1 /* 2 * linux/fs/super.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * super.c contains code to handle: - mount structures 7 * - super-block tables 8 * - filesystem drivers list 9 * - mount system call 10 * - umount system call 11 * - ustat system call 12 * 13 * GK 2/5/95 - Changed to support mounting the root fs via NFS 14 * 15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 17 * Added options to /proc/mounts: 18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 21 */ 22 23 #include <linux/export.h> 24 #include <linux/slab.h> 25 #include <linux/blkdev.h> 26 #include <linux/mount.h> 27 #include <linux/security.h> 28 #include <linux/writeback.h> /* for the emergency remount stuff */ 29 #include <linux/idr.h> 30 #include <linux/mutex.h> 31 #include <linux/backing-dev.h> 32 #include <linux/rculist_bl.h> 33 #include <linux/cleancache.h> 34 #include <linux/fsnotify.h> 35 #include <linux/lockdep.h> 36 #include "internal.h" 37 38 39 static LIST_HEAD(super_blocks); 40 static DEFINE_SPINLOCK(sb_lock); 41 42 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 43 "sb_writers", 44 "sb_pagefaults", 45 "sb_internal", 46 }; 47 48 /* 49 * One thing we have to be careful of with a per-sb shrinker is that we don't 50 * drop the last active reference to the superblock from within the shrinker. 51 * If that happens we could trigger unregistering the shrinker from within the 52 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 53 * take a passive reference to the superblock to avoid this from occurring. 54 */ 55 static unsigned long super_cache_scan(struct shrinker *shrink, 56 struct shrink_control *sc) 57 { 58 struct super_block *sb; 59 long fs_objects = 0; 60 long total_objects; 61 long freed = 0; 62 long dentries; 63 long inodes; 64 65 sb = container_of(shrink, struct super_block, s_shrink); 66 67 /* 68 * Deadlock avoidance. We may hold various FS locks, and we don't want 69 * to recurse into the FS that called us in clear_inode() and friends.. 70 */ 71 if (!(sc->gfp_mask & __GFP_FS)) 72 return SHRINK_STOP; 73 74 if (!trylock_super(sb)) 75 return SHRINK_STOP; 76 77 if (sb->s_op->nr_cached_objects) 78 fs_objects = sb->s_op->nr_cached_objects(sb, sc); 79 80 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc); 81 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc); 82 total_objects = dentries + inodes + fs_objects + 1; 83 if (!total_objects) 84 total_objects = 1; 85 86 /* proportion the scan between the caches */ 87 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 88 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 89 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects); 90 91 /* 92 * prune the dcache first as the icache is pinned by it, then 93 * prune the icache, followed by the filesystem specific caches 94 * 95 * Ensure that we always scan at least one object - memcg kmem 96 * accounting uses this to fully empty the caches. 97 */ 98 sc->nr_to_scan = dentries + 1; 99 freed = prune_dcache_sb(sb, sc); 100 sc->nr_to_scan = inodes + 1; 101 freed += prune_icache_sb(sb, sc); 102 103 if (fs_objects) { 104 sc->nr_to_scan = fs_objects + 1; 105 freed += sb->s_op->free_cached_objects(sb, sc); 106 } 107 108 up_read(&sb->s_umount); 109 return freed; 110 } 111 112 static unsigned long super_cache_count(struct shrinker *shrink, 113 struct shrink_control *sc) 114 { 115 struct super_block *sb; 116 long total_objects = 0; 117 118 sb = container_of(shrink, struct super_block, s_shrink); 119 120 /* 121 * Don't call trylock_super as it is a potential 122 * scalability bottleneck. The counts could get updated 123 * between super_cache_count and super_cache_scan anyway. 