unlock(&sb_lock); 511 destroy_unused_super(s); 512 return ERR_PTR(err); 513 } 514 s->s_type = type; 515 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 516 list_add_tail(&s->s_list, &super_blocks); 517 hlist_add_head(&s->s_instances, &type->fs_supers); 518 spin_unlock(&sb_lock); 519 get_filesystem(type); 520 register_shrinker(&s->s_shrink); 521 return s; 522 } 523 524 EXPORT_SYMBOL(sget_userns); 525 526 /** 527 * sget - find or create a superblock 528 * @type: filesystem type superblock should belong to 529 * @test: comparison callback 530 * @set: setup callback 531 * @flags: mount flags 532 * @data: argument to each of them 533 */ 534 struct super_block *sget(struct file_system_type *type, 535 int (*test)(struct super_block *,void *), 536 int (*set)(struct super_block *,void *), 537 int flags, 538 void *data) 539 { 540 struct user_namespace *user_ns = current_user_ns(); 541 542 /* We don't yet pass the user namespace of the parent 543 * mount through to here so always use &init_user_ns 544 * until that changes. 545 */ 546 if (flags & SB_SUBMOUNT) 547 user_ns = &init_user_ns; 548 549 /* Ensure the requestor has permissions over the target filesystem */ 550 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN)) 551 return ERR_PTR(-EPERM); 552 553 return sget_userns(type, test, set, flags, user_ns, data); 554 } 555 556 EXPORT_SYMBOL(sget); 557 558 void drop_super(struct super_block *sb) 559 { 560 up_read(&sb->s_umount); 561 put_super(sb); 562 } 563 564 EXPORT_SYMBOL(drop_super); 565 566 void drop_super_exclusive(struct super_block *sb) 567 { 568 up_write(&sb->s_umount); 569 put_super(sb); 570 } 571 EXPORT_SYMBOL(drop_super_exclusive); 572 573 /** 574 * iterate_supers - call function for all active superblocks 575 * @f: function to call 576 * @arg: argument to pass to it 577 * 578 * Scans the superblock list and calls given function, passing it 579 * locked superblock and given argument. 580 */ 581 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 582 { 583 struct super_block *sb, *p = NULL; 584 585 spin_lock(&sb_lock); 586 list_for_each_entry(sb, &super_blocks, s_list) { 587 if (hlist_unhashed(&sb->s_instances)) 588 continue; 589 sb->s_count++; 590 spin_unlock(&sb_lock); 591 592 down_read(&sb->s_umount); 593 if (sb->s_root && (sb->s_flags & SB_BORN)) 594 f(sb, arg); 595 up_read(&sb->s_umount); 596 597 spin_lock(&sb_lock); 598 if (p) 599 __put_super(p); 600 p = sb; 601 } 602 if (p) 603 __put_super(p); 604 spin_unlock(&sb_lock); 605 } 606 607 /** 608 * iterate_supers_type - call function for superblocks of given type 609 * @type: fs type 610 * @f: function to call 611 * @arg: argument to pass to it 612 * 613 * Scans the superblock list and calls given function, passing it 614 * locked superblock and given argument. 615 */ 616 void iterate_supers_type(struct file_system_type *type, 617 void (*f)(struct super_block *, void *), void *arg) 618 { 619 struct super_block *sb, *p = NULL; 620 621 spin_lock(&sb_lock); 622 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 623 sb->s_count++; 624 spin_unlock(&sb_lock); 625 626 down_read(&sb->s_umount); 627 if (sb->s_root && (sb->s_flags & SB_BORN)) 628 f(sb, arg); 629 up_read(&sb->s_umount); 630 631 spin_lock(&sb_lock); 632 if (p) 633 __put_super(p); 634 p = sb; 635 } 636 if (p) 637 __put_super(p); 638 spin_unlock(&sb_lock); 639 } 640 641 EXPORT_SYMBOL(iterate_supers_type); 642 643 static struct super_block *__get_super(struct block_device *bdev, bool excl) 644 { 645 struct super_block *sb; 646 