1 /* 2 * linux/fs/super.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * super.c contains code to handle: - mount structures 7 * - super-block tables 8 * - filesystem drivers list 9 * - mount system call 10 * - umount system call 11 * - ustat system call 12 * 13 * GK 2/5/95 - Changed to support mounting the root fs via NFS 14 * 15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 17 * Added options to /proc/mounts: 18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 21 */ 22 23 #include <linux/export.h> 24 #include <linux/slab.h> 25 #include <linux/acct.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/cleancache.h> 35 #include <linux/fsnotify.h> 36 #include "internal.h" 37 38 39 LIST_HEAD(super_blocks); 40 DEFINE_SPINLOCK(sb_lock); 41 42 /* 43 * One thing we have to be careful of with a per-sb shrinker is that we don't 44 * drop the last active reference to the superblock from within the shrinker. 45 * If that happens we could trigger unregistering the shrinker from within the 46 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 47 * take a passive reference to the superblock to avoid this from occurring. 48 */ 49 static int prune_super(struct shrinker *shrink, struct shrink_control *sc) 50 { 51 struct super_block *sb; 52 int fs_objects = 0; 53 int total_objects; 54 55 sb = container_of(shrink, struct super_block, s_shrink); 56 57 /* 58 * Deadlock avoidance. We may hold various FS locks, and we don't want 59 * to recurse into the FS that called us in clear_inode() and friends.. 60 */ 61 if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS)) 62 return -1; 63 64 if (!grab_super_passive(sb)) 65 return !sc->nr_to_scan ? 0 : -1; 66 67 if (sb->s_op && sb->s_op->nr_cached_objects) 68 fs_objects = sb->s_op->nr_cached_objects(sb); 69 70 total_objects = sb->s_nr_dentry_unused + 71 sb->s_nr_inodes_unused + fs_objects + 1; 72 73 if (sc->nr_to_scan) { 74 int dentries; 75 int inodes; 76 77 /* proportion the scan between the caches */ 78 dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) / 79 total_objects; 80 inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) / 81 total_objects; 82 if (fs_objects) 83 fs_objects = (sc->nr_to_scan * fs_objects) / 84 total_objects; 85 /* 86 * prune the dcache first as the icache is pinned by it, then 87 * prune the icache, followed by the filesystem specific caches 88 */ 89 prune_dcache_sb(sb, dentries); 90 prune_icache_sb(sb, inodes); 91 92 if (fs_objects && sb->s_op->free_cached_objects) { 93 sb->s_op->free_cached_objects(sb, fs_objects); 94 fs_objects = sb->s_op->nr_cached_objects(sb); 95 } 96 total_objects = sb->s_nr_dentry_unused + 97 sb->s_nr_inodes_unused + fs_objects; 98 } 99 100 total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure; 101 drop_super(sb); 102 return total_objects; 103 } 104 105 /** 106 * alloc_super - create new superblock 107 * @type: filesystem type superblock should belong to 108 * 109 * Allocates and initializes a new &struct super_block. alloc_super() 110 * returns a pointer new superblock or %NULL if allocation had failed. 111 */ 112 static struct super_block *alloc_super(struct file_system_type *type) 113 { 114 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 115 static const struct super_operations default_op; 116 117 if (s) { 118 if (security_sb_alloc(s)) { 119 kfree(s); 120 s = NULL; 121 goto out; 122 } 123 #ifdef CONFIG_SMP 124 s->s_files = alloc_percpu(struct list_head); 125 if (!s->s_files) { 126 security_sb_free(s); 127 kfree(s); 128 s = NULL; 129 goto out; 130 } else { 131 int i; 132 133 for_each_possible_cpu(i) 134 INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i)); 135 } 136 #else 137 INIT_LIST_HEAD(&s->s_files); 138 #endif 139 s->s_bdi = &default_backing_dev_info; 140 INIT_HLIST_NODE(&s->s_instances); 141 INIT_HLIST_BL_HEAD(&s->s_anon); 142 INIT_LIST_HEAD(&s->s_inodes); 143 INIT_LIST_HEAD(&s->s_dentry_lru); 144 INIT_LIST_HEAD(&s->s_inode_lru); 145 spin_lock_init(&s->s_inode_lru_lock); 146 INIT_LIST_HEAD(&s->s_mounts); 147 init_rwsem(&s->s_umount); 148 mutex_init(&s->s_lock); 149 lockdep_set_class(&s->s_umount, &type->s_umount_key); 150 /* 151 * The locking rules for s_lock are up to the 152 * filesystem. For example ext3fs has different 153 * lock ordering than usbfs: 154 */ 155 lockdep_set_class(&s->s_lock, &type->s_lock_key); 156 /* 157 * sget() can have s_umount recursion. 