1 /* 2 * linux/fs/super.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * super.c contains code to handle: - mount structures 7 * - super-block tables 8 * - filesystem drivers list 9 * - mount system call 10 * - umount system call 11 * - ustat system call 12 * 13 * GK 2/5/95 - Changed to support mounting the root fs via NFS 14 * 15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 17 * Added options to /proc/mounts: 18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 21 */ 22 23 #include <linux/export.h> 24 #include <linux/slab.h> 25 #include <linux/blkdev.h> 26 #include <linux/mount.h> 27 #include <linux/security.h> 28 #include <linux/writeback.h> /* for the emergency remount stuff */ 29 #include <linux/idr.h> 30 #include <linux/mutex.h> 31 #include <linux/backing-dev.h> 32 #include <linux/rculist_bl.h> 33 #include <linux/cleancache.h> 34 #include <linux/fsnotify.h> 35 #include <linux/lockdep.h> 36 #include <linux/user_namespace.h> 37 #include "internal.h" 38 39 40 static LIST_HEAD(super_blocks); 41 static DEFINE_SPINLOCK(sb_lock); 42 43 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 44 "sb_writers", 45 "sb_pagefaults", 46 "sb_internal", 47 }; 48 49 /* 50 * One thing we have to be careful of with a per-sb shrinker is that we don't 51 * drop the last active reference to the superblock from within the shrinker. 52 * If that happens we could trigger unregistering the shrinker from within the 53 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 54 * take a passive reference to the superblock to avoid this from occurring. 55 */ 56 static unsigned long super_cache_scan(struct shrinker *shrink, 57 struct shrink_control *sc) 58 { 59 struct super_block *sb; 60 long fs_objects = 0; 61 long total_objects; 62 long freed = 0; 63 long dentries; 64 long inodes; 65 66 sb = container_of(shrink, struct super_block, s_shrink); 67 68 /* 69 * Deadlock avoidance. We may hold various FS locks, and we don't want 70 * to recurse into the FS that called us in clear_inode() and friends.. 71 */ 72 if (!(sc->gfp_mask & __GFP_FS)) 73 return SHRINK_STOP; 74 75 if (!trylock_super(sb)) 76 return SHRINK_STOP; 77 78 if (sb->s_op->nr_cached_objects) 79 fs_objects = sb->s_op->nr_cached_objects(sb, sc); 80 81 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc); 82 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc); 83 total_objects = dentries + inodes + fs_objects + 1; 84 if (!total_objects) 85 total_objects = 1; 86 87 /* proportion the scan between the caches */ 88 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 89 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 90 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects); 91 92 /* 93 * prune the dcache first as the icache is pinned by it, then 94 * prune the icache, followed by the filesystem specific caches 95 * 96 * Ensure that we always scan at least one object - memcg kmem 97 * accounting uses this to fully empty the caches. 98 */ 99 sc->nr_to_scan = dentries + 1; 100 freed = prune_dcache_sb(sb, sc); 101 sc->nr_to_scan = inodes + 1; 102 freed += prune_icache_sb(sb, sc); 103 104 if (fs_objects) { 105 sc->nr_to_scan = fs_objects + 1; 106 freed += sb->s_op->free_cached_objects(sb, sc); 107 } 108 109 up_read(&sb->s_umount); 110 return freed; 111 } 112 113 static unsigned long super_cache_count(struct shrinker *shrink, 114 struct shrink_control *sc) 115 { 116 struct super_block *sb; 117 long total_objects = 0; 118 119 sb = container_of(shrink, struct super_block, s_shrink); 120 121 /* 122 * Don't call trylock_super as it is a potential 123 * scalability bottleneck. The counts could get updated 124 * between super_cache_count and super_cache_scan anyway. 125 * Call to super_cache_count with shrinker_rwsem held 126 * ensures the safety of call to list_lru_shrink_count() and 127 * s_op->nr_cached_objects(). 128 */ 129 if (sb->s_op && sb->s_op->nr_cached_objects) 130 total_objects = sb->s_op->nr_cached_objects(sb, sc); 131 132 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc); 133 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc); 134 135 total_objects = vfs_pressure_ratio(total_objects); 136 return total_objects; 137 } 138 139 static void destroy_super_work(struct work_struct *work) 140 { 141 struct super_block *s = container_of(work, struct super_block, 142 destroy_work); 143 int i; 144 145 for (i = 0; i < SB_FREEZE_LEVELS; i++) 146 percpu_free_rwsem(&s->s_writers.rw_sem[i]); 147 kfree(s); 148 } 149 150 static void destroy_super_rcu(struct rcu_head *head) 151 { 152 struct super_block *s = container_of(head, struct super_block, rcu); 153 INIT_WORK(&s->destroy_work, destroy_super_work); 154 schedule_work(&s->destroy_work); 155 } 156 157 /** 158 * destroy_super - frees a superblock 159 * @s: superblock to free 160 * 161 * Frees a superblock. 162 */ 163 static void destroy_super(struct super_block *s) 164 { 165 list_lru_destroy(&s->s_dentry_lru); 166 list_lru_destroy(&s->s_inode_lru); 167 security_sb_free(s); 168 WARN_ON(!list_empty(&s->s_mounts)); 169 put_user_ns(s->s_user_ns); 170 kfree(s->s_subtype); 171 call_rcu(&s->rcu, destroy_super_rcu); 172 } 173 174 /** 175 * alloc_super - create new superblock 176 * @type: filesystem type superblock should belong to 177 * @flags: the mount flags 178 * @user_ns: User namespace for the super_block 179 * 180 * Allocates and initializes a new &struct super_block. alloc_super() 181 * returns a pointer new superblock or %NULL if allocation had failed. 