647 if (!bdev) 648 return NULL; 649 650 spin_lock(&sb_lock); 651 rescan: 652 list_for_each_entry(sb, &super_blocks, s_list) { 653 if (hlist_unhashed(&sb->s_instances)) 654 continue; 655 if (sb->s_bdev == bdev) { 656 sb->s_count++; 657 spin_unlock(&sb_lock); 658 if (!excl) 659 down_read(&sb->s_umount); 660 else 661 down_write(&sb->s_umount); 662 /* still alive? */ 663 if (sb->s_root && (sb->s_flags & SB_BORN)) 664 return sb; 665 if (!excl) 666 up_read(&sb->s_umount); 667 else 668 up_write(&sb->s_umount); 669 /* nope, got unmounted */ 670 spin_lock(&sb_lock); 671 __put_super(sb); 672 goto rescan; 673 } 674 } 675 spin_unlock(&sb_lock); 676 return NULL; 677 } 678 679 /** 680 * get_super - get the superblock of a device 681 * @bdev: device to get the superblock for 682 * 683 * Scans the superblock list and finds the superblock of the file system 684 * mounted on the device given. %NULL is returned if no match is found. 685 */ 686 struct super_block *get_super(struct block_device *bdev) 687 { 688 return __get_super(bdev, false); 689 } 690 EXPORT_SYMBOL(get_super); 691 692 static struct super_block *__get_super_thawed(struct block_device *bdev, 693 bool excl) 694 { 695 while (1) { 696 struct super_block *s = __get_super(bdev, excl); 697 if (!s || s->s_writers.frozen == SB_UNFROZEN) 698 return s; 699 if (!excl) 700 up_read(&s->s_umount); 701 else 702 up_write(&s->s_umount); 703 wait_event(s->s_writers.wait_unfrozen, 704 s->s_writers.frozen == SB_UNFROZEN); 705 put_super(s); 706 } 707 } 708 709 /** 710 * get_super_thawed - get thawed superblock of a device 711 * @bdev: device to get the superblock for 712 * 713 * Scans the superblock list and finds the superblock of the file system 714 * mounted on the device. The superblock is returned once it is thawed 715 * (or immediately if it was not frozen). %NULL is returned if no match 716 * is found. 717 */ 718 struct super_block *get_super_thawed(struct block_device *bdev) 719 { 720 return __get_super_thawed(bdev, false); 721 } 722 EXPORT_SYMBOL(get_super_thawed); 723 724 /** 725 * get_super_exclusive_thawed - get thawed superblock of a device 726 * @bdev: device to get the superblock for 727 * 728 * Scans the superblock list and finds the superblock of the file system 729 * mounted on the device. The superblock is returned once it is thawed 730 * (or immediately if it was not frozen) and s_umount semaphore is held 731 * in exclusive mode. %NULL is returned if no match is found. 732 */ 733 struct super_block *get_super_exclusive_thawed(struct block_device *bdev) 734 { 735 return __get_super_thawed(bdev, true); 736 } 737 EXPORT_SYMBOL(get_super_exclusive_thawed); 738 739 /** 740 * get_active_super - get an active reference to the superblock of a device 741 * @bdev: device to get the superblock for 742 * 743 * Scans the superblock list and finds the superblock of the file system 744 * mounted on the device given. Returns the superblock with an active 745 * reference or %NULL if none was found. 