158 * 159 * When it cannot find a suitable sb, it allocates a new 160 * one (this one), and tries again to find a suitable old 161 * one. 162 * 163 * In case that succeeds, it will acquire the s_umount 164 * lock of the old one. Since these are clearly distrinct 165 * locks, and this object isn't exposed yet, there's no 166 * risk of deadlocks. 167 * 168 * Annotate this by putting this lock in a different 169 * subclass. 170 */ 171 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 172 s->s_count = 1; 173 atomic_set(&s->s_active, 1); 174 mutex_init(&s->s_vfs_rename_mutex); 175 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 176 mutex_init(&s->s_dquot.dqio_mutex); 177 mutex_init(&s->s_dquot.dqonoff_mutex); 178 init_rwsem(&s->s_dquot.dqptr_sem); 179 init_waitqueue_head(&s->s_wait_unfrozen); 180 s->s_maxbytes = MAX_NON_LFS; 181 s->s_op = &default_op; 182 s->s_time_gran = 1000000000; 183 s->cleancache_poolid = -1; 184 185 s->s_shrink.seeks = DEFAULT_SEEKS; 186 s->s_shrink.shrink = prune_super; 187 s->s_shrink.batch = 1024; 188 } 189 out: 190 return s; 191 } 192 193 /** 194 * destroy_super - frees a superblock 195 * @s: superblock to free 196 * 197 * Frees a superblock. 198 */ 199 static inline void destroy_super(struct super_block *s) 200 { 201 #ifdef CONFIG_SMP 202 free_percpu(s->s_files); 203 #endif 204 security_sb_free(s); 205 WARN_ON(!list_empty(&s->s_mounts)); 206 kfree(s->s_subtype); 207 kfree(s->s_options); 208 kfree(s); 209 } 210 211 /* Superblock refcounting */ 212 213 /* 214 * Drop a superblock's refcount. The caller must hold sb_lock. 215 */ 216 static void __put_super(struct super_block *sb) 217 { 218 if (!--sb->s_count) { 219 list_del_init(&sb->s_list); 220 destroy_super(sb); 221 } 222 } 223 224 /** 225 * put_super - drop a temporary reference to superblock 226 * @sb: superblock in question 227 * 228 * Drops a temporary reference, frees superblock if there's no 229 * references left. 230 */ 231 static void put_super(struct super_block *sb) 232 { 233 spin_lock(&sb_lock); 234 __put_super(sb); 235 spin_unlock(&sb_lock); 236 } 237 238 239 /** 240 * deactivate_locked_super - drop an active reference to superblock 241 * @s: superblock to deactivate 242 * 243 * Drops an active reference to superblock, converting it into a temprory 244 * one if there is no other active references left. In that case we 245 * tell fs driver to shut it down and drop the temporary reference we 246 * had just acquired. 247 * 248 * Caller holds exclusive lock on superblock; that lock is released. 249 */ 250 void deactivate_locked_super(struct super_block *s) 251 { 252 struct file_system_type *fs = s->s_type; 253 if (atomic_dec_and_test(&s->s_active)) { 254 cleancache_invalidate_fs(s); 255 fs->kill_sb(s); 256 257 /* caches are now gone, we can safely kill the shrinker now */ 258 unregister_shrinker(&s->s_shrink); 259 260 /* 261 * We need to call rcu_barrier so all the delayed rcu free 262 * inodes are flushed before we release the fs module. 263 */ 264 rcu_barrier(); 265 put_filesystem(fs); 266 put_super(s); 267 } else { 268 up_write(&s->s_umount); 269 } 270 } 271 272 EXPORT_SYMBOL(deactivate_locked_super); 273 274 /** 275 * deactivate_super - drop an active reference to superblock 276 * @s: superblock to deactivate 277 * 278 * Variant of deactivate_locked_super(), except that superblock is *not* 279 * locked by caller. If we are going to drop the final active reference, 280 * lock will be acquired prior to that. 281 */ 282 void deactivate_super(struct super_block *s) 283 { 284 if (!atomic_add_unless(&s->s_active, -1, 1)) { 285 down_write(&s->s_umount); 286 deactivate_locked_super(s); 287 } 288 } 289 290 EXPORT_SYMBOL(deactivate_super); 291 292 /** 293 * grab_super - acquire an active reference 294 * @s: reference we are trying to make active 295 * 296 * Tries to acquire an active reference. grab_super() is used when we 297 * had just found a superblock in super_blocks or fs_type->fs_supers 298 * and want to turn it into a full-blown active reference. grab_super() 299 * is called with sb_lock held and drops it. Returns 1 in case of 300 * success, 0 if we had failed (superblock contents was already dead or 301 * dying when grab_super() had been called). 