182 */ 183 static struct super_block *alloc_super(struct file_system_type *type, int flags, 184 struct user_namespace *user_ns) 185 { 186 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 187 static const struct super_operations default_op; 188 int i; 189 190 if (!s) 191 return NULL; 192 193 INIT_LIST_HEAD(&s->s_mounts); 194 s->s_user_ns = get_user_ns(user_ns); 195 196 if (security_sb_alloc(s)) 197 goto fail; 198 199 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 200 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i], 201 sb_writers_name[i], 202 &type->s_writers_key[i])) 203 goto fail; 204 } 205 init_waitqueue_head(&s->s_writers.wait_unfrozen); 206 s->s_bdi = &noop_backing_dev_info; 207 s->s_flags = flags; 208 if (s->s_user_ns != &init_user_ns) 209 s->s_iflags |= SB_I_NODEV; 210 INIT_HLIST_NODE(&s->s_instances); 211 INIT_HLIST_BL_HEAD(&s->s_anon); 212 mutex_init(&s->s_sync_lock); 213 INIT_LIST_HEAD(&s->s_inodes); 214 spin_lock_init(&s->s_inode_list_lock); 215 INIT_LIST_HEAD(&s->s_inodes_wb); 216 spin_lock_init(&s->s_inode_wblist_lock); 217 218 if (list_lru_init_memcg(&s->s_dentry_lru)) 219 goto fail; 220 if (list_lru_init_memcg(&s->s_inode_lru)) 221 goto fail; 222 223 init_rwsem(&s->s_umount); 224 lockdep_set_class(&s->s_umount, &type->s_umount_key); 225 /* 226 * sget() can have s_umount recursion. 227 * 228 * When it cannot find a suitable sb, it allocates a new 229 * one (this one), and tries again to find a suitable old 230 * one. 231 * 232 * In case that succeeds, it will acquire the s_umount 233 * lock of the old one. Since these are clearly distrinct 234 * locks, and this object isn't exposed yet, there's no 235 * risk of deadlocks. 236 * 237 * Annotate this by putting this lock in a different 238 * subclass. 239 */ 240 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 241 s->s_count = 1; 242 atomic_set(&s->s_active, 1); 243 mutex_init(&s->s_vfs_rename_mutex); 244 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 245 mutex_init(&s->s_dquot.dqio_mutex); 246 s->s_maxbytes = MAX_NON_LFS; 247 s->s_op = &default_op; 248 s->s_time_gran = 1000000000; 249 s->cleancache_poolid = CLEANCACHE_NO_POOL; 250 251 s->s_shrink.seeks = DEFAULT_SEEKS; 252 s->s_shrink.scan_objects = super_cache_scan; 253 s->s_shrink.count_objects = super_cache_count; 254 s->s_shrink.batch = 1024; 255 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE; 256 return s; 257 258 fail: 259 destroy_super(s); 260 return NULL; 261 } 262 263 /* Superblock refcounting */ 264 265 /* 266 * Drop a superblock's refcount. The caller must hold sb_lock. 267 */ 268 static void __put_super(struct super_block *sb) 269 { 270 if (!--sb->s_count) { 271 list_del_init(&sb->s_list); 272 destroy_super(sb); 273 } 274 } 275 276 /** 277 * put_super - drop a temporary reference to superblock 278 * @sb: superblock in question 279 * 280 * Drops a temporary reference, frees superblock if there's no 281 * references left. 282 */ 283 static void put_super(struct super_block *sb) 284 { 285 spin_lock(&sb_lock); 286 __put_super(sb); 287 spin_unlock(&sb_lock); 288 } 289 290 291 /** 292 * deactivate_locked_super - drop an active reference to superblock 293 * @s: superblock to deactivate 294 * 295 * Drops an active reference to superblock, converting it into a temporary 296 * one if there is no other active references left. In that case we 297 * tell fs driver to shut it down and drop the temporary reference we 298 * had just acquired. 299 * 300 * Caller holds exclusive lock on superblock; that lock is released. 301 */ 302 void deactivate_locked_super(struct super_block *s) 303 { 304 struct file_system_type *fs = s->s_type; 305 if (atomic_dec_and_test(&s->s_active)) { 306 cleancache_invalidate_fs(s); 307 unregister_shrinker(&s->s_shrink); 308 fs->kill_sb(s); 309 310 /* 311 * Since list_lru_destroy() may sleep, we cannot call it from 312 * put_super(), where we hold the sb_lock. Therefore we destroy 313 * the lru lists right now. 314 */ 315 list_lru_destroy(&s->s_dentry_lru); 316 list_lru_destroy(&s->s_inode_lru); 317 318 put_filesystem(fs); 319 put_super(s); 320 } else { 321 up_write(&s->s_umount); 322 } 323 } 324 325 EXPORT_SYMBOL(deactivate_locked_super); 326 327 /** 328 * deactivate_super - drop an active reference to superblock 329 * @s: superblock to deactivate 330 * 331 * Variant of deactivate_locked_super(), except that superblock is *not* 332 * locked by caller. If we are going to drop the final active reference, 333 * lock will be acquired prior to that. 334 */ 335 void deactivate_super(struct super_block *s) 336 { 337 if (!atomic_add_unless(&s->s_active, -1, 1)) { 338 down_write(&s->s_umount); 339 deactivate_locked_super(s); 340 } 341 } 342 343 EXPORT_SYMBOL(deactivate_super); 344 345 /** 346 * grab_super - acquire an active reference 347 * @s: reference we are trying to make active 348 * 349 * Tries to acquire an active reference. grab_super() is used when we 350 * had just found a superblock in super_blocks or fs_type->fs_supers 351 * and want to turn it into a full-blown active reference. grab_super() 352 * is called with sb_lock held and drops it. Returns 1 in case of 353 * success, 0 if we had failed (superblock contents was already dead or 354 * dying when grab_super() had been called). Note that this is only 355 * called for superblocks not in rundown mode (== ones still on ->fs_supers 356 * of their type), so increment of ->s_count is OK here. 357 */ 358 static int