xref: /openbmc/linux/fs/super.c (revision 3932b9ca)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/blkdev.h>
26 #include <linux/mount.h>
27 #include <linux/security.h>
28 #include <linux/writeback.h>		/* for the emergency remount stuff */
29 #include <linux/idr.h>
30 #include <linux/mutex.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rculist_bl.h>
33 #include <linux/cleancache.h>
34 #include <linux/fsnotify.h>
35 #include <linux/lockdep.h>
36 #include "internal.h"
37 
38 
39 LIST_HEAD(super_blocks);
40 DEFINE_SPINLOCK(sb_lock);
41 
42 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
43 	"sb_writers",
44 	"sb_pagefaults",
45 	"sb_internal",
46 };
47 
48 /*
49  * One thing we have to be careful of with a per-sb shrinker is that we don't
50  * drop the last active reference to the superblock from within the shrinker.
51  * If that happens we could trigger unregistering the shrinker from within the
52  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
53  * take a passive reference to the superblock to avoid this from occurring.
54  */
55 static unsigned long super_cache_scan(struct shrinker *shrink,
56 				      struct shrink_control *sc)
57 {
58 	struct super_block *sb;
59 	long	fs_objects = 0;
60 	long	total_objects;
61 	long	freed = 0;
62 	long	dentries;
63 	long	inodes;
64 
65 	sb = container_of(shrink, struct super_block, s_shrink);
66 
67 	/*
68 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
69 	 * to recurse into the FS that called us in clear_inode() and friends..
70 	 */
71 	if (!(sc->gfp_mask & __GFP_FS))
72 		return SHRINK_STOP;
73 
74 	if (!grab_super_passive(sb))
75 		return SHRINK_STOP;
76 
77 	if (sb->s_op->nr_cached_objects)
78 		fs_objects = sb->s_op->nr_cached_objects(sb, sc->nid);
79 
80 	inodes = list_lru_count_node(&sb->s_inode_lru, sc->nid);
81 	dentries = list_lru_count_node(&sb->s_dentry_lru, sc->nid);
82 	total_objects = dentries + inodes + fs_objects + 1;
83 
84 	/* proportion the scan between the caches */
85 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
86 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
87 
88 	/*
89 	 * prune the dcache first as the icache is pinned by it, then
90 	 * prune the icache, followed by the filesystem specific caches
91 	 */
92 	freed = prune_dcache_sb(sb, dentries, sc->nid);
93 	freed += prune_icache_sb(sb, inodes, sc->nid);
94 
95 	if (fs_objects) {
96 		fs_objects = mult_frac(sc->nr_to_scan, fs_objects,
97 								total_objects);
98 		freed += sb->s_op->free_cached_objects(sb, fs_objects,
99 						       sc->nid);
100 	}
101 
102 	drop_super(sb);
103 	return freed;
104 }
105 
106 static unsigned long super_cache_count(struct shrinker *shrink,
107 				       struct shrink_control *sc)
108 {
109 	struct super_block *sb;
110 	long	total_objects = 0;
111 
112 	sb = container_of(shrink, struct super_block, s_shrink);
113 
114 	/*
115 	 * Don't call grab_super_passive as it is a potential
116 	 * scalability bottleneck. The counts could get updated
117 	 * between super_cache_count and super_cache_scan anyway.
118 	 * Call to super_cache_count with shrinker_rwsem held
119 	 * ensures the safety of call to list_lru_count_node() and
120 	 * s_op->nr_cached_objects().
121 	 */
122 	if (sb->s_op && sb->s_op->nr_cached_objects)
123 		total_objects = sb->s_op->nr_cached_objects(sb,
124 						 sc->nid);
125 
126 	total_objects += list_lru_count_node(&sb->s_dentry_lru,
127 						 sc->nid);
128 	total_objects += list_lru_count_node(&sb->s_inode_lru,
129 						 sc->nid);
130 
131 	total_objects = vfs_pressure_ratio(total_objects);
132 	return total_objects;
133 }
134 
135 /**
136  *	destroy_super	-	frees a superblock
137  *	@s: superblock to free
138  *
139  *	Frees a superblock.
140  */
141 static void destroy_super(struct super_block *s)
142 {
143 	int i;
144 	list_lru_destroy(&s->s_dentry_lru);
145 	list_lru_destroy(&s->s_inode_lru);
146 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
147 		percpu_counter_destroy(&s->s_writers.counter[i]);
148 	security_sb_free(s);
149 	WARN_ON(!list_empty(&s->s_mounts));
150 	kfree(s->s_subtype);
151 	kfree(s->s_options);
152 	kfree_rcu(s, rcu);
153 }
154 
155 /**
156  *	alloc_super	-	create new superblock
157  *	@type:	filesystem type superblock should belong to
158  *	@flags: the mount flags
159  *
160  *	Allocates and initializes a new &struct super_block.  alloc_super()
161  *	returns a pointer new superblock or %NULL if allocation had failed.
162  */
163 static struct super_block *alloc_super(struct file_system_type *type, int flags)
164 {
165 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
166 	static const struct super_operations default_op;
167 	int i;
168 
169 	if (!s)
170 		return NULL;
171 
172 	INIT_LIST_HEAD(&s->s_mounts);
173 
174 	if (security_sb_alloc(s))
175 		goto fail;
176 
177 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
178 		if (percpu_counter_init(&s->s_writers.counter[i], 0) < 0)
179 			goto fail;
180 		lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i],
181 				 &type->s_writers_key[i], 0);
182 	}
183 	init_waitqueue_head(&s->s_writers.wait);
184 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
185 	s->s_flags = flags;
186 	s->s_bdi = &default_backing_dev_info;
187 	INIT_HLIST_NODE(&s->s_instances);
188 	INIT_HLIST_BL_HEAD(&s->s_anon);
189 	INIT_LIST_HEAD(&s->s_inodes);
190 
191 	if (list_lru_init(&s->s_dentry_lru))
192 		goto fail;
193 	if (list_lru_init(&s->s_inode_lru))
194 		goto fail;
195 
196 	init_rwsem(&s->s_umount);
197 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
198 	/*
199 	 * sget() can have s_umount recursion.
