1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/super.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * super.c contains code to handle: - mount structures 8 * - super-block tables 9 * - filesystem drivers list 10 * - mount system call 11 * - umount system call 12 * - ustat system call 13 * 14 * GK 2/5/95 - Changed to support mounting the root fs via NFS 15 * 16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 18 * Added options to /proc/mounts: 19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 22 */ 23 24 #include <linux/export.h> 25 #include <linux/slab.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/cleancache.h> 35 #include <linux/fsnotify.h> 36 #include <linux/lockdep.h> 37 #include <linux/user_namespace.h> 38 #include <linux/fs_context.h> 39 #include <uapi/linux/mount.h> 40 #include "internal.h" 41 42 static int thaw_super_locked(struct super_block *sb); 43 44 static LIST_HEAD(super_blocks); 45 static DEFINE_SPINLOCK(sb_lock); 46 47 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 48 "sb_writers", 49 "sb_pagefaults", 50 "sb_internal", 51 }; 52 53 /* 54 * One thing we have to be careful of with a per-sb shrinker is that we don't 55 * drop the last active reference to the superblock from within the shrinker. 56 * If that happens we could trigger unregistering the shrinker from within the 57 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 58 * take a passive reference to the superblock to avoid this from occurring. 59 */ 60 static unsigned long super_cache_scan(struct shrinker *shrink, 61 struct shrink_control *sc) 62 { 63 struct super_block *sb; 64 long fs_objects = 0; 65 long total_objects; 66 long freed = 0; 67 long dentries; 68 long inodes; 69 70 sb = container_of(shrink, struct super_block, s_shrink); 71 72 /* 73 * Deadlock avoidance. We may hold various FS locks, and we don't want 74 * to recurse into the FS that called us in clear_inode() and friends.. 75 */ 76 if (!(sc->gfp_mask & __GFP_FS)) 77 return SHRINK_STOP; 78 79 if (!trylock_super(sb)) 80 return SHRINK_STOP; 81 82 if (sb->s_op->nr_cached_objects) 83 fs_objects = sb->s_op->nr_cached_objects(sb, sc); 84 85 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc); 86 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc); 87 total_objects = dentries + inodes + fs_objects + 1; 88 if (!total_objects) 89 total_objects = 1; 90 91 /* proportion the scan between the caches */ 92 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 93 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 94 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects); 95 96 /* 97 * prune the dcache first as the icache is pinned by it, then 98 * prune the icache, followed by the filesystem specific caches 99 * 100 * Ensure that we always scan at least one object - memcg kmem 101 * accounting uses this to fully empty the caches. 102 */ 103 sc->nr_to_scan = dentries + 1; 104 freed = prune_dcache_sb(sb, sc); 105 sc->nr_to_scan = inodes + 1; 106 freed += prune_icache_sb(sb, sc); 107 108 if (fs_objects) { 109 sc->nr_to_scan = fs_objects + 1; 110 freed += sb->s_op->free_cached_objects(sb, sc); 111 } 112 113 up_read(&sb->s_umount); 114 return freed; 115 } 116 117 static unsigned long super_cache_count(struct shrinker *shrink, 118 struct shrink_control *sc) 119 { 120 struct super_block *sb; 121 long total_objects = 0; 122 123 sb = container_of(shrink, struct super_block, s_shrink); 124 125 /* 126 * We don't call trylock_super() here as it is a scalability bottleneck, 127 * so we're exposed to partial setup state. The shrinker rwsem does not 128 * protect filesystem operations backing list_lru_shrink_count() or 129 * s_op->nr_cached_objects(). Counts can change between 130 * super_cache_count and super_cache_scan, so we really don't need locks 131 * here. 132 * 133 * However, if we are currently mounting the superblock, the underlying 134 * filesystem might be in a state of partial construction and hence it 135 * is dangerous to access it. trylock_super() uses a SB_BORN check to 136 * avoid this situation, so do the same here. The memory barrier is 137 * matched with the one in mount_fs() as we don't hold locks here. 138 */ 139 if (!(sb->s_flags & SB_BORN)) 140 return 0; 141 smp_rmb(); 142 143 if (sb->s_op && sb->s_op->nr_cached_objects) 144 total_objects = sb->s_op->nr_cached_objects(sb, sc); 145 146 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc); 147 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc); 148 149 if (!total_objects) 150 return SHRINK_EMPTY; 151 152 total_objects = vfs_pressure_ratio(total_objects); 153 return total_objects; 154 } 155 156 static void destroy_super_work(struct work_struct *work) 157 { 158 struct super_block *s = container_of(work, struct super_block, 159 destroy_work); 160 int i; 161 162 for (i = 0; i < SB_FREEZE_LEVELS; i++) 163 percpu_free_rwsem(&s->s_writers.rw_sem[i]); 164 kfree(s); 165 } 166 167 static void destroy_super_rcu(struct rcu_head *head) 168 { 169 struct super_block *s = container_of(head, struct super_block, rcu); 170 INIT_WORK(&s->destroy_work, destroy_super_work); 171 schedule_work(&s->destroy_work); 172 } 173 174 /* Free a superblock that has never been seen by anyone */ 175 static void destroy_unused_super(struct super_block *s) 176 { 177 if (!s) 178 return; 179 up_write(&s->s_umount); 180 list_lru_destroy(&s->s_dentry_lru); 181 list_lru_destroy(&s->s_inode_lru); 182 security_sb_free(s); 183 put_user_ns(s->s_user_ns); 184 kfree(s->s_subtype); 185 free_prealloced_shrinker(&s->s_shrink); 186 /* no delays needed */ 187 destroy_super_work(&s->destroy_work); 188 } 189 190 /** 191 * alloc_super - create new superblock 192 * @type: filesystem type superblock should belong to 193 * @flags: the mount flags 194 * @user_ns: User namespace for the super_block 195 * 196 * Allocates and initializes a new &struct super_block. alloc_super() 197 * returns a pointer new superblock or %NULL if allocation had failed. 198 */ 199 static struct super_block *alloc_super(struct file_system_type *type, int flags, 200 struct user_namespace *user_ns) 201 { 202 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 203 static const struct super_operations default_op; 204 int i; 205 206 if (!s) 207 return NULL; 208 209 INIT_LIST_HEAD(&s->s_mounts); 210 s->s_user_ns = get_user_ns(user_ns); 211 init_rwsem(&s->s_umount); 212 lockdep_set_class(&s->s_umount, &type->s_umount_key); 213 /* 214 * sget() can have s_umount recursion. 