124 * Call to super_cache_count with shrinker_rwsem held 125 * ensures the safety of call to list_lru_shrink_count() and 126 * s_op->nr_cached_objects(). 127 */ 128 if (sb->s_op && sb->s_op->nr_cached_objects) 129 total_objects = sb->s_op->nr_cached_objects(sb, sc); 130 131 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc); 132 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc); 133 134 total_objects = vfs_pressure_ratio(total_objects); 135 return total_objects; 136 } 137 138 static void destroy_super_work(struct work_struct *work) 139 { 140 struct super_block *s = container_of(work, struct super_block, 141 destroy_work); 142 int i; 143 144 for (i = 0; i < SB_FREEZE_LEVELS; i++) 145 percpu_free_rwsem(&s->s_writers.rw_sem[i]); 146 kfree(s); 147 } 148 149 static void destroy_super_rcu(struct rcu_head *head) 150 { 151 struct super_block *s = container_of(head, struct super_block, rcu); 152 INIT_WORK(&s->destroy_work, destroy_super_work); 153 schedule_work(&s->destroy_work); 154 } 155 156 /** 157 * destroy_super - frees a superblock 158 * @s: superblock to free 159 * 160 * Frees a superblock. 161 */ 162 static void destroy_super(struct super_block *s) 163 { 164 list_lru_destroy(&s->s_dentry_lru); 165 list_lru_destroy(&s->s_inode_lru); 166 security_sb_free(s); 167 WARN_ON(!list_empty(&s->s_mounts)); 168 kfree(s->s_subtype); 169 kfree(s->s_options); 170 call_rcu(&s->rcu, destroy_super_rcu); 171 } 172 173 /** 174 * alloc_super - create new superblock 175 * @type: filesystem type superblock should belong to 176 * @flags: the mount flags 177 * 178 * Allocates and initializes a new &struct super_block. alloc_super() 179 * returns a pointer new superblock or %NULL if allocation had failed. 180 */ 181 static struct super_block *alloc_super(struct file_system_type *type, int flags) 182 { 183 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 184 static const struct super_operations default_op; 185 int i; 186 187 if (!s) 188 return NULL; 189 190 INIT_LIST_HEAD(&s->s_mounts); 191 192 if (security_sb_alloc(s)) 193 goto fail; 194 195 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 196 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i], 197 sb_writers_name[i], 198 &type->s_writers_key[i])) 199 goto fail; 200 } 201 init_waitqueue_head(&s->s_writers.wait_unfrozen); 202 s->s_bdi = &noop_backing_dev_info; 203 s->s_flags = flags; 204 INIT_HLIST_NODE(&s->s_instances); 205 INIT_HLIST_BL_HEAD(&s->s_anon); 206 mutex_init(&s->s_sync_lock); 207 INIT_LIST_HEAD(&s->s_inodes); 208 spin_lock_init(&s->s_inode_list_lock); 209 210 if (list_lru_init_memcg(&s->s_dentry_lru)) 211 goto fail; 212 if (list_lru_init_memcg(&s->s_inode_lru)) 213 goto fail; 214 215 init_rwsem(&s->s_umount); 216 lockdep_set_class(&s->s_umount, &type->s_umount_key); 217 /* 218 * sget() can have s_umount recursion. 219 * 220 * When it cannot find a suitable sb, it allocates a new 221 * one (this one), and tries again to find a suitable old 222 * one. 223 * 224 * In case that succeeds, it will acquire the s_umount 225 * lock of the old one. Since these are clearly distrinct 226 * locks, and this object isn't exposed yet, there's no 227 * risk of deadlocks. 228 * 229 * Annotate this by putting this lock in a different 230 * subclass. 