xref: /openbmc/linux/fs/super.c (revision 65cf840f)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include "internal.h"
34 
35 
36 LIST_HEAD(super_blocks);
37 DEFINE_SPINLOCK(sb_lock);
38 
39 /**
40  *	alloc_super	-	create new superblock
41  *	@type:	filesystem type superblock should belong to
42  *
43  *	Allocates and initializes a new &struct super_block.  alloc_super()
44  *	returns a pointer new superblock or %NULL if allocation had failed.
45  */
46 static struct super_block *alloc_super(struct file_system_type *type)
47 {
48 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
49 	static const struct super_operations default_op;
50 
51 	if (s) {
52 		if (security_sb_alloc(s)) {
53 			kfree(s);
54 			s = NULL;
55 			goto out;
56 		}
57 		INIT_LIST_HEAD(&s->s_files);
58 		INIT_LIST_HEAD(&s->s_instances);
59 		INIT_HLIST_HEAD(&s->s_anon);
60 		INIT_LIST_HEAD(&s->s_inodes);
61 		INIT_LIST_HEAD(&s->s_dentry_lru);
62 		init_rwsem(&s->s_umount);
63 		mutex_init(&s->s_lock);
64 		lockdep_set_class(&s->s_umount, &type->s_umount_key);
65 		/*
66 		 * The locking rules for s_lock are up to the
67 		 * filesystem. For example ext3fs has different
68 		 * lock ordering than usbfs:
69 		 */
70 		lockdep_set_class(&s->s_lock, &type->s_lock_key);
71 		/*
72 		 * sget() can have s_umount recursion.
73 		 *
74 		 * When it cannot find a suitable sb, it allocates a new
75 		 * one (this one), and tries again to find a suitable old
76 		 * one.
77 		 *
78 		 * In case that succeeds, it will acquire the s_umount
79 		 * lock of the old one. Since these are clearly distrinct
80 		 * locks, and this object isn't exposed yet, there's no
81 		 * risk of deadlocks.
82 		 *
83 		 * Annotate this by putting this lock in a different
84 		 * subclass.
85 		 */
86 		down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
87 		s->s_count = 1;
88 		atomic_set(&s->s_active, 1);
89 		mutex_init(&s->s_vfs_rename_mutex);
90 		lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
91 		mutex_init(&s->s_dquot.dqio_mutex);
92 		mutex_init(&s->s_dquot.dqonoff_mutex);
93 		init_rwsem(&s->s_dquot.dqptr_sem);
94 		init_waitqueue_head(&s->s_wait_unfrozen);
95 		s->s_maxbytes = MAX_NON_LFS;
96 		s->s_op = &default_op;
97 		s->s_time_gran = 1000000000;
98 	}
99 out:
100 	return s;
101 }
102 
103 /**
104  *	destroy_super	-	frees a superblock
105  *	@s: superblock to free
106  *
107  *	Frees a superblock.
108  */
109 static inline void destroy_super(struct super_block *s)
110 {
111 	security_sb_free(s);
112 	kfree(s->s_subtype);
113 	kfree(s->s_options);
114 	kfree(s);
115 }
116 
117 /* Superblock refcounting  */
118 
119 /*
120  * Drop a superblock's refcount.  The caller must hold sb_lock.
121  */
122 void __put_super(struct super_block *sb)
123 {
124 	if (!--sb->s_count) {
125 		list_del_init(&sb->s_list);
126 		destroy_super(sb);
127 	}
128 }
129 
130 /**
131  *	put_super	-	drop a temporary reference to superblock
132  *	@sb: superblock in question
133  *
134  *	Drops a temporary reference, frees superblock if there's no
135  *	references left.
136  */
137 void put_super(struct super_block *sb)
138 {
139 	spin_lock(&sb_lock);
140 	__put_super(sb);
141 	spin_unlock(&sb_lock);
142 }
143 
144 
145 /**
146  *	deactivate_locked_super	-	drop an active reference to superblock
147  *	@s: superblock to deactivate
148  *
149  *	Drops an active reference to superblock, converting it into a temprory
150  *	one if there is no other active references left.  In that case we
151  *	tell fs driver to shut it down and drop the temporary reference we
152  *	had just acquired.