215 * 216 * When it cannot find a suitable sb, it allocates a new 217 * one (this one), and tries again to find a suitable old 218 * one. 219 * 220 * In case that succeeds, it will acquire the s_umount 221 * lock of the old one. Since these are clearly distrinct 222 * locks, and this object isn't exposed yet, there's no 223 * risk of deadlocks. 224 * 225 * Annotate this by putting this lock in a different 226 * subclass. 227 */ 228 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 229 230 if (security_sb_alloc(s)) 231 goto fail; 232 233 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 234 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i], 235 sb_writers_name[i], 236 &type->s_writers_key[i])) 237 goto fail; 238 } 239 init_waitqueue_head(&s->s_writers.wait_unfrozen); 240 s->s_bdi = &noop_backing_dev_info; 241 s->s_flags = flags; 242 if (s->s_user_ns != &init_user_ns) 243 s->s_iflags |= SB_I_NODEV; 244 INIT_HLIST_NODE(&s->s_instances); 245 INIT_HLIST_BL_HEAD(&s->s_roots); 246 mutex_init(&s->s_sync_lock); 247 INIT_LIST_HEAD(&s->s_inodes); 248 spin_lock_init(&s->s_inode_list_lock); 249 INIT_LIST_HEAD(&s->s_inodes_wb); 250 spin_lock_init(&s->s_inode_wblist_lock); 251 252 s->s_count = 1; 253 atomic_set(&s->s_active, 1); 254 mutex_init(&s->s_vfs_rename_mutex); 255 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 256 init_rwsem(&s->s_dquot.dqio_sem); 257 s->s_maxbytes = MAX_NON_LFS; 258 s->s_op = &default_op; 259 s->s_time_gran = 1000000000; 260 s->cleancache_poolid = CLEANCACHE_NO_POOL; 261 262 s->s_shrink.seeks = DEFAULT_SEEKS; 263 s->s_shrink.scan_objects = super_cache_scan; 264 s->s_shrink.count_objects = super_cache_count; 265 s->s_shrink.batch = 1024; 266 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE; 267 if (prealloc_shrinker(&s->s_shrink)) 268 goto fail; 269 if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink)) 270 goto fail; 271 if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink)) 272 goto fail; 273 return s; 274 275 fail: 276 destroy_unused_super(s); 277 return NULL; 278 } 279 280 /* Superblock refcounting */ 281 282 /* 283 * Drop a superblock's refcount. The caller must hold sb_lock. 284 */ 285 static void __put_super(struct super_block *s) 286 { 287 if (!--s->s_count) { 288 list_del_init(&s->s_list); 289 WARN_ON(s->s_dentry_lru.node); 290 WARN_ON(s->s_inode_lru.node); 291 WARN_ON(!list_empty(&s->s_mounts)); 292 security_sb_free(s); 293 put_user_ns(s->s_user_ns); 294 kfree(s->s_subtype); 295 call_rcu(&s->rcu, destroy_super_rcu); 296 } 297 } 298 299 /** 300 * put_super - drop a temporary reference to superblock 301 * @sb: superblock in question 302 * 303 * Drops a temporary reference, frees superblock if there's no 304 * references left. 305 */ 306 static void put_super(struct super_block *sb) 307 { 308 spin_lock(&sb_lock); 309 __put_super(sb); 310 spin_unlock(&sb_lock); 311 } 312 313 314 /** 315 * deactivate_locked_super - drop an active reference to superblock 316 * @s: superblock to deactivate 317 * 318 * Drops an active reference to superblock, converting it into a temporary 319 * one if there is no other active references left. In that case we 320 * tell fs driver to shut it down and drop the temporary reference we 321 * had just acquired. 322 * 323 * Caller holds exclusive lock on superblock; that lock is released. 324 */ 325 void deactivate_locked_super(struct super_block *s) 326 { 327 struct file_system_type *fs = s->s_type; 328 if (atomic_dec_and_test(&s->s_active)) { 329 cleancache_invalidate_fs(s); 330 unregister_shrinker(&s->s_shrink); 331 fs->kill_sb(s); 332 333 /* 334 * Since list_lru_destroy() may sleep, we cannot call it from 335 * put_super(), where we hold the sb_lock. Therefore we destroy 336 * the lru lists right now. 337 */ 338 list_lru_destroy(&s->s_dentry_lru); 339 list_lru_destroy(&s->s_inode_lru); 340 341 put_filesystem(fs); 342 put_super(s); 343 } else { 344 up_write(&s->s_umount); 345 } 346 } 347 348 EXPORT_SYMBOL(deactivate_locked_super); 349 350 /** 351 * deactivate_super - drop an active reference to superblock 352 * @s: superblock to deactivate 353 * 354 * Variant of deactivate_locked_super(), except that superblock is *not* 355 * locked by caller. If we are going to drop the final active reference, 356 * lock will be acquired prior to that. 357 */ 358 void deactivate_super(struct super_block *s) 359 { 360 if (!atomic_add_unless(&s->s_active, -1, 1)) { 361 down_write(&s->s_umount); 362 deactivate_locked_super(s); 363 } 364 } 365 366 EXPORT_SYMBOL(deactivate_super); 367 368 /** 369 * grab_super - acquire an active reference 370 * @s: reference we are trying to make active 371 * 372 * Tries to acquire an active reference. grab_super() is used when we 373 * had just found a superblock in super_blocks or fs_type->fs_supers 374 * and want to turn it into a full-blown active reference. grab_super() 375 * is called with sb_lock held and drops it. Returns 1 in case of 376 * success, 0 if we had failed (superblock contents was already dead or 377 * dying when grab_super() had been called). Note that this is only 378 * called for superblocks not in rundown mode (== ones still on ->fs_supers 379 * of their type), so increment of ->s_count is OK here. 380 */ 381 static int grab_super(struct super_block *s) __releases(sb_lock) 382 { 383 s->s_count++; 384 spin_unlock(&sb_lock); 385 down_write(&s->s_umount); 386 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) { 387 put_super(s); 388 return 1; 389 } 390 up_write(&s->s_umount); 391 put_super(s); 392 return 0; 393 } 394 395 /* 396 * trylock_super - try to grab ->s_umount shared 397 * @sb: reference we are trying to grab 398 * 399 * Try to prevent fs shutdown. This is used in places where we 400 * cannot take an active reference but we need to ensure that the 401 * filesystem is not shut down while we are working on it. It returns 402 * false if we cannot acquire s_umount or if we lose the race and 403 * filesystem already got into shutdown, and returns true with the s_umount 404 * lock held in read mode in case of success. On successful return, 405 * the caller must drop the s_umount lock when done. 406 * 407 * Note that unlike get_super() et.al. this one does *not* bump ->s_count. 408 * The reason why it's safe is that we are OK with doing trylock instead 409 * of down_read(). There's a couple of places that are OK with that, but 410 * it's very much not a general-purpose interface. 