231 */ 232 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 233 s->s_count = 1; 234 atomic_set(&s->s_active, 1); 235 mutex_init(&s->s_vfs_rename_mutex); 236 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 237 mutex_init(&s->s_dquot.dqio_mutex); 238 mutex_init(&s->s_dquot.dqonoff_mutex); 239 s->s_maxbytes = MAX_NON_LFS; 240 s->s_op = &default_op; 241 s->s_time_gran = 1000000000; 242 s->cleancache_poolid = CLEANCACHE_NO_POOL; 243 244 s->s_shrink.seeks = DEFAULT_SEEKS; 245 s->s_shrink.scan_objects = super_cache_scan; 246 s->s_shrink.count_objects = super_cache_count; 247 s->s_shrink.batch = 1024; 248 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE; 249 return s; 250 251 fail: 252 destroy_super(s); 253 return NULL; 254 } 255 256 /* Superblock refcounting */ 257 258 /* 259 * Drop a superblock's refcount. The caller must hold sb_lock. 260 */ 261 static void __put_super(struct super_block *sb) 262 { 263 if (!--sb->s_count) { 264 list_del_init(&sb->s_list); 265 destroy_super(sb); 266 } 267 } 268 269 /** 270 * put_super - drop a temporary reference to superblock 271 * @sb: superblock in question 272 * 273 * Drops a temporary reference, frees superblock if there's no 274 * references left. 275 */ 276 static void put_super(struct super_block *sb) 277 { 278 spin_lock(&sb_lock); 279 __put_super(sb); 280 spin_unlock(&sb_lock); 281 } 282 283 284 /** 285 * deactivate_locked_super - drop an active reference to superblock 286 * @s: superblock to deactivate 287 * 288 * Drops an active reference to superblock, converting it into a temporary 289 * one if there is no other active references left. In that case we 290 * tell fs driver to shut it down and drop the temporary reference we 291 * had just acquired. 292 * 293 * Caller holds exclusive lock on superblock; that lock is released. 294 */ 295 void deactivate_locked_super(struct super_block *s) 296 { 297 struct file_system_type *fs = s->s_type; 298 if (atomic_dec_and_test(&s->s_active)) { 299 cleancache_invalidate_fs(s); 300 unregister_shrinker(&s->s_shrink); 301 fs->kill_sb(s); 302 303 /* 304 * Since list_lru_destroy() may sleep, we cannot call it from 305 * put_super(), where we hold the sb_lock. Therefore we destroy 306 * the lru lists right now. 307 */ 308 list_lru_destroy(&s->s_dentry_lru); 309 list_lru_destroy(&s->s_inode_lru); 310 311 put_filesystem(fs); 312 put_super(s); 313 } else { 314 up_write(&s->s_umount); 315 } 316 } 317 318 EXPORT_SYMBOL(deactivate_locked_super); 319 320 /** 321 * deactivate_super - drop an active reference to superblock 322 * @s: superblock to deactivate 323 * 324 * Variant of deactivate_locked_super(), except that superblock is *not* 325 * locked by caller. If we are going to drop the final active reference, 326 * lock will be acquired prior to that. 327 */ 328 void deactivate_super(struct super_block *s) 329 { 330 if (!atomic_add_unless(&s->s_active, -1, 1)) { 331 down_write(&s->s_umount); 332 deactivate_locked_super(s); 333 } 334 } 335 336 EXPORT_SYMBOL(deactivate_super); 337 338 /** 339 * grab_super - acquire an active reference 340 * @s: reference we are trying to make active 341 * 342 * Tries to acquire an active reference. grab_super() is used when we 343 * had just found a superblock in super_blocks or fs_type->fs_supers 344 * and want to turn it into a full-blown active reference. grab_super() 345 * is called with sb_lock held and drops it. Returns 1 in case of 346 * success, 0 if we had failed (superblock contents was already dead or 347 * dying when grab_super() had been called). Note that this is only 348 * called for superblocks