xref: /openbmc/linux/fs/super.c (revision 63dc02bd)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include "internal.h"
37 
38 
39 LIST_HEAD(super_blocks);
40 DEFINE_SPINLOCK(sb_lock);
41 
42 /*
43  * One thing we have to be careful of with a per-sb shrinker is that we don't
44  * drop the last active reference to the superblock from within the shrinker.
45  * If that happens we could trigger unregistering the shrinker from within the
46  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
47  * take a passive reference to the superblock to avoid this from occurring.
48  */
49 static int prune_super(struct shrinker *shrink, struct shrink_control *sc)
50 {
51 	struct super_block *sb;
52 	int	fs_objects = 0;
53 	int	total_objects;
54 
55 	sb = container_of(shrink, struct super_block, s_shrink);
56 
57 	/*
58 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
59 	 * to recurse into the FS that called us in clear_inode() and friends..
60 	 */
61 	if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS))
62 		return -1;
63 
64 	if (!grab_super_passive(sb))
65 		return !sc->nr_to_scan ? 0 : -1;
66 
67 	if (sb->s_op && sb->s_op->nr_cached_objects)
68 		fs_objects = sb->s_op->nr_cached_objects(sb);
69 
70 	total_objects = sb->s_nr_dentry_unused +
71 			sb->s_nr_inodes_unused + fs_objects + 1;
72 
73 	if (sc->nr_to_scan) {
74 		int	dentries;
75 		int	inodes;
76 
77 		/* proportion the scan between the caches */
78 		dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) /
79 							total_objects;
80 		inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) /
81 							total_objects;
82 		if (fs_objects)
83 			fs_objects = (sc->nr_to_scan * fs_objects) /
84 							total_objects;
85 		/*
86 		 * prune the dcache first as the icache is pinned by it, then
87 		 * prune the icache, followed by the filesystem specific caches
88 		 */
89 		prune_dcache_sb(sb, dentries);
90 		prune_icache_sb(sb, inodes);
91 
92 		if (fs_objects && sb->s_op->free_cached_objects) {
93 			sb->s_op->free_cached_objects(sb, fs_objects);
94 			fs_objects = sb->s_op->nr_cached_objects(sb);
95 		}
96 		total_objects = sb->s_nr_dentry_unused +
97 				sb->s_nr_inodes_unused + fs_objects;
98 	}
99 
100 	total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure;
101 	drop_super(sb);
102 	return total_objects;
103 }
104 
105 /**
106  *	alloc_super	-	create new superblock
107  *	@type:	filesystem type superblock should belong to
108  *
109  *	Allocates and initializes a new &struct super_block.  alloc_super()
110  *	returns a pointer new superblock or %NULL if allocation had failed.
111  */
112 static struct super_block *alloc_super(struct file_system_type *type)
113 {
114 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
115 	static const struct super_operations default_op;
116 
117 	if (s) {
118 		if (security_sb_alloc(s)) {
119 			kfree(s);
120 			s = NULL;
121 			goto out;
122 		}
123 #ifdef CONFIG_SMP
124 		s->s_files = alloc_percpu(struct list_head);
125 		if (!s->s_files) {
126 			security_sb_free(s);
127 			kfree(s);
128 			s = NULL;
129 			goto out;
130 		} else {
131 			int i;
132 
133 			for_each_possible_cpu(i)
134 				INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
135 		}
136 #else
137 		INIT_LIST_HEAD(&s->s_files);
138 #endif
139 		s->s_bdi = &default_backing_dev_info;
140 		INIT_HLIST_NODE(&s->s_instances);
141 		INIT_HLIST_BL_HEAD(&s->s_anon);
142 		INIT_LIST_HEAD(&s->s_inodes);
143 		INIT_LIST_HEAD(&s->s_dentry_lru);
144 		INIT_LIST_HEAD(&s->s_inode_lru);
145 		spin_lock_init(&s->s_inode_lru_lock);
146 		INIT_LIST_HEAD(&s->s_mounts);
147 		init_rwsem(&s->s_umount);
148 		mutex_init(&s->s_lock);
149 		lockdep_set_class(&s->s_umount, &type->s_umount_key);
150 		/*
151 		 * The locking rules for s_lock are up to the
152 		 * filesystem. For example ext3fs has different
153 		 * lock ordering than usbfs:
154 		 */
155 		lockdep_set_class(&s->s_lock, &type->s_lock_key);
156 		/*
157 		 * sget() can have s_umount recursion.
158 		 *
159 		 * When it cannot find a suitable sb, it allocates a new
160 		 * one (this one), and tries again to find a suitable old
161 		 * one.
162 		 *
163 		 * In case that succeeds, it will acquire the s_umount
164 		 * lock of the old one. Since these are clearly distrinct
165 		 * locks, and this object isn't exposed yet, there's no
166 		 * risk of deadlocks.
167 		 *
168 		 * Annotate this by putting this lock in a different
169 		 * subclass.