200 	 *
201 	 * When it cannot find a suitable sb, it allocates a new
202 	 * one (this one), and tries again to find a suitable old
203 	 * one.
204 	 *
205 	 * In case that succeeds, it will acquire the s_umount
206 	 * lock of the old one. Since these are clearly distrinct
207 	 * locks, and this object isn't exposed yet, there's no
208 	 * risk of deadlocks.
209 	 *
210 	 * Annotate this by putting this lock in a different
211 	 * subclass.
212 	 */
213 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
214 	s->s_count = 1;
215 	atomic_set(&s->s_active, 1);
216 	mutex_init(&s->s_vfs_rename_mutex);
217 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
218 	mutex_init(&s->s_dquot.dqio_mutex);
219 	mutex_init(&s->s_dquot.dqonoff_mutex);
220 	s->s_maxbytes = MAX_NON_LFS;
221 	s->s_op = &default_op;
222 	s->s_time_gran = 1000000000;
223 	s->cleancache_poolid = -1;
224 
225 	s->s_shrink.seeks = DEFAULT_SEEKS;
226 	s->s_shrink.scan_objects = super_cache_scan;
227 	s->s_shrink.count_objects = super_cache_count;
228 	s->s_shrink.batch = 1024;
229 	s->s_shrink.flags = SHRINKER_NUMA_AWARE;
230 	return s;
231 
232 fail:
233 	destroy_super(s);
234 	return NULL;
235 }
236 
237 /* Superblock refcounting  */
238 
239 /*
240  * Drop a superblock's refcount.  The caller must hold sb_lock.
241  */
242 static void __put_super(struct super_block *sb)
243 {
244 	if (!--sb->s_count) {
245 		list_del_init(&sb->s_list);
246 		destroy_super(sb);
247 	}
248 }
249 
250 /**
251  *	put_super	-	drop a temporary reference to superblock
252  *	@sb: superblock in question
253  *
254  *	Drops a temporary reference, frees superblock if there's no
255  *	references left.
256  */
257 static void put_super(struct super_block *sb)
258 {
259 	spin_lock(&sb_lock);
260 	__put_super(sb);
261 	spin_unlock(&sb_lock);
262 }
263 
264 
265 /**
266  *	deactivate_locked_super	-	drop an active reference to superblock
267  *	@s: superblock to deactivate
268  *
269  *	Drops an active reference to superblock, converting it into a temprory
270  *	one if there is no other active references left.  In that case we
271  *	tell fs driver to shut it down and drop the temporary reference we
272  *	had just acquired.
273  *
274  *	Caller holds exclusive lock on superblock; that lock is released.
275  */
276 void deactivate_locked_super(struct super_block *s)
277 {
278 	struct file_system_type *fs = s->s_type;
279 	if (atomic_dec_and_test(&s->s_active)) {
280 		cleancache_invalidate_fs(s);
281 		unregister_shrinker(&s->s_shrink);
282 		fs->kill_sb(s);
283 
284 		put_filesystem(fs);
285 		put_super(s);
286 	} else {
287 		up_write(&s->s_umount);
288 	}
289 }
290 
291 EXPORT_SYMBOL(deactivate_locked_super);
292 
293 /**
294  *	deactivate_super	-	drop an active reference to superblock
295  *	@s: superblock to deactivate
296  *
297  *	Variant of deactivate_locked_super(), except that superblock is *not*
298  *	locked by caller.  If we are going to drop the final active reference,
299  *	lock will be acquired prior to that.
300  */
301 void deactivate_super(struct super_block *s)
302 {
303         if (!atomic_add_unless(&s->s_active, -1, 1)) {
304 		down_write(&s->s_umount);
305 		deactivate_locked_super(s);
306 	}
307 }
308 
309 EXPORT_SYMBOL(deactivate_super);
310 
311 /**
312  *	grab_super - acquire an active reference
313  *	@s: reference we are trying to make active
314  *
315  *	Tries to acquire an active reference.  grab_super() is used when we
316  * 	had just found a superblock in super_blocks or fs_type->fs_supers
317  *	and want to turn it into a full-blown active reference.  grab_super()
318  *	is called with sb_lock held and drops it.  Returns 1 in case of
319  *	success, 0 if we had failed (superblock contents was already dead or
320  *	dying when grab_super() had been called).  Note that this is only
321  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
322  *	of their type), so increment of ->s_count is OK here.
323  */
324 static int grab_super(struct super_block *s) __releases(sb_lock)
325 {
326 	s->s_count++;
327 	spin_unlock(&sb_lock);
328 	down_write(&s->s_umount);
329 	if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
330 		put_super(s);
331 		return 1;
332 	}
333 	up_write(&s->s_umount);
334 	put_super(s);
335 	return 0;
336 }
337 
338 /*
339  *	grab_super_passive - acquire a passive reference
340  *	@sb: reference we are trying to grab
341  *
342  *	Tries to acquire a passive reference. This is used in places where we
343  *	cannot take an active reference but we need to ensure that the
344  *	superblock does not go away while we are working on it. It returns
345  *	false if a reference was not gained, and returns true with the s_umount
346  *	lock held in read mode if a reference is gained. On successful return,
347  *	the caller must drop the s_umount lock and the passive reference when
348  *	done.