153  *
154  *	Caller holds exclusive lock on superblock; that lock is released.
155  */
156 void deactivate_locked_super(struct super_block *s)
157 {
158 	struct file_system_type *fs = s->s_type;
159 	if (atomic_dec_and_test(&s->s_active)) {
160 		fs->kill_sb(s);
161 		put_filesystem(fs);
162 		put_super(s);
163 	} else {
164 		up_write(&s->s_umount);
165 	}
166 }
167 
168 EXPORT_SYMBOL(deactivate_locked_super);
169 
170 /**
171  *	deactivate_super	-	drop an active reference to superblock
172  *	@s: superblock to deactivate
173  *
174  *	Variant of deactivate_locked_super(), except that superblock is *not*
175  *	locked by caller.  If we are going to drop the final active reference,
176  *	lock will be acquired prior to that.
177  */
178 void deactivate_super(struct super_block *s)
179 {
180         if (!atomic_add_unless(&s->s_active, -1, 1)) {
181 		down_write(&s->s_umount);
182 		deactivate_locked_super(s);
183 	}
184 }
185 
186 EXPORT_SYMBOL(deactivate_super);
187 
188 /**
189  *	grab_super - acquire an active reference
190  *	@s: reference we are trying to make active
191  *
192  *	Tries to acquire an active reference.  grab_super() is used when we
193  * 	had just found a superblock in super_blocks or fs_type->fs_supers
194  *	and want to turn it into a full-blown active reference.  grab_super()
195  *	is called with sb_lock held and drops it.  Returns 1 in case of
196  *	success, 0 if we had failed (superblock contents was already dead or
197  *	dying when grab_super() had been called).
198  */
199 static int grab_super(struct super_block *s) __releases(sb_lock)
200 {
201 	if (atomic_inc_not_zero(&s->s_active)) {
202 		spin_unlock(&sb_lock);
203 		return 1;
204 	}
205 	/* it's going away */
206 	s->s_count++;
207 	spin_unlock(&sb_lock);
208 	/* wait for it to die */
209 	down_write(&s->s_umount);
210 	up_write(&s->s_umount);
211 	put_super(s);
212 	return 0;
213 }
214 
215 /*
216  * Superblock locking.  We really ought to get rid of these two.
217  */
218 void lock_super(struct super_block * sb)
219 {
220 	get_fs_excl();
221 	mutex_lock(&sb->s_lock);
222 }
223 
224 void unlock_super(struct super_block * sb)
225 {
226 	put_fs_excl();
227 	mutex_unlock(&sb->s_lock);
228 }
229 
230 EXPORT_SYMBOL(lock_super);
231 EXPORT_SYMBOL(unlock_super);
232 
233 /**
234  *	generic_shutdown_super	-	common helper for ->kill_sb()
235  *	@sb: superblock to kill
236  *
237  *	generic_shutdown_super() does all fs-independent work on superblock
238  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
239  *	that need destruction out of superblock, call generic_shutdown_super()
240  *	and release aforementioned objects.  Note: dentries and inodes _are_
241  *	taken care of and do not need specific handling.
242  *
243  *	Upon calling this function, the filesystem may no longer alter or
244  *	rearrange the set of dentries belonging to this super_block, nor may it
245  *	change the attachments of dentries to inodes.