411 */ 412 bool trylock_super(struct super_block *sb) 413 { 414 if (down_read_trylock(&sb->s_umount)) { 415 if (!hlist_unhashed(&sb->s_instances) && 416 sb->s_root && (sb->s_flags & SB_BORN)) 417 return true; 418 up_read(&sb->s_umount); 419 } 420 421 return false; 422 } 423 424 /** 425 * generic_shutdown_super - common helper for ->kill_sb() 426 * @sb: superblock to kill 427 * 428 * generic_shutdown_super() does all fs-independent work on superblock 429 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 430 * that need destruction out of superblock, call generic_shutdown_super() 431 * and release aforementioned objects. Note: dentries and inodes _are_ 432 * taken care of and do not need specific handling. 433 * 434 * Upon calling this function, the filesystem may no longer alter or 435 * rearrange the set of dentries belonging to this super_block, nor may it 436 * change the attachments of dentries to inodes. 437 */ 438 void generic_shutdown_super(struct super_block *sb) 439 { 440 const struct super_operations *sop = sb->s_op; 441 442 if (sb->s_root) { 443 shrink_dcache_for_umount(sb); 444 sync_filesystem(sb); 445 sb->s_flags &= ~SB_ACTIVE; 446 447 fsnotify_sb_delete(sb); 448 cgroup_writeback_umount(); 449 450 evict_inodes(sb); 451 452 if (sb->s_dio_done_wq) { 453 destroy_workqueue(sb->s_dio_done_wq); 454 sb->s_dio_done_wq = NULL; 455 } 456 457 if (sop->put_super) 458 sop->put_super(sb); 459 460 if (!list_empty(&sb->s_inodes)) { 461 printk("VFS: Busy inodes after unmount of %s. " 462 "Self-destruct in 5 seconds. Have a nice day...\n", 463 sb->s_id); 464 } 465 } 466 spin_lock(&sb_lock); 467 /* should be initialized for __put_super_and_need_restart() */ 468 hlist_del_init(&sb->s_instances); 469 spin_unlock(&sb_lock); 470 up_write(&sb->s_umount); 471 if (sb->s_bdi != &noop_backing_dev_info) { 472 bdi_put(sb->s_bdi); 473 sb->s_bdi = &noop_backing_dev_info; 474 } 475 } 476 477 EXPORT_SYMBOL(generic_shutdown_super); 478 479 /** 480 * sget_fc - Find or create a superblock 481 * @fc: Filesystem context. 482 * @test: Comparison callback 483 * @set: Setup callback 484 * 485 * Find or create a superblock using the parameters stored in the filesystem 486 * context and the two callback functions. 487 * 488 * If an extant superblock is matched, then that will be returned with an 489 * elevated reference count that the caller must transfer or discard. 490 * 491 * If no match is made, a new superblock will be allocated and basic 492 * initialisation will be performed (s_type, s_fs_info and s_id will be set and 493 * the set() callback will be invoked), the superblock will be published and it 494 * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE 495 * as yet unset. 496 */ 497 struct super_block *sget_fc(struct fs_context *fc, 498 int (*test)(struct super_block *, struct fs_context *), 499 int (*set)(struct super_block *, struct fs_context *)) 500 { 501 struct super_block *s = NULL; 502 struct super_block *old; 503 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns; 504 int err; 505 506 if (!(fc->sb_flags & SB_KERNMOUNT) && 507 fc->purpose != FS_CONTEXT_FOR_SUBMOUNT) { 508 /* Don't allow mounting unless the caller has CAP_SYS_ADMIN 509 * over the namespace. 510 */ 511 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) { 512 if (!capable(CAP_SYS_ADMIN)) 513 return ERR_PTR(-EPERM); 514 } else { 515 if (!ns_capable(fc->user_ns, CAP_SYS_ADMIN)) 516 return ERR_PTR(-EPERM); 517 } 518 } 519 520 retry: 521 spin_lock(&sb_lock); 522 if (test) { 523 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) { 524 if (test(old, fc)) 525 goto share_extant_sb; 526 } 527 } 528 if (!s) { 529 spin_unlock(&sb_lock); 530 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns); 531 if (!s) 532 return ERR_PTR(-ENOMEM); 533 goto retry; 534 } 535 536 s->s_fs_info = fc->s_fs_info; 537 err = set(s, fc); 538 if (err) { 539 s->s_fs_info = NULL; 540 spin_unlock(&sb_lock); 541 destroy_unused_super(s); 542 return ERR_PTR(err); 543 } 544 fc->s_fs_info = NULL; 545 s->s_type = fc->fs_type; 546 strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id)); 547 list_add_tail(&s->s_list, &super_blocks); 548 hlist_add_head(&s->s_instances, &s->s_type->fs_supers); 549 spin_unlock(&sb_lock); 550 get_filesystem(s->s_type); 551 register_shrinker_prepared(&s->s_shrink); 552 return s; 553 554 share_extant_sb: 555 if (user_ns != old->s_user_ns) { 556 spin_unlock(&sb_lock); 557 destroy_unused_super(s); 558 return ERR_PTR(-EBUSY); 559 } 560 if (!grab_super(old)) 561 goto retry; 562 destroy_unused_super(s); 563 return old; 564 } 565 EXPORT_SYMBOL(sget_fc); 566 567 /** 568 * sget_userns - find or create a superblock 569 * @type: filesystem type superblock should belong to 570 * @test: comparison callback 571 * @set: setup callback 572 * @flags: mount flags 573 * @user_ns: User namespace for the super_block 574 * @data: argument to each of them 575 */ 576 struct super_block *sget_userns(struct file_system_type *type, 577 int (*test)(struct super_block *,void *), 578 int (*set)(struct super_block *,void *), 579 int flags, struct user_namespace *user_ns, 580 void *data) 581 { 582 struct super_block *s = NULL; 583 struct super_block *old; 584 int err; 585 586 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && 587 !(type->fs_flags & FS_USERNS_MOUNT) && 588 !capable(CAP_SYS_ADMIN)) 589 return ERR_PTR(-EPERM); 590 retry: 591 spin_lock(&sb_lock); 592 if (test) { 593 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 594 if (!test(old, data)) 595 continue; 596 if (user_ns != old->s_user_ns) { 597 spin_unlock(&sb_lock); 598 destroy_unused_super(s); 599 return ERR_PTR(-EBUSY); 600 } 601 if (!grab_super(old)) 602 goto retry; 603 destroy_unused_super(s); 604 return old; 605 } 606 } 607 if (!s) { 608 spin_unlock(&sb_lock); 609 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns); 610 if (!s) 611 return ERR_PTR(-ENOMEM); 612 goto retry; 613 } 614 615 err = set(s, data); 616 if (err) { 617 spin_unlock(&sb_lock); 618 destroy_unused_super(s); 619 return ERR_PTR(err); 620 } 621 s->s_type = type; 622 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 623 list_add_tail(&s->s_list, &super_blocks); 624 hlist_add_head(&s->s_instances, &type->fs_supers); 625 spin_unlock(&sb_lock); 626 get_filesystem(type); 627 register_shrinker_prepared(&s->s_shrink); 628 return s; 629 } 630 631 EXPORT_SYMBOL(sget_userns); 632 633 /** 634 * sget - find or create a superblock 635 * @type: filesystem type superblock should belong to 636 * @test: comparison callback 637 * @set: setup callback 638 * @flags: mount flags 639 * @data: argument to each of them 640 */ 641 struct super_block *sget(struct file_system_type *type, 642 int (*test)(struct super_block *,void *), 643 int (*set)(struct super_block *,void *), 644 int flags, 645 void *data) 646 { 647 struct user_namespace *user_ns = current_user_ns(); 648 649 /* We don't yet pass the user namespace of the parent 650 * mount through to here so always use &init_user_ns 651 * until that changes. 