302 */ 303 static int grab_super(struct super_block *s) __releases(sb_lock) 304 { 305 if (atomic_inc_not_zero(&s->s_active)) { 306 spin_unlock(&sb_lock); 307 return 1; 308 } 309 /* it's going away */ 310 s->s_count++; 311 spin_unlock(&sb_lock); 312 /* wait for it to die */ 313 down_write(&s->s_umount); 314 up_write(&s->s_umount); 315 put_super(s); 316 return 0; 317 } 318 319 /* 320 * grab_super_passive - acquire a passive reference 321 * @s: reference we are trying to grab 322 * 323 * Tries to acquire a passive reference. This is used in places where we 324 * cannot take an active reference but we need to ensure that the 325 * superblock does not go away while we are working on it. It returns 326 * false if a reference was not gained, and returns true with the s_umount 327 * lock held in read mode if a reference is gained. On successful return, 328 * the caller must drop the s_umount lock and the passive reference when 329 * done. 330 */ 331 bool grab_super_passive(struct super_block *sb) 332 { 333 spin_lock(&sb_lock); 334 if (hlist_unhashed(&sb->s_instances)) { 335 spin_unlock(&sb_lock); 336 return false; 337 } 338 339 sb->s_count++; 340 spin_unlock(&sb_lock); 341 342 if (down_read_trylock(&sb->s_umount)) { 343 if (sb->s_root && (sb->s_flags & MS_BORN)) 344 return true; 345 up_read(&sb->s_umount); 346 } 347 348 put_super(sb); 349 return false; 350 } 351 352 /* 353 * Superblock locking. We really ought to get rid of these two. 354 */ 355 void lock_super(struct super_block * sb) 356 { 357 mutex_lock(&sb->s_lock); 358 } 359 360 void unlock_super(struct super_block * sb) 361 { 362 mutex_unlock(&sb->s_lock); 363 } 364 365 EXPORT_SYMBOL(lock_super); 366 EXPORT_SYMBOL(unlock_super); 367 368 /** 369 * generic_shutdown_super - common helper for ->kill_sb() 370 * @sb: superblock to kill 371 * 372 * generic_shutdown_super() does all fs-independent work on superblock 373 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 374 * that need destruction out of superblock, call generic_shutdown_super() 375 * and release aforementioned objects. Note: dentries and inodes _are_ 376 * taken care of and do not need specific handling. 377 * 378 * Upon calling this function, the filesystem may no longer alter or 379 * rearrange the set of dentries belonging to this super_block, nor may it 380 * change the attachments of dentries to inodes. 381 */ 382 void generic_shutdown_super(struct super_block *sb) 383 { 384 const struct super_operations *sop = sb->s_op; 385 386 if (sb->s_root) { 387 shrink_dcache_for_umount(sb); 388 sync_filesystem(sb); 389 sb->s_flags &= ~MS_ACTIVE; 390 391 fsnotify_unmount_inodes(&sb->s_inodes); 392 393 evict_inodes(sb); 394 395 if (sop->put_super) 396 sop->put_super(sb); 397 398 if (!list_empty(&sb->s_inodes)) { 399 printk("VFS: Busy inodes after unmount of %s. " 400 "Self-destruct in 5 seconds. Have a nice day...\n", 401 sb->s_id); 402 } 403 } 404 spin_lock(&sb_lock); 405 /* should be initialized for __put_super_and_need_restart() */ 406 hlist_del_init(&sb->s_instances); 407 spin_unlock(&sb_lock); 408 up_write(&sb->s_umount); 409 } 410 411 EXPORT_SYMBOL(generic_shutdown_super); 412 413 /** 414 * sget - find or create a superblock 415 * @type: filesystem type superblock should belong to 416 * @test: comparison callback 417 * @set: setup callback 418 * @data: argument to each of them 419 */ 420 struct super_block *sget(struct file_system_type *type, 421 int (*test)(struct super_block *,void *), 422 int (*set)(struct super_block *,void *), 423 void *data) 424 { 425 struct super_block *s = NULL; 426 struct hlist_node *node; 427 struct super_block *old; 428 int err; 429 430 retry: 431 spin_lock(&sb_lock); 432 if (test) { 433 hlist_for_each_entry(old, node, &type->fs_supers, s_instances) { 434 if (!test(old, data)) 435 continue; 436 if (!grab_super(old)) 437 goto retry; 438 if (s) { 439 up_write(&s->s_umount); 440 destroy_super(s); 441 s = NULL; 442 } 443 down_write(&old->s_umount); 444 if (unlikely(!