170 		 */
171 		down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
172 		s->s_count = 1;
173 		atomic_set(&s->s_active, 1);
174 		mutex_init(&s->s_vfs_rename_mutex);
175 		lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
176 		mutex_init(&s->s_dquot.dqio_mutex);
177 		mutex_init(&s->s_dquot.dqonoff_mutex);
178 		init_rwsem(&s->s_dquot.dqptr_sem);
179 		init_waitqueue_head(&s->s_wait_unfrozen);
180 		s->s_maxbytes = MAX_NON_LFS;
181 		s->s_op = &default_op;
182 		s->s_time_gran = 1000000000;
183 		s->cleancache_poolid = -1;
184 
185 		s->s_shrink.seeks = DEFAULT_SEEKS;
186 		s->s_shrink.shrink = prune_super;
187 		s->s_shrink.batch = 1024;
188 	}
189 out:
190 	return s;
191 }
192 
193 /**
194  *	destroy_super	-	frees a superblock
195  *	@s: superblock to free
196  *
197  *	Frees a superblock.
198  */
199 static inline void destroy_super(struct super_block *s)
200 {
201 #ifdef CONFIG_SMP
202 	free_percpu(s->s_files);
203 #endif
204 	security_sb_free(s);
205 	WARN_ON(!list_empty(&s->s_mounts));
206 	kfree(s->s_subtype);
207 	kfree(s->s_options);
208 	kfree(s);
209 }
210 
211 /* Superblock refcounting  */
212 
213 /*
214  * Drop a superblock's refcount.  The caller must hold sb_lock.
215  */
216 static void __put_super(struct super_block *sb)
217 {
218 	if (!--sb->s_count) {
219 		list_del_init(&sb->s_list);
220 		destroy_super(sb);
221 	}
222 }
223 
224 /**
225  *	put_super	-	drop a temporary reference to superblock
226  *	@sb: superblock in question
227  *
228  *	Drops a temporary reference, frees superblock if there's no
229  *	references left.
230  */
231 static void put_super(struct super_block *sb)
232 {
233 	spin_lock(&sb_lock);
234 	__put_super(sb);
235 	spin_unlock(&sb_lock);
236 }
237 
238 
239 /**
240  *	deactivate_locked_super	-	drop an active reference to superblock
241  *	@s: superblock to deactivate
242  *
243  *	Drops an active reference to superblock, converting it into a temprory
244  *	one if there is no other active references left.  In that case we
245  *	tell fs driver to shut it down and drop the temporary reference we
246  *	had just acquired.
247  *
248  *	Caller holds exclusive lock on superblock; that lock is released.
249  */
250 void deactivate_locked_super(struct super_block *s)
251 {
252 	struct file_system_type *fs = s->s_type;
253 	if (atomic_dec_and_test(&s->s_active)) {
254 		cleancache_invalidate_fs(s);
255 		fs->kill_sb(s);
256 
257 		/* caches are now gone, we can safely kill the shrinker now */
258 		unregister_shrinker(&s->s_shrink);
259 
260 		/*
261 		 * We need to call rcu_barrier so all the delayed rcu free
262 		 * inodes are flushed before we release the fs module.
263 		 */
264 		rcu_barrier();
265 		put_filesystem(fs);
266 		put_super(s);
267 	} else {
268 		up_write(&s->s_umount);
269 	}
270 }
271 
272 EXPORT_SYMBOL(deactivate_locked_super);
273 
274 /**
275  *	deactivate_super	-	drop an active reference to superblock
276  *	@s: superblock to deactivate
277  *
278  *	Variant of deactivate_locked_super(), except that superblock is *not*
279  *	locked by caller.  If we are going to drop the final active reference,
280  *	lock will be acquired prior to that.
281  */
282 void deactivate_super(struct super_block *s)
283 {
284         if (!atomic_add_unless(&s->s_active, -1, 1)) {
285 		down_write(&s->s_umount);
286 		deactivate_locked_super(s);
287 	}
288 }
289 
290 EXPORT_SYMBOL(deactivate_super);
291 
292 /**
293  *	grab_super - acquire an active reference
294  *	@s: reference we are trying to make active
295  *
296  *	Tries to acquire an active reference.  grab_super() is used when we
297  * 	had just found a superblock in super_blocks or fs_type->fs_supers
298  *	and want to turn it into a full-blown active reference.  grab_super()
299  *	is called with sb_lock held and drops it.  Returns 1 in case of
300  *	success, 0 if we had failed (superblock contents was already dead or
301  *	dying when grab_super() had been called).
302  */
303 static int grab_super(struct super_block *s) __releases(sb_lock)
304 {
305 	if (atomic_inc_not_zero(&s->s_active)) {
306 		spin_unlock(&sb_lock);
307 		return 1;
308 	}
309 	/* it's going away */
310 	s->s_count++;
311 	spin_unlock(&sb_lock);
312 	/* wait for it to die */
313 	down_write(&s->s_umount);
314 	up_write(&s->s_umount);
315 	put_super(s);
316 	return 0;
317 }
318 
319 /*
320  *	grab_super_passive - acquire a passive reference
321  *	@s: reference we are trying to grab
322  *
323  *	Tries to acquire a passive reference. This is used in places where we
324  *	cannot take an active reference but we need to ensure that the
325  *	superblock does not go away while we are working on it. It returns
326  *	false if a reference was not gained, and returns true with the s_umount
327  *	lock held in read mode if a reference is gained. On successful return,
328  *	the caller must drop the s_umount lock and the passive reference when
329  *	done.