652 */ 653 if (flags & SB_SUBMOUNT) 654 user_ns = &init_user_ns; 655 656 /* Ensure the requestor has permissions over the target filesystem */ 657 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN)) 658 return ERR_PTR(-EPERM); 659 660 return sget_userns(type, test, set, flags, user_ns, data); 661 } 662 663 EXPORT_SYMBOL(sget); 664 665 void drop_super(struct super_block *sb) 666 { 667 up_read(&sb->s_umount); 668 put_super(sb); 669 } 670 671 EXPORT_SYMBOL(drop_super); 672 673 void drop_super_exclusive(struct super_block *sb) 674 { 675 up_write(&sb->s_umount); 676 put_super(sb); 677 } 678 EXPORT_SYMBOL(drop_super_exclusive); 679 680 static void __iterate_supers(void (*f)(struct super_block *)) 681 { 682 struct super_block *sb, *p = NULL; 683 684 spin_lock(&sb_lock); 685 list_for_each_entry(sb, &super_blocks, s_list) { 686 if (hlist_unhashed(&sb->s_instances)) 687 continue; 688 sb->s_count++; 689 spin_unlock(&sb_lock); 690 691 f(sb); 692 693 spin_lock(&sb_lock); 694 if (p) 695 __put_super(p); 696 p = sb; 697 } 698 if (p) 699 __put_super(p); 700 spin_unlock(&sb_lock); 701 } 702 /** 703 * iterate_supers - call function for all active superblocks 704 * @f: function to call 705 * @arg: argument to pass to it 706 * 707 * Scans the superblock list and calls given function, passing it 708 * locked superblock and given argument. 709 */ 710 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 711 { 712 struct super_block *sb, *p = NULL; 713 714 spin_lock(&sb_lock); 715 list_for_each_entry(sb, &super_blocks, s_list) { 716 if (hlist_unhashed(&sb->s_instances)) 717 continue; 718 sb->s_count++; 719 spin_unlock(&sb_lock); 720 721 down_read(&sb->s_umount); 722 if (sb->s_root && (sb->s_flags & SB_BORN)) 723 f(sb, arg); 724 up_read(&sb->s_umount); 725 726 spin_lock(&sb_lock); 727 if (p) 728 __put_super(p); 729 p = sb; 730 } 731 if (p) 732 __put_super(p); 733 spin_unlock(&sb_lock); 734 } 735 736 /** 737 * iterate_supers_type - call function for superblocks of given type 738 * @type: fs type 739 * @f: function to call 740 * @arg: argument to pass to it 741 * 742 * Scans the superblock list and calls given function, passing it 743 * locked superblock and given argument. 744 */ 745 void iterate_supers_type(struct file_system_type *type, 746 void (*f)(struct super_block *, void *), void *arg) 747 { 748 struct super_block *sb, *p = NULL; 749 750 spin_lock(&sb_lock); 751 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 752 sb->s_count++; 753 spin_unlock(&sb_lock); 754 755 down_read(&sb->s_umount); 756 if (sb->s_root && (sb->s_flags & SB_BORN)) 757 f(sb, arg); 758 up_read(&sb->s_umount); 759 760 spin_lock(&sb_lock); 761 if (p) 762 __put_super(p); 763 p = sb; 764 } 765 if (p) 766 __put_super(p); 767 spin_unlock(&sb_lock); 768 } 769 770 EXPORT_SYMBOL(iterate_supers_type); 771 772 static struct super_block *__get_super(struct block_device *bdev, bool excl) 773 { 774 struct super_block *sb; 775 776 if (!bdev) 777 return NULL; 778 779 spin_lock(&sb_lock); 780 rescan: 781 list_for_each_entry(sb, &super_blocks, s_list) { 782 if (hlist_unhashed(&sb->s_instances)) 783 continue; 784 if (sb->s_bdev == bdev) { 785 sb->s_count++; 786 spin_unlock(&sb_lock); 787 if (!excl) 788 down_read(&sb->s_umount); 789 else 790 down_write(&sb->s_umount); 791 /* still alive? */ 792 if (sb->s_root && (sb->s_flags & SB_BORN)) 793 return sb; 794 if (!excl) 795 up_read(&sb->s_umount); 796 else 797 up_write(&sb->s_umount); 798 /* nope, got unmounted */ 799 spin_lock(&sb_lock); 800 __put_super(sb); 801 goto rescan; 802 } 803 } 804 spin_unlock(&sb_lock); 805 return NULL; 806 } 807 808 /** 809 * get_super - get the superblock of a device 810 * @bdev: device to get the superblock for 811 * 812 * Scans the superblock list and finds the superblock of the file system 813 * mounted on the device given. %NULL is returned if no match is found. 814 */ 815 struct super_block *get_super(struct block_device *bdev) 816 { 817 return __get_super(bdev, false); 818 } 819 EXPORT_SYMBOL(get_super); 820 821 static struct super_block *__get_super_thawed(struct block_device *bdev, 822 bool excl) 823 { 824 while (1) { 825 struct super_block *s = __get_super(bdev, excl); 826 if (!s || s->s_writers.frozen == SB_UNFROZEN) 827 return s; 828 if (!excl) 829 up_read(&s->s_umount); 830 else 831 up_write(&s->s_umount); 832 wait_event(s->s_writers.wait_unfrozen, 833 s->s_writers.frozen == SB_UNFROZEN); 834 put_super(s); 835 } 836 } 837 838 /** 839 * get_super_thawed - get thawed superblock of a device 840 * @bdev: device to get the superblock for 841 * 842 * Scans the superblock list and finds the superblock of the file system 843 * mounted on the device. The superblock is returned once it is thawed 844 * (or immediately if it was not frozen). %NULL is returned if no match 845 * is found. 846 */ 847 struct super_block *get_super_thawed(struct block_device *bdev) 848 { 849 return __get_super_thawed(bdev, false); 850 } 851 EXPORT_SYMBOL(get_super_thawed); 852 853 /** 854 * get_super_exclusive_thawed - get thawed superblock of a device 855 * @bdev: device to get the superblock for 856 * 857 * Scans the superblock list and finds the superblock of the file system 858 * mounted on the device. The superblock is returned once it is thawed 859 * (or immediately if it was not frozen) and s_umount semaphore is held 860 * in exclusive mode. %NULL is returned if no match is found. 861 */ 862 struct super_block *get_super_exclusive_thawed(struct block_device *bdev) 863 { 864 return __get_super_thawed(bdev, true); 865 } 866 EXPORT_SYMBOL(get_super_exclusive_thawed); 867 868 /** 869 * get_active_super - get an active reference to the superblock of a device 870 * @bdev: device to get the superblock for 871 * 872 * Scans the superblock list and finds the superblock of the file system 873 * mounted on the device given. Returns the superblock with an active 874 * reference or %NULL if none was found. 