(old->s_flags & MS_BORN))) { 445 deactivate_locked_super(old); 446 goto retry; 447 } 448 return old; 449 } 450 } 451 if (!s) { 452 spin_unlock(&sb_lock); 453 s = alloc_super(type); 454 if (!s) 455 return ERR_PTR(-ENOMEM); 456 goto retry; 457 } 458 459 err = set(s, data); 460 if (err) { 461 spin_unlock(&sb_lock); 462 up_write(&s->s_umount); 463 destroy_super(s); 464 return ERR_PTR(err); 465 } 466 s->s_type = type; 467 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 468 list_add_tail(&s->s_list, &super_blocks); 469 hlist_add_head(&s->s_instances, &type->fs_supers); 470 spin_unlock(&sb_lock); 471 get_filesystem(type); 472 register_shrinker(&s->s_shrink); 473 return s; 474 } 475 476 EXPORT_SYMBOL(sget); 477 478 void drop_super(struct super_block *sb) 479 { 480 up_read(&sb->s_umount); 481 put_super(sb); 482 } 483 484 EXPORT_SYMBOL(drop_super); 485 486 /** 487 * sync_supers - helper for periodic superblock writeback 488 * 489 * Call the write_super method if present on all dirty superblocks in 490 * the system. This is for the periodic writeback used by most older 491 * filesystems. For data integrity superblock writeback use 492 * sync_filesystems() instead. 493 * 494 * Note: check the dirty flag before waiting, so we don't 495 * hold up the sync while mounting a device. (The newly 496 * mounted device won't need syncing.) 497 */ 498 void sync_supers(void) 499 { 500 struct super_block *sb, *p = NULL; 501 502 spin_lock(&sb_lock); 503 list_for_each_entry(sb, &super_blocks, s_list) { 504 if (hlist_unhashed(&sb->s_instances)) 505 continue; 506 if (sb->s_op->write_super && sb->s_dirt) { 507 sb->s_count++; 508 spin_unlock(&sb_lock); 509 510 down_read(&sb->s_umount); 511 if (sb->s_root && sb->s_dirt && (sb->s_flags & MS_BORN)) 512 sb->s_op->write_super(sb); 513 up_read(&sb->s_umount); 514 515 spin_lock(&sb_lock); 516 if (p) 517 __put_super(p); 518 p = sb; 519 } 520 } 521 if (p) 522 __put_super(p); 523 spin_unlock(&sb_lock); 524 } 525 526 /** 527 * iterate_supers - call function for all active superblocks 528 * @f: function to call 529 * @arg: argument to pass to it 530 * 531 * Scans the superblock list and calls given function, passing it 532 * locked superblock and given argument. 533 */ 534 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 535 { 536 struct super_block *sb, *p = NULL; 537 538 spin_lock(&sb_lock); 539 list_for_each_entry(sb, &super_blocks, s_list) { 540 if (hlist_unhashed(&sb->s_instances)) 541 continue; 542 sb->s_count++; 543 spin_unlock(&sb_lock); 544 545 down_read(&sb->s_umount); 546 if (sb->s_root && (sb->s_flags & MS_BORN)) 547 f(sb, arg); 548 up_read(&sb->s_umount); 549 550 spin_lock(&sb_lock); 551 if (p) 552 __put_super(p); 553 p = sb; 554 } 555 if (p) 556 __put_super(p); 557 spin_unlock(&sb_lock); 558 } 559 560 /** 561 * iterate_supers_type - call function for superblocks of given type 562 * @type: fs type 563 * @f: function to call 564 * @arg: argument to pass to it 565 * 566 * Scans the superblock list and calls given function, passing it 567 * locked superblock and given argument. 568 */ 569 void iterate_supers_type(struct file_system_type *type, 570 void (*f)(struct super_block *, void *), void *arg) 571 { 572 struct super_block *sb, *p = NULL; 573 struct hlist_node *node; 574 575 spin_lock(&sb_lock); 576 hlist_for_each_entry(sb, node, &type->fs_supers, s_instances) { 577 sb->s_count++; 578 spin_unlock(&sb_lock); 579 580 down_read(&sb->s_umount); 581 if (sb->s_root && (sb->s_flags & MS_BORN)) 582 f(sb, arg); 583 up_read(&sb->s_umount); 584 585 spin_lock(&sb_lock); 586 if (p) 587 __put_super(p); 588 p = sb; 589 } 590 if (p) 591 __put_super(p); 592 spin_unlock(&sb_lock); 593 } 594 595 EXPORT_SYMBOL(iterate_supers_type); 596 597 /** 598 * get_super - get the superblock of a device 599 * @bdev: device to get the superblock for 600 * 601 * Scans the superblock list and finds the superblock of the file system 602 * mounted on the device given. %NULL is returned if no match is found. 