246  */
247 void generic_shutdown_super(struct super_block *sb)
248 {
249 	const struct super_operations *sop = sb->s_op;
250 
251 
252 	if (sb->s_root) {
253 		shrink_dcache_for_umount(sb);
254 		sync_filesystem(sb);
255 		get_fs_excl();
256 		sb->s_flags &= ~MS_ACTIVE;
257 
258 		/* bad name - it should be evict_inodes() */
259 		invalidate_inodes(sb);
260 
261 		if (sop->put_super)
262 			sop->put_super(sb);
263 
264 		/* Forget any remaining inodes */
265 		if (invalidate_inodes(sb)) {
266 			printk("VFS: Busy inodes after unmount of %s. "
267 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
268 			   sb->s_id);
269 		}
270 		put_fs_excl();
271 	}
272 	spin_lock(&sb_lock);
273 	/* should be initialized for __put_super_and_need_restart() */
274 	list_del_init(&sb->s_instances);
275 	spin_unlock(&sb_lock);
276 	up_write(&sb->s_umount);
277 }
278 
279 EXPORT_SYMBOL(generic_shutdown_super);
280 
281 /**
282  *	sget	-	find or create a superblock
283  *	@type:	filesystem type superblock should belong to
284  *	@test:	comparison callback
285  *	@set:	setup callback
286  *	@data:	argument to each of them
287  */
288 struct super_block *sget(struct file_system_type *type,
289 			int (*test)(struct super_block *,void *),
290 			int (*set)(struct super_block *,void *),
291 			void *data)
292 {
293 	struct super_block *s = NULL;
294 	struct super_block *old;
295 	int err;
296 
297 retry:
298 	spin_lock(&sb_lock);
299 	if (test) {
300 		list_for_each_entry(old, &type->fs_supers, s_instances) {
301 			if (!test(old, data))
302 				continue;
303 			if (!grab_super(old))
304 				goto retry;
305 			if (s) {
306 				up_write(&s->s_umount);
307 				destroy_super(s);
308 			}
309 			down_write(&old->s_umount);
310 			return old;
311 		}
312 	}
313 	if (!s) {
314 		spin_unlock(&sb_lock);
315 		s = alloc_super(type);
316 		if (!s)
317 			return ERR_PTR(-ENOMEM);
318 		goto retry;
319 	}
320 
321 	err = set(s, data);
322 	if (err) {
323 		spin_unlock(&sb_lock);
324 		up_write(&s->s_umount);
325 		destroy_super(s);
326 		return ERR_PTR(err);
327 	}
328 	s->s_type = type;
329 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
330 	list_add_tail(&s->s_list, &super_blocks);
331 	list_add(&s->s_instances, &type->fs_supers);
332 	spin_unlock(&sb_lock);
333 	get_filesystem(type);
334 	return s;
335 }
336 
337 EXPORT_SYMBOL(sget);
338 
339 void drop_super(struct super_block *sb)
340 {
341 	up_read(&sb->s_umount);
342 	put_super(sb);
343 }
344 
345 EXPORT_SYMBOL(drop_super);
346 
347 /**
348  * sync_supers - helper for periodic superblock writeback
349  *
350  * Call the write_super method if present on all dirty superblocks in
351  * the system.  This is for the periodic writeback used by most older
352  * filesystems.  For data integrity superblock writeback use
353  * sync_filesystems() instead.
354  *
355  * Note: check the dirty flag before waiting, so we don't
356  * hold up the sync while mounting a device. (The newly
357  * mounted device won't need syncing.)
358  */
359 void sync_supers(void)
360 {
361 	struct super_block *sb, *n;
362 
363 	spin_lock(&sb_lock);
364 	list_for_each_entry_safe(sb, n, &super_blocks, s_list) {
365 		if (list_empty(&sb->s_instances))
366 			continue;
367 		if (sb->s_op->write_super && sb->s_dirt) {
368 			sb->s_count++;
369 			spin_unlock(&sb_lock);
370 
371 			down_read(&sb->s_umount);
372 			if (sb->s_root && sb->s_dirt)
373 				sb->s_op->write_super(sb);
374 			up_read(&sb->s_umount);
375 
376 			spin_lock(&sb_lock);
377 			__put_super(sb);
378 		}
379 	}
380 	spin_unlock(&sb_lock);
381 }
382 
383 /**
384  *	iterate_supers - call function for all active superblocks
385  *	@f: function to call
386  *	@arg: argument to pass to it
387  *
388  *	Scans the superblock list and calls given function, passing it
389  *	locked superblock and given argument.
390  */
391 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
392 {
393 	struct super_block *sb, *n;
394 
395 	spin_lock(&sb_lock);
396 	list_for_each_entry_safe(sb, n, &super_blocks, s_list) {
397 		if (list_empty(&sb->s_instances))
398 			continue;
399 		sb->s_count++;
400 		spin_unlock(&sb_lock);
401 
402 		down_read(&sb->s_umount);
403 		if (sb->s_root)
404 			f(sb, arg);
405 		up_read(&sb->s_umount);
406 
407 		spin_lock(&sb_lock);
408 		__put_super(sb);
409 	}
410 	spin_unlock(&sb_lock);
411 }
412 
413 /**
414  *	get_super - get the superblock of a device
415  *	@bdev: device to get the superblock for
416  *
417  *	Scans the superblock list and finds the superblock of the file system
418  *	mounted on the device given. %NULL is returned if no match is found.