875 */ 876 struct super_block *get_active_super(struct block_device *bdev) 877 { 878 struct super_block *sb; 879 880 if (!bdev) 881 return NULL; 882 883 restart: 884 spin_lock(&sb_lock); 885 list_for_each_entry(sb, &super_blocks, s_list) { 886 if (hlist_unhashed(&sb->s_instances)) 887 continue; 888 if (sb->s_bdev == bdev) { 889 if (!grab_super(sb)) 890 goto restart; 891 up_write(&sb->s_umount); 892 return sb; 893 } 894 } 895 spin_unlock(&sb_lock); 896 return NULL; 897 } 898 899 struct super_block *user_get_super(dev_t dev) 900 { 901 struct super_block *sb; 902 903 spin_lock(&sb_lock); 904 rescan: 905 list_for_each_entry(sb, &super_blocks, s_list) { 906 if (hlist_unhashed(&sb->s_instances)) 907 continue; 908 if (sb->s_dev == dev) { 909 sb->s_count++; 910 spin_unlock(&sb_lock); 911 down_read(&sb->s_umount); 912 /* still alive? */ 913 if (sb->s_root && (sb->s_flags & SB_BORN)) 914 return sb; 915 up_read(&sb->s_umount); 916 /* nope, got unmounted */ 917 spin_lock(&sb_lock); 918 __put_super(sb); 919 goto rescan; 920 } 921 } 922 spin_unlock(&sb_lock); 923 return NULL; 924 } 925 926 /** 927 * reconfigure_super - asks filesystem to change superblock parameters 928 * @fc: The superblock and configuration 929 * 930 * Alters the configuration parameters of a live superblock. 931 */ 932 int reconfigure_super(struct fs_context *fc) 933 { 934 struct super_block *sb = fc->root->d_sb; 935 int retval; 936 bool remount_ro = false; 937 bool force = fc->sb_flags & SB_FORCE; 938 939 if (fc->sb_flags_mask & ~MS_RMT_MASK) 940 return -EINVAL; 941 if (sb->s_writers.frozen != SB_UNFROZEN) 942 return -EBUSY; 943 944 retval = security_sb_remount(sb, fc->security); 945 if (retval) 946 return retval; 947 948 if (fc->sb_flags_mask & SB_RDONLY) { 949 #ifdef CONFIG_BLOCK 950 if (!(fc->sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev)) 951 return -EACCES; 952 #endif 953 954 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb); 955 } 956 957 if (remount_ro) { 958 if (!hlist_empty(&sb->s_pins)) { 959 up_write(&sb->s_umount); 960 group_pin_kill(&sb->s_pins); 961 down_write(&sb->s_umount); 962 if (!sb->s_root) 963 return 0; 964 if (sb->s_writers.frozen != SB_UNFROZEN) 965 return -EBUSY; 966 remount_ro = !sb_rdonly(sb); 967 } 968 } 969 shrink_dcache_sb(sb); 970 971 /* If we are reconfiguring to RDONLY and current sb is read/write, 972 * make sure there are no files open for writing. 973 */ 974 if (remount_ro) { 975 if (force) { 976 sb->s_readonly_remount = 1; 977 smp_wmb(); 978 } else { 979 retval = sb_prepare_remount_readonly(sb); 980 if (retval) 981 return retval; 982 } 983 } 984 985 if (fc->ops->reconfigure) { 986 retval = fc->ops->reconfigure(fc); 987 if (retval) { 988 if (!force) 989 goto cancel_readonly; 990 /* If forced remount, go ahead despite any errors */ 991 WARN(1, "forced remount of a %s fs returned %i\n", 992 sb->s_type->name, retval); 993 } 994 } 995 996 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) | 997 (fc->sb_flags & fc->sb_flags_mask))); 998 /* Needs to be ordered wrt mnt_is_readonly() */ 999 smp_wmb(); 1000 sb->s_readonly_remount = 0; 1001 1002 /* 1003 * Some filesystems modify their metadata via some other path than the 1004 * bdev buffer cache (eg. use a private mapping, or directories in 1005 * pagecache, etc). Also file data modifications go via their own 1006 * mappings. So If we try to mount readonly then copy the filesystem 1007 * from bdev, we could get stale data, so invalidate it to give a best 1008 * effort at coherency. 1009 */ 1010 if (remount_ro && sb->s_bdev) 1011 invalidate_bdev(sb->s_bdev); 1012 return 0; 1013 1014 cancel_readonly: 1015 sb->s_readonly_remount = 0; 1016 return retval; 1017 } 1018 1019 static void do_emergency_remount_callback(struct super_block *sb) 1020 { 1021 down_write(&sb->s_umount); 1022 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) && 1023 !sb_rdonly(sb)) { 1024 struct fs_context *fc; 1025 1026 fc = fs_context_for_reconfigure(sb->s_root, 1027 SB_RDONLY | SB_FORCE, SB_RDONLY); 1028 if (!IS_ERR(fc)) { 1029 if (parse_monolithic_mount_data(fc, NULL) == 0) 1030 (void)reconfigure_super(fc); 1031 put_fs_context(fc); 1032 } 1033 } 1034 up_write(&sb->s_umount); 1035 } 1036 1037 static void do_emergency_remount(struct work_struct *work) 1038 { 1039 __iterate_supers(do_emergency_remount_callback); 1040 kfree(work); 1041 printk("Emergency Remount complete\n"); 1042 } 1043 1044 void emergency_remount(void) 1045 { 1046 struct work_struct *work; 1047 1048 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1049 if (work) { 1050 INIT_WORK(work, do_emergency_remount); 1051 schedule_work(work); 1052 } 1053 } 1054 1055 static void do_thaw_all_callback(struct super_block *sb) 1056 { 1057 down_write(&sb->s_umount); 1058 if (sb->s_root && sb->s_flags & SB_BORN) { 1059 emergency_thaw_bdev(sb); 1060 thaw_super_locked(sb); 1061 } else { 1062 up_write(&sb->s_umount); 1063 } 1064 } 1065 1066 static void do_thaw_all(struct work_struct *work) 1067 { 1068 __iterate_supers(do_thaw_all_callback); 1069 kfree(work); 1070 printk(KERN_WARNING "Emergency Thaw complete\n"); 1071 } 1072 1073 /** 1074 * emergency_thaw_all -- forcibly thaw every frozen filesystem 1075 * 1076 * Used for emergency unfreeze of all filesystems via SysRq 1077 */ 1078 void emergency_thaw_all(void) 1079 { 1080 struct work_struct *work; 1081 1082 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1083 if (work) { 1084 INIT_WORK(work, do_thaw_all); 1085 schedule_work(work); 1086 } 1087 } 1088 1089 static DEFINE_IDA(unnamed_dev_ida); 1090 1091 /** 1092 * get_anon_bdev - Allocate a block device for filesystems which don't have one. 1093 * @p: Pointer to a dev_t. 1094 * 1095 * Filesystems which don't use real block devices can call this function 1096 * to allocate a virtual block device. 1097 * 1098 * Context: Any context. Frequently called while holding sb_lock. 1099 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left 1100 * or -ENOMEM if memory allocation failed. 1101 */ 1102 int get_anon_bdev(dev_t *p) 1103 { 1104 int dev; 1105 1106 /* 1107 * Many userspace utilities consider an FSID of 0 invalid. 