not in rundown mode (== ones still on ->fs_supers 349 * of their type), so increment of ->s_count is OK here. 350 */ 351 static int grab_super(struct super_block *s) __releases(sb_lock) 352 { 353 s->s_count++; 354 spin_unlock(&sb_lock); 355 down_write(&s->s_umount); 356 if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) { 357 put_super(s); 358 return 1; 359 } 360 up_write(&s->s_umount); 361 put_super(s); 362 return 0; 363 } 364 365 /* 366 * trylock_super - try to grab ->s_umount shared 367 * @sb: reference we are trying to grab 368 * 369 * Try to prevent fs shutdown. This is used in places where we 370 * cannot take an active reference but we need to ensure that the 371 * filesystem is not shut down while we are working on it. It returns 372 * false if we cannot acquire s_umount or if we lose the race and 373 * filesystem already got into shutdown, and returns true with the s_umount 374 * lock held in read mode in case of success. On successful return, 375 * the caller must drop the s_umount lock when done. 376 * 377 * Note that unlike get_super() et.al. this one does *not* bump ->s_count. 378 * The reason why it's safe is that we are OK with doing trylock instead 379 * of down_read(). There's a couple of places that are OK with that, but 380 * it's very much not a general-purpose interface. 381 */ 382 bool trylock_super(struct super_block *sb) 383 { 384 if (down_read_trylock(&sb->s_umount)) { 385 if (!hlist_unhashed(&sb->s_instances) && 386 sb->s_root && (sb->s_flags & MS_BORN)) 387 return true; 388 up_read(&sb->s_umount); 389 } 390 391 return false; 392 } 393 394 /** 395 * generic_shutdown_super - common helper for ->kill_sb() 396 * @sb: superblock to kill 397 * 398 * generic_shutdown_super() does all fs-independent work on superblock 399 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 400 * that need destruction out of superblock, call generic_shutdown_super() 401 * and release aforementioned objects. Note: dentries and inodes _are_ 402 * taken care of and do not need specific handling. 403 * 404 * Upon calling this function, the filesystem may no longer alter or 405 * rearrange the set of dentries belonging to this super_block, nor may it 406 * change the attachments of dentries to inodes. 407 */ 408 void generic_shutdown_super(struct super_block *sb) 409 { 410 const struct super_operations *sop = sb->s_op; 411 412 if (sb->s_root) { 413 shrink_dcache_for_umount(sb); 414 sync_filesystem(sb); 415 sb->s_flags &= ~MS_ACTIVE; 416 417 fsnotify_unmount_inodes(sb); 418 cgroup_writeback_umount(); 419 420 evict_inodes(sb); 421 422 if (sb->s_dio_done_wq) { 423 destroy_workqueue(sb->s_dio_done_wq); 424 sb->s_dio_done_wq = NULL; 425 } 426 427 if (sop->put_super) 428 sop->put_super(sb); 429 430 if (!list_empty(&sb->s_inodes)) { 431 printk("VFS: Busy inodes after unmount of %s. " 432 "Self-destruct in 5 seconds. Have a nice day...\n", 433 sb->s_id); 434 } 435 } 436 spin_lock(&sb_lock); 437 /* should be initialized for __put_super_and_need_restart() */ 438 hlist_del_init(&sb->s_instances); 439 spin_unlock(&sb_lock); 440 up_write(&sb->s_umount); 441 } 442 443 EXPORT_SYMBOL(generic_shutdown_super); 444 445 /** 446 * sget - find or create a superblock 447 * @type: filesystem type superblock should belong to 448 * @test: comparison callback 449 * @set: setup callback 450 * @flags: mount flags 451 * @data: argument to each of them 452 */ 453 struct super_block *sget(struct file_system_type *type, 454 int (*test)(struct super_block *,void *), 455 int (*set)(struct super_block *,void *), 456 int flags, 457 void *data) 458 { 459 struct super_block *s = NULL; 460 struct super_block *old; 461 int err; 462 463 retry: 464 spin_lock(&sb_lock); 465 if (test) { 466 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 467 if (!test(old, data)) 468 continue; 469 if (!grab_super(old)) 470 goto retry; 471 if (s) { 472 up_write(&s->s_umount); 473 destroy_super(s); 474 s = NULL; 475 } 476 return old; 477 } 478 } 479 if (!s) { 480 spin_unlock(&sb_lock); 481 s = alloc_super(type, flags); 482 if (!s) 483 return ERR_PTR(-ENOMEM); 484 goto retry; 485 } 486 487 err = set(s, data); 488 if (err) { 489 spin_unlock(&sb_lock); 490 up_write(&s->s_umount); 491 destroy_super(s); 492 return ERR_PTR(err); 493 } 494 s->s_type = type; 495 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 496 list_add_tail(&s->s_list, &super_blocks); 497 hlist_add_head(&s->s_instances, &type->fs_supers); 498 spin_unlock(&sb_lock); 499 get_filesystem(type); 500 register_shrinker(&s->s_shrink); 501 return s; 502 } 503 504 EXPORT_SYMBOL(sget); 505 506 void drop_super(struct super_block *sb) 507 { 508 up_read(&sb->s_umount); 509 put_super(sb); 510 } 511 512 EXPORT_SYMBOL(drop_super); 513 514 /** 515 * iterate_supers - call function for all active superblocks 516 * @f: function to call 517 * @arg: argument to pass to it 518 * 519 * Scans the superblock list and calls given function, passing it 520 * locked superblock and given argument. 521 */ 522 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 523 { 524 struct super_block *sb, *p = NULL; 525 526 spin_lock(&sb_lock); 527 list_for_each_entry(sb, &super_blocks, s_list) { 528 if (hlist_unhashed(&sb->s_instances)) 529 continue; 530 sb->s_count++; 531 spin_unlock(&sb_lock); 532 533 down_read(&sb->s_umount); 534 if (sb->s_root && (sb->s_flags & MS_BORN)) 535 f(sb, arg); 536 up_read(&sb->s_umount); 537 538 spin_lock(&sb_lock); 539 if (p) 540 __put_super(p); 541 p = sb; 542 } 543 if (p) 544 __put_super(p); 545 spin_unlock(&sb_lock); 546 } 547 548 /** 549 * iterate_supers_type - call function for superblocks of given type 550 * @type: fs type 551 * @f: function to call 552 * @arg: argument to pass to it 553 * 554 * Scans the superblock list and calls given function, passing it 555 * locked superblock and given argument. 556 */ 557 void iterate_supers_type(struct file_system_type *type, 558 void (*f)(struct super_block *, void *), void *arg) 559 { 560 struct super_block *sb, *p = NULL; 561 562 spin_lock(&sb_lock); 563 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 564 sb->s_count++; 565 spin_unlock(&sb_lock); 566 567 down_read(&sb->s_umount); 568 if (sb->s_root && (sb->s_flags & MS_BORN)) 569 f(sb, arg); 570 up_read(&sb->s_umount); 571 572 spin_lock(&sb_lock); 573 if (p) 574 __put_super(p); 575 p = sb; 576 } 577 if (p) 578 __put_super(p); 579 spin_unlock(&sb_lock); 580 } 581 582 EXPORT_SYMBOL(iterate_supers_type); 583 584 /** 585 * get_super - get the superblock of a device 586 * @bdev: device to get the superblock for 587 * 588 * Scans the superblock list and finds the superblock of the file system 589 * mounted on the device given. %NULL is returned if no match is found. 