419  */
420 
421 struct super_block *get_super(struct block_device *bdev)
422 {
423 	struct super_block *sb;
424 
425 	if (!bdev)
426 		return NULL;
427 
428 	spin_lock(&sb_lock);
429 rescan:
430 	list_for_each_entry(sb, &super_blocks, s_list) {
431 		if (list_empty(&sb->s_instances))
432 			continue;
433 		if (sb->s_bdev == bdev) {
434 			sb->s_count++;
435 			spin_unlock(&sb_lock);
436 			down_read(&sb->s_umount);
437 			/* still alive? */
438 			if (sb->s_root)
439 				return sb;
440 			up_read(&sb->s_umount);
441 			/* nope, got unmounted */
442 			spin_lock(&sb_lock);
443 			__put_super(sb);
444 			goto rescan;
445 		}
446 	}
447 	spin_unlock(&sb_lock);
448 	return NULL;
449 }
450 
451 EXPORT_SYMBOL(get_super);
452 
453 /**
454  * get_active_super - get an active reference to the superblock of a device
455  * @bdev: device to get the superblock for
456  *
457  * Scans the superblock list and finds the superblock of the file system
458  * mounted on the device given.  Returns the superblock with an active
459  * reference or %NULL if none was found.
460  */
461 struct super_block *get_active_super(struct block_device *bdev)
462 {
463 	struct super_block *sb;
464 
465 	if (!bdev)
466 		return NULL;
467 
468 restart:
469 	spin_lock(&sb_lock);
470 	list_for_each_entry(sb, &super_blocks, s_list) {
471 		if (list_empty(&sb->s_instances))
472 			continue;
473 		if (sb->s_bdev == bdev) {
474 			if (grab_super(sb)) /* drops sb_lock */
475 				return sb;
476 			else
477 				goto restart;
478 		}
479 	}
480 	spin_unlock(&sb_lock);
481 	return NULL;
482 }
483 
484 struct super_block *user_get_super(dev_t dev)
485 {
486 	struct super_block *sb;
487 
488 	spin_lock(&sb_lock);
489 rescan:
490 	list_for_each_entry(sb, &super_blocks, s_list) {
491 		if (list_empty(&sb->s_instances))
492 			continue;
493 		if (sb->s_dev ==  dev) {
494 			sb->s_count++;
495 			spin_unlock(&sb_lock);
496 			down_read(&sb->s_umount);
497 			/* still alive? */
498 			if (sb->s_root)
499 				return sb;
500 			up_read(&sb->s_umount);
501 			/* nope, got unmounted */
502 			spin_lock(&sb_lock);
503 			__put_super(sb);
504 			goto rescan;
505 		}
506 	}
507 	spin_unlock(&sb_lock);
508 	return NULL;
509 }
510 
511 /**
512  *	do_remount_sb - asks filesystem to change mount options.
513  *	@sb:	superblock in question
514  *	@flags:	numeric part of options
515  *	@data:	the rest of options
516  *      @force: whether or not to force the change
517  *
518  *	Alters the mount options of a mounted file system.