603 */ 604 605 struct super_block *get_super(struct block_device *bdev) 606 { 607 struct super_block *sb; 608 609 if (!bdev) 610 return NULL; 611 612 spin_lock(&sb_lock); 613 rescan: 614 list_for_each_entry(sb, &super_blocks, s_list) { 615 if (hlist_unhashed(&sb->s_instances)) 616 continue; 617 if (sb->s_bdev == bdev) { 618 sb->s_count++; 619 spin_unlock(&sb_lock); 620 down_read(&sb->s_umount); 621 /* still alive? */ 622 if (sb->s_root && (sb->s_flags & MS_BORN)) 623 return sb; 624 up_read(&sb->s_umount); 625 /* nope, got unmounted */ 626 spin_lock(&sb_lock); 627 __put_super(sb); 628 goto rescan; 629 } 630 } 631 spin_unlock(&sb_lock); 632 return NULL; 633 } 634 635 EXPORT_SYMBOL(get_super); 636 637 /** 638 * get_super_thawed - get thawed superblock of a device 639 * @bdev: device to get the superblock for 640 * 641 * Scans the superblock list and finds the superblock of the file system 642 * mounted on the device. The superblock is returned once it is thawed 643 * (or immediately if it was not frozen). %NULL is returned if no match 644 * is found. 645 */ 646 struct super_block *get_super_thawed(struct block_device *bdev) 647 { 648 while (1) { 649 struct super_block *s = get_super(bdev); 650 if (!s || s->s_frozen == SB_UNFROZEN) 651 return s; 652 up_read(&s->s_umount); 653 vfs_check_frozen(s, SB_FREEZE_WRITE); 654 put_super(s); 655 } 656 } 657 EXPORT_SYMBOL(get_super_thawed); 658 659 /** 660 * get_active_super - get an active reference to the superblock of a device 661 * @bdev: device to get the superblock for 662 * 663 * Scans the superblock list and finds the superblock of the file system 664 * mounted on the device given. Returns the superblock with an active 665 * reference or %NULL if none was found. 666 */ 667 struct super_block *get_active_super(struct block_device *bdev) 668 { 669 struct super_block *sb; 670 671 if (!bdev) 672 return NULL; 673 674 restart: 675 spin_lock(&sb_lock); 676 list_for_each_entry(sb, &super_blocks, s_list) { 677 if (hlist_unhashed(&sb->s_instances)) 678 continue; 679 if (sb->s_bdev == bdev) { 680 if (grab_super(sb)) /* drops sb_lock */ 681 return sb; 682 else 683 goto restart; 684 } 685 } 686 spin_unlock(&sb_lock); 687 return NULL; 688 } 689 690 struct super_block *user_get_super(dev_t dev) 691 { 692 struct super_block *sb; 693 694 spin_lock(&sb_lock); 695 rescan: 696 list_for_each_entry(sb, &super_blocks, s_list) { 697 if (hlist_unhashed(&sb->s_instances)) 698 continue; 699 if (sb->s_dev == dev) { 700 sb->s_count++; 701 spin_unlock(&sb_lock); 702 down_read(&sb->s_umount); 703 /* still alive? */ 704 if (sb->s_root && (sb->s_flags & MS_BORN)) 705 return sb; 706 up_read(&sb->s_umount); 707 /* nope, got unmounted */ 708 spin_lock(&sb_lock); 709 __put_super(sb); 710 goto rescan; 711 } 712 } 713 spin_unlock(&sb_lock); 714 return NULL; 715 } 716 717 /** 718 * do_remount_sb - asks filesystem to change mount options. 719 * @sb: superblock in question 720 * @flags: numeric part of options 721 * @data: the rest of options 722 * @force: whether or not to force the change 723 * 724 * Alters the mount options of a mounted file system. 725 */ 726 int do_remount_sb(struct super_block *sb, int flags, void *data, int force) 727 { 728 int retval; 729 int remount_ro; 730 731 if (sb->s_frozen != SB_UNFROZEN) 732 return -EBUSY; 733 734 #ifdef CONFIG_BLOCK 735 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev)) 736 return -EACCES; 737 #endif 738 739 if (flags & MS_RDONLY) 740 acct_auto_close(sb); 741 shrink_dcache_sb(sb); 742 sync_filesystem(sb); 743 744 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY); 745 746 /* If we are remounting RDONLY and current sb is read/write, 747 make sure there are no rw files opened */ 748 if (remount_ro) { 749 if (force) { 750 mark_files_ro(sb); 751 } else { 752 retval = sb_prepare_remount_readonly(sb); 753 if (retval) 754 return retval; 755 } 756 } 757 758 if (sb->s_op->remount_fs) { 759 retval = sb->s_op->remount_fs(sb, &flags, data); 760 if (retval) { 761 if (!force) 762 goto cancel_readonly; 763 /* If forced remount, go ahead despite any errors */ 764 WARN(1, "forced remount of a %s fs returned %i\n", 765 sb->s_type->name, retval); 766 } 767 } 768 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK); 769 /* Needs to be ordered wrt mnt_is_readonly() */ 770 smp_wmb(); 771 sb->s_readonly_remount = 0; 772 773 /* 774 * Some filesystems modify their metadata via some other path than the 775 * bdev buffer cache (eg. use a private mapping, or directories in 776 * pagecache, etc). Also file data modifications go via their own 777 * mappings. So If we try to mount readonly then copy the filesystem 778 * from bdev, we could get stale data, so invalidate it to give a best 779 * effort at coherency. 