349  */
350 bool grab_super_passive(struct super_block *sb)
351 {
352 	spin_lock(&sb_lock);
353 	if (hlist_unhashed(&sb->s_instances)) {
354 		spin_unlock(&sb_lock);
355 		return false;
356 	}
357 
358 	sb->s_count++;
359 	spin_unlock(&sb_lock);
360 
361 	if (down_read_trylock(&sb->s_umount)) {
362 		if (sb->s_root && (sb->s_flags & MS_BORN))
363 			return true;
364 		up_read(&sb->s_umount);
365 	}
366 
367 	put_super(sb);
368 	return false;
369 }
370 
371 /**
372  *	generic_shutdown_super	-	common helper for ->kill_sb()
373  *	@sb: superblock to kill
374  *
375  *	generic_shutdown_super() does all fs-independent work on superblock
376  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
377  *	that need destruction out of superblock, call generic_shutdown_super()
378  *	and release aforementioned objects.  Note: dentries and inodes _are_
379  *	taken care of and do not need specific handling.
380  *
381  *	Upon calling this function, the filesystem may no longer alter or
382  *	rearrange the set of dentries belonging to this super_block, nor may it
383  *	change the attachments of dentries to inodes.
384  */
385 void generic_shutdown_super(struct super_block *sb)
386 {
387 	const struct super_operations *sop = sb->s_op;
388 
389 	if (sb->s_root) {
390 		shrink_dcache_for_umount(sb);
391 		sync_filesystem(sb);
392 		sb->s_flags &= ~MS_ACTIVE;
393 
394 		fsnotify_unmount_inodes(&sb->s_inodes);
395 
396 		evict_inodes(sb);
397 
398 		if (sb->s_dio_done_wq) {
399 			destroy_workqueue(sb->s_dio_done_wq);
400 			sb->s_dio_done_wq = NULL;
401 		}
402 
403 		if (sop->put_super)
404 			sop->put_super(sb);
405 
406 		if (!list_empty(&sb->s_inodes)) {
407 			printk("VFS: Busy inodes after unmount of %s. "
408 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
409 			   sb->s_id);
410 		}
411 	}
412 	spin_lock(&sb_lock);
413 	/* should be initialized for __put_super_and_need_restart() */
414 	hlist_del_init(&sb->s_instances);
415 	spin_unlock(&sb_lock);
416 	up_write(&sb->s_umount);
417 }
418 
419 EXPORT_SYMBOL(generic_shutdown_super);
420 
421 /**
422  *	sget	-	find or create a superblock
423  *	@type:	filesystem type superblock should belong to
424  *	@test:	comparison callback
425  *	@set:	setup callback
426  *	@flags:	mount flags
427  *	@data:	argument to each of them
428  */
429 struct super_block *sget(struct file_system_type *type,
430 			int (*test)(struct super_block *,void *),
431 			int (*set)(struct super_block *,void *),
432 			int flags,
433 			void *data)
434 {
435 	struct super_block *s = NULL;
436 	struct super_block *old;
437 	int err;
438 
439 retry:
440 	spin_lock(&sb_lock);
441 	if (test) {
442 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
443 			if (!test(old, data))
444 				continue;
445 			if (!grab_super(old))
446 				goto retry;
447 			if (s) {
448 				up_write(&s->s_umount);
449 				destroy_super(s);
450 				s = NULL;
451 			}
452 			return old;
453 		}
454 	}
455 	if (!s) {
456 		spin_unlock(&sb_lock);
457 		s = alloc_super(type, flags);
458 		if (!s)
459 			return ERR_PTR(-ENOMEM);
460 		goto retry;
461 	}
462 
463 	err = set(s, data);
464 	if (err) {
465 		spin_unlock(&sb_lock);
466 		up_write(&s->s_umount);
467 		destroy_super(s);
468 		return ERR_PTR(err);
469 	}
470 	s->s_type = type;
471 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
472 	list_add_tail(&s->s_list, &super_blocks);
473 	hlist_add_head(&s->s_instances, &type->fs_supers);
474 	spin_unlock(&sb_lock);
475 	get_filesystem(type);
476 	register_shrinker(&s->s_shrink);
477 	return s;
478 }
479 
480 EXPORT_SYMBOL(sget);
481 
482 void drop_super(struct super_block *sb)
483 {
484 	up_read(&sb->s_umount);
485 	put_super(sb);
486 }
487 
488 EXPORT_SYMBOL(drop_super);
489 
490 /**
491  *	iterate_supers - call function for all active superblocks
492  *	@f: function to call
493  *	@arg: argument to pass to it
494  *
495  *	Scans the superblock list and calls given function, passing it
496  *	locked superblock and given argument.
497  */
498 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
499 {
500 	struct super_block *sb, *p = NULL;
501 
502 	spin_lock(&sb_lock);
503 	list_for_each_entry(sb, &super_blocks, s_list) {
504 		if (hlist_unhashed(&sb->s_instances))
505 			continue;
506 		sb->s_count++;
507 		spin_unlock(&sb_lock);
508 
509 		down_read(&sb->s_umount);
510 		if (sb->s_root && (sb->s_flags & MS_BORN))
511 			f(sb, arg);
512 		up_read(&sb->s_umount);
513 
514 		spin_lock(&sb_lock);
515 		if (p)
516 			__put_super(p);
517 		p = sb;
518 	}
519 	if (p)
520 		__put_super(p);
521 	spin_unlock(&sb_lock);
522 }
523 
524 /**
525  *	iterate_supers_type - call function for superblocks of given type
526  *	@type: fs type
527  *	@f: function to call
528  *	@arg: argument to pass to it
529  *
530  *	Scans the superblock list and calls given function, passing it
531  *	locked superblock and given argument.