grab_super(struct super_block *s) __releases(sb_lock) 359 { 360 s->s_count++; 361 spin_unlock(&sb_lock); 362 down_write(&s->s_umount); 363 if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) { 364 put_super(s); 365 return 1; 366 } 367 up_write(&s->s_umount); 368 put_super(s); 369 return 0; 370 } 371 372 /* 373 * trylock_super - try to grab ->s_umount shared 374 * @sb: reference we are trying to grab 375 * 376 * Try to prevent fs shutdown. This is used in places where we 377 * cannot take an active reference but we need to ensure that the 378 * filesystem is not shut down while we are working on it. It returns 379 * false if we cannot acquire s_umount or if we lose the race and 380 * filesystem already got into shutdown, and returns true with the s_umount 381 * lock held in read mode in case of success. On successful return, 382 * the caller must drop the s_umount lock when done. 383 * 384 * Note that unlike get_super() et.al. this one does *not* bump ->s_count. 385 * The reason why it's safe is that we are OK with doing trylock instead 386 * of down_read(). There's a couple of places that are OK with that, but 387 * it's very much not a general-purpose interface. 388 */ 389 bool trylock_super(struct super_block *sb) 390 { 391 if (down_read_trylock(&sb->s_umount)) { 392 if (!hlist_unhashed(&sb->s_instances) && 393 sb->s_root && (sb->s_flags & MS_BORN)) 394 return true; 395 up_read(&sb->s_umount); 396 } 397 398 return false; 399 } 400 401 /** 402 * generic_shutdown_super - common helper for ->kill_sb() 403 * @sb: superblock to kill 404 * 405 * generic_shutdown_super() does all fs-independent work on superblock 406 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 407 * that need destruction out of superblock, call generic_shutdown_super() 408 * and release aforementioned objects. Note: dentries and inodes _are_ 409 * taken care of and do not need specific handling. 410 * 411 * Upon calling this function, the filesystem may no longer alter or 412 * rearrange the set of dentries belonging to this super_block, nor may it 413 * change the attachments of dentries to inodes. 414 */ 415 void generic_shutdown_super(struct super_block *sb) 416 { 417 const struct super_operations *sop = sb->s_op; 418 419 if (sb->s_root) { 420 shrink_dcache_for_umount(sb); 421 sync_filesystem(sb); 422 sb->s_flags &= ~MS_ACTIVE; 423 424 fsnotify_unmount_inodes(sb); 425 cgroup_writeback_umount(); 426 427 evict_inodes(sb); 428 429 if (sb->s_dio_done_wq) { 430 destroy_workqueue(sb->s_dio_done_wq); 431 sb->s_dio_done_wq = NULL; 432 } 433 434 if (sop->put_super) 435 sop->put_super(sb); 436 437 if (!list_empty(&sb->s_inodes)) { 438 printk("VFS: Busy inodes after unmount of %s. " 439 "Self-destruct in 5 seconds. Have a nice day...\n", 440 sb->s_id); 441 } 442 } 443 spin_lock(&sb_lock); 444 /* should be initialized for __put_super_and_need_restart() */ 445 hlist_del_init(&sb->s_instances); 446 spin_unlock(&sb_lock); 447 up_write(&sb->s_umount); 448 if (sb->s_bdi != &noop_backing_dev_info) { 449 bdi_put(sb->s_bdi); 450 sb->s_bdi = &noop_backing_dev_info; 451 } 452 } 453 454 EXPORT_SYMBOL(generic_shutdown_super); 455 456 /** 457 * sget_userns - find or create a superblock 458 * @type: filesystem type superblock should belong to 459 * @test: comparison callback 460 * @set: setup callback 461 * @flags: mount flags 462 * @user_ns: User namespace for the super_block 463 * @data: argument to each of them 464 */ 465 struct super_block *sget_userns(struct file_system_type *type, 466 int (*test)(struct super_block *,void *), 467 int (*set)(struct super_block *,void *), 468 int flags, struct user_namespace *user_ns, 469 void *data) 470 { 471 struct super_block *s = NULL; 472 struct super_block *old; 473 int err; 474 475 if (!(flags & (MS_KERNMOUNT|MS_SUBMOUNT)) && 476 !(type->fs_flags & FS_USERNS_MOUNT) && 477 !capable(CAP_SYS_ADMIN)) 478 return ERR_PTR(-EPERM); 479 retry: 480 spin_lock(&sb_lock); 481 if (test) { 482 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 483 if (!test(old, data)) 484 continue; 485 if (user_ns != old->s_user_ns) { 486 spin_unlock(&sb_lock); 487 if (s) { 488 up_write(&s->s_umount); 489 destroy_super(s); 490 } 491 return ERR_PTR(-EBUSY); 492 } 493 if (!grab_super(old)) 494 goto retry; 495 if (s) { 496 up_write(&s->s_umount); 497 destroy_super(s); 498 s = NULL; 499 } 500 return old; 501 } 502 } 503 if (!s) { 504 spin_unlock(&sb_lock); 505 s = alloc_super(type, (flags & ~MS_SUBMOUNT), user_ns); 506 if (!s) 507 return ERR_PTR(-ENOMEM); 508 goto retry; 509 } 510 511 err = set(s, data); 512 if (err) { 513 spin_unlock(&sb_lock); 514 up_write(&s->s_umount); 515 destroy_super(s); 516 return ERR_PTR(err); 517 } 518 s->s_type = type; 519 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 520 list_add_tail(&s->s_list, &super_blocks); 521 hlist_add_head(&s->s_instances, &type->fs_supers); 522 spin_unlock(&sb_lock); 523 get_filesystem(type); 524 register_shrinker(&s->s_shrink); 525 return s; 526 } 527 528 EXPORT_SYMBOL(sget_userns); 529 530 /** 531 * sget - find or create a superblock 532 * @type: filesystem type superblock should belong to 533 * @test: comparison callback 534 * @set: setup callback 535 * @flags: mount flags 536 * @data: argument to each of them 537 */ 538 struct super_block *sget(struct file_system_type *type, 539 int (*test)(struct super_block *,void *), 540 int (*set)(struct super_block *,void *), 541 int flags, 542 void *data) 543 { 544 struct user_namespace *user_ns = current_user_ns(); 545 546 /* We don't yet pass the user namespace of the parent 547 * mount through to here so always use &init_user_ns 548 * until that changes. 