1108 * Always return at least 1 from get_anon_bdev. 1109 */ 1110 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1, 1111 GFP_ATOMIC); 1112 if (dev == -ENOSPC) 1113 dev = -EMFILE; 1114 if (dev < 0) 1115 return dev; 1116 1117 *p = MKDEV(0, dev); 1118 return 0; 1119 } 1120 EXPORT_SYMBOL(get_anon_bdev); 1121 1122 void free_anon_bdev(dev_t dev) 1123 { 1124 ida_free(&unnamed_dev_ida, MINOR(dev)); 1125 } 1126 EXPORT_SYMBOL(free_anon_bdev); 1127 1128 int set_anon_super(struct super_block *s, void *data) 1129 { 1130 return get_anon_bdev(&s->s_dev); 1131 } 1132 EXPORT_SYMBOL(set_anon_super); 1133 1134 void kill_anon_super(struct super_block *sb) 1135 { 1136 dev_t dev = sb->s_dev; 1137 generic_shutdown_super(sb); 1138 free_anon_bdev(dev); 1139 } 1140 EXPORT_SYMBOL(kill_anon_super); 1141 1142 void kill_litter_super(struct super_block *sb) 1143 { 1144 if (sb->s_root) 1145 d_genocide(sb->s_root); 1146 kill_anon_super(sb); 1147 } 1148 EXPORT_SYMBOL(kill_litter_super); 1149 1150 static int ns_test_super(struct super_block *sb, void *data) 1151 { 1152 return sb->s_fs_info == data; 1153 } 1154 1155 static int ns_set_super(struct super_block *sb, void *data) 1156 { 1157 sb->s_fs_info = data; 1158 return set_anon_super(sb, NULL); 1159 } 1160 1161 struct dentry *mount_ns(struct file_system_type *fs_type, 1162 int flags, void *data, void *ns, struct user_namespace *user_ns, 1163 int (*fill_super)(struct super_block *, void *, int)) 1164 { 1165 struct super_block *sb; 1166 1167 /* Don't allow mounting unless the caller has CAP_SYS_ADMIN 1168 * over the namespace. 1169 */ 1170 if (!(flags & SB_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN)) 1171 return ERR_PTR(-EPERM); 1172 1173 sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags, 1174 user_ns, ns); 1175 if (IS_ERR(sb)) 1176 return ERR_CAST(sb); 1177 1178 if (!sb->s_root) { 1179 int err; 1180 err = fill_super(sb, data, flags & SB_SILENT ? 1 : 0); 1181 if (err) { 1182 deactivate_locked_super(sb); 1183 return ERR_PTR(err); 1184 } 1185 1186 sb->s_flags |= SB_ACTIVE; 1187 } 1188 1189 return dget(sb->s_root); 1190 } 1191 1192 EXPORT_SYMBOL(mount_ns); 1193 1194 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc) 1195 { 1196 return set_anon_super(sb, NULL); 1197 } 1198 EXPORT_SYMBOL(set_anon_super_fc); 1199 1200 static int test_keyed_super(struct super_block *sb, struct fs_context *fc) 1201 { 1202 return sb->s_fs_info == fc->s_fs_info; 1203 } 1204 1205 static int test_single_super(struct super_block *s, struct fs_context *fc) 1206 { 1207 return 1; 1208 } 1209 1210 /** 1211 * vfs_get_super - Get a superblock with a search key set in s_fs_info. 1212 * @fc: The filesystem context holding the parameters 1213 * @keying: How to distinguish superblocks 1214 * @fill_super: Helper to initialise a new superblock 1215 * 1216 * Search for a superblock and create a new one if not found. The search 1217 * criterion is controlled by @keying. If the search fails, a new superblock 1218 * is created and @fill_super() is called to initialise it. 1219 * 1220 * @keying can take one of a number of values: 1221 * 1222 * (1) vfs_get_single_super - Only one superblock of this type may exist on the 1223 * system. This is typically used for special system filesystems. 1224 * 1225 * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have 1226 * distinct keys (where the key is in s_fs_info). Searching for the same 1227 * key again will turn up the superblock for that key. 1228 * 1229 * (3) vfs_get_independent_super - Multiple superblocks may exist and are 1230 * unkeyed. Each call will get a new superblock. 1231 * 1232 * A permissions check is made by sget_fc() unless we're getting a superblock 1233 * for a kernel-internal mount or a submount. 1234 */ 1235 int vfs_get_super(struct fs_context *fc, 1236 enum vfs_get_super_keying keying, 1237 int (*fill_super)(struct super_block *sb, 1238 struct fs_context *fc)) 1239 { 1240 int (*test)(struct super_block *, struct fs_context *); 1241 struct super_block *sb; 1242 1243 switch (keying) { 1244 case vfs_get_single_super: 1245 test = test_single_super; 1246 break; 1247 case vfs_get_keyed_super: 1248 test = test_keyed_super; 1249 break; 1250 case vfs_get_independent_super: 1251 test = NULL; 1252 break; 1253 default: 1254 BUG(); 1255 } 1256 1257 sb = sget_fc(fc, test, set_anon_super_fc); 1258 if (IS_ERR(sb)) 1259 return PTR_ERR(sb); 1260 1261 if (!sb->s_root) { 1262 int err = fill_super(sb, fc); 1263 if (err) { 1264 deactivate_locked_super(sb); 1265 return err; 1266 } 1267 1268 sb->s_flags |= SB_ACTIVE; 1269 } 1270 1271 BUG_ON(fc->root); 1272 fc->root = dget(sb->s_root); 1273 return 0; 1274 } 1275 EXPORT_SYMBOL(vfs_get_super); 1276 1277 #ifdef CONFIG_BLOCK 1278 static int set_bdev_super(struct super_block *s, void *data) 1279 { 1280 s->s_bdev = data; 1281 s->s_dev = s->s_bdev->bd_dev; 1282 s->s_bdi = bdi_get(s->s_bdev->bd_bdi); 1283 1284 return 0; 1285 } 1286 1287 static int test_bdev_super(struct super_block *s, void *data) 1288 { 1289 return (void *)s->s_bdev == data; 1290 } 1291 1292 struct dentry *mount_bdev(struct file_system_type *fs_type, 1293 int flags, const char *dev_name, void *data, 1294 int (*fill_super)(struct super_block *, void *, int)) 1295 { 1296 struct block_device *bdev; 1297 struct super_block *s; 1298 fmode_t mode = FMODE_READ | FMODE_EXCL; 1299 int error = 0; 1300 1301 if (!(flags & SB_RDONLY)) 1302 mode |= FMODE_WRITE; 1303 1304 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 1305 if (IS_ERR(bdev)) 1306 return ERR_CAST(bdev); 1307 1308 /* 1309 * once the super is inserted into the list by sget, s_umount 1310 * will protect the lockfs code from trying to start a snapshot 1311 * while we are mounting 1312 */ 1313 mutex_lock(&bdev->bd_fsfreeze_mutex); 1314 if (bdev->bd_fsfreeze_count > 0) { 1315 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1316 error = -EBUSY; 1317 goto error_bdev; 1318 } 1319 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC, 1320 bdev); 1321 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1322 if (IS_ERR(s)) 1323 goto error_s; 1324 1325 if (s->s_root) { 1326 if ((flags ^ s->s_flags) & SB_RDONLY) { 1327 deactivate_locked_super(s); 1328 error = -EBUSY; 1329 goto error_bdev; 1330 } 1331 1332 /* 1333 * s_umount nests inside bd_mutex during 1334 * __invalidate_device(). blkdev_put() acquires 1335 * bd_mutex and can't be called under s_umount. Drop 1336 * s_umount temporarily. This is safe as we're 1337 * holding an active reference. 