330  */
331 bool grab_super_passive(struct super_block *sb)
332 {
333 	spin_lock(&sb_lock);
334 	if (hlist_unhashed(&sb->s_instances)) {
335 		spin_unlock(&sb_lock);
336 		return false;
337 	}
338 
339 	sb->s_count++;
340 	spin_unlock(&sb_lock);
341 
342 	if (down_read_trylock(&sb->s_umount)) {
343 		if (sb->s_root && (sb->s_flags & MS_BORN))
344 			return true;
345 		up_read(&sb->s_umount);
346 	}
347 
348 	put_super(sb);
349 	return false;
350 }
351 
352 /*
353  * Superblock locking.  We really ought to get rid of these two.
354  */
355 void lock_super(struct super_block * sb)
356 {
357 	mutex_lock(&sb->s_lock);
358 }
359 
360 void unlock_super(struct super_block * sb)
361 {
362 	mutex_unlock(&sb->s_lock);
363 }
364 
365 EXPORT_SYMBOL(lock_super);
366 EXPORT_SYMBOL(unlock_super);
367 
368 /**
369  *	generic_shutdown_super	-	common helper for ->kill_sb()
370  *	@sb: superblock to kill
371  *
372  *	generic_shutdown_super() does all fs-independent work on superblock
373  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
374  *	that need destruction out of superblock, call generic_shutdown_super()
375  *	and release aforementioned objects.  Note: dentries and inodes _are_
376  *	taken care of and do not need specific handling.
377  *
378  *	Upon calling this function, the filesystem may no longer alter or
379  *	rearrange the set of dentries belonging to this super_block, nor may it
380  *	change the attachments of dentries to inodes.
381  */
382 void generic_shutdown_super(struct super_block *sb)
383 {
384 	const struct super_operations *sop = sb->s_op;
385 
386 	if (sb->s_root) {
387 		shrink_dcache_for_umount(sb);
388 		sync_filesystem(sb);
389 		sb->s_flags &= ~MS_ACTIVE;
390 
391 		fsnotify_unmount_inodes(&sb->s_inodes);
392 
393 		evict_inodes(sb);
394 
395 		if (sop->put_super)
396 			sop->put_super(sb);
397 
398 		if (!list_empty(&sb->s_inodes)) {
399 			printk("VFS: Busy inodes after unmount of %s. "
400 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
401 			   sb->s_id);
402 		}
403 	}
404 	spin_lock(&sb_lock);
405 	/* should be initialized for __put_super_and_need_restart() */
406 	hlist_del_init(&sb->s_instances);
407 	spin_unlock(&sb_lock);
408 	up_write(&sb->s_umount);
409 }
410 
411 EXPORT_SYMBOL(generic_shutdown_super);
412 
413 /**
414  *	sget	-	find or create a superblock
415  *	@type:	filesystem type superblock should belong to
416  *	@test:	comparison callback
417  *	@set:	setup callback
418  *	@data:	argument to each of them
419  */
420 struct super_block *sget(struct file_system_type *type,
421 			int (*test)(struct super_block *,void *),
422 			int (*set)(struct super_block *,void *),
423 			void *data)
424 {
425 	struct super_block *s = NULL;
426 	struct hlist_node *node;
427 	struct super_block *old;
428 	int err;
429 
430 retry:
431 	spin_lock(&sb_lock);
432 	if (test) {
433 		hlist_for_each_entry(old, node, &type->fs_supers, s_instances) {
434 			if (!test(old, data))
435 				continue;
436 			if (!grab_super(old))
437 				goto retry;
438 			if (s) {
439 				up_write(&s->s_umount);
440 				destroy_super(s);
441 				s = NULL;
442 			}
443 			down_write(&old->s_umount);
444 			if (unlikely(!(old->s_flags & MS_BORN))) {
445 				deactivate_locked_super(old);
446 				goto retry;
447 			}
448 			return old;
449 		}
450 	}
451 	if (!s) {
452 		spin_unlock(&sb_lock);
453 		s = alloc_super(type);
454 		if (!s)
455 			return ERR_PTR(-ENOMEM);
456 		goto retry;
457 	}
458 
459 	err = set(s, data);
460 	if (err) {
461 		spin_unlock(&sb_lock);
462 		up_write(&s->s_umount);
463 		destroy_super(s);
464 		return ERR_PTR(err);
465 	}
466 	s->s_type = type;
467 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
468 	list_add_tail(&s->s_list, &super_blocks);
469 	hlist_add_head(&s->s_instances, &type->fs_supers);
470 	spin_unlock(&sb_lock);
471 	get_filesystem(type);
472 	register_shrinker(&s->s_shrink);
473 	return s;
474 }
475 
476 EXPORT_SYMBOL(sget);
477 
478 void drop_super(struct super_block *sb)
479 {
480 	up_read(&sb->s_umount);
481 	put_super(sb);
482 }
483 
484 EXPORT_SYMBOL(drop_super);
485 
486 /**
487  * sync_supers - helper for periodic superblock writeback
488  *
489  * Call the write_super method if present on all dirty superblocks in
490  * the system.  This is for the periodic writeback used by most older
491  * filesystems.  For data integrity superblock writeback use
492  * sync_filesystems() instead.