549 */ 550 if (flags & MS_SUBMOUNT) 551 user_ns = &init_user_ns; 552 553 /* Ensure the requestor has permissions over the target filesystem */ 554 if (!(flags & (MS_KERNMOUNT|MS_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN)) 555 return ERR_PTR(-EPERM); 556 557 return sget_userns(type, test, set, flags, user_ns, data); 558 } 559 560 EXPORT_SYMBOL(sget); 561 562 void drop_super(struct super_block *sb) 563 { 564 up_read(&sb->s_umount); 565 put_super(sb); 566 } 567 568 EXPORT_SYMBOL(drop_super); 569 570 void drop_super_exclusive(struct super_block *sb) 571 { 572 up_write(&sb->s_umount); 573 put_super(sb); 574 } 575 EXPORT_SYMBOL(drop_super_exclusive); 576 577 /** 578 * iterate_supers - call function for all active superblocks 579 * @f: function to call 580 * @arg: argument to pass to it 581 * 582 * Scans the superblock list and calls given function, passing it 583 * locked superblock and given argument. 584 */ 585 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 586 { 587 struct super_block *sb, *p = NULL; 588 589 spin_lock(&sb_lock); 590 list_for_each_entry(sb, &super_blocks, s_list) { 591 if (hlist_unhashed(&sb->s_instances)) 592 continue; 593 sb->s_count++; 594 spin_unlock(&sb_lock); 595 596 down_read(&sb->s_umount); 597 if (sb->s_root && (sb->s_flags & MS_BORN)) 598 f(sb, arg); 599 up_read(&sb->s_umount); 600 601 spin_lock(&sb_lock); 602 if (p) 603 __put_super(p); 604 p = sb; 605 } 606 if (p) 607 __put_super(p); 608 spin_unlock(&sb_lock); 609 } 610 611 /** 612 * iterate_supers_type - call function for superblocks of given type 613 * @type: fs type 614 * @f: function to call 615 * @arg: argument to pass to it 616 * 617 * Scans the superblock list and calls given function, passing it 618 * locked superblock and given argument. 619 */ 620 void iterate_supers_type(struct file_system_type *type, 621 void (*f)(struct super_block *, void *), void *arg) 622 { 623 struct super_block *sb, *p = NULL; 624 625 spin_lock(&sb_lock); 626 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 627 sb->s_count++; 628 spin_unlock(&sb_lock); 629 630 down_read(&sb->s_umount); 631 if (sb->s_root && (sb->s_flags & MS_BORN)) 632 f(sb, arg); 633 up_read(&sb->s_umount); 634 635 spin_lock(&sb_lock); 636 if (p) 637 __put_super(p); 638 p = sb; 639 } 640 if (p) 641 __put_super(p); 642 spin_unlock(&sb_lock); 643 } 644 645 EXPORT_SYMBOL(iterate_supers_type); 646 647 static struct super_block *__get_super(struct block_device *bdev, bool excl) 648 { 649 struct super_block *sb; 650 651 if (!bdev) 652 return NULL; 653 654 spin_lock(&sb_lock); 655 rescan: 656 list_for_each_entry(sb, &super_blocks, s_list) { 657 if (hlist_unhashed(&sb->s_instances)) 658 continue; 659 if (sb->s_bdev == bdev) { 660 sb->s_count++; 661 spin_unlock(&sb_lock); 662 if (!excl) 663 down_read(&sb->s_umount); 664 else 665 down_write(&sb->s_umount); 666 /* still alive? */ 667 if (sb->s_root && (sb->s_flags & MS_BORN)) 668 return sb; 669 if (!excl) 670 up_read(&sb->s_umount); 671 else 672 up_write(&sb->s_umount); 673 /* nope, got unmounted */ 674 spin_lock(&sb_lock); 675 __put_super(sb); 676 goto rescan; 677 } 678 } 679 spin_unlock(&sb_lock); 680 return NULL; 681 } 682 683 /** 684 * get_super - get the superblock of a device 685 * @bdev: device to get the superblock for 686 * 687 * Scans the superblock list and finds the superblock of the file system 688 * mounted on the device given. %NULL is returned if no match is found. 689 */ 690 struct super_block *get_super(struct block_device *bdev) 691 { 692 return __get_super(bdev, false); 693 } 694 EXPORT_SYMBOL(get_super); 695 696 static struct super_block *__get_super_thawed(struct block_device *bdev, 697 bool excl) 698 { 699 while (1) { 700 struct super_block *s = __get_super(bdev, excl); 701 if (!s || s->s_writers.frozen == SB_UNFROZEN) 702 return s; 703 if (!excl) 704 up_read(&s->s_umount); 705 else 706 up_write(&s->s_umount); 707 wait_event(s->s_writers.wait_unfrozen, 708 s->s_writers.frozen == SB_UNFROZEN); 709 put_super(s); 710 } 711 } 712 713 /** 714 * get_super_thawed - get thawed superblock of a device 715 * @bdev: device to get the superblock for 716 * 717 * Scans the superblock list and finds the superblock of the file system 718 * mounted on the device. The superblock is returned once it is thawed 719 * (or immediately if it was not frozen). %NULL is returned if no match 720 * is found. 721 */ 722 struct super_block *get_super_thawed(struct block_device *bdev) 723 { 724 return __get_super_thawed(bdev, false); 725 } 726 EXPORT_SYMBOL(get_super_thawed); 727 728 /** 729 * get_super_exclusive_thawed - get thawed superblock of a device 730 * @bdev: device to get the superblock for 731 * 732 * Scans the superblock list and finds the superblock of the file system 733 * mounted on the device. The superblock is returned once it is thawed 734 * (or immediately if it was not frozen) and s_umount semaphore is held 735 * in exclusive mode. %NULL is returned if no match is found. 736 */ 737 struct super_block *get_super_exclusive_thawed(struct block_device *bdev) 738 { 739 return __get_super_thawed(bdev, true); 740 } 741 EXPORT_SYMBOL(get_super_exclusive_thawed); 742 743 /** 744 * get_active_super - get an active reference to the superblock of a device 745 * @bdev: device to get the superblock for 746 * 747 * Scans the superblock list and finds the superblock of the file system 748 * mounted on the device given. Returns the superblock with an active 749 * reference or %NULL if none was found. 