780 */ 781 if (remount_ro && sb->s_bdev) 782 invalidate_bdev(sb->s_bdev); 783 return 0; 784 785 cancel_readonly: 786 sb->s_readonly_remount = 0; 787 return retval; 788 } 789 790 static void do_emergency_remount(struct work_struct *work) 791 { 792 struct super_block *sb, *p = NULL; 793 794 spin_lock(&sb_lock); 795 list_for_each_entry(sb, &super_blocks, s_list) { 796 if (hlist_unhashed(&sb->s_instances)) 797 continue; 798 sb->s_count++; 799 spin_unlock(&sb_lock); 800 down_write(&sb->s_umount); 801 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) && 802 !(sb->s_flags & MS_RDONLY)) { 803 /* 804 * What lock protects sb->s_flags?? 805 */ 806 do_remount_sb(sb, MS_RDONLY, NULL, 1); 807 } 808 up_write(&sb->s_umount); 809 spin_lock(&sb_lock); 810 if (p) 811 __put_super(p); 812 p = sb; 813 } 814 if (p) 815 __put_super(p); 816 spin_unlock(&sb_lock); 817 kfree(work); 818 printk("Emergency Remount complete\n"); 819 } 820 821 void emergency_remount(void) 822 { 823 struct work_struct *work; 824 825 work = kmalloc(sizeof(*work), GFP_ATOMIC); 826 if (work) { 827 INIT_WORK(work, do_emergency_remount); 828 schedule_work(work); 829 } 830 } 831 832 /* 833 * Unnamed block devices are dummy devices used by virtual 834 * filesystems which don't use real block-devices. -- jrs 835 */ 836 837 static DEFINE_IDA(unnamed_dev_ida); 838 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */ 839 static int unnamed_dev_start = 0; /* don't bother trying below it */ 840 841 int get_anon_bdev(dev_t *p) 842 { 843 int dev; 844 int error; 845 846 retry: 847 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0) 848 return -ENOMEM; 849 spin_lock(&unnamed_dev_lock); 850 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev); 851 if (!error) 852 unnamed_dev_start = dev + 1; 853 spin_unlock(&unnamed_dev_lock); 854 if (error == -EAGAIN) 855 /* We raced and lost with another CPU. */ 856 goto retry; 857 else if (error) 858 return -EAGAIN; 859 860 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) { 861 spin_lock(&unnamed_dev_lock); 862 ida_remove(&unnamed_dev_ida, dev); 863 if (unnamed_dev_start > dev) 864 unnamed_dev_start = dev; 865 spin_unlock(&unnamed_dev_lock); 866 return -EMFILE; 867 } 868 *p = MKDEV(0, dev & MINORMASK); 869 return 0; 870 } 871 EXPORT_SYMBOL(get_anon_bdev); 872 873 void free_anon_bdev(dev_t dev) 874 { 875 int slot = MINOR(dev); 876 spin_lock(&unnamed_dev_lock); 877 ida_remove(&unnamed_dev_ida, slot); 878 if (slot < unnamed_dev_start) 879 unnamed_dev_start = slot; 880 spin_unlock(&unnamed_dev_lock); 881 } 882 EXPORT_SYMBOL(free_anon_bdev); 883 884 int set_anon_super(struct super_block *s, void *data) 885 { 886 int error = get_anon_bdev(&s->s_dev); 887 if (!error) 888 s->s_bdi = &noop_backing_dev_info; 889 return error; 890 } 891 892 EXPORT_SYMBOL(set_anon_super); 893 894 void kill_anon_super(struct super_block *sb) 895 { 896 dev_t dev = sb->s_dev; 897 generic_shutdown_super(sb); 898 free_anon_bdev(dev); 899 } 900 901 EXPORT_SYMBOL(kill_anon_super); 902 903 void kill_litter_super(struct super_block *sb) 904 { 905 if (sb->s_root) 906 d_genocide(sb->s_root); 907 kill_anon_super(sb); 908 } 909 910 EXPORT_SYMBOL(kill_litter_super); 911 912 static int ns_test_super(struct super_block *sb, void *data) 913 { 914 return sb->s_fs_info == data; 915 } 916 917 static int ns_set_super(struct super_block *sb, void *data) 918 { 919 sb->s_fs_info = data; 920 return set_anon_super(sb, NULL); 921 } 922 923 struct dentry *mount_ns(struct file_system_type *fs_type, int flags, 924 void *data, int (*fill_super)(struct super_block *, void *, int)) 925 { 926 struct super_block *sb; 927 928 sb = sget(fs_type, ns_test_super, ns_set_super, data); 929 