746 */ 747 struct super_block *get_active_super(struct block_device *bdev) 748 { 749 struct super_block *sb; 750 751 if (!bdev) 752 return NULL; 753 754 restart: 755 spin_lock(&sb_lock); 756 list_for_each_entry(sb, &super_blocks, s_list) { 757 if (hlist_unhashed(&sb->s_instances)) 758 continue; 759 if (sb->s_bdev == bdev) { 760 if (!grab_super(sb)) 761 goto restart; 762 up_write(&sb->s_umount); 763 return sb; 764 } 765 } 766 spin_unlock(&sb_lock); 767 return NULL; 768 } 769 770 struct super_block *user_get_super(dev_t dev) 771 { 772 struct super_block *sb; 773 774 spin_lock(&sb_lock); 775 rescan: 776 list_for_each_entry(sb, &super_blocks, s_list) { 777 if (hlist_unhashed(&sb->s_instances)) 778 continue; 779 if (sb->s_dev == dev) { 780 sb->s_count++; 781 spin_unlock(&sb_lock); 782 down_read(&sb->s_umount); 783 /* still alive? */ 784 if (sb->s_root && (sb->s_flags & SB_BORN)) 785 return sb; 786 up_read(&sb->s_umount); 787 /* nope, got unmounted */ 788 spin_lock(&sb_lock); 789 __put_super(sb); 790 goto rescan; 791 } 792 } 793 spin_unlock(&sb_lock); 794 return NULL; 795 } 796 797 /** 798 * do_remount_sb - asks filesystem to change mount options. 799 * @sb: superblock in question 800 * @sb_flags: revised superblock flags 801 * @data: the rest of options 802 * @force: whether or not to force the change 803 * 804 * Alters the mount options of a mounted file system. 805 */ 806 int do_remount_sb(struct super_block *sb, int sb_flags, void *data, int force) 807 { 808 int retval; 809 int remount_ro; 810 811 if (sb->s_writers.frozen != SB_UNFROZEN) 812 return -EBUSY; 813 814 #ifdef CONFIG_BLOCK 815 if (!(sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev)) 816 return -EACCES; 817 #endif 818 819 remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb); 820 821 if (remount_ro) { 822 if (!hlist_empty(&sb->s_pins)) { 823 up_write(&sb->s_umount); 824 group_pin_kill(&sb->s_pins); 825 down_write(&sb->s_umount); 826 if (!sb->s_root) 827 return 0; 828 if (sb->s_writers.frozen != SB_UNFROZEN) 829 return -EBUSY; 830 remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb); 831 } 832 } 833 shrink_dcache_sb(sb); 834 835 /* If we are remounting RDONLY and current sb is read/write, 836 make sure there are no rw files opened */ 837 if (remount_ro) { 838 if (force) { 839 sb->s_readonly_remount = 1; 840 smp_wmb(); 841 } else { 842 retval = sb_prepare_remount_readonly(sb); 843 if (retval) 844 return retval; 845 } 846 } 847 848 if (sb->s_op->remount_fs) { 849 retval = sb->s_op->remount_fs(sb, &sb_flags, data); 850 if (retval) { 851 if (!force) 852 goto cancel_readonly; 853 /* If forced remount, go ahead despite any errors */ 854 WARN(1, "forced remount of a %s fs returned %i\n", 855 sb->s_type->name, retval); 856 } 857 } 858 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (sb_flags & MS_RMT_MASK); 859 /* Needs to be ordered wrt mnt_is_readonly() */ 860 smp_wmb(); 861 sb->s_readonly_remount = 0; 862 863 /* 864 * Some filesystems modify their metadata via some other path than the 865 * bdev buffer cache (eg. use a private mapping, or directories in 866 * pagecache, etc). Also file data modifications go via their own 867 * mappings. So If we try to mount readonly then copy the filesystem 868 * from bdev, we could get stale data, so invalidate it to give a best 869 * effort at coherency. 870 */ 871 if (remount_ro && sb->s_bdev) 872 invalidate_bdev(sb->s_bdev); 873 return 0; 874 875 cancel_readonly: 876 sb->s_readonly_remount = 0; 877 return retval; 878 } 879 880 static void do_emergency_remount(struct work_struct *work) 881 { 882 struct super_block *sb, *p = NULL; 883 884 spin_lock(&sb_lock); 885 list_for_each_entry(sb, &super_blocks, s_list) { 886 if (hlist_unhashed(&sb->s_instances)) 887 continue; 888 sb->s_count++; 889 spin_unlock(&sb_lock); 890 down_write(&sb->s_umount); 891 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) && 892 !sb_rdonly(sb)) { 893 /* 894 * What lock protects sb->s_flags?? 