519  */
520 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
521 {
522 	int retval;
523 	int remount_ro;
524 
525 	if (sb->s_frozen != SB_UNFROZEN)
526 		return -EBUSY;
527 
528 #ifdef CONFIG_BLOCK
529 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
530 		return -EACCES;
531 #endif
532 
533 	if (flags & MS_RDONLY)
534 		acct_auto_close(sb);
535 	shrink_dcache_sb(sb);
536 	sync_filesystem(sb);
537 
538 	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
539 
540 	/* If we are remounting RDONLY and current sb is read/write,
541 	   make sure there are no rw files opened */
542 	if (remount_ro) {
543 		if (force)
544 			mark_files_ro(sb);
545 		else if (!fs_may_remount_ro(sb))
546 			return -EBUSY;
547 	}
548 
549 	if (sb->s_op->remount_fs) {
550 		retval = sb->s_op->remount_fs(sb, &flags, data);
551 		if (retval)
552 			return retval;
553 	}
554 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
555 
556 	/*
557 	 * Some filesystems modify their metadata via some other path than the
558 	 * bdev buffer cache (eg. use a private mapping, or directories in
559 	 * pagecache, etc). Also file data modifications go via their own
560 	 * mappings. So If we try to mount readonly then copy the filesystem
561 	 * from bdev, we could get stale data, so invalidate it to give a best
562 	 * effort at coherency.
563 	 */
564 	if (remount_ro && sb->s_bdev)
565 		invalidate_bdev(sb->s_bdev);
566 	return 0;
567 }
568 
569 static void do_emergency_remount(struct work_struct *work)
570 {
571 	struct super_block *sb, *n;
572 
573 	spin_lock(&sb_lock);
574 	list_for_each_entry_safe(sb, n, &super_blocks, s_list) {
575 		if (list_empty(&sb->s_instances))
576 			continue;
577 		sb->s_count++;
578 		spin_unlock(&sb_lock);
579 		down_write(&sb->s_umount);
580 		if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
581 			/*
582 			 * What lock protects sb->s_flags??
583 			 */
584 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
585 		}
586 		up_write(&sb->s_umount);
587 		spin_lock(&sb_lock);
588 		__put_super(sb);
589 	}
590 	spin_unlock(&sb_lock);
591 	kfree(work);
592 	printk("Emergency Remount complete\n");
593 }
594 
595 void emergency_remount(void)
596 {
597 	struct work_struct *work;
598 
599 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
600 	if (work) {
601 		INIT_WORK(work, do_emergency_remount);
602 		schedule_work(work);
603 	}
604 }
605 
606 /*
607  * Unnamed block devices are dummy devices used by virtual
608  * filesystems which don't use real block-devices.  -- jrs
609  */
610 
611 static DEFINE_IDA(unnamed_dev_ida);
612 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
613 static int unnamed_dev_start = 0; /* don't bother trying below it */
614 
615 int set_anon_super(struct super_block *s, void *data)
616 {
617 	int dev;
618 	int error;
619 
620  retry:
621 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
622 		return -ENOMEM;
623 	spin_lock(&unnamed_dev_lock);
624 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
625 	if (!error)
626 		unnamed_dev_start = dev + 1;
627 	spin_unlock(&unnamed_dev_lock);
628 	if (error == -EAGAIN)
629 		/* We raced and lost with another CPU. */
630 		goto retry;
631 	else if (error)
632 		return -EAGAIN;
633 
634 	if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
635 		spin_lock(&unnamed_dev_lock);
636 		ida_remove(&unnamed_dev_ida, dev);
637 		if (unnamed_dev_start > dev)
638 			unnamed_dev_start = dev;
639 		spin_unlock(&unnamed_dev_lock);
640 		return -EMFILE;
641 	}
642 	s->s_dev = MKDEV(0, dev & MINORMASK);
643 	s->s_bdi = &noop_backing_dev_info;
644 	return 0;
645 }
646 
647 EXPORT_SYMBOL(set_anon_super);
648 
649 void kill_anon_super(struct super_block *sb)
650 {
651 	int slot = MINOR(sb->s_dev);
652 