750 */ 751 struct super_block *get_active_super(struct block_device *bdev) 752 { 753 struct super_block *sb; 754 755 if (!bdev) 756 return NULL; 757 758 restart: 759 spin_lock(&sb_lock); 760 list_for_each_entry(sb, &super_blocks, s_list) { 761 if (hlist_unhashed(&sb->s_instances)) 762 continue; 763 if (sb->s_bdev == bdev) { 764 if (!grab_super(sb)) 765 goto restart; 766 up_write(&sb->s_umount); 767 return sb; 768 } 769 } 770 spin_unlock(&sb_lock); 771 return NULL; 772 } 773 774 struct super_block *user_get_super(dev_t dev) 775 { 776 struct super_block *sb; 777 778 spin_lock(&sb_lock); 779 rescan: 780 list_for_each_entry(sb, &super_blocks, s_list) { 781 if (hlist_unhashed(&sb->s_instances)) 782 continue; 783 if (sb->s_dev == dev) { 784 sb->s_count++; 785 spin_unlock(&sb_lock); 786 down_read(&sb->s_umount); 787 /* still alive? */ 788 if (sb->s_root && (sb->s_flags & MS_BORN)) 789 return sb; 790 up_read(&sb->s_umount); 791 /* nope, got unmounted */ 792 spin_lock(&sb_lock); 793 __put_super(sb); 794 goto rescan; 795 } 796 } 797 spin_unlock(&sb_lock); 798 return NULL; 799 } 800 801 /** 802 * do_remount_sb - asks filesystem to change mount options. 803 * @sb: superblock in question 804 * @flags: numeric part of options 805 * @data: the rest of options 806 * @force: whether or not to force the change 807 * 808 * Alters the mount options of a mounted file system. 809 */ 810 int do_remount_sb(struct super_block *sb, int flags, void *data, int force) 811 { 812 int retval; 813 int remount_ro; 814 815 if (sb->s_writers.frozen != SB_UNFROZEN) 816 return -EBUSY; 817 818 #ifdef CONFIG_BLOCK 819 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev)) 820 return -EACCES; 821 #endif 822 823 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY); 824 825 if (remount_ro) { 826 if (!hlist_empty(&sb->s_pins)) { 827 up_write(&sb->s_umount); 828 group_pin_kill(&sb->s_pins); 829 down_write(&sb->s_umount); 830 if (!sb->s_root) 831 return 0; 832 if (sb->s_writers.frozen != SB_UNFROZEN) 833 return -EBUSY; 834 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY); 835 } 836 } 837 shrink_dcache_sb(sb); 838 839 /* If we are remounting RDONLY and current sb is read/write, 840 make sure there are no rw files opened */ 841 if (remount_ro) { 842 if (force) { 843 sb->s_readonly_remount = 1; 844 smp_wmb(); 845 } else { 846 retval = sb_prepare_remount_readonly(sb); 847 if (retval) 848 return retval; 849 } 850 } 851 852 if (sb->s_op->remount_fs) { 853 retval = sb->s_op->remount_fs(sb, &flags, data); 854 if (retval) { 855 if (!force) 856 goto cancel_readonly; 857 /* If forced remount, go ahead despite any errors */ 858 WARN(1, "forced remount of a %s fs returned %i\n", 859 sb->s_type->name, retval); 860 } 861 } 862 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK); 863 /* Needs to be ordered wrt mnt_is_readonly() */ 864 smp_wmb(); 865 sb->s_readonly_remount = 0; 866 867 /* 868 * Some filesystems modify their metadata via some other path than the 869 * bdev buffer cache (eg. use a private mapping, or directories in 870 * pagecache, etc). Also file data modifications go via their own 871 * mappings. So If we try to mount readonly then copy the filesystem 872 * from bdev, we could get stale data, so invalidate it to give a best 873 * effort at coherency. 874 */ 875 if (remount_ro && sb->s_bdev) 876 invalidate_bdev(sb->s_bdev); 877 return 0; 878 879 cancel_readonly: 880 sb->s_readonly_remount = 0; 881 return retval; 882 } 883 884 static void do_emergency_remount(struct work_struct *work) 885 { 886 struct super_block *sb, *p = NULL; 887 888 spin_lock(&sb_lock); 889 list_for_each_entry(sb, &super_blocks, s_list) { 890 if (hlist_unhashed(&sb->s_instances)) 891 continue; 892 sb->s_count++; 893 spin_unlock(&sb_lock); 894 down_write(&sb->s_umount); 895 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) && 896 !(sb->s_flags & MS_RDONLY)) { 897 /* 898 * What lock protects sb->s_flags?? 899 */ 900 do_remount_sb(sb, MS_RDONLY, NULL, 1); 901 } 902 up_write(&sb->s_umount); 903 spin_lock(&sb_lock); 904 if (p) 905 __put_super(p); 906 p = sb; 907 } 908 if (p) 909 __put_super(p); 910 spin_unlock(&sb_lock); 911 kfree(work); 912 printk("Emergency Remount complete\n"); 913 } 914 915 void emergency_remount(void) 916 { 917 struct work_struct *work; 918 919 work = kmalloc(sizeof(*work), GFP_ATOMIC); 920 if (work) { 921 INIT_WORK(work, do_emergency_remount); 922 schedule_work(work); 923 } 924 } 925 926 /* 927 * Unnamed block devices are dummy devices used by virtual 928 * filesystems which don't use real block-devices. -- jrs 929 */ 930 931 static DEFINE_IDA(unnamed_dev_ida); 932 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */ 933 /* Many userspace utilities consider an FSID of 0 invalid. 