895 */ 896 do_remount_sb(sb, SB_RDONLY, NULL, 1); 897 } 898 up_write(&sb->s_umount); 899 spin_lock(&sb_lock); 900 if (p) 901 __put_super(p); 902 p = sb; 903 } 904 if (p) 905 __put_super(p); 906 spin_unlock(&sb_lock); 907 kfree(work); 908 printk("Emergency Remount complete\n"); 909 } 910 911 void emergency_remount(void) 912 { 913 struct work_struct *work; 914 915 work = kmalloc(sizeof(*work), GFP_ATOMIC); 916 if (work) { 917 INIT_WORK(work, do_emergency_remount); 918 schedule_work(work); 919 } 920 } 921 922 /* 923 * Unnamed block devices are dummy devices used by virtual 924 * filesystems which don't use real block-devices. -- jrs 925 */ 926 927 static DEFINE_IDA(unnamed_dev_ida); 928 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */ 929 /* Many userspace utilities consider an FSID of 0 invalid. 930 * Always return at least 1 from get_anon_bdev. 931 */ 932 static int unnamed_dev_start = 1; 933 934 int get_anon_bdev(dev_t *p) 935 { 936 int dev; 937 int error; 938 939 retry: 940 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0) 941 return -ENOMEM; 942 spin_lock(&unnamed_dev_lock); 943 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev); 944 if (!error) 945 unnamed_dev_start = dev + 1; 946 spin_unlock(&unnamed_dev_lock); 947 if (error == -EAGAIN) 948 /* We raced and lost with another CPU. */ 949 goto retry; 950 else if (error) 951 return -EAGAIN; 952 953 if (dev >= (1 << MINORBITS)) { 954 spin_lock(&unnamed_dev_lock); 955 ida_remove(&unnamed_dev_ida, dev); 956 if (unnamed_dev_start > dev) 957 unnamed_dev_start = dev; 958 spin_unlock(&unnamed_dev_lock); 959 return -EMFILE; 960 } 961 *p = MKDEV(0, dev & MINORMASK); 962 return 0; 963 } 964 EXPORT_SYMBOL(get_anon_bdev); 965 966 void free_anon_bdev(dev_t dev) 967 { 968 int slot = MINOR(dev); 969 spin_lock(&unnamed_dev_lock); 970 ida_remove(&unnamed_dev_ida, slot); 971 if (slot < unnamed_dev_start) 972 unnamed_dev_start = slot; 973 spin_unlock(&unnamed_dev_lock); 974 } 975 EXPORT_SYMBOL(free_anon_bdev); 976 977 int set_anon_super(struct super_block *s, void *data) 978 { 979 return get_anon_bdev(&s->s_dev); 980 } 981 982 EXPORT_SYMBOL(set_anon_super); 983 984 void kill_anon_super(struct super_block *sb) 985 { 986 dev_t dev = sb->s_dev; 987 generic_shutdown_super(sb); 988 free_anon_bdev(dev); 989 } 990 991 EXPORT_SYMBOL(kill_anon_super); 992 993 void kill_litter_super(struct super_block *sb) 994 { 995 if (sb->s_root) 996 d_genocide(sb->s_root); 997 kill_anon_super(sb); 998 } 999 1000 EXPORT_SYMBOL(kill_litter_super); 1001 1002 static int ns_test_super(struct super_block *sb, void *data) 1003 { 1004 return sb->s_fs_info == data; 1005 } 1006 1007 static int ns_set_super(struct super_block *sb, void *data) 1008 { 1009 sb->s_fs_info = data; 1010 return set_anon_super(sb, NULL); 1011 } 1012 1013 struct dentry *mount_ns(struct file_system_type *fs_type, 1014 int flags, void *data, void *ns, struct user_namespace *user_ns, 1015 int (*fill_super)(struct super_block *, void *, int)) 1016 { 1017 struct super_block *sb; 1018 1019 /* Don't allow mounting unless the caller has CAP_SYS_ADMIN 1020 * over the namespace. 1021 */ 1022 if (!(flags & SB_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN)) 1023 return ERR_PTR(-EPERM); 1024 1025 sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags, 1026 user_ns, ns); 1027 if (IS_ERR(sb)) 1028 return ERR_CAST(sb); 1029 1030 if (!sb->s_root) { 1031 int err; 1032 err = fill_super(sb, data, flags & SB_SILENT ? 