532  */
533 void iterate_supers_type(struct file_system_type *type,
534 	void (*f)(struct super_block *, void *), void *arg)
535 {
536 	struct super_block *sb, *p = NULL;
537 
538 	spin_lock(&sb_lock);
539 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
540 		sb->s_count++;
541 		spin_unlock(&sb_lock);
542 
543 		down_read(&sb->s_umount);
544 		if (sb->s_root && (sb->s_flags & MS_BORN))
545 			f(sb, arg);
546 		up_read(&sb->s_umount);
547 
548 		spin_lock(&sb_lock);
549 		if (p)
550 			__put_super(p);
551 		p = sb;
552 	}
553 	if (p)
554 		__put_super(p);
555 	spin_unlock(&sb_lock);
556 }
557 
558 EXPORT_SYMBOL(iterate_supers_type);
559 
560 /**
561  *	get_super - get the superblock of a device
562  *	@bdev: device to get the superblock for
563  *
564  *	Scans the superblock list and finds the superblock of the file system
565  *	mounted on the device given. %NULL is returned if no match is found.
566  */
567 
568 struct super_block *get_super(struct block_device *bdev)
569 {
570 	struct super_block *sb;
571 
572 	if (!bdev)
573 		return NULL;
574 
575 	spin_lock(&sb_lock);
576 rescan:
577 	list_for_each_entry(sb, &super_blocks, s_list) {
578 		if (hlist_unhashed(&sb->s_instances))
579 			continue;
580 		if (sb->s_bdev == bdev) {
581 			sb->s_count++;
582 			spin_unlock(&sb_lock);
583 			down_read(&sb->s_umount);
584 			/* still alive? */
585 			if (sb->s_root && (sb->s_flags & MS_BORN))
586 				return sb;
587 			up_read(&sb->s_umount);
588 			/* nope, got unmounted */
589 			spin_lock(&sb_lock);
590 			__put_super(sb);
591 			goto rescan;
592 		}
593 	}
594 	spin_unlock(&sb_lock);
595 	return NULL;
596 }
597 
598 EXPORT_SYMBOL(get_super);
599 
600 /**
601  *	get_super_thawed - get thawed superblock of a device
602  *	@bdev: device to get the superblock for
603  *
604  *	Scans the superblock list and finds the superblock of the file system
605  *	mounted on the device. The superblock is returned once it is thawed
606  *	(or immediately if it was not frozen). %NULL is returned if no match
607  *	is found.
608  */
609 struct super_block *get_super_thawed(struct block_device *bdev)
610 {
611 	while (1) {
612 		struct super_block *s = get_super(bdev);
613 		if (!s || s->s_writers.frozen == SB_UNFROZEN)
614 			return s;
615 		up_read(&s->s_umount);
616 		wait_event(s->s_writers.wait_unfrozen,
617 			   s->s_writers.frozen == SB_UNFROZEN);
618 		put_super(s);
619 	}
620 }
621 EXPORT_SYMBOL(get_super_thawed);
622 
623 /**
624  * get_active_super - get an active reference to the superblock of a device
625  * @bdev: device to get the superblock for
626  *
627  * Scans the superblock list and finds the superblock of the file system
628  * mounted on the device given.  Returns the superblock with an active
629  * reference or %NULL if none was found.
630  */
631 struct super_block *get_active_super(struct block_device *bdev)
632 {
633 	struct super_block *sb;
634 
635 	if (!bdev)
636 		return NULL;
637 
638 restart:
639 	spin_lock(&sb_lock);
640 	list_for_each_entry(sb, &super_blocks, s_list) {
641 		if (hlist_unhashed(&sb->s_instances))
642 			continue;
643 		if (sb->s_bdev == bdev) {
644 			if (!grab_super(sb))
645 				goto restart;
646 			up_write(&sb->s_umount);
647 			return sb;
648 		}
649 	}
650 	spin_unlock(&sb_lock);
651 	return NULL;
652 }
653 
654 struct super_block *user_get_super(dev_t dev)
655 {
656 	struct super_block *sb;
657 
658 	spin_lock(&sb_lock);
659 rescan:
660 	list_for_each_entry(sb, &super_blocks, s_list) {
661 		if (hlist_unhashed(&sb->s_instances))
662 			continue;
663 		if (sb->s_dev ==  dev) {
664 			sb->s_count++;
665 			spin_unlock(&sb_lock);
666 			down_read(&sb->s_umount);
667 			/* still alive? */
668 			if (sb->s_root && (sb->s_flags & MS_BORN))
669 				return sb;
670 			up_read(&sb->s_umount);
671 			/* nope, got unmounted */
672 			spin_lock(&sb_lock);
673 			__put_super(sb);
674 			goto rescan;
675 		}
676 	}
677 	spin_unlock(&sb_lock);
678 	return NULL;
679 }
680 
681 /**
682  *	do_remount_sb - asks filesystem to change mount options.
683  *	@sb:	superblock in question
684  *	@flags:	numeric part of options
685  *	@data:	the rest of options
686  *      @force: whether or not to force the change
687  *
688  *	Alters the mount options of a mounted file system.