653 	generic_shutdown_super(sb);
654 	spin_lock(&unnamed_dev_lock);
655 	ida_remove(&unnamed_dev_ida, slot);
656 	if (slot < unnamed_dev_start)
657 		unnamed_dev_start = slot;
658 	spin_unlock(&unnamed_dev_lock);
659 }
660 
661 EXPORT_SYMBOL(kill_anon_super);
662 
663 void kill_litter_super(struct super_block *sb)
664 {
665 	if (sb->s_root)
666 		d_genocide(sb->s_root);
667 	kill_anon_super(sb);
668 }
669 
670 EXPORT_SYMBOL(kill_litter_super);
671 
672 static int ns_test_super(struct super_block *sb, void *data)
673 {
674 	return sb->s_fs_info == data;
675 }
676 
677 static int ns_set_super(struct super_block *sb, void *data)
678 {
679 	sb->s_fs_info = data;
680 	return set_anon_super(sb, NULL);
681 }
682 
683 int get_sb_ns(struct file_system_type *fs_type, int flags, void *data,
684 	int (*fill_super)(struct super_block *, void *, int),
685 	struct vfsmount *mnt)
686 {
687 	struct super_block *sb;
688 
689 	sb = sget(fs_type, ns_test_super, ns_set_super, data);
690 	if (IS_ERR(sb))
691 		return PTR_ERR(sb);
692 
693 	if (!sb->s_root) {
694 		int err;
695 		sb->s_flags = flags;
696 		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
697 		if (err) {
698 			deactivate_locked_super(sb);
699 			return err;
700 		}
701 
702 		sb->s_flags |= MS_ACTIVE;
703 	}
704 
705 	simple_set_mnt(mnt, sb);
706 	return 0;
707 }
708 
709 EXPORT_SYMBOL(get_sb_ns);
710 
711 #ifdef CONFIG_BLOCK
712 static int set_bdev_super(struct super_block *s, void *data)
713 {
714 	s->s_bdev = data;
715 	s->s_dev = s->s_bdev->bd_dev;
716 
717 	/*
718 	 * We set the bdi here to the queue backing, file systems can
719 	 * overwrite this in ->fill_super()
720 	 */
721 	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
722 	return 0;
723 }
724 
725 static int test_bdev_super(struct super_block *s, void *data)
726 {
727 	return (void *)s->s_bdev == data;
728 }
729 
730 int get_sb_bdev(struct file_system_type *fs_type,
731 	int flags, const char *dev_name, void *data,
732 	int (*fill_super)(struct super_block *, void *, int),
733 	struct vfsmount *mnt)
734 {
735 	struct block_device *bdev;
736 	struct super_block *s;
737 	fmode_t mode = FMODE_READ;
738 	int error = 0;
739 
740 	if (!(flags & MS_RDONLY))
741 		mode |= FMODE_WRITE;
742 
743 	bdev = open_bdev_exclusive(dev_name, mode, fs_type);
744 	if (IS_ERR(bdev))
745 		return PTR_ERR(bdev);
746 
747 	/*
748 	 * once the super is inserted into the list by sget, s_umount
749 	 * will protect the lockfs code from trying to start a snapshot
750 	 * while we are mounting
751 	 */
752 	mutex_lock(&bdev->bd_fsfreeze_mutex);
753 	if (bdev->bd_fsfreeze_count > 0) {
754 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
755 		error = -EBUSY;
756 		goto error_bdev;
757 	}
758 	s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
759 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
760 	if (IS_ERR(s))
761 		goto error_s;
762 
763 	if (s->s_root) {
764 		if ((flags ^ s->s_flags) & MS_RDONLY) {
765 			deactivate_locked_super(s);
766 			error = -EBUSY;
767 			goto error_bdev;
768 		}
769 
770 		close_bdev_exclusive(bdev, mode);
771 	} else {
772 		char b[BDEVNAME_SIZE];
773 
774 		s->s_flags = flags;
775 		s->s_mode = mode;
776 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
777 		sb_set_blocksize(s, block_size(bdev));
778 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
779 		if (error) {
780 			deactivate_locked_super(s);
781 			goto error;
782 		}
783 
784 		s->s_flags |= MS_ACTIVE;
785 		bdev->bd_super = s;
786 	}
787 
788 	simple_set_mnt(mnt, s);
789 	return 0;
790 
791 error_s:
792 	error = PTR_ERR(s);
793 error_bdev:
794 	close_bdev_exclusive(bdev, mode);
795 error:
796 	return error;
797 }
798 
799 EXPORT_SYMBOL(get_sb_bdev);
800 
801 void kill_block_super(struct super_block *sb)