590 */ 591 592 struct super_block *get_super(struct block_device *bdev) 593 { 594 struct super_block *sb; 595 596 if (!bdev) 597 return NULL; 598 599 spin_lock(&sb_lock); 600 rescan: 601 list_for_each_entry(sb, &super_blocks, s_list) { 602 if (hlist_unhashed(&sb->s_instances)) 603 continue; 604 if (sb->s_bdev == bdev) { 605 sb->s_count++; 606 spin_unlock(&sb_lock); 607 down_read(&sb->s_umount); 608 /* still alive? */ 609 if (sb->s_root && (sb->s_flags & MS_BORN)) 610 return sb; 611 up_read(&sb->s_umount); 612 /* nope, got unmounted */ 613 spin_lock(&sb_lock); 614 __put_super(sb); 615 goto rescan; 616 } 617 } 618 spin_unlock(&sb_lock); 619 return NULL; 620 } 621 622 EXPORT_SYMBOL(get_super); 623 624 /** 625 * get_super_thawed - get thawed superblock of a device 626 * @bdev: device to get the superblock for 627 * 628 * Scans the superblock list and finds the superblock of the file system 629 * mounted on the device. The superblock is returned once it is thawed 630 * (or immediately if it was not frozen). %NULL is returned if no match 631 * is found. 632 */ 633 struct super_block *get_super_thawed(struct block_device *bdev) 634 { 635 while (1) { 636 struct super_block *s = get_super(bdev); 637 if (!s || s->s_writers.frozen == SB_UNFROZEN) 638 return s; 639 up_read(&s->s_umount); 640 wait_event(s->s_writers.wait_unfrozen, 641 s->s_writers.frozen == SB_UNFROZEN); 642 put_super(s); 643 } 644 } 645 EXPORT_SYMBOL(get_super_thawed); 646 647 /** 648 * get_active_super - get an active reference to the superblock of a device 649 * @bdev: device to get the superblock for 650 * 651 * Scans the superblock list and finds the superblock of the file system 652 * mounted on the device given. Returns the superblock with an active 653 * reference or %NULL if none was found. 654 */ 655 struct super_block *get_active_super(struct block_device *bdev) 656 { 657 struct super_block *sb; 658 659 if (!bdev) 660 return NULL; 661 662 restart: 663 spin_lock(&sb_lock); 664 list_for_each_entry(sb, &super_blocks, s_list) { 665 if (hlist_unhashed(&sb->s_instances)) 666 continue; 667 if (sb->s_bdev == bdev) { 668 if (!grab_super(sb)) 669 goto restart; 670 up_write(&sb->s_umount); 671 return sb; 672 } 673 } 674 spin_unlock(&sb_lock); 675 return NULL; 676 } 677 678 struct super_block *user_get_super(dev_t dev) 679 { 680 struct super_block *sb; 681 682 spin_lock(&sb_lock); 683 rescan: 684 list_for_each_entry(sb, &super_blocks, s_list) { 685 if (hlist_unhashed(&sb->s_instances)) 686 continue; 687 if (sb->s_dev == dev) { 688 sb->s_count++; 689 spin_unlock(&sb_lock); 690 down_read(&sb->s_umount); 691 /* still alive? */ 692 if (sb->s_root && (sb->s_flags & MS_BORN)) 693 return sb; 694 up_read(&sb->s_umount); 695 /* nope, got unmounted */ 696 spin_lock(&sb_lock); 697 __put_super(sb); 698 goto rescan; 699 } 700 } 701 spin_unlock(&sb_lock); 702 return NULL; 703 } 704 705 /** 706 * do_remount_sb - asks filesystem to change mount options. 707 * @sb: superblock in question 708 * @flags: numeric part of options 709 * @data: the rest of options 710 * @force: whether or not to force the change 711 * 712 * Alters the mount options of a mounted file system. 713 */ 714 int do_remount_sb(struct super_block *sb, int flags, void *data, int force) 715 { 716 int retval; 717 int remount_ro; 718 719 if (sb->s_writers.frozen != SB_UNFROZEN) 720 return -EBUSY; 721 722 #ifdef CONFIG_BLOCK 723 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev)) 724 return -EACCES; 725 #endif 726 727 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY); 728 729 if (remount_ro) { 730 if (!hlist_empty(&sb->s_pins)) { 731 up_write(&sb->s_umount); 732 group_pin_kill(&sb->s_pins); 733 down_write(&sb->s_umount); 734 if (!sb->s_root) 735 return 0; 736 if (sb->s_writers.frozen != SB_UNFROZEN) 737 