689  */
690 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
691 {
692 	int retval;
693 	int remount_ro;
694 
695 	if (sb->s_writers.frozen != SB_UNFROZEN)
696 		return -EBUSY;
697 
698 #ifdef CONFIG_BLOCK
699 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
700 		return -EACCES;
701 #endif
702 
703 	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
704 
705 	if (remount_ro) {
706 		if (sb->s_pins.first) {
707 			up_write(&sb->s_umount);
708 			sb_pin_kill(sb);
709 			down_write(&sb->s_umount);
710 			if (!sb->s_root)
711 				return 0;
712 			if (sb->s_writers.frozen != SB_UNFROZEN)
713 				return -EBUSY;
714 			remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
715 		}
716 	}
717 	shrink_dcache_sb(sb);
718 
719 	/* If we are remounting RDONLY and current sb is read/write,
720 	   make sure there are no rw files opened */
721 	if (remount_ro) {
722 		if (force) {
723 			sb->s_readonly_remount = 1;
724 			smp_wmb();
725 		} else {
726 			retval = sb_prepare_remount_readonly(sb);
727 			if (retval)
728 				return retval;
729 		}
730 	}
731 
732 	if (sb->s_op->remount_fs) {
733 		retval = sb->s_op->remount_fs(sb, &flags, data);
734 		if (retval) {
735 			if (!force)
736 				goto cancel_readonly;
737 			/* If forced remount, go ahead despite any errors */
738 			WARN(1, "forced remount of a %s fs returned %i\n",
739 			     sb->s_type->name, retval);
740 		}
741 	}
742 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
743 	/* Needs to be ordered wrt mnt_is_readonly() */
744 	smp_wmb();
745 	sb->s_readonly_remount = 0;
746 
747 	/*
748 	 * Some filesystems modify their metadata via some other path than the
749 	 * bdev buffer cache (eg. use a private mapping, or directories in
750 	 * pagecache, etc). Also file data modifications go via their own
751 	 * mappings. So If we try to mount readonly then copy the filesystem
752 	 * from bdev, we could get stale data, so invalidate it to give a best
753 	 * effort at coherency.
754 	 */
755 	if (remount_ro && sb->s_bdev)
756 		invalidate_bdev(sb->s_bdev);
757 	return 0;
758 
759 cancel_readonly:
760 	sb->s_readonly_remount = 0;
761 	return retval;
762 }
763 
764 static void do_emergency_remount(struct work_struct *work)
765 {
766 	struct super_block *sb, *p = NULL;
767 
768 	spin_lock(&sb_lock);
769 	list_for_each_entry(sb, &super_blocks, s_list) {
770 		if (hlist_unhashed(&sb->s_instances))
771 			continue;
772 		sb->s_count++;
773 		spin_unlock(&sb_lock);
774 		down_write(&sb->s_umount);
775 		if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
776 		    !(sb->s_flags & MS_RDONLY)) {
777 			/*
778 			 * What lock protects sb->s_flags??
779 			 */
780 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
781 		}
782 		up_write(&sb->s_umount);
783 		spin_lock(&sb_lock);
784 		if (p)
785 			__put_super(p);
786 		p = sb;
787 	}
788 	if (p)
789 		__put_super(p);
790 	spin_unlock(&sb_lock);
791 	kfree(work);
792 	printk("Emergency Remount complete\n");
793 }
794 
795 void emergency_remount(void)
796 {
797 	struct work_struct *work;
798 
799 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
800 	if (work) {
801 		INIT_WORK(work, do_emergency_remount);
802 		schedule_work(work);
803 	}
804 }
805 
806 /*
807  * Unnamed block devices are dummy devices used by virtual
808  * filesystems which don't use real block-devices.  -- jrs
809  */
810 
811 static DEFINE_IDA(unnamed_dev_ida);
812 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
813 /* Many userspace utilities consider an FSID of 0 invalid.
814  * Always return at least 1 from get_anon_bdev.
815  */
816 static int unnamed_dev_start = 1;
817 
818 int get_anon_bdev(dev_t *p)
819 {
820 	int dev;
821 	int error;
822 
823  retry:
824 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
825 		return -ENOMEM;
826 	spin_lock(&unnamed_dev_lock);
827 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
828 	if (!error)
829 		unnamed_dev_start = dev + 1;
830 	spin_unlock(&unnamed_dev_lock);
831 	if (error == -EAGAIN)
832 		/* We raced and lost with another CPU. */
833 		goto retry;
834 	else if (error)
835 		return -EAGAIN;
836 
837 	if (dev == (1 << MINORBITS)) {
838 		spin_lock(&unnamed_dev_lock);
839 		ida_remove(&unnamed_dev_ida, dev);
840 		if (unnamed_dev_start > dev)
841 			unnamed_dev_start = dev;
842 		spin_unlock(&unnamed_dev_lock);
843 		return -EMFILE;
844 	}
845 	*p = MKDEV(0, dev & MINORMASK);
846 	return 0;
847 }
848 EXPORT_SYMBOL(get_anon_bdev);
849 
850 void free_anon_bdev(dev_t dev)
851 {
852 	int slot = MINOR(dev);
853 	spin_lock(&unnamed_dev_lock);
854 	ida_remove(&unnamed_dev_ida, slot);
855 	if (slot < unnamed_dev_start)
856 		unnamed_dev_start = slot;
857 	spin_unlock(&unnamed_dev_lock);
858 }
859 EXPORT_SYMBOL(free_anon_bdev);
860 
861 int set_anon_super(struct super_block *s, void *data)
862 {
863 	int error = get_anon_bdev(&s->s_dev);
864 	if (!error)
865 		s->s_bdi = &noop_backing_dev_info;
866 	return error;
867 }
868 
869 EXPORT_SYMBOL(set_anon_super);
870 