1 : 0); 1033 if (err) { 1034 deactivate_locked_super(sb); 1035 return ERR_PTR(err); 1036 } 1037 1038 sb->s_flags |= SB_ACTIVE; 1039 } 1040 1041 return dget(sb->s_root); 1042 } 1043 1044 EXPORT_SYMBOL(mount_ns); 1045 1046 #ifdef CONFIG_BLOCK 1047 static int set_bdev_super(struct super_block *s, void *data) 1048 { 1049 s->s_bdev = data; 1050 s->s_dev = s->s_bdev->bd_dev; 1051 s->s_bdi = bdi_get(s->s_bdev->bd_bdi); 1052 1053 return 0; 1054 } 1055 1056 static int test_bdev_super(struct super_block *s, void *data) 1057 { 1058 return (void *)s->s_bdev == data; 1059 } 1060 1061 struct dentry *mount_bdev(struct file_system_type *fs_type, 1062 int flags, const char *dev_name, void *data, 1063 int (*fill_super)(struct super_block *, void *, int)) 1064 { 1065 struct block_device *bdev; 1066 struct super_block *s; 1067 fmode_t mode = FMODE_READ | FMODE_EXCL; 1068 int error = 0; 1069 1070 if (!(flags & SB_RDONLY)) 1071 mode |= FMODE_WRITE; 1072 1073 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 1074 if (IS_ERR(bdev)) 1075 return ERR_CAST(bdev); 1076 1077 /* 1078 * once the super is inserted into the list by sget, s_umount 1079 * will protect the lockfs code from trying to start a snapshot 1080 * while we are mounting 1081 */ 1082 mutex_lock(&bdev->bd_fsfreeze_mutex); 1083 if (bdev->bd_fsfreeze_count > 0) { 1084 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1085 error = -EBUSY; 1086 goto error_bdev; 1087 } 1088 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC, 1089 bdev); 1090 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1091 if (IS_ERR(s)) 1092 goto error_s; 1093 1094 if (s->s_root) { 1095 if ((flags ^ s->s_flags) & SB_RDONLY) { 1096 deactivate_locked_super(s); 1097 error = -EBUSY; 1098 goto error_bdev; 1099 } 1100 1101 /* 1102 * s_umount nests inside bd_mutex during 1103 * __invalidate_device(). blkdev_put() acquires 1104 * bd_mutex and can't be called under s_umount. Drop 1105 * s_umount temporarily. This is safe as we're 1106 * holding an active reference. 1107 */ 1108 up_write(&s->s_umount); 1109 blkdev_put(bdev, mode); 1110 down_write(&s->s_umount); 1111 } else { 1112 s->s_mode = mode; 1113 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1114 sb_set_blocksize(s, block_size(bdev)); 1115 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1116 if (error) { 1117 deactivate_locked_super(s); 1118 goto error; 1119 } 1120 1121 s->s_flags |= SB_ACTIVE; 1122 bdev->bd_super = s; 1123 } 1124 1125 return dget(s->s_root); 1126 1127 error_s: 1128 error = PTR_ERR(s); 1129 error_bdev: 1130 blkdev_put(bdev, mode); 1131 error: 1132 return ERR_PTR(error); 1133 } 1134 EXPORT_SYMBOL(mount_bdev); 1135 1136 void kill_block_super(struct super_block *sb) 1137 { 1138 struct block_device *bdev = sb->s_bdev; 1139 fmode_t mode = sb->s_mode; 1140 1141 bdev->bd_super = NULL; 1142 generic_shutdown_super(sb); 1143 sync_blockdev(bdev); 1144 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 1145 blkdev_put(bdev, mode | FMODE_EXCL); 1146 } 1147 1148 EXPORT_SYMBOL(kill_block_super); 1149 #endif 1150 1151 struct dentry *mount_nodev(struct file_system_type *fs_type, 1152 int flags, void *data, 1153 int (*fill_super)(struct super_block *, void *, int)) 1154 { 1155 int error; 1156 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1157 1158 if (IS_ERR(s)) 1159 return ERR_CAST(s); 1160 1161 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1162 if (error) { 1163 deactivate_locked_super(s); 1164 return ERR_PTR(error); 1165 } 1166 s->s_flags |= SB_ACTIVE; 1167 return dget(s->s_root); 1168 } 1169 EXPORT_SYMBOL(mount_nodev); 1170 1171 static int compare_single(struct