934 * Always return at least 1 from get_anon_bdev. 935 */ 936 static int unnamed_dev_start = 1; 937 938 int get_anon_bdev(dev_t *p) 939 { 940 int dev; 941 int error; 942 943 retry: 944 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0) 945 return -ENOMEM; 946 spin_lock(&unnamed_dev_lock); 947 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev); 948 if (!error) 949 unnamed_dev_start = dev + 1; 950 spin_unlock(&unnamed_dev_lock); 951 if (error == -EAGAIN) 952 /* We raced and lost with another CPU. */ 953 goto retry; 954 else if (error) 955 return -EAGAIN; 956 957 if (dev >= (1 << MINORBITS)) { 958 spin_lock(&unnamed_dev_lock); 959 ida_remove(&unnamed_dev_ida, dev); 960 if (unnamed_dev_start > dev) 961 unnamed_dev_start = dev; 962 spin_unlock(&unnamed_dev_lock); 963 return -EMFILE; 964 } 965 *p = MKDEV(0, dev & MINORMASK); 966 return 0; 967 } 968 EXPORT_SYMBOL(get_anon_bdev); 969 970 void free_anon_bdev(dev_t dev) 971 { 972 int slot = MINOR(dev); 973 spin_lock(&unnamed_dev_lock); 974 ida_remove(&unnamed_dev_ida, slot); 975 if (slot < unnamed_dev_start) 976 unnamed_dev_start = slot; 977 spin_unlock(&unnamed_dev_lock); 978 } 979 EXPORT_SYMBOL(free_anon_bdev); 980 981 int set_anon_super(struct super_block *s, void *data) 982 { 983 return get_anon_bdev(&s->s_dev); 984 } 985 986 EXPORT_SYMBOL(set_anon_super); 987 988 void kill_anon_super(struct super_block *sb) 989 { 990 dev_t dev = sb->s_dev; 991 generic_shutdown_super(sb); 992 free_anon_bdev(dev); 993 } 994 995 EXPORT_SYMBOL(kill_anon_super); 996 997 void kill_litter_super(struct super_block *sb) 998 { 999 if (sb->s_root) 1000 d_genocide(sb->s_root); 1001 kill_anon_super(sb); 1002 } 1003 1004 EXPORT_SYMBOL(kill_litter_super); 1005 1006 static int ns_test_super(struct super_block *sb, void *data) 1007 { 1008 return sb->s_fs_info == data; 1009 } 1010 1011 static int ns_set_super(struct super_block *sb, void *data) 1012 { 1013 sb->s_fs_info = data; 1014 return set_anon_super(sb, NULL); 1015 } 1016 1017 struct dentry *mount_ns(struct file_system_type *fs_type, 1018 int flags, void *data, void *ns, struct user_namespace *user_ns, 1019 int (*fill_super)(struct super_block *, void *, int)) 1020 { 1021 struct super_block *sb; 1022 1023 /* Don't allow mounting unless the caller has CAP_SYS_ADMIN 1024 * over the namespace. 1025 */ 1026 if (!(flags & MS_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN)) 1027 return ERR_PTR(-EPERM); 1028 1029 sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags, 1030 user_ns, ns); 1031 if (IS_ERR(sb)) 1032 return ERR_CAST(sb); 1033 1034 if (!sb->s_root) { 1035 int err; 1036 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 1037 if (err) { 1038 deactivate_locked_super(sb); 1039 return ERR_PTR(err); 1040 } 1041 1042 sb->s_flags |= MS_ACTIVE; 1043 } 1044 1045 return dget(sb->s_root); 1046 } 1047 1048 EXPORT_SYMBOL(mount_ns); 1049 1050 #ifdef CONFIG_BLOCK 1051 static int set_bdev_super(struct super_block *s, void *data) 1052 { 1053 s->s_bdev = data; 1054 s->s_dev = s->s_bdev->bd_dev; 1055 s->s_bdi = bdi_get(s->s_bdev->bd_bdi); 1056 1057 return 0; 1058 } 1059 1060 static int test_bdev_super(struct super_block *s, void *data) 1061 { 1062 return (void *)s->s_bdev == data; 1063 } 1064 1065 struct dentry *mount_bdev(struct file_system_type *fs_type, 1066 int flags, const char *dev_name, void *data, 1067 int (*fill_super)(struct super_block *, void *, int)) 1068 { 1069 struct block_device *bdev; 1070 struct super_block *s; 1071 fmode_t mode = FMODE_READ | FMODE_EXCL; 1072 int error = 0; 1073 1074 if (!(flags & MS_RDONLY)) 1075 mode |= FMODE_WRITE; 1076 1077 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 1078 if (IS_ERR(bdev)) 1079 return ERR_CAST(bdev); 1080 1081 /* 1082 * once the super is inserted into the list by sget, s_umount 1083 * will protect the lockfs code from trying to start a snapshot 1084 * while we are mounting 1085 */ 1086 mutex_lock(&bdev->bd_fsfreeze_mutex); 1087 if (bdev->bd_fsfreeze_count > 0) { 1088 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1089 error = -EBUSY; 1090 goto error_bdev; 1091 } 1092 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC, 1093 bdev); 1094 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1095 if (IS_ERR(s)) 1096 goto error_s; 1097 1098 if (s->s_root) { 1099 if ((flags ^ s->s_flags) & MS_RDONLY) { 1100 deactivate_locked_super(s); 1101 error = -EBUSY; 1102 goto error_bdev; 1103 } 1104 1105 /* 1106 * s_umount nests inside bd_mutex during 1107 * __invalidate_device(). blkdev_put() acquires 1108 * bd_mutex and can't be called under s_umount. Drop 1109 * s_umount temporarily. This is safe as we're 1110 * holding an active reference. 1111 */ 1112 up_write(&s->s_umount); 1113 blkdev_put(bdev, mode); 1114 down_write(&s->s_umount); 1115 } else { 1116 s->s_mode = mode; 1117 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1118 sb_set_blocksize(s, block_size(bdev)); 1119 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1120 if (error) { 1121 deactivate_locked_super(s); 1122 goto error; 1123 } 1124 1125 s->s_flags |= MS_ACTIVE; 1126 bdev->bd_super = s; 1127 } 1128 1129 return dget(s->s_root); 1130 1131 error_s: 1132 error = PTR_ERR(s); 1133 error_bdev: 1134 blkdev_put(bdev, mode); 1135 error: 1136 return ERR_PTR(error); 1137 } 1138 EXPORT_SYMBOL(mount_bdev); 1139 1140 void kill_block_super(struct super_block *sb) 1141 { 1142 struct block_device *bdev = sb->s_bdev; 1143 fmode_t mode = sb->s_mode; 1144 1145 bdev->bd_super = NULL; 1146 generic_shutdown_super(sb); 1147 sync_blockdev(bdev); 1148 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 1149 blkdev_put(bdev, mode | FMODE_EXCL); 1150 } 1151 1152 EXPORT_SYMBOL(kill_block_super); 1153 #endif 1154 1155 struct dentry *mount_nodev(struct file_system_type *fs_type, 1156 int flags, void *data, 1157 int (*fill_super)(struct super_block *, void *, int)) 1158 { 1159 int error; 1160 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1161 