1338 */ 1339 up_write(&s->s_umount); 1340 blkdev_put(bdev, mode); 1341 down_write(&s->s_umount); 1342 } else { 1343 s->s_mode = mode; 1344 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1345 sb_set_blocksize(s, block_size(bdev)); 1346 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1347 if (error) { 1348 deactivate_locked_super(s); 1349 goto error; 1350 } 1351 1352 s->s_flags |= SB_ACTIVE; 1353 bdev->bd_super = s; 1354 } 1355 1356 return dget(s->s_root); 1357 1358 error_s: 1359 error = PTR_ERR(s); 1360 error_bdev: 1361 blkdev_put(bdev, mode); 1362 error: 1363 return ERR_PTR(error); 1364 } 1365 EXPORT_SYMBOL(mount_bdev); 1366 1367 void kill_block_super(struct super_block *sb) 1368 { 1369 struct block_device *bdev = sb->s_bdev; 1370 fmode_t mode = sb->s_mode; 1371 1372 bdev->bd_super = NULL; 1373 generic_shutdown_super(sb); 1374 sync_blockdev(bdev); 1375 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 1376 blkdev_put(bdev, mode | FMODE_EXCL); 1377 } 1378 1379 EXPORT_SYMBOL(kill_block_super); 1380 #endif 1381 1382 struct dentry *mount_nodev(struct file_system_type *fs_type, 1383 int flags, void *data, 1384 int (*fill_super)(struct super_block *, void *, int)) 1385 { 1386 int error; 1387 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1388 1389 if (IS_ERR(s)) 1390 return ERR_CAST(s); 1391 1392 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1393 if (error) { 1394 deactivate_locked_super(s); 1395 return ERR_PTR(error); 1396 } 1397 s->s_flags |= SB_ACTIVE; 1398 return dget(s->s_root); 1399 } 1400 EXPORT_SYMBOL(mount_nodev); 1401 1402 static int reconfigure_single(struct super_block *s, 1403 int flags, void *data) 1404 { 1405 struct fs_context *fc; 1406 int ret; 1407 1408 /* The caller really need to be passing fc down into mount_single(), 1409 * then a chunk of this can be removed. [Bollocks -- AV] 1410 * Better yet, reconfiguration shouldn't happen, but rather the second 1411 * mount should be rejected if the parameters are not compatible. 1412 */ 1413 fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK); 1414 if (IS_ERR(fc)) 1415 return PTR_ERR(fc); 1416 1417 ret = parse_monolithic_mount_data(fc, data); 1418 if (ret < 0) 1419 goto out; 1420 1421 ret = reconfigure_super(fc); 1422 out: 1423 put_fs_context(fc); 1424 return ret; 1425 } 1426 1427 static int compare_single(struct super_block *s, void *p) 1428 { 1429 return 1; 1430 } 1431 1432 struct dentry *mount_single(struct file_system_type *fs_type, 1433 int flags, void *data, 1434 int (*fill_super)(struct super_block *, void *, int)) 1435 { 1436 struct super_block *s; 1437 int error; 1438 1439 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1440 if (IS_ERR(s)) 1441 return ERR_CAST(s); 1442 if (!s->s_root) { 1443 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1444 if (!error) 1445 s->s_flags |= SB_ACTIVE; 1446 } else { 1447 error = reconfigure_single(s, flags, data); 1448 } 1449 if (unlikely(error)) { 1450 deactivate_locked_super(s); 1451 return ERR_PTR(error); 1452 } 1453 return dget(s->s_root); 1454 } 1455 EXPORT_SYMBOL(mount_single); 1456 1457 /** 1458 * vfs_get_tree - Get the mountable root 1459 * @fc: The superblock configuration context. 1460 * 1461 * The filesystem is invoked to get or create a superblock which can then later 1462 * be used for mounting. The filesystem places a pointer to the root to be 1463 * used for mounting in @fc->root. 1464 */ 1465 int vfs_get_tree(struct fs_context *fc) 1466 { 1467 struct super_block *sb; 1468 int error; 1469 1470 if (fc->root) 1471 return -EBUSY; 1472 1473 /* Get the mountable root in fc->root, with a ref on the root and a ref 1474 * on the superblock. 1475 */ 1476 error = fc->ops->get_tree(fc); 1477 if (error < 0) 1478 return error; 1479 1480 if (!fc->root) { 1481 pr_err("Filesystem %s get_tree() didn't set fc->root\n", 1482 fc->fs_type->name); 1483 /* We don't know what the locking state of the superblock is - 1484 * if there is a superblock. 1485 */ 1486 BUG(); 1487 } 1488 1489 sb = fc->root->d_sb; 1490 WARN_ON(!sb->s_bdi); 1491 1492 if (fc->subtype && !sb->s_subtype) { 1493 sb->s_subtype = fc->subtype; 1494 fc->subtype = NULL; 1495 } 1496 1497 /* 1498 * Write barrier is for super_cache_count(). We place it before setting 1499 * SB_BORN as the data dependency between the two functions is the 1500 * superblock structure contents that we just set up, not the SB_BORN 1501 * flag. 1502 */ 1503 smp_wmb(); 1504 sb->s_flags |= SB_BORN; 1505 1506 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL); 1507 if (unlikely(error)) { 1508 fc_drop_locked(fc); 1509 return error; 1510 } 1511 1512 /* 1513 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1514 * but s_maxbytes was an unsigned long long for many releases. Throw 1515 * this warning for a little while to try and catch filesystems that 1516 * violate this rule. 1517 */ 1518 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1519 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes); 1520 1521 return 0; 1522 } 1523 EXPORT_SYMBOL(vfs_get_tree); 1524 1525 /* 1526 * Setup private BDI for given superblock. It gets automatically cleaned up 1527 * in generic_shutdown_super(). 1528 */ 1529 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...) 1530 { 1531 struct backing_dev_info *bdi; 1532 int err; 1533 va_list args; 1534 1535 bdi = bdi_alloc(GFP_KERNEL); 1536 if (!bdi) 1537 return -ENOMEM; 1538 1539 bdi->name = sb->s_type->name; 1540 1541 va_start(args, fmt); 1542 err = bdi_register_va(bdi, fmt, args); 1543 va_end(args); 1544 if (err) { 1545 bdi_put(bdi); 1546 return err; 1547 } 1548 WARN_ON(sb->s_bdi != &noop_backing_dev_info); 1549 sb->s_bdi = bdi; 1550 1551 return 0; 1552 } 1553 EXPORT_SYMBOL(super_setup_bdi_name); 1554 1555 /* 1556 * Setup private BDI for given superblock. I gets automatically cleaned up 1557 * in generic_shutdown_super(). 1558 */ 1559 int super_setup_bdi(struct super_block *sb) 1560 { 1561 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0); 1562 1563 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name, 1564 atomic_long_inc_return(&bdi_seq)); 1565 } 1566 EXPORT_SYMBOL(super_setup_bdi); 1567 1568 /* 1569 * This is an internal function, please use sb_end_{write,pagefault,intwrite} 1570 * instead. 1571 */ 1572 void __sb_end_write(struct super_block *sb, int level) 1573 { 1574 percpu_up_read(sb->s_writers.rw_sem + level-1); 1575 } 1576 EXPORT_SYMBOL(__sb_end_write); 1577 1578 /* 1579 * This is an internal function, please use sb_start_{write,pagefault,intwrite} 1580 * instead. 