871 void kill_anon_super(struct super_block *sb)
872 {
873 	dev_t dev = sb->s_dev;
874 	generic_shutdown_super(sb);
875 	free_anon_bdev(dev);
876 }
877 
878 EXPORT_SYMBOL(kill_anon_super);
879 
880 void kill_litter_super(struct super_block *sb)
881 {
882 	if (sb->s_root)
883 		d_genocide(sb->s_root);
884 	kill_anon_super(sb);
885 }
886 
887 EXPORT_SYMBOL(kill_litter_super);
888 
889 static int ns_test_super(struct super_block *sb, void *data)
890 {
891 	return sb->s_fs_info == data;
892 }
893 
894 static int ns_set_super(struct super_block *sb, void *data)
895 {
896 	sb->s_fs_info = data;
897 	return set_anon_super(sb, NULL);
898 }
899 
900 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
901 	void *data, int (*fill_super)(struct super_block *, void *, int))
902 {
903 	struct super_block *sb;
904 
905 	sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
906 	if (IS_ERR(sb))
907 		return ERR_CAST(sb);
908 
909 	if (!sb->s_root) {
910 		int err;
911 		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
912 		if (err) {
913 			deactivate_locked_super(sb);
914 			return ERR_PTR(err);
915 		}
916 
917 		sb->s_flags |= MS_ACTIVE;
918 	}
919 
920 	return dget(sb->s_root);
921 }
922 
923 EXPORT_SYMBOL(mount_ns);
924 
925 #ifdef CONFIG_BLOCK
926 static int set_bdev_super(struct super_block *s, void *data)
927 {
928 	s->s_bdev = data;
929 	s->s_dev = s->s_bdev->bd_dev;
930 
931 	/*
932 	 * We set the bdi here to the queue backing, file systems can
933 	 * overwrite this in ->fill_super()
934 	 */
935 	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
936 	return 0;
937 }
938 
939 static int test_bdev_super(struct super_block *s, void *data)
940 {
941 	return (void *)s->s_bdev == data;
942 }
943 
944 struct dentry *mount_bdev(struct file_system_type *fs_type,
945 	int flags, const char *dev_name, void *data,
946 	int (*fill_super)(struct super_block *, void *, int))
947 {
948 	struct block_device *bdev;
949 	struct super_block *s;
950 	fmode_t mode = FMODE_READ | FMODE_EXCL;
951 	int error = 0;
952 
953 	if (!(flags & MS_RDONLY))
954 		mode |= FMODE_WRITE;
955 
956 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
957 	if (IS_ERR(bdev))
958 		return ERR_CAST(bdev);
959 
960 	/*
961 	 * once the super is inserted into the list by sget, s_umount
962 	 * will protect the lockfs code from trying to start a snapshot
963 	 * while we are mounting
964 	 */
965 	mutex_lock(&bdev->bd_fsfreeze_mutex);
966 	if (bdev->bd_fsfreeze_count > 0) {
967 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
968 		error = -EBUSY;
969 		goto error_bdev;
970 	}
971 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
972 		 bdev);
973 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
974 	if (IS_ERR(s))
975 		goto error_s;
976 
977 	if (s->s_root) {
978 		if ((flags ^ s->s_flags) & MS_RDONLY) {
979 			deactivate_locked_super(s);
980 			error = -EBUSY;
981 			goto error_bdev;
982 		}
983 
984 		/*
985 		 * s_umount nests inside bd_mutex during
986 		 * __invalidate_device().  blkdev_put() acquires
987 		 * bd_mutex and can't be called under s_umount.  Drop
988 		 * s_umount temporarily.  This is safe as we're
989 		 * holding an active reference.
990 		 */
991 		up_write(&s->s_umount);
992 		blkdev_put(bdev, mode);
993 		down_write(&s->s_umount);
994 	} else {
995 		char b[BDEVNAME_SIZE];
996 
997 		s->s_mode = mode;
998 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
999 		sb_set_blocksize(s, block_size(bdev));
1000 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1001 		if (error) {
1002 			deactivate_locked_super(s);
1003 			goto error;
1004 		}
1005 
1006 		s->s_flags |= MS_ACTIVE;
1007 		bdev->bd_super = s;
1008 	}
1009 
1010 	return dget(s->s_root);
1011 
1012 error_s:
1013 	error = PTR_ERR(s);
1014 error_bdev:
1015 	blkdev_put(bdev, mode);
1016 error:
1017 	return ERR_PTR(error);
1018 }
1019 EXPORT_SYMBOL(mount_bdev);
1020 
1021 void kill_block_super(struct super_block *sb)
1022 {
1023 	struct block_device *bdev = sb->s_bdev;
1024 	fmode_t mode = sb->s_mode;
1025 
1026 	bdev->bd_super = NULL;
1027 	generic_shutdown_super(sb);
1028 	sync_blockdev(bdev);
1029 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1030 	blkdev_put(bdev, mode | FMODE_EXCL);
1031 }
1032 
1033 EXPORT_SYMBOL(kill_block_super);
1034 #endif
1035 
1036 struct dentry *mount_nodev(struct file_system_type *fs_type,
1037 	int flags, void *data,
1038 	int (*fill_super)(struct super_block *, void *, int))
1039 {
1040 	int error;
1041 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1042 
1043 	if (IS_ERR(s))
1044 		return ERR_CAST(s);
1045 
1046 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1047 	if (error) {
1048 		deactivate_locked_super(s);
1049 		return ERR_PTR(error);
1050 	}
1051 	s->s_flags |= MS_ACTIVE;
1052 	return dget(s->s_root);
1053 }
1054 EXPORT_SYMBOL(mount_nodev);
1055 
1056 static int compare_single(struct super_block *s, void *p)
1057 {
1058 	return 1;
1059 }
1060 