493  *
494  * Note: check the dirty flag before waiting, so we don't
495  * hold up the sync while mounting a device. (The newly
496  * mounted device won't need syncing.)
497  */
498 void sync_supers(void)
499 {
500 	struct super_block *sb, *p = NULL;
501 
502 	spin_lock(&sb_lock);
503 	list_for_each_entry(sb, &super_blocks, s_list) {
504 		if (hlist_unhashed(&sb->s_instances))
505 			continue;
506 		if (sb->s_op->write_super && sb->s_dirt) {
507 			sb->s_count++;
508 			spin_unlock(&sb_lock);
509 
510 			down_read(&sb->s_umount);
511 			if (sb->s_root && sb->s_dirt && (sb->s_flags & MS_BORN))
512 				sb->s_op->write_super(sb);
513 			up_read(&sb->s_umount);
514 
515 			spin_lock(&sb_lock);
516 			if (p)
517 				__put_super(p);
518 			p = sb;
519 		}
520 	}
521 	if (p)
522 		__put_super(p);
523 	spin_unlock(&sb_lock);
524 }
525 
526 /**
527  *	iterate_supers - call function for all active superblocks
528  *	@f: function to call
529  *	@arg: argument to pass to it
530  *
531  *	Scans the superblock list and calls given function, passing it
532  *	locked superblock and given argument.
533  */
534 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
535 {
536 	struct super_block *sb, *p = NULL;
537 
538 	spin_lock(&sb_lock);
539 	list_for_each_entry(sb, &super_blocks, s_list) {
540 		if (hlist_unhashed(&sb->s_instances))
541 			continue;
542 		sb->s_count++;
543 		spin_unlock(&sb_lock);
544 
545 		down_read(&sb->s_umount);
546 		if (sb->s_root && (sb->s_flags & MS_BORN))
547 			f(sb, arg);
548 		up_read(&sb->s_umount);
549 
550 		spin_lock(&sb_lock);
551 		if (p)
552 			__put_super(p);
553 		p = sb;
554 	}
555 	if (p)
556 		__put_super(p);
557 	spin_unlock(&sb_lock);
558 }
559 
560 /**
561  *	iterate_supers_type - call function for superblocks of given type
562  *	@type: fs type
563  *	@f: function to call
564  *	@arg: argument to pass to it
565  *
566  *	Scans the superblock list and calls given function, passing it
567  *	locked superblock and given argument.
568  */
569 void iterate_supers_type(struct file_system_type *type,
570 	void (*f)(struct super_block *, void *), void *arg)
571 {
572 	struct super_block *sb, *p = NULL;
573 	struct hlist_node *node;
574 
575 	spin_lock(&sb_lock);
576 	hlist_for_each_entry(sb, node, &type->fs_supers, s_instances) {
577 		sb->s_count++;
578 		spin_unlock(&sb_lock);
579 
580 		down_read(&sb->s_umount);
581 		if (sb->s_root && (sb->s_flags & MS_BORN))
582 			f(sb, arg);
583 		up_read(&sb->s_umount);
584 
585 		spin_lock(&sb_lock);
586 		if (p)
587 			__put_super(p);
588 		p = sb;
589 	}
590 	if (p)
591 		__put_super(p);
592 	spin_unlock(&sb_lock);
593 }
594 
595 EXPORT_SYMBOL(iterate_supers_type);
596 
597 /**
598  *	get_super - get the superblock of a device
599  *	@bdev: device to get the superblock for
600  *
601  *	Scans the superblock list and finds the superblock of the file system
602  *	mounted on the device given. %NULL is returned if no match is found.
603  */
604 
605 struct super_block *get_super(struct block_device *bdev)
606 {
607 	struct super_block *sb;
608 
609 	if (!bdev)
610 		return NULL;
611 
612 	spin_lock(&sb_lock);
613 rescan:
614 	list_for_each_entry(sb, &super_blocks, s_list) {
615 		if (hlist_unhashed(&sb->s_instances))
616 			continue;
617 		if (sb->s_bdev == bdev) {
618 			sb->s_count++;
619 			spin_unlock(&sb_lock);
620 			down_read(&sb->s_umount);
621 			/* still alive? */
622 			if (sb->s_root && (sb->s_flags & MS_BORN))
623 				return sb;
624 			up_read(&sb->s_umount);
625 			/* nope, got unmounted */
626 			spin_lock(&sb_lock);
627 			__put_super(sb);
628 			goto rescan;
629 		}
630 	}
631 	spin_unlock(&sb_lock);
632 	return NULL;
633 }
634 
635 EXPORT_SYMBOL(get_super);
636 
637 /**
638  *	get_super_thawed - get thawed superblock of a device
639  *	@bdev: device to get the superblock for
640  *
641  *	Scans the superblock list and finds the superblock of the file system
642  *	mounted on the device. The superblock is returned once it is thawed
643  *	(or immediately if it was not frozen). %NULL is returned if no match
644  *	is found.