if (IS_ERR(sb)) 930 return ERR_CAST(sb); 931 932 if (!sb->s_root) { 933 int err; 934 sb->s_flags = flags; 935 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 936 if (err) { 937 deactivate_locked_super(sb); 938 return ERR_PTR(err); 939 } 940 941 sb->s_flags |= MS_ACTIVE; 942 } 943 944 return dget(sb->s_root); 945 } 946 947 EXPORT_SYMBOL(mount_ns); 948 949 #ifdef CONFIG_BLOCK 950 static int set_bdev_super(struct super_block *s, void *data) 951 { 952 s->s_bdev = data; 953 s->s_dev = s->s_bdev->bd_dev; 954 955 /* 956 * We set the bdi here to the queue backing, file systems can 957 * overwrite this in ->fill_super() 958 */ 959 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info; 960 return 0; 961 } 962 963 static int test_bdev_super(struct super_block *s, void *data) 964 { 965 return (void *)s->s_bdev == data; 966 } 967 968 struct dentry *mount_bdev(struct file_system_type *fs_type, 969 int flags, const char *dev_name, void *data, 970 int (*fill_super)(struct super_block *, void *, int)) 971 { 972 struct block_device *bdev; 973 struct super_block *s; 974 fmode_t mode = FMODE_READ | FMODE_EXCL; 975 int error = 0; 976 977 if (!(flags & MS_RDONLY)) 978 mode |= FMODE_WRITE; 979 980 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 981 if (IS_ERR(bdev)) 982 return ERR_CAST(bdev); 983 984 /* 985 * once the super is inserted into the list by sget, s_umount 986 * will protect the lockfs code from trying to start a snapshot 987 * while we are mounting 988 */ 989 mutex_lock(&bdev->bd_fsfreeze_mutex); 990 if (bdev->bd_fsfreeze_count > 0) { 991 mutex_unlock(&bdev->bd_fsfreeze_mutex); 992 error = -EBUSY; 993 goto error_bdev; 994 } 995 s = sget(fs_type, test_bdev_super, set_bdev_super, bdev); 996 mutex_unlock(&bdev->bd_fsfreeze_mutex); 997 if (IS_ERR(s)) 998 goto error_s; 999 1000 if (s->s_root) { 1001 if ((flags ^ s->s_flags) & MS_RDONLY) { 1002 deactivate_locked_super(s); 1003 error = -EBUSY; 1004 goto error_bdev; 1005 } 1006 1007 /* 1008 * s_umount nests inside bd_mutex during 1009 * __invalidate_device(). blkdev_put() acquires 1010 * bd_mutex and can't be called under s_umount. Drop 1011 * s_umount temporarily. This is safe as we're 1012 * holding an active reference. 1013 */ 1014 up_write(&s->s_umount); 1015 blkdev_put(bdev, mode); 1016 down_write(&s->s_umount); 1017 } else { 1018 char b[BDEVNAME_SIZE]; 1019 1020 s->s_flags = flags | MS_NOSEC; 1021 s->s_mode = mode; 1022 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); 1023 sb_set_blocksize(s, block_size(bdev)); 1024 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1025 if (error) { 1026 deactivate_locked_super(s); 1027 goto error; 1028 } 1029 1030 s->s_flags |= MS_ACTIVE; 1031 bdev->bd_super = s; 1032 } 1033 1034 return dget(s->s_root); 1035 1036 error_s: 1037 error = PTR_ERR(s); 1038 error_bdev: 1039 blkdev_put(bdev, mode); 1040 error: 1041 return ERR_PTR(error); 1042 } 1043 EXPORT_SYMBOL(mount_bdev); 1044 1045 void kill_block_super(struct super_block *sb) 1046 { 1047 struct block_device *bdev = sb->s_bdev; 1048 fmode_t mode = sb->s_mode; 1049 1050 bdev->bd_super = NULL; 1051 generic_shutdown_super(sb); 1052 sync_blockdev(bdev); 1053 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 1054 blkdev_put(bdev, mode | FMODE_EXCL); 1055 } 1056 1057 EXPORT_SYMBOL(kill_block_super); 1058 #endif 1059 1060 struct dentry *mount_nodev(struct file_system_type *fs_type, 1061 int flags, void *data, 1062 int (*fill_super)(struct super_block *, void *, int)) 1063 { 1064 int error; 1065 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL); 1066 1067 if (IS_ERR(s)) 1068 return ERR_CAST(s); 1069 1070 s->s_flags = flags; 1071 1072 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1073 if (error) { 1074 deactivate_locked_super(s); 1075 return ERR_PTR(error); 1076 } 1077 s->s_flags |= MS_ACTIVE; 1078 return dget(s->s_root); 1079 } 1080 EXPORT_SYMBOL(mount_nodev); 1081 1082 static int compare_single(struct super_block *s, void *p) 1083 { 1084 return 1; 1085 } 1086 1087 struct dentry *mount_single(struct file_system_type *fs_type, 1088 int flags, void *data, 1089 int (*fill_super)(struct super_block *, void *, int)) 1090 { 1091 struct