1061 struct dentry *mount_single(struct file_system_type *fs_type,
1062 	int flags, void *data,
1063 	int (*fill_super)(struct super_block *, void *, int))
1064 {
1065 	struct super_block *s;
1066 	int error;
1067 
1068 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1069 	if (IS_ERR(s))
1070 		return ERR_CAST(s);
1071 	if (!s->s_root) {
1072 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1073 		if (error) {
1074 			deactivate_locked_super(s);
1075 			return ERR_PTR(error);
1076 		}
1077 		s->s_flags |= MS_ACTIVE;
1078 	} else {
1079 		do_remount_sb(s, flags, data, 0);
1080 	}
1081 	return dget(s->s_root);
1082 }
1083 EXPORT_SYMBOL(mount_single);
1084 
1085 struct dentry *
1086 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1087 {
1088 	struct dentry *root;
1089 	struct super_block *sb;
1090 	char *secdata = NULL;
1091 	int error = -ENOMEM;
1092 
1093 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1094 		secdata = alloc_secdata();
1095 		if (!secdata)
1096 			goto out;
1097 
1098 		error = security_sb_copy_data(data, secdata);
1099 		if (error)
1100 			goto out_free_secdata;
1101 	}
1102 
1103 	root = type->mount(type, flags, name, data);
1104 	if (IS_ERR(root)) {
1105 		error = PTR_ERR(root);
1106 		goto out_free_secdata;
1107 	}
1108 	sb = root->d_sb;
1109 	BUG_ON(!sb);
1110 	WARN_ON(!sb->s_bdi);
1111 	WARN_ON(sb->s_bdi == &default_backing_dev_info);
1112 	sb->s_flags |= MS_BORN;
1113 
1114 	error = security_sb_kern_mount(sb, flags, secdata);
1115 	if (error)
1116 		goto out_sb;
1117 
1118 	/*
1119 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1120 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1121 	 * this warning for a little while to try and catch filesystems that
1122 	 * violate this rule.
1123 	 */
1124 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1125 		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1126 
1127 	up_write(&sb->s_umount);
1128 	free_secdata(secdata);
1129 	return root;
1130 out_sb:
1131 	dput(root);
1132 	deactivate_locked_super(sb);
1133 out_free_secdata:
1134 	free_secdata(secdata);
1135 out:
1136 	return ERR_PTR(error);
1137 }
1138 
1139 /*
1140  * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1141  * instead.
1142  */
1143 void __sb_end_write(struct super_block *sb, int level)
1144 {
1145 	percpu_counter_dec(&sb->s_writers.counter[level-1]);
1146 	/*
1147 	 * Make sure s_writers are updated before we wake up waiters in
1148 	 * freeze_super().
1149 	 */
1150 	smp_mb();
1151 	if (waitqueue_active(&sb->s_writers.wait))
1152 		wake_up(&sb->s_writers.wait);
1153 	rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_);
1154 }
1155 EXPORT_SYMBOL(__sb_end_write);
1156 
1157 #ifdef CONFIG_LOCKDEP
1158 /*
1159  * We want lockdep to tell us about possible deadlocks with freezing but
1160  * it's it bit tricky to properly instrument it. Getting a freeze protection
1161  * works as getting a read lock but there are subtle problems. XFS for example
1162  * gets freeze protection on internal level twice in some cases, which is OK
1163  * only because we already hold a freeze protection also on higher level. Due
1164  * to these cases we have to tell lockdep we are doing trylock when we
1165  * already hold a freeze protection for a higher freeze level.
1166  */
1167 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock,
1168 				unsigned long ip)
1169 {
1170 	int i;
1171 
1172 	if (!trylock) {
1173 		for (i = 0; i < level - 1; i++)
1174 			if (lock_is_held(&sb->s_writers.lock_map[i])) {
1175 				trylock = true;
1176 				break;
1177 			}
1178 	}
1179 	rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip);
1180 }
1181 #endif
1182 
1183 /*
1184  * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1185  * instead.
1186  */
1187 int __sb_start_write(struct super_block *sb, int level, bool wait)
1188 {
1189 retry:
1190 	if (unlikely(sb->s_writers.frozen >= level)) {
1191 		if (!wait)
1192 			return 0;
1193 		wait_event(sb->s_writers.wait_unfrozen,
1194 			   sb->s_writers.frozen < level);
1195 	}
1196 
1197 #ifdef CONFIG_LOCKDEP
1198 	acquire_freeze_lock(sb, level, !wait, _RET_IP_);
1199 #endif
1200 	percpu_counter_inc(&sb->s_writers.counter[level-1]);
1201 	/*
1202 	 * Make sure counter is updated before we check for frozen.
1203 	 * freeze_super() first sets frozen and then checks the counter.
1204 	 */
1205 	smp_mb();
1206 	if (unlikely(sb->s_writers.frozen >= level)) {
1207 		__sb_end_write(sb, level);
1208 		goto retry;
1209 	}
1210 	return 1;
1211 }
1212 EXPORT_SYMBOL(__sb_start_write);
1213 
1214 /**
1215  * sb_wait_write - wait until all writers to given file system finish
1216  * @sb: the super for which we wait
1217  * @level: type of writers we wait for (normal vs page fault)
1218  *
1219  * This function waits until there are no writers of given type to given file
1220  * system. Caller of this function should make sure there can be no new writers
1221  * of type @level before calling this function. Otherwise this function can
1222  * livelock.