645  */
646 struct super_block *get_super_thawed(struct block_device *bdev)
647 {
648 	while (1) {
649 		struct super_block *s = get_super(bdev);
650 		if (!s || s->s_frozen == SB_UNFROZEN)
651 			return s;
652 		up_read(&s->s_umount);
653 		vfs_check_frozen(s, SB_FREEZE_WRITE);
654 		put_super(s);
655 	}
656 }
657 EXPORT_SYMBOL(get_super_thawed);
658 
659 /**
660  * get_active_super - get an active reference to the superblock of a device
661  * @bdev: device to get the superblock for
662  *
663  * Scans the superblock list and finds the superblock of the file system
664  * mounted on the device given.  Returns the superblock with an active
665  * reference or %NULL if none was found.
666  */
667 struct super_block *get_active_super(struct block_device *bdev)
668 {
669 	struct super_block *sb;
670 
671 	if (!bdev)
672 		return NULL;
673 
674 restart:
675 	spin_lock(&sb_lock);
676 	list_for_each_entry(sb, &super_blocks, s_list) {
677 		if (hlist_unhashed(&sb->s_instances))
678 			continue;
679 		if (sb->s_bdev == bdev) {
680 			if (grab_super(sb)) /* drops sb_lock */
681 				return sb;
682 			else
683 				goto restart;
684 		}
685 	}
686 	spin_unlock(&sb_lock);
687 	return NULL;
688 }
689 
690 struct super_block *user_get_super(dev_t dev)
691 {
692 	struct super_block *sb;
693 
694 	spin_lock(&sb_lock);
695 rescan:
696 	list_for_each_entry(sb, &super_blocks, s_list) {
697 		if (hlist_unhashed(&sb->s_instances))
698 			continue;
699 		if (sb->s_dev ==  dev) {
700 			sb->s_count++;
701 			spin_unlock(&sb_lock);
702 			down_read(&sb->s_umount);
703 			/* still alive? */
704 			if (sb->s_root && (sb->s_flags & MS_BORN))
705 				return sb;
706 			up_read(&sb->s_umount);
707 			/* nope, got unmounted */
708 			spin_lock(&sb_lock);
709 			__put_super(sb);
710 			goto rescan;
711 		}
712 	}
713 	spin_unlock(&sb_lock);
714 	return NULL;
715 }
716 
717 /**
718  *	do_remount_sb - asks filesystem to change mount options.
719  *	@sb:	superblock in question
720  *	@flags:	numeric part of options
721  *	@data:	the rest of options
722  *      @force: whether or not to force the change
723  *
724  *	Alters the mount options of a mounted file system.
725  */
726 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
727 {
728 	int retval;
729 	int remount_ro;
730 
731 	if (sb->s_frozen != SB_UNFROZEN)
732 		return -EBUSY;
733 
734 #ifdef CONFIG_BLOCK
735 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
736 		return -EACCES;
737 #endif
738 
739 	if (flags & MS_RDONLY)
740 		acct_auto_close(sb);
741 	shrink_dcache_sb(sb);
742 	sync_filesystem(sb);
743 
744 	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
745 
746 	/* If we are remounting RDONLY and current sb is read/write,
747 	   make sure there are no rw files opened */
748 	if (remount_ro) {
749 		if (force) {
750 			mark_files_ro(sb);
751 		} else {
752 			retval = sb_prepare_remount_readonly(sb);
753 			if (retval)
754 				return retval;
755 		}
756 	}
757 
758 	if (sb->s_op->remount_fs) {
759 		retval = sb->s_op->remount_fs(sb, &flags, data);
760 		if (retval) {
761 			if (!force)
762 				goto cancel_readonly;
763 			/* If forced remount, go ahead despite any errors */
764 			WARN(1, "forced remount of a %s fs returned %i\n",
765 			     sb->s_type->name, retval);
766 		}
767 	}
768 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
769 	/* Needs to be ordered wrt mnt_is_readonly() */
770 	smp_wmb();
771 	sb->s_readonly_remount = 0;
772 
773 	/*
774 	 * Some filesystems modify their metadata via some other path than the
775 	 * bdev buffer cache (eg. use a private mapping, or directories in
776 	 * pagecache, etc). Also file data modifications go via their own
777 	 * mappings. So If we try to mount readonly then copy the filesystem
778 	 * from bdev, we could get stale data, so invalidate it to give a best
779 	 * effort at coherency.