1581 */ 1582 int __sb_start_write(struct super_block *sb, int level, bool wait) 1583 { 1584 bool force_trylock = false; 1585 int ret = 1; 1586 1587 #ifdef CONFIG_LOCKDEP 1588 /* 1589 * We want lockdep to tell us about possible deadlocks with freezing 1590 * but it's it bit tricky to properly instrument it. Getting a freeze 1591 * protection works as getting a read lock but there are subtle 1592 * problems. XFS for example gets freeze protection on internal level 1593 * twice in some cases, which is OK only because we already hold a 1594 * freeze protection also on higher level. Due to these cases we have 1595 * to use wait == F (trylock mode) which must not fail. 1596 */ 1597 if (wait) { 1598 int i; 1599 1600 for (i = 0; i < level - 1; i++) 1601 if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) { 1602 force_trylock = true; 1603 break; 1604 } 1605 } 1606 #endif 1607 if (wait && !force_trylock) 1608 percpu_down_read(sb->s_writers.rw_sem + level-1); 1609 else 1610 ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1); 1611 1612 WARN_ON(force_trylock && !ret); 1613 return ret; 1614 } 1615 EXPORT_SYMBOL(__sb_start_write); 1616 1617 /** 1618 * sb_wait_write - wait until all writers to given file system finish 1619 * @sb: the super for which we wait 1620 * @level: type of writers we wait for (normal vs page fault) 1621 * 1622 * This function waits until there are no writers of given type to given file 1623 * system. 1624 */ 1625 static void sb_wait_write(struct super_block *sb, int level) 1626 { 1627 percpu_down_write(sb->s_writers.rw_sem + level-1); 1628 } 1629 1630 /* 1631 * We are going to return to userspace and forget about these locks, the 1632 * ownership goes to the caller of thaw_super() which does unlock(). 1633 */ 1634 static void lockdep_sb_freeze_release(struct super_block *sb) 1635 { 1636 int level; 1637 1638 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1639 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1640 } 1641 1642 /* 1643 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb). 1644 */ 1645 static void lockdep_sb_freeze_acquire(struct super_block *sb) 1646 { 1647 int level; 1648 1649 for (level = 0; level < SB_FREEZE_LEVELS; ++level) 1650 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1651 } 1652 1653 static void sb_freeze_unlock(struct super_block *sb) 1654 { 1655 int level; 1656 1657 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1658 percpu_up_write(sb->s_writers.rw_sem + level); 1659 } 1660 1661 /** 1662 * freeze_super - lock the filesystem and force it into a consistent state 1663 * @sb: the super to lock 1664 * 1665 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1666 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1667 * -EBUSY. 1668 * 1669 * During this function, sb->s_writers.frozen goes through these values: 1670 * 1671 * SB_UNFROZEN: File system is normal, all writes progress as usual. 1672 * 1673 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 1674 * writes should be blocked, though page faults are still allowed. We wait for 1675 * all writes to complete and then proceed to the next stage. 1676 * 1677 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 1678 * but internal fs threads can still modify the filesystem (although they 1679 * should not dirty new pages or inodes), writeback can run etc. After waiting 1680 * for all running page faults we sync the filesystem which will clean all 1681 * dirty pages and inodes (no new dirty pages or inodes can be created when 1682 * sync is running). 1683 * 1684 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 1685 * modification are blocked (e.g. XFS preallocation truncation on inode 1686 * reclaim). This is usually implemented by blocking new transactions for 1687 * filesystems that have them and need this additional guard. After all 1688 * internal writers are finished we call ->freeze_fs() to finish filesystem 1689 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 1690 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 1691 * 1692 * sb->s_writers.frozen is protected by sb->s_umount. 1693 */ 1694 int freeze_super(struct super_block *sb) 1695 { 1696 int ret; 1697 1698 atomic_inc(&sb->s_active); 1699 down_write(&sb->s_umount); 1700 if (sb->s_writers.frozen != SB_UNFROZEN) { 1701 deactivate_locked_super(sb); 1702 return -EBUSY; 1703 } 1704 1705 if (!(sb->s_flags & SB_BORN)) { 1706 up_write(&sb->s_umount); 1707 return 0; /* sic - it's "nothing to do" */ 1708 } 1709 1710 if (sb_rdonly(sb)) { 1711 /* Nothing to do really... */ 1712 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1713 up_write(&sb->s_umount); 1714 return 0; 1715 } 1716 1717 sb->s_writers.frozen = SB_FREEZE_WRITE; 1718 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 1719 up_write(&sb->s_umount); 1720 sb_wait_write(sb, SB_FREEZE_WRITE); 1721 down_write(&sb->s_umount); 1722 1723 /* Now we go and block page faults... */ 1724 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 1725 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 1726 1727 /* All writers are done so after syncing there won't be dirty data */ 1728 sync_filesystem(sb); 1729 1730 /* Now wait for internal filesystem counter */ 1731 sb->s_writers.frozen = SB_FREEZE_FS; 1732 sb_wait_write(sb, SB_FREEZE_FS); 1733 1734 if (sb->s_op->freeze_fs) { 1735 ret = sb->s_op->freeze_fs(sb); 1736 if (ret) { 1737 printk(KERN_ERR 1738 "VFS:Filesystem freeze failed\n"); 1739 sb->s_writers.frozen = SB_UNFROZEN; 1740 sb_freeze_unlock(sb); 1741 wake_up(&sb->s_writers.wait_unfrozen); 1742 deactivate_locked_super(sb); 1743 return ret; 1744 } 1745 } 1746 /* 1747 * For debugging purposes so that fs can warn if it sees write activity 1748 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super(). 1749 */ 1750 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1751 lockdep_sb_freeze_release(sb); 1752 up_write(&sb->s_umount); 1753 return 0; 1754 } 1755 EXPORT_SYMBOL(freeze_super); 1756 1757 /** 1758 * thaw_super -- unlock filesystem 1759 * @sb: the super to thaw 1760 * 1761 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1762 */ 1763 static int thaw_super_locked(struct super_block *sb) 1764 { 1765 int error; 1766 1767 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) { 1768 up_write(&sb->s_umount); 1769 return -EINVAL; 1770 } 1771 1772 if (sb_rdonly(sb)) { 1773 sb->s_writers.frozen = SB_UNFROZEN; 1774 goto out; 1775 } 1776 1777 lockdep_sb_freeze_acquire(sb); 1778 1779 if (sb->s_op->unfreeze_fs) { 1780 error = sb->s_op->unfreeze_fs(sb); 1781 if (error) { 1782 printk(KERN_ERR 1783 "VFS:Filesystem thaw failed\n"); 1784 lockdep_sb_freeze_release(sb); 1785 up_write(&sb->s_umount); 1786 return error; 1787 } 1788 } 1789 1790 sb->s_writers.frozen = SB_UNFROZEN; 1791 sb_freeze_unlock(sb); 1792 out: 1793 wake_up(&sb->s_writers.wait_unfrozen); 1794 deactivate_locked_super(sb); 1795 return 0; 1796 } 1797 1798 int thaw_super(struct super_block *sb) 1799 { 1800 down_write(&sb->s_umount); 1801 return thaw_super_locked(sb); 1802 } 1803 EXPORT_SYMBOL(thaw_super); 1804