1162 if (IS_ERR(s)) 1163 return ERR_CAST(s); 1164 1165 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1166 if (error) { 1167 deactivate_locked_super(s); 1168 return ERR_PTR(error); 1169 } 1170 s->s_flags |= MS_ACTIVE; 1171 return dget(s->s_root); 1172 } 1173 EXPORT_SYMBOL(mount_nodev); 1174 1175 static int compare_single(struct super_block *s, void *p) 1176 { 1177 return 1; 1178 } 1179 1180 struct dentry *mount_single(struct file_system_type *fs_type, 1181 int flags, void *data, 1182 int (*fill_super)(struct super_block *, void *, int)) 1183 { 1184 struct super_block *s; 1185 int error; 1186 1187 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1188 if (IS_ERR(s)) 1189 return ERR_CAST(s); 1190 if (!s->s_root) { 1191 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1192 if (error) { 1193 deactivate_locked_super(s); 1194 return ERR_PTR(error); 1195 } 1196 s->s_flags |= MS_ACTIVE; 1197 } else { 1198 do_remount_sb(s, flags, data, 0); 1199 } 1200 return dget(s->s_root); 1201 } 1202 EXPORT_SYMBOL(mount_single); 1203 1204 struct dentry * 1205 mount_fs(struct file_system_type *type, int flags, const char *name, void *data) 1206 { 1207 struct dentry *root; 1208 struct super_block *sb; 1209 char *secdata = NULL; 1210 int error = -ENOMEM; 1211 1212 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) { 1213 secdata = alloc_secdata(); 1214 if (!secdata) 1215 goto out; 1216 1217 error = security_sb_copy_data(data, secdata); 1218 if (error) 1219 goto out_free_secdata; 1220 } 1221 1222 root = type->mount(type, flags, name, data); 1223 if (IS_ERR(root)) { 1224 error = PTR_ERR(root); 1225 goto out_free_secdata; 1226 } 1227 sb = root->d_sb; 1228 BUG_ON(!sb); 1229 WARN_ON(!sb->s_bdi); 1230 sb->s_flags |= MS_BORN; 1231 1232 error = security_sb_kern_mount(sb, flags, secdata); 1233 if (error) 1234 goto out_sb; 1235 1236 /* 1237 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1238 * but s_maxbytes was an unsigned long long for many releases. Throw 1239 * this warning for a little while to try and catch filesystems that 1240 * violate this rule. 1241 */ 1242 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1243 "negative value (%lld)\n", type->name, sb->s_maxbytes); 1244 1245 up_write(&sb->s_umount); 1246 free_secdata(secdata); 1247 return root; 1248 out_sb: 1249 dput(root); 1250 deactivate_locked_super(sb); 1251 out_free_secdata: 1252 free_secdata(secdata); 1253 out: 1254 return ERR_PTR(error); 1255 } 1256 1257 /* 1258 * Setup private BDI for given superblock. It gets automatically cleaned up 1259 * in generic_shutdown_super(). 1260 */ 1261 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...) 1262 { 1263 struct backing_dev_info *bdi; 1264 int err; 1265 va_list args; 1266 1267 bdi = bdi_alloc(GFP_KERNEL); 1268 if (!bdi) 1269 return -ENOMEM; 1270 1271 bdi->name = sb->s_type->name; 1272 1273 va_start(args, fmt); 1274 err = bdi_register_va(bdi, fmt, args); 1275 va_end(args); 1276 if (err) { 1277 bdi_put(bdi); 1278 return err; 1279 } 1280 WARN_ON(sb->s_bdi != &noop_backing_dev_info); 1281 sb->s_bdi = bdi; 1282 1283 return 0; 1284 } 1285 EXPORT_SYMBOL(super_setup_bdi_name); 1286 1287 /* 1288 * Setup private BDI for given superblock. I gets automatically cleaned up 1289 * in generic_shutdown_super(). 1290 */ 1291 int super_setup_bdi(struct super_block *sb) 1292 { 1293 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0); 1294 1295 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name, 1296 atomic_long_inc_return(&bdi_seq)); 1297 } 1298 EXPORT_SYMBOL(super_setup_bdi); 1299 1300 /* 1301 * This is an internal function, please use sb_end_{write,pagefault,intwrite} 1302 * instead. 1303 */ 1304 void __sb_end_write(struct super_block *sb, int level) 1305 { 1306 percpu_up_read(sb->s_writers.rw_sem + level-1); 1307 } 1308 EXPORT_SYMBOL(__sb_end_write); 1309 1310 /* 1311 * This is an internal function, please use sb_start_{write,pagefault,intwrite} 1312 * instead. 1313 */ 1314 int __sb_start_write(struct super_block *sb, int level, bool wait) 1315 { 1316 bool force_trylock = false; 1317 int ret = 1; 1318 1319 #ifdef CONFIG_LOCKDEP 1320 /* 1321 * We want lockdep to tell us about possible deadlocks with freezing 1322 * but it's it bit tricky to properly instrument it. Getting a freeze 1323 * protection works as getting a read lock but there are subtle 1324 * problems. XFS for example gets freeze protection on internal level 1325 * twice in some cases, which is OK only because we already hold a 1326 * freeze protection also on higher level. Due to these cases we have 1327 * to use wait == F (trylock mode) which must not fail. 1328 */ 1329 if (wait) { 1330 int i; 1331 1332 for (i = 0; i < level - 1; i++) 1333 if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) { 1334 force_trylock = true; 1335 break; 1336 } 1337 } 1338 #endif 1339 if (wait && !force_trylock) 1340 percpu_down_read(sb->s_writers.rw_sem + level-1); 1341 else 1342 ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1); 1343 1344 WARN_ON(force_trylock && !ret); 1345 return ret; 1346 } 1347 EXPORT_SYMBOL(__sb_start_write); 1348 1349 /** 1350 * sb_wait_write - wait until all writers to given file system finish 1351 * @sb: the super for which we wait 1352 * @level: type of writers we wait for (normal vs page fault) 1353 * 1354 * This function waits until there are no writers of given type to given file 1355 * system. 