780 	 */
781 	if (remount_ro && sb->s_bdev)
782 		invalidate_bdev(sb->s_bdev);
783 	return 0;
784 
785 cancel_readonly:
786 	sb->s_readonly_remount = 0;
787 	return retval;
788 }
789 
790 static void do_emergency_remount(struct work_struct *work)
791 {
792 	struct super_block *sb, *p = NULL;
793 
794 	spin_lock(&sb_lock);
795 	list_for_each_entry(sb, &super_blocks, s_list) {
796 		if (hlist_unhashed(&sb->s_instances))
797 			continue;
798 		sb->s_count++;
799 		spin_unlock(&sb_lock);
800 		down_write(&sb->s_umount);
801 		if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
802 		    !(sb->s_flags & MS_RDONLY)) {
803 			/*
804 			 * What lock protects sb->s_flags??
805 			 */
806 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
807 		}
808 		up_write(&sb->s_umount);
809 		spin_lock(&sb_lock);
810 		if (p)
811 			__put_super(p);
812 		p = sb;
813 	}
814 	if (p)
815 		__put_super(p);
816 	spin_unlock(&sb_lock);
817 	kfree(work);
818 	printk("Emergency Remount complete\n");
819 }
820 
821 void emergency_remount(void)
822 {
823 	struct work_struct *work;
824 
825 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
826 	if (work) {
827 		INIT_WORK(work, do_emergency_remount);
828 		schedule_work(work);
829 	}
830 }
831 
832 /*
833  * Unnamed block devices are dummy devices used by virtual
834  * filesystems which don't use real block-devices.  -- jrs
835  */
836 
837 static DEFINE_IDA(unnamed_dev_ida);
838 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
839 static int unnamed_dev_start = 0; /* don't bother trying below it */
840 
841 int get_anon_bdev(dev_t *p)
842 {
843 	int dev;
844 	int error;
845 
846  retry:
847 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
848 		return -ENOMEM;
849 	spin_lock(&unnamed_dev_lock);
850 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
851 	if (!error)
852 		unnamed_dev_start = dev + 1;
853 	spin_unlock(&unnamed_dev_lock);
854 	if (error == -EAGAIN)
855 		/* We raced and lost with another CPU. */
856 		goto retry;
857 	else if (error)
858 		return -EAGAIN;
859 
860 	if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
861 		spin_lock(&unnamed_dev_lock);
862 		ida_remove(&unnamed_dev_ida, dev);
863 		if (unnamed_dev_start > dev)
864 			unnamed_dev_start = dev;
865 		spin_unlock(&unnamed_dev_lock);
866 		return -EMFILE;
867 	}
868 	*p = MKDEV(0, dev & MINORMASK);
869 	return 0;
870 }
871 EXPORT_SYMBOL(get_anon_bdev);
872 
873 void free_anon_bdev(dev_t dev)
874 {
875 	int slot = MINOR(dev);
876 	spin_lock(&unnamed_dev_lock);
877 	ida_remove(&unnamed_dev_ida, slot);
878 	if (slot < unnamed_dev_start)
879 		unnamed_dev_start = slot;
880 	spin_unlock(&unnamed_dev_lock);
881 }
882 EXPORT_SYMBOL(free_anon_bdev);
883 
884 int set_anon_super(struct super_block *s, void *data)
885 {
886 	int error = get_anon_bdev(&s->s_dev);
887 	if (!error)
888 		s->s_bdi = &noop_backing_dev_info;
889 	return error;
890 }
891 
892 EXPORT_SYMBOL(set_anon_super);
893 
894 void kill_anon_super(struct super_block *sb)
895 {
896 	dev_t dev = sb->s_dev;
897 	generic_shutdown_super(sb);
898 	free_anon_bdev(dev);
899 }
900 
901 EXPORT_SYMBOL(kill_anon_super);
902 
903 void kill_litter_super(struct super_block *sb)
904 {
905 	if (sb->s_root)
906 		d_genocide(sb->s_root);
907 	kill_anon_super(sb);
908 }
909 
910 EXPORT_SYMBOL(kill_litter_super);
911 
912 static int ns_test_super(struct super_block *sb, void *data)
913 {
914 	return sb->s_fs_info == data;
915 }
916 
917 static int ns_set_super(struct super_block *sb, void *data)
918 {
919 	sb->s_fs_info = data;
920 	return set_anon_super(sb, NULL);
921 }
922 
923 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
924 	void *data, int (*fill_super)(struct super_block *, void *, int))
925 {
926 	struct super_block *sb;
927 
928 	sb = sget(fs_type, ns_test_super, ns_set_super, data);
929 	if (IS_ERR(sb))
930 		return ERR_CAST(sb);
931 
932 	if (!sb->s_root) {
933 		int err;
934 		sb->s_flags = flags;
935 		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
936 		if (err) {
937 			deactivate_locked_super(sb);
938 			return ERR_PTR(err);
939 		}
940 
941 		sb->s_flags |= MS_ACTIVE;
942 	}
943 
944 	return dget(sb->s_root);
945 }
946 
947 EXPORT_SYMBOL(mount_ns);
948 
949 #ifdef CONFIG_BLOCK
950 static int set_bdev_super(struct super_block *s, void *data)
951 {
952 	s->s_bdev = data;
953 	s->s_dev = s->s_bdev->bd_dev;
954 
955 	/*
956 	 * We set the bdi here to the queue backing, file systems can
957 	 * overwrite this in ->fill_super()
958 	 */
959 	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
960 	return 0;
961 }
962 
963 static int test_bdev_super(struct super_block *s, void *data)
964 {
965 	return (void *)s->s_bdev == data;
966 }
967 
968 struct dentry *mount_bdev(struct file_system_type *fs_type,
969 	int flags, const char *dev_name, void *data,
970 	int (*fill_super)(struct super_block *, void *, int))
971 {
972 	struct block_device *bdev;