802 {
803 	struct block_device *bdev = sb->s_bdev;
804 	fmode_t mode = sb->s_mode;
805 
806 	bdev->bd_super = NULL;
807 	generic_shutdown_super(sb);
808 	sync_blockdev(bdev);
809 	close_bdev_exclusive(bdev, mode);
810 }
811 
812 EXPORT_SYMBOL(kill_block_super);
813 #endif
814 
815 int get_sb_nodev(struct file_system_type *fs_type,
816 	int flags, void *data,
817 	int (*fill_super)(struct super_block *, void *, int),
818 	struct vfsmount *mnt)
819 {
820 	int error;
821 	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
822 
823 	if (IS_ERR(s))
824 		return PTR_ERR(s);
825 
826 	s->s_flags = flags;
827 
828 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
829 	if (error) {
830 		deactivate_locked_super(s);
831 		return error;
832 	}
833 	s->s_flags |= MS_ACTIVE;
834 	simple_set_mnt(mnt, s);
835 	return 0;
836 }
837 
838 EXPORT_SYMBOL(get_sb_nodev);
839 
840 static int compare_single(struct super_block *s, void *p)
841 {
842 	return 1;
843 }
844 
845 int get_sb_single(struct file_system_type *fs_type,
846 	int flags, void *data,
847 	int (*fill_super)(struct super_block *, void *, int),
848 	struct vfsmount *mnt)
849 {
850 	struct super_block *s;
851 	int error;
852 
853 	s = sget(fs_type, compare_single, set_anon_super, NULL);
854 	if (IS_ERR(s))
855 		return PTR_ERR(s);
856 	if (!s->s_root) {
857 		s->s_flags = flags;
858 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
859 		if (error) {
860 			deactivate_locked_super(s);
861 			return error;
862 		}
863 		s->s_flags |= MS_ACTIVE;
864 	} else {
865 		do_remount_sb(s, flags, data, 0);
866 	}
867 	simple_set_mnt(mnt, s);
868 	return 0;
869 }
870 
871 EXPORT_SYMBOL(get_sb_single);
872 
873 struct vfsmount *
874 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
875 {
876 	struct vfsmount *mnt;
877 	char *secdata = NULL;
878 	int error;
879 
880 	if (!type)
881 		return ERR_PTR(-ENODEV);
882 
883 	error = -ENOMEM;
884 	mnt = alloc_vfsmnt(name);
885 	if (!mnt)
886 		goto out;
887 
888 	if (flags & MS_KERNMOUNT)
889 		mnt->mnt_flags = MNT_INTERNAL;
890 
891 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
892 		secdata = alloc_secdata();
893 		if (!secdata)
894 			goto out_mnt;
895 
896 		error = security_sb_copy_data(data, secdata);
897 		if (error)
898 			goto out_free_secdata;
899 	}
900 
901 	error = type->get_sb(type, flags, name, data, mnt);
902 	if (error < 0)
903 		goto out_free_secdata;
904 	BUG_ON(!mnt->mnt_sb);
905 	WARN_ON(!mnt->mnt_sb->s_bdi);
906 
907 	error = security_sb_kern_mount(mnt->mnt_sb, flags, secdata);
908 	if (error)
909 		goto out_sb;
910 
911 	/*
912 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
913 	 * but s_maxbytes was an unsigned long long for many releases. Throw
914 	 * this warning for a little while to try and catch filesystems that
915 	 * violate this rule. This warning should be either removed or
916 	 * converted to a BUG() in 2.6.34.
917 	 */
918 	WARN((mnt->mnt_sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
919 		"negative value (%lld)\n", type->name, mnt->mnt_sb->s_maxbytes);
920 
921 	mnt->mnt_mountpoint = mnt->mnt_root;
922 	mnt->mnt_parent = mnt;
923 	up_write(&mnt->mnt_sb->s_umount);
924 	free_secdata(secdata);
925 	return mnt;
926 out_sb:
927 	dput(mnt->mnt_root);
928 	deactivate_locked_super(mnt->mnt_sb);
929 out_free_secdata:
930 	free_secdata(secdata);
931 out_mnt:
932 	free_vfsmnt(mnt);
933 out:
934 	return ERR_PTR(error);
935 }
936 
937 EXPORT_SYMBOL_GPL(vfs_kern_mount);
938 
939 /**
940  * freeze_super - lock the filesystem and force it into a consistent state
941  * @sb: the super to lock
942  *
943  * Syncs the super to make sure the filesystem is consistent and calls the fs's
944  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
945  * -EBUSY.