super_block *s, void *p) 1172 { 1173 return 1; 1174 } 1175 1176 struct dentry *mount_single(struct file_system_type *fs_type, 1177 int flags, void *data, 1178 int (*fill_super)(struct super_block *, void *, int)) 1179 { 1180 struct super_block *s; 1181 int error; 1182 1183 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1184 if (IS_ERR(s)) 1185 return ERR_CAST(s); 1186 if (!s->s_root) { 1187 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1188 if (error) { 1189 deactivate_locked_super(s); 1190 return ERR_PTR(error); 1191 } 1192 s->s_flags |= SB_ACTIVE; 1193 } else { 1194 do_remount_sb(s, flags, data, 0); 1195 } 1196 return dget(s->s_root); 1197 } 1198 EXPORT_SYMBOL(mount_single); 1199 1200 struct dentry * 1201 mount_fs(struct file_system_type *type, int flags, const char *name, void *data) 1202 { 1203 struct dentry *root; 1204 struct super_block *sb; 1205 char *secdata = NULL; 1206 int error = -ENOMEM; 1207 1208 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) { 1209 secdata = alloc_secdata(); 1210 if (!secdata) 1211 goto out; 1212 1213 error = security_sb_copy_data(data, secdata); 1214 if (error) 1215 goto out_free_secdata; 1216 } 1217 1218 root = type->mount(type, flags, name, data); 1219 if (IS_ERR(root)) { 1220 error = PTR_ERR(root); 1221 goto out_free_secdata; 1222 } 1223 sb = root->d_sb; 1224 BUG_ON(!sb); 1225 WARN_ON(!sb->s_bdi); 1226 sb->s_flags |= SB_BORN; 1227 1228 error = security_sb_kern_mount(sb, flags, secdata); 1229 if (error) 1230 goto out_sb; 1231 1232 /* 1233 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1234 * but s_maxbytes was an unsigned long long for many releases. Throw 1235 * this warning for a little while to try and catch filesystems that 1236 * violate this rule. 1237 */ 1238 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1239 "negative value (%lld)\n", type->name, sb->s_maxbytes); 1240 1241 up_write(&sb->s_umount); 1242 free_secdata(secdata); 1243 return root; 1244 out_sb: 1245 dput(root); 1246 deactivate_locked_super(sb); 1247 out_free_secdata: 1248 free_secdata(secdata); 1249 out: 1250 return ERR_PTR(error); 1251 } 1252 1253 /* 1254 * Setup private BDI for given superblock. It gets automatically cleaned up 1255 * in generic_shutdown_super(). 1256 */ 1257 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...) 1258 { 1259 struct backing_dev_info *bdi; 1260 int err; 1261 va_list args; 1262 1263 bdi = bdi_alloc(GFP_KERNEL); 1264 if (!bdi) 1265 return -ENOMEM; 1266 1267 bdi->name = sb->s_type->name; 1268 1269 va_start(args, fmt); 1270 err = bdi_register_va(bdi, fmt, args); 1271 va_end(args); 1272 if (err) { 1273 bdi_put(bdi); 1274 return err; 1275 } 1276 WARN_ON(sb->s_bdi != &noop_backing_dev_info); 1277 sb->s_bdi = bdi; 1278 1279 return 0; 1280 } 1281 EXPORT_SYMBOL(super_setup_bdi_name); 1282 1283 /* 1284 * Setup private BDI for given superblock. I gets automatically cleaned up 1285 * in generic_shutdown_super(). 1286 */ 1287 int super_setup_bdi(struct super_block *sb) 1288 { 1289 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0); 1290 1291 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name, 1292 atomic_long_inc_return(&bdi_seq)); 1293 } 1294 EXPORT_SYMBOL(super_setup_bdi); 1295 1296 /* 1297 * This is an internal function, please use sb_end_{write,pagefault,intwrite} 1298 * instead. 1299 */ 1300 void __sb_end_write(struct super_block *sb, int level) 1301 { 1302 percpu_up_read(sb->s_writers.rw_sem + level-1); 1303 } 1304 EXPORT_SYMBOL(__sb_end_write); 1305 1306 /* 1307 * This is an internal function, please use sb_start_{write,pagefault,intwrite} 1308 * instead. 