973 	struct super_block *s;
974 	fmode_t mode = FMODE_READ | FMODE_EXCL;
975 	int error = 0;
976 
977 	if (!(flags & MS_RDONLY))
978 		mode |= FMODE_WRITE;
979 
980 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
981 	if (IS_ERR(bdev))
982 		return ERR_CAST(bdev);
983 
984 	/*
985 	 * once the super is inserted into the list by sget, s_umount
986 	 * will protect the lockfs code from trying to start a snapshot
987 	 * while we are mounting
988 	 */
989 	mutex_lock(&bdev->bd_fsfreeze_mutex);
990 	if (bdev->bd_fsfreeze_count > 0) {
991 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
992 		error = -EBUSY;
993 		goto error_bdev;
994 	}
995 	s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
996 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
997 	if (IS_ERR(s))
998 		goto error_s;
999 
1000 	if (s->s_root) {
1001 		if ((flags ^ s->s_flags) & MS_RDONLY) {
1002 			deactivate_locked_super(s);
1003 			error = -EBUSY;
1004 			goto error_bdev;
1005 		}
1006 
1007 		/*
1008 		 * s_umount nests inside bd_mutex during
1009 		 * __invalidate_device().  blkdev_put() acquires
1010 		 * bd_mutex and can't be called under s_umount.  Drop
1011 		 * s_umount temporarily.  This is safe as we're
1012 		 * holding an active reference.
1013 		 */
1014 		up_write(&s->s_umount);
1015 		blkdev_put(bdev, mode);
1016 		down_write(&s->s_umount);
1017 	} else {
1018 		char b[BDEVNAME_SIZE];
1019 
1020 		s->s_flags = flags | MS_NOSEC;
1021 		s->s_mode = mode;
1022 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1023 		sb_set_blocksize(s, block_size(bdev));
1024 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1025 		if (error) {
1026 			deactivate_locked_super(s);
1027 			goto error;
1028 		}
1029 
1030 		s->s_flags |= MS_ACTIVE;
1031 		bdev->bd_super = s;
1032 	}
1033 
1034 	return dget(s->s_root);
1035 
1036 error_s:
1037 	error = PTR_ERR(s);
1038 error_bdev:
1039 	blkdev_put(bdev, mode);
1040 error:
1041 	return ERR_PTR(error);
1042 }
1043 EXPORT_SYMBOL(mount_bdev);
1044 
1045 void kill_block_super(struct super_block *sb)
1046 {
1047 	struct block_device *bdev = sb->s_bdev;
1048 	fmode_t mode = sb->s_mode;
1049 
1050 	bdev->bd_super = NULL;
1051 	generic_shutdown_super(sb);
1052 	sync_blockdev(bdev);
1053 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1054 	blkdev_put(bdev, mode | FMODE_EXCL);
1055 }
1056 
1057 EXPORT_SYMBOL(kill_block_super);
1058 #endif
1059 
1060 struct dentry *mount_nodev(struct file_system_type *fs_type,
1061 	int flags, void *data,
1062 	int (*fill_super)(struct super_block *, void *, int))
1063 {
1064 	int error;
1065 	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
1066 
1067 	if (IS_ERR(s))
1068 		return ERR_CAST(s);
1069 
1070 	s->s_flags = flags;
1071 
1072 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1073 	if (error) {
1074 		deactivate_locked_super(s);
1075 		return ERR_PTR(error);
1076 	}
1077 	s->s_flags |= MS_ACTIVE;
1078 	return dget(s->s_root);
1079 }
1080 EXPORT_SYMBOL(mount_nodev);
1081 
1082 static int compare_single(struct super_block *s, void *p)
1083 {
1084 	return 1;
1085 }
1086 
1087 struct dentry *mount_single(struct file_system_type *fs_type,
1088 	int flags, void *data,
1089 	int (*fill_super)(struct super_block *, void *, int))
1090 {
1091 	struct super_block *s;
1092 	int error;
1093 
1094 	s = sget(fs_type, compare_single, set_anon_super, NULL);
1095 	if (IS_ERR(s))
1096 		return ERR_CAST(s);
1097 	if (!s->s_root) {
1098 		s->s_flags = flags;
1099 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1100 		if (error) {
1101 			deactivate_locked_super(s);
1102 			return ERR_PTR(error);
1103 		}
1104 		s->s_flags |= MS_ACTIVE;
1105 	} else {
1106 		do_remount_sb(s, flags, data, 0);
1107 	}
1108 	return dget(s->s_root);
1109 }
1110 EXPORT_SYMBOL(mount_single);
1111 
1112 struct dentry *
1113 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1114 {
1115 	struct dentry *root;
1116 	struct super_block *sb;
1117 	char *secdata = NULL;
1118 	int error = -ENOMEM;
1119 
1120 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1121 		secdata = alloc_secdata();
1122 		if (!secdata)
1123 			goto out;
1124 
1125 		error = security_sb_copy_data(data, secdata);
1126 		if (error)
1127 			goto out_free_secdata;
1128 	}
1129 
1130 	root = type->mount(type, flags, name, data);
1131 	if (IS_ERR(root)) {
1132 		error = PTR_ERR(root);
1133 		goto out_free_secdata;
1134 	}
1135 	sb = root->d_sb;
1136 	BUG_ON(!sb);
1137 	WARN_ON(!sb->s_bdi);
1138 	WARN_ON(sb->s_bdi == &default_backing_dev_info);
1139 	sb->s_flags |= MS_BORN;
1140 
1141 	error = security_sb_kern_mount(sb, flags, secdata);
1142 	if (error)
1143 		goto out_sb;
1144 
1145 	/*
1146 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1147 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1148 	 * this warning for a little while to try and catch filesystems that
1149 	 * violate this rule.