946  */
947 int freeze_super(struct super_block *sb)
948 {
949 	int ret;
950 
951 	atomic_inc(&sb->s_active);
952 	down_write(&sb->s_umount);
953 	if (sb->s_frozen) {
954 		deactivate_locked_super(sb);
955 		return -EBUSY;
956 	}
957 
958 	if (sb->s_flags & MS_RDONLY) {
959 		sb->s_frozen = SB_FREEZE_TRANS;
960 		smp_wmb();
961 		up_write(&sb->s_umount);
962 		return 0;
963 	}
964 
965 	sb->s_frozen = SB_FREEZE_WRITE;
966 	smp_wmb();
967 
968 	sync_filesystem(sb);
969 
970 	sb->s_frozen = SB_FREEZE_TRANS;
971 	smp_wmb();
972 
973 	sync_blockdev(sb->s_bdev);
974 	if (sb->s_op->freeze_fs) {
975 		ret = sb->s_op->freeze_fs(sb);
976 		if (ret) {
977 			printk(KERN_ERR
978 				"VFS:Filesystem freeze failed\n");
979 			sb->s_frozen = SB_UNFROZEN;
980 			deactivate_locked_super(sb);
981 			return ret;
982 		}
983 	}
984 	up_write(&sb->s_umount);
985 	return 0;
986 }
987 EXPORT_SYMBOL(freeze_super);
988 
989 /**
990  * thaw_super -- unlock filesystem
991  * @sb: the super to thaw
992  *
993  * Unlocks the filesystem and marks it writeable again after freeze_super().
994  */
995 int thaw_super(struct super_block *sb)
996 {
997 	int error;
998 
999 	down_write(&sb->s_umount);
1000 	if (sb->s_frozen == SB_UNFROZEN) {
1001 		up_write(&sb->s_umount);
1002 		return -EINVAL;
1003 	}
1004 
1005 	if (sb->s_flags & MS_RDONLY)
1006 		goto out;
1007 
1008 	if (sb->s_op->unfreeze_fs) {
1009 		error = sb->s_op->unfreeze_fs(sb);
1010 		if (error) {
1011 			printk(KERN_ERR
1012 				"VFS:Filesystem thaw failed\n");
1013 			sb->s_frozen = SB_FREEZE_TRANS;
1014 			up_write(&sb->s_umount);
1015 			return error;
1016 		}
1017 	}
1018 
1019 out:
1020 	sb->s_frozen = SB_UNFROZEN;
1021 	smp_wmb();
1022 	wake_up(&sb->s_wait_unfrozen);
1023 	deactivate_locked_super(sb);
1024 
1025 	return 0;
1026 }
1027 EXPORT_SYMBOL(thaw_super);
1028 
1029 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1030 {
1031 	int err;
1032 	const char *subtype = strchr(fstype, '.');
1033 	if (subtype) {
1034 		subtype++;
1035 		err = -EINVAL;
1036 		if (!subtype[0])
1037 			goto err;
1038 	} else
1039 		subtype = "";
1040 
1041 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1042 	err = -ENOMEM;
1043 	if (!mnt->mnt_sb->s_subtype)
1044 		goto err;
1045 	return mnt;
1046 
1047  err:
1048 	mntput(mnt);
1049 	return ERR_PTR(err);
1050 }
1051 
1052 struct vfsmount *
1053 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1054 {
1055 	struct file_system_type *type = get_fs_type(fstype);
1056 	struct vfsmount *mnt;
1057 	if (!type)
1058 		return ERR_PTR(-ENODEV);
1059 	mnt = vfs_kern_mount(type, flags, name, data);
1060 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1061 	    !mnt->mnt_sb->s_subtype)
1062 		mnt = fs_set_subtype(mnt, fstype);
1063 	put_filesystem(type);
1064 	return mnt;
1065 }
1066 EXPORT_SYMBOL_GPL(do_kern_mount);
1067 
1068 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
1069 {
1070 	return vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
1071 }
1072 
1073 EXPORT_SYMBOL_GPL(kern_mount_data);
1074