1309 */ 1310 int __sb_start_write(struct super_block *sb, int level, bool wait) 1311 { 1312 bool force_trylock = false; 1313 int ret = 1; 1314 1315 #ifdef CONFIG_LOCKDEP 1316 /* 1317 * We want lockdep to tell us about possible deadlocks with freezing 1318 * but it's it bit tricky to properly instrument it. Getting a freeze 1319 * protection works as getting a read lock but there are subtle 1320 * problems. XFS for example gets freeze protection on internal level 1321 * twice in some cases, which is OK only because we already hold a 1322 * freeze protection also on higher level. Due to these cases we have 1323 * to use wait == F (trylock mode) which must not fail. 1324 */ 1325 if (wait) { 1326 int i; 1327 1328 for (i = 0; i < level - 1; i++) 1329 if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) { 1330 force_trylock = true; 1331 break; 1332 } 1333 } 1334 #endif 1335 if (wait && !force_trylock) 1336 percpu_down_read(sb->s_writers.rw_sem + level-1); 1337 else 1338 ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1); 1339 1340 WARN_ON(force_trylock && !ret); 1341 return ret; 1342 } 1343 EXPORT_SYMBOL(__sb_start_write); 1344 1345 /** 1346 * sb_wait_write - wait until all writers to given file system finish 1347 * @sb: the super for which we wait 1348 * @level: type of writers we wait for (normal vs page fault) 1349 * 1350 * This function waits until there are no writers of given type to given file 1351 * system. 1352 */ 1353 static void sb_wait_write(struct super_block *sb, int level) 1354 { 1355 percpu_down_write(sb->s_writers.rw_sem + level-1); 1356 } 1357 1358 /* 1359 * We are going to return to userspace and forget about these locks, the 1360 * ownership goes to the caller of thaw_super() which does unlock(). 1361 */ 1362 static void lockdep_sb_freeze_release(struct super_block *sb) 1363 { 1364 int level; 1365 1366 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1367 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1368 } 1369 1370 /* 1371 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb). 1372 */ 1373 static void lockdep_sb_freeze_acquire(struct super_block *sb) 1374 { 1375 int level; 1376 1377 for (level = 0; level < SB_FREEZE_LEVELS; ++level) 1378 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1379 } 1380 1381 static void sb_freeze_unlock(struct super_block *sb) 1382 { 1383 int level; 1384 1385 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1386 percpu_up_write(sb->s_writers.rw_sem + level); 1387 } 1388 1389 /** 1390 * freeze_super - lock the filesystem and force it into a consistent state 1391 * @sb: the super to lock 1392 * 1393 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1394 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1395 * -EBUSY. 1396 * 1397 * During this function, sb->s_writers.frozen goes through these values: 1398 * 1399 * SB_UNFROZEN: File system is normal, all writes progress as usual. 1400 * 1401 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 1402 * writes should be blocked, though page faults are still allowed. We wait for 1403 * all writes to complete and then proceed to the next stage. 1404 * 1405 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 1406 * but internal fs threads can still modify the filesystem (although they 1407 * should not dirty new pages or inodes), writeback can run etc. After waiting 1408 * for all running page faults we sync the filesystem which will clean all 1409 * dirty pages and inodes (no new dirty pages or inodes can be created when 1410 * sync is running). 