return -EBUSY; 738 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY); 739 } 740 } 741 shrink_dcache_sb(sb); 742 743 /* If we are remounting RDONLY and current sb is read/write, 744 make sure there are no rw files opened */ 745 if (remount_ro) { 746 if (force) { 747 sb->s_readonly_remount = 1; 748 smp_wmb(); 749 } else { 750 retval = sb_prepare_remount_readonly(sb); 751 if (retval) 752 return retval; 753 } 754 } 755 756 if (sb->s_op->remount_fs) { 757 retval = sb->s_op->remount_fs(sb, &flags, data); 758 if (retval) { 759 if (!force) 760 goto cancel_readonly; 761 /* If forced remount, go ahead despite any errors */ 762 WARN(1, "forced remount of a %s fs returned %i\n", 763 sb->s_type->name, retval); 764 } 765 } 766 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK); 767 /* Needs to be ordered wrt mnt_is_readonly() */ 768 smp_wmb(); 769 sb->s_readonly_remount = 0; 770 771 /* 772 * Some filesystems modify their metadata via some other path than the 773 * bdev buffer cache (eg. use a private mapping, or directories in 774 * pagecache, etc). Also file data modifications go via their own 775 * mappings. So If we try to mount readonly then copy the filesystem 776 * from bdev, we could get stale data, so invalidate it to give a best 777 * effort at coherency. 778 */ 779 if (remount_ro && sb->s_bdev) 780 invalidate_bdev(sb->s_bdev); 781 return 0; 782 783 cancel_readonly: 784 sb->s_readonly_remount = 0; 785 return retval; 786 } 787 788 static void do_emergency_remount(struct work_struct *work) 789 { 790 struct super_block *sb, *p = NULL; 791 792 spin_lock(&sb_lock); 793 list_for_each_entry(sb, &super_blocks, s_list) { 794 if (hlist_unhashed(&sb->s_instances)) 795 continue; 796 sb->s_count++; 797 spin_unlock(&sb_lock); 798 down_write(&sb->s_umount); 799 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) && 800 !(sb->s_flags & MS_RDONLY)) { 801 /* 802 * What lock protects sb->s_flags?? 803 */ 804 do_remount_sb(sb, MS_RDONLY, NULL, 1); 805 } 806 up_write(&sb->s_umount); 807 spin_lock(&sb_lock); 808 if (p) 809 __put_super(p); 810 p = sb; 811 } 812 if (p) 813 __put_super(p); 814 spin_unlock(&sb_lock); 815 kfree(work); 816 printk("Emergency Remount complete\n"); 817 } 818 819 void emergency_remount(void) 820 { 821 struct work_struct *work; 822 823 work = kmalloc(sizeof(*work), GFP_ATOMIC); 824 if (work) { 825 INIT_WORK(work, do_emergency_remount); 826 schedule_work(work); 827 } 828 } 829 830 /* 831 * Unnamed block devices are dummy devices used by virtual 832 * filesystems which don't use real block-devices. -- jrs 833 */ 834 835 static DEFINE_IDA(unnamed_dev_ida); 836 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */ 837 /* Many userspace utilities consider an FSID of 0 invalid. 838 * Always return at least 1 from get_anon_bdev. 839 */ 840 static int unnamed_dev_start = 1; 841 842 int get_anon_bdev(dev_t *p) 843 { 844 int dev; 845 int error; 846 847 retry: 848 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0) 849 return -ENOMEM; 850 spin_lock(&unnamed_dev_lock); 851 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev); 852 if (!error) 853 unnamed_dev_start = dev + 1; 854 spin_unlock(&unnamed_dev_lock); 855 if (error == -EAGAIN) 856 /* We raced and lost with another CPU. */ 857 goto retry; 858 else if (error) 859 return -EAGAIN; 860 861 if (dev >= (1 << MINORBITS)) { 862 spin_lock(&unnamed_dev_lock); 863 ida_remove(&unnamed_dev_ida, dev); 864 if (unnamed_dev_start > dev) 865 unnamed_dev_start = dev; 866 