super_block *s; 1092 int error; 1093 1094 s = sget(fs_type, compare_single, set_anon_super, NULL); 1095 if (IS_ERR(s)) 1096 return ERR_CAST(s); 1097 if (!s->s_root) { 1098 s->s_flags = flags; 1099 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1100 if (error) { 1101 deactivate_locked_super(s); 1102 return ERR_PTR(error); 1103 } 1104 s->s_flags |= MS_ACTIVE; 1105 } else { 1106 do_remount_sb(s, flags, data, 0); 1107 } 1108 return dget(s->s_root); 1109 } 1110 EXPORT_SYMBOL(mount_single); 1111 1112 struct dentry * 1113 mount_fs(struct file_system_type *type, int flags, const char *name, void *data) 1114 { 1115 struct dentry *root; 1116 struct super_block *sb; 1117 char *secdata = NULL; 1118 int error = -ENOMEM; 1119 1120 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) { 1121 secdata = alloc_secdata(); 1122 if (!secdata) 1123 goto out; 1124 1125 error = security_sb_copy_data(data, secdata); 1126 if (error) 1127 goto out_free_secdata; 1128 } 1129 1130 root = type->mount(type, flags, name, data); 1131 if (IS_ERR(root)) { 1132 error = PTR_ERR(root); 1133 goto out_free_secdata; 1134 } 1135 sb = root->d_sb; 1136 BUG_ON(!sb); 1137 WARN_ON(!sb->s_bdi); 1138 WARN_ON(sb->s_bdi == &default_backing_dev_info); 1139 sb->s_flags |= MS_BORN; 1140 1141 error = security_sb_kern_mount(sb, flags, secdata); 1142 if (error) 1143 goto out_sb; 1144 1145 /* 1146 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1147 * but s_maxbytes was an unsigned long long for many releases. Throw 1148 * this warning for a little while to try and catch filesystems that 1149 * violate this rule. 1150 */ 1151 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1152 "negative value (%lld)\n", type->name, sb->s_maxbytes); 1153 1154 up_write(&sb->s_umount); 1155 free_secdata(secdata); 1156 return root; 1157 out_sb: 1158 dput(root); 1159 deactivate_locked_super(sb); 1160 out_free_secdata: 1161 free_secdata(secdata); 1162 out: 1163 return ERR_PTR(error); 1164 } 1165 1166 /** 1167 * freeze_super - lock the filesystem and force it into a consistent state 1168 * @sb: the super to lock 1169 * 1170 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1171 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1172 * -EBUSY. 1173 */ 1174 int freeze_super(struct super_block *sb) 1175 { 1176 int ret; 1177 1178 atomic_inc(&sb->s_active); 1179 down_write(&sb->s_umount); 1180 if (sb->s_frozen) { 1181 deactivate_locked_super(sb); 1182 return -EBUSY; 1183 } 1184 1185 if (!(sb->s_flags & MS_BORN)) { 1186 up_write(&sb->s_umount); 1187 return 0; /* sic - it's "nothing to do" */ 1188 } 1189 1190 if (sb->s_flags & MS_RDONLY) { 1191 sb->s_frozen = SB_FREEZE_TRANS; 1192 smp_wmb(); 1193 up_write(&sb->s_umount); 1194 return 0; 1195 } 1196 1197 sb->s_frozen = SB_FREEZE_WRITE; 1198 smp_wmb(); 1199 1200 sync_filesystem(sb); 1201 1202 sb->s_frozen = SB_FREEZE_TRANS; 1203 smp_wmb(); 1204 1205 sync_blockdev(sb->s_bdev); 1206 if (sb->s_op->freeze_fs) { 1207 ret = sb->s_op->freeze_fs(sb); 1208 if (ret) { 1209 printk(KERN_ERR 1210 "VFS:Filesystem freeze failed\n"); 1211 sb->s_frozen = SB_UNFROZEN; 1212 smp_wmb(); 1213 wake_up(&sb->s_wait_unfrozen); 1214 deactivate_locked_super(sb); 1215 return ret; 1216 } 1217 } 1218 up_write(&sb->s_umount); 1219 return 0; 1220 } 1221 EXPORT_SYMBOL(freeze_super); 1222 1223 /** 1224 * thaw_super -- unlock filesystem 1225 * @sb: the super to thaw 1226 * 1227 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1228 */ 1229 int thaw_super(struct super_block *sb) 1230 { 1231 int error; 1232 1233 down_write(&sb->s_umount); 1234 if (sb->s_frozen == SB_UNFROZEN) { 1235 up_write(&sb->s_umount); 1236 return -EINVAL; 1237 } 1238 1239 if (sb->s_flags & MS_RDONLY) 1240 goto out; 1241 1242 if (sb->s_op->unfreeze_fs) { 1243 error = sb->s_op->unfreeze_fs(sb); 1244 if (error) { 1245 printk(KERN_ERR 1246 "VFS:Filesystem thaw failed\n"); 1247 sb->s_frozen = SB_FREEZE_TRANS; 1248 up_write(&sb->s_umount); 1249 return error; 1250 } 1251 } 1252 1253 out: 1254 sb->s_frozen = SB_UNFROZEN; 1255 smp_wmb(); 1256 wake_up(&sb->s_wait_unfrozen); 1257 deactivate_locked_super(sb); 1258 1259 return 0; 1260 } 1261 EXPORT_SYMBOL(thaw_super); 1262