1411 * 1412 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 1413 * modification are blocked (e.g. XFS preallocation truncation on inode 1414 * reclaim). This is usually implemented by blocking new transactions for 1415 * filesystems that have them and need this additional guard. After all 1416 * internal writers are finished we call ->freeze_fs() to finish filesystem 1417 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 1418 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 1419 * 1420 * sb->s_writers.frozen is protected by sb->s_umount. 1421 */ 1422 int freeze_super(struct super_block *sb) 1423 { 1424 int ret; 1425 1426 atomic_inc(&sb->s_active); 1427 down_write(&sb->s_umount); 1428 if (sb->s_writers.frozen != SB_UNFROZEN) { 1429 deactivate_locked_super(sb); 1430 return -EBUSY; 1431 } 1432 1433 if (!(sb->s_flags & SB_BORN)) { 1434 up_write(&sb->s_umount); 1435 return 0; /* sic - it's "nothing to do" */ 1436 } 1437 1438 if (sb_rdonly(sb)) { 1439 /* Nothing to do really... */ 1440 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1441 up_write(&sb->s_umount); 1442 return 0; 1443 } 1444 1445 sb->s_writers.frozen = SB_FREEZE_WRITE; 1446 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 1447 up_write(&sb->s_umount); 1448 sb_wait_write(sb, SB_FREEZE_WRITE); 1449 down_write(&sb->s_umount); 1450 1451 /* Now we go and block page faults... */ 1452 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 1453 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 1454 1455 /* All writers are done so after syncing there won't be dirty data */ 1456 sync_filesystem(sb); 1457 1458 /* Now wait for internal filesystem counter */ 1459 sb->s_writers.frozen = SB_FREEZE_FS; 1460 sb_wait_write(sb, SB_FREEZE_FS); 1461 1462 if (sb->s_op->freeze_fs) { 1463 ret = sb->s_op->freeze_fs(sb); 1464 if (ret) { 1465 printk(KERN_ERR 1466 "VFS:Filesystem freeze failed\n"); 1467 sb->s_writers.frozen = SB_UNFROZEN; 1468 sb_freeze_unlock(sb); 1469 wake_up(&sb->s_writers.wait_unfrozen); 1470 deactivate_locked_super(sb); 1471 return ret; 1472 } 1473 } 1474 /* 1475 * For debugging purposes so that fs can warn if it sees write activity 1476 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super(). 1477 */ 1478 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1479 lockdep_sb_freeze_release(sb); 1480 up_write(&sb->s_umount); 1481 return 0; 1482 } 1483 EXPORT_SYMBOL(freeze_super); 1484 1485 /** 1486 * thaw_super -- unlock filesystem 1487 * @sb: the super to thaw 1488 * 1489 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1490 */ 1491 int thaw_super(struct super_block *sb) 1492 { 1493 int error; 1494 1495 down_write(&sb->s_umount); 1496 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) { 1497 up_write(&sb->s_umount); 1498 return -EINVAL; 1499 } 1500 1501 if (sb_rdonly(sb)) { 1502 sb->s_writers.frozen = SB_UNFROZEN; 1503 goto out; 1504 } 1505 1506 lockdep_sb_freeze_acquire(sb); 1507 1508 if (sb->s_op->unfreeze_fs) { 1509 error = sb->s_op->unfreeze_fs(sb); 1510 if (error) { 1511 printk(KERN_ERR 1512 "VFS:Filesystem thaw failed\n"); 1513 lockdep_sb_freeze_release(sb); 1514 up_write(&sb->s_umount); 1515 return error; 1516 } 1517 } 1518 1519 sb->s_writers.frozen = SB_UNFROZEN; 1520 sb_freeze_unlock(sb); 1521 out: 1522 wake_up(&sb->s_writers.wait_unfrozen); 1523 deactivate_locked_super(sb); 1524 return 0; 1525 } 1526 EXPORT_SYMBOL(thaw_super); 1527