1356 */ 1357 static void sb_wait_write(struct super_block *sb, int level) 1358 { 1359 percpu_down_write(sb->s_writers.rw_sem + level-1); 1360 } 1361 1362 /* 1363 * We are going to return to userspace and forget about these locks, the 1364 * ownership goes to the caller of thaw_super() which does unlock(). 1365 */ 1366 static void lockdep_sb_freeze_release(struct super_block *sb) 1367 { 1368 int level; 1369 1370 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1371 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1372 } 1373 1374 /* 1375 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb). 1376 */ 1377 static void lockdep_sb_freeze_acquire(struct super_block *sb) 1378 { 1379 int level; 1380 1381 for (level = 0; level < SB_FREEZE_LEVELS; ++level) 1382 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1383 } 1384 1385 static void sb_freeze_unlock(struct super_block *sb) 1386 { 1387 int level; 1388 1389 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1390 percpu_up_write(sb->s_writers.rw_sem + level); 1391 } 1392 1393 /** 1394 * freeze_super - lock the filesystem and force it into a consistent state 1395 * @sb: the super to lock 1396 * 1397 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1398 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1399 * -EBUSY. 1400 * 1401 * During this function, sb->s_writers.frozen goes through these values: 1402 * 1403 * SB_UNFROZEN: File system is normal, all writes progress as usual. 1404 * 1405 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 1406 * writes should be blocked, though page faults are still allowed. We wait for 1407 * all writes to complete and then proceed to the next stage. 1408 * 1409 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 1410 * but internal fs threads can still modify the filesystem (although they 1411 * should not dirty new pages or inodes), writeback can run etc. After waiting 1412 * for all running page faults we sync the filesystem which will clean all 1413 * dirty pages and inodes (no new dirty pages or inodes can be created when 1414 * sync is running). 1415 * 1416 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 1417 * modification are blocked (e.g. XFS preallocation truncation on inode 1418 * reclaim). This is usually implemented by blocking new transactions for 1419 * filesystems that have them and need this additional guard. After all 1420 * internal writers are finished we call ->freeze_fs() to finish filesystem 1421 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 1422 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 1423 * 1424 * sb->s_writers.frozen is protected by sb->s_umount. 1425 */ 1426 int freeze_super(struct super_block *sb) 1427 { 1428 int ret; 1429 1430 atomic_inc(&sb->s_active); 1431 down_write(&sb->s_umount); 1432 if (sb->s_writers.frozen != SB_UNFROZEN) { 1433 deactivate_locked_super(sb); 1434 return -EBUSY; 1435 } 1436 1437 if (!(sb->s_flags & MS_BORN)) { 1438 up_write(&sb->s_umount); 1439 return 0; /* sic - it's "nothing to do" */ 1440 } 1441 1442 if (sb->s_flags & MS_RDONLY) { 1443 /* Nothing to do really... */ 1444 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1445 up_write(&sb->s_umount); 1446 return 0; 1447 } 1448 1449 sb->s_writers.frozen = SB_FREEZE_WRITE; 1450 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 1451 up_write(&sb->s_umount); 1452 sb_wait_write(sb, SB_FREEZE_WRITE); 1453 down_write(&sb->s_umount); 1454 1455 /* Now we go and block page faults... */ 1456 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 1457 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 1458 1459 /* All writers are done so after syncing there won't be dirty data */ 1460 sync_filesystem(sb); 1461 1462 /* Now wait for internal filesystem counter */ 1463 sb->s_writers.frozen = SB_FREEZE_FS; 1464 sb_wait_write(sb, SB_FREEZE_FS); 1465 1466 if (sb->s_op->freeze_fs) { 1467 ret = sb->s_op->freeze_fs(sb); 1468 if (ret) { 1469 printk(KERN_ERR 1470 "VFS:Filesystem freeze failed\n"); 1471 sb->s_writers.frozen = SB_UNFROZEN; 1472 sb_freeze_unlock(sb); 1473 wake_up(&sb->s_writers.wait_unfrozen); 1474 deactivate_locked_super(sb); 1475 return ret; 1476 } 1477 } 1478 /* 1479 * For debugging purposes so that fs can warn if it sees write activity 1480 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super(). 1481 */ 1482 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1483 lockdep_sb_freeze_release(sb); 1484 up_write(&sb->s_umount); 1485 return 0; 1486 } 1487 EXPORT_SYMBOL(freeze_super); 1488 1489 /** 1490 * thaw_super -- unlock filesystem 1491 * @sb: the super to thaw 1492 * 1493 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1494 */ 1495 int thaw_super(struct super_block *sb) 1496 { 1497 int error; 1498 1499 down_write(&sb->s_umount); 1500 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) { 1501 up_write(&sb->s_umount); 1502 return -EINVAL; 1503 } 1504 1505 if (sb->s_flags & MS_RDONLY) { 1506 sb->s_writers.frozen = SB_UNFROZEN; 1507 goto out; 1508 } 1509 1510 lockdep_sb_freeze_acquire(sb); 1511 1512 if (sb->s_op->unfreeze_fs) { 1513 error = sb->s_op->unfreeze_fs(sb); 1514 if (error) { 1515 printk(KERN_ERR 1516 "VFS:Filesystem thaw failed\n"); 1517 lockdep_sb_freeze_release(sb); 1518 up_write(&sb->s_umount); 1519 return error; 1520 } 1521 } 1522 1523 sb->s_writers.frozen = SB_UNFROZEN; 1524 sb_freeze_unlock(sb); 1525 out: 1526 wake_up(&sb->s_writers.wait_unfrozen); 1527 deactivate_locked_super(sb); 1528 return 0; 1529 } 1530 EXPORT_SYMBOL(thaw_super); 1531