1223  */
1224 static void sb_wait_write(struct super_block *sb, int level)
1225 {
1226 	s64 writers;
1227 
1228 	/*
1229 	 * We just cycle-through lockdep here so that it does not complain
1230 	 * about returning with lock to userspace
1231 	 */
1232 	rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_);
1233 	rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_);
1234 
1235 	do {
1236 		DEFINE_WAIT(wait);
1237 
1238 		/*
1239 		 * We use a barrier in prepare_to_wait() to separate setting
1240 		 * of frozen and checking of the counter
1241 		 */
1242 		prepare_to_wait(&sb->s_writers.wait, &wait,
1243 				TASK_UNINTERRUPTIBLE);
1244 
1245 		writers = percpu_counter_sum(&sb->s_writers.counter[level-1]);
1246 		if (writers)
1247 			schedule();
1248 
1249 		finish_wait(&sb->s_writers.wait, &wait);
1250 	} while (writers);
1251 }
1252 
1253 /**
1254  * freeze_super - lock the filesystem and force it into a consistent state
1255  * @sb: the super to lock
1256  *
1257  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1258  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1259  * -EBUSY.
1260  *
1261  * During this function, sb->s_writers.frozen goes through these values:
1262  *
1263  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1264  *
1265  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1266  * writes should be blocked, though page faults are still allowed. We wait for
1267  * all writes to complete and then proceed to the next stage.
1268  *
1269  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1270  * but internal fs threads can still modify the filesystem (although they
1271  * should not dirty new pages or inodes), writeback can run etc. After waiting
1272  * for all running page faults we sync the filesystem which will clean all
1273  * dirty pages and inodes (no new dirty pages or inodes can be created when
1274  * sync is running).
1275  *
1276  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1277  * modification are blocked (e.g. XFS preallocation truncation on inode
1278  * reclaim). This is usually implemented by blocking new transactions for
1279  * filesystems that have them and need this additional guard. After all
1280  * internal writers are finished we call ->freeze_fs() to finish filesystem
1281  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1282  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1283  *
1284  * sb->s_writers.frozen is protected by sb->s_umount.
1285  */
1286 int freeze_super(struct super_block *sb)
1287 {
1288 	int ret;
1289 
1290 	atomic_inc(&sb->s_active);
1291 	down_write(&sb->s_umount);
1292 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1293 		deactivate_locked_super(sb);
1294 		return -EBUSY;
1295 	}
1296 
1297 	if (!(sb->s_flags & MS_BORN)) {
1298 		up_write(&sb->s_umount);
1299 		return 0;	/* sic - it's "nothing to do" */
1300 	}
1301 
1302 	if (sb->s_flags & MS_RDONLY) {
1303 		/* Nothing to do really... */
1304 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1305 		up_write(&sb->s_umount);
1306 		return 0;
1307 	}
1308 
1309 	/* From now on, no new normal writers can start */
1310 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1311 	smp_wmb();
1312 
1313 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1314 	up_write(&sb->s_umount);
1315 
1316 	sb_wait_write(sb, SB_FREEZE_WRITE);
1317 
1318 	/* Now we go and block page faults... */
1319 	down_write(&sb->s_umount);
1320 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1321 	smp_wmb();
1322 
1323 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1324 
1325 	/* All writers are done so after syncing there won't be dirty data */
1326 	sync_filesystem(sb);
1327 
1328 	/* Now wait for internal filesystem counter */
1329 	sb->s_writers.frozen = SB_FREEZE_FS;
1330 	smp_wmb();
1331 	sb_wait_write(sb, SB_FREEZE_FS);
1332 
1333 	if (sb->s_op->freeze_fs) {
1334 		ret = sb->s_op->freeze_fs(sb);
1335 		if (ret) {
1336 			printk(KERN_ERR
1337 				"VFS:Filesystem freeze failed\n");
1338 			sb->s_writers.frozen = SB_UNFROZEN;
1339 			smp_wmb();
1340 			wake_up(&sb->s_writers.wait_unfrozen);
1341 			deactivate_locked_super(sb);
1342 			return ret;
1343 		}
1344 	}
1345 	/*
1346 	 * This is just for debugging purposes so that fs can warn if it
1347 	 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1348 	 */
1349 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1350 	up_write(&sb->s_umount);
1351 	return 0;
1352 }
1353 EXPORT_SYMBOL(freeze_super);
1354 
1355 /**
1356  * thaw_super -- unlock filesystem
1357  * @sb: the super to thaw
1358  *
1359  * Unlocks the filesystem and marks it writeable again after freeze_super().
1360  */
1361 int thaw_super(struct super_block *sb)
1362 {
1363 	int error;
1364 
1365 	down_write(&sb->s_umount);
1366 	if (sb->s_writers.frozen == SB_UNFROZEN) {
1367 		up_write(&sb->s_umount);
1368 		return -EINVAL;
1369 	}
1370 
1371 	if (sb->s_flags & MS_RDONLY)
1372 		goto out;
1373 
1374 	if (sb->s_op->unfreeze_fs) {
1375 		error = sb->s_op->unfreeze_fs(sb);
1376 		if (error) {
1377 			printk(KERN_ERR
1378 				"VFS:Filesystem thaw failed\n");
1379 			up_write(&sb->s_umount);
1380 			return error;
1381 		}
1382 	}
1383 
1384 out:
1385 	sb->s_writers.frozen = SB_UNFROZEN;
1386 	smp_wmb();
1387 	wake_up(&sb->s_writers.wait_unfrozen);
1388 	deactivate_locked_super(sb);
1389 
1390 	return 0;
1391 }
1392 EXPORT_SYMBOL(thaw_super);
1393