1150 	 */
1151 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1152 		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1153 
1154 	up_write(&sb->s_umount);
1155 	free_secdata(secdata);
1156 	return root;
1157 out_sb:
1158 	dput(root);
1159 	deactivate_locked_super(sb);
1160 out_free_secdata:
1161 	free_secdata(secdata);
1162 out:
1163 	return ERR_PTR(error);
1164 }
1165 
1166 /**
1167  * freeze_super - lock the filesystem and force it into a consistent state
1168  * @sb: the super to lock
1169  *
1170  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1171  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1172  * -EBUSY.
1173  */
1174 int freeze_super(struct super_block *sb)
1175 {
1176 	int ret;
1177 
1178 	atomic_inc(&sb->s_active);
1179 	down_write(&sb->s_umount);
1180 	if (sb->s_frozen) {
1181 		deactivate_locked_super(sb);
1182 		return -EBUSY;
1183 	}
1184 
1185 	if (!(sb->s_flags & MS_BORN)) {
1186 		up_write(&sb->s_umount);
1187 		return 0;	/* sic - it's "nothing to do" */
1188 	}
1189 
1190 	if (sb->s_flags & MS_RDONLY) {
1191 		sb->s_frozen = SB_FREEZE_TRANS;
1192 		smp_wmb();
1193 		up_write(&sb->s_umount);
1194 		return 0;
1195 	}
1196 
1197 	sb->s_frozen = SB_FREEZE_WRITE;
1198 	smp_wmb();
1199 
1200 	sync_filesystem(sb);
1201 
1202 	sb->s_frozen = SB_FREEZE_TRANS;
1203 	smp_wmb();
1204 
1205 	sync_blockdev(sb->s_bdev);
1206 	if (sb->s_op->freeze_fs) {
1207 		ret = sb->s_op->freeze_fs(sb);
1208 		if (ret) {
1209 			printk(KERN_ERR
1210 				"VFS:Filesystem freeze failed\n");
1211 			sb->s_frozen = SB_UNFROZEN;
1212 			smp_wmb();
1213 			wake_up(&sb->s_wait_unfrozen);
1214 			deactivate_locked_super(sb);
1215 			return ret;
1216 		}
1217 	}
1218 	up_write(&sb->s_umount);
1219 	return 0;
1220 }
1221 EXPORT_SYMBOL(freeze_super);
1222 
1223 /**
1224  * thaw_super -- unlock filesystem
1225  * @sb: the super to thaw
1226  *
1227  * Unlocks the filesystem and marks it writeable again after freeze_super().
1228  */
1229 int thaw_super(struct super_block *sb)
1230 {
1231 	int error;
1232 
1233 	down_write(&sb->s_umount);
1234 	if (sb->s_frozen == SB_UNFROZEN) {
1235 		up_write(&sb->s_umount);
1236 		return -EINVAL;
1237 	}
1238 
1239 	if (sb->s_flags & MS_RDONLY)
1240 		goto out;
1241 
1242 	if (sb->s_op->unfreeze_fs) {
1243 		error = sb->s_op->unfreeze_fs(sb);
1244 		if (error) {
1245 			printk(KERN_ERR
1246 				"VFS:Filesystem thaw failed\n");
1247 			sb->s_frozen = SB_FREEZE_TRANS;
1248 			up_write(&sb->s_umount);
1249 			return error;
1250 		}
1251 	}
1252 
1253 out:
1254 	sb->s_frozen = SB_UNFROZEN;
1255 	smp_wmb();
1256 	wake_up(&sb->s_wait_unfrozen);
1257 	deactivate_locked_super(sb);
1258 
1259 	return 0;
1260 }
1261 EXPORT_SYMBOL(thaw_super);
1262