spin_unlock(&unnamed_dev_lock); 867 return -EMFILE; 868 } 869 *p = MKDEV(0, dev & MINORMASK); 870 return 0; 871 } 872 EXPORT_SYMBOL(get_anon_bdev); 873 874 void free_anon_bdev(dev_t dev) 875 { 876 int slot = MINOR(dev); 877 spin_lock(&unnamed_dev_lock); 878 ida_remove(&unnamed_dev_ida, slot); 879 if (slot < unnamed_dev_start) 880 unnamed_dev_start = slot; 881 spin_unlock(&unnamed_dev_lock); 882 } 883 EXPORT_SYMBOL(free_anon_bdev); 884 885 int set_anon_super(struct super_block *s, void *data) 886 { 887 return get_anon_bdev(&s->s_dev); 888 } 889 890 EXPORT_SYMBOL(set_anon_super); 891 892 void kill_anon_super(struct super_block *sb) 893 { 894 dev_t dev = sb->s_dev; 895 generic_shutdown_super(sb); 896 free_anon_bdev(dev); 897 } 898 899 EXPORT_SYMBOL(kill_anon_super); 900 901 void kill_litter_super(struct super_block *sb) 902 { 903 if (sb->s_root) 904 d_genocide(sb->s_root); 905 kill_anon_super(sb); 906 } 907 908 EXPORT_SYMBOL(kill_litter_super); 909 910 static int ns_test_super(struct super_block *sb, void *data) 911 { 912 return sb->s_fs_info == data; 913 } 914 915 static int ns_set_super(struct super_block *sb, void *data) 916 { 917 sb->s_fs_info = data; 918 return set_anon_super(sb, NULL); 919 } 920 921 struct dentry *mount_ns(struct file_system_type *fs_type, int flags, 922 void *data, int (*fill_super)(struct super_block *, void *, int)) 923 { 924 struct super_block *sb; 925 926 sb = sget(fs_type, ns_test_super, ns_set_super, flags, data); 927 if (IS_ERR(sb)) 928 return ERR_CAST(sb); 929 930 if (!sb->s_root) { 931 int err; 932 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 933 if (err) { 934 deactivate_locked_super(sb); 935 return ERR_PTR(err); 936 } 937 938 sb->s_flags |= MS_ACTIVE; 939 } 940 941 return dget(sb->s_root); 942 } 943 944 EXPORT_SYMBOL(mount_ns); 945 946 #ifdef CONFIG_BLOCK 947 static int set_bdev_super(struct super_block *s, void *data) 948 { 949 s->s_bdev = data; 950 s->s_dev = s->s_bdev->bd_dev; 951 952 /* 953 * We set the bdi here to the queue backing, file systems can 954 * overwrite this in ->fill_super() 955 */ 956 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info; 957 return 0; 958 } 959 960 static int test_bdev_super(struct super_block *s, void *data) 961 { 962 return (void *)s->s_bdev == data; 963 } 964 965 struct dentry *mount_bdev(struct file_system_type *fs_type, 966 int flags, const char *dev_name, void *data, 967 int (*fill_super)(struct super_block *, void *, int)) 968 { 969 struct block_device *bdev; 970 struct super_block *s; 971 fmode_t mode = FMODE_READ | FMODE_EXCL; 972 int error = 0; 973 974 if (!(flags & MS_RDONLY)) 975 mode |= FMODE_WRITE; 976 977 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 978 if (IS_ERR(bdev)) 979 return ERR_CAST(bdev); 980 981 /* 982 * once the super is inserted into the list by sget, s_umount 983 * will protect the lockfs code from trying to start a snapshot 984 * while we are mounting 985 */ 986 mutex_lock(&bdev->bd_fsfreeze_mutex); 987 if (bdev->bd_fsfreeze_count > 0) { 988 mutex_unlock(&bdev->bd_fsfreeze_mutex); 989 error = -EBUSY; 990 goto error_bdev; 991 } 992 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC, 993 bdev); 994 mutex_unlock(&bdev->bd_fsfreeze_mutex); 995 if (IS_ERR(s)) 996 goto error_s; 997 998 if (s->s_root) { 999 if ((flags ^ s->s_flags) & MS_RDONLY) { 1000 deactivate_locked_super(s); 1001 error = -EBUSY; 1002 goto error_bdev; 1003 } 1004 1005 /* 1006 * s_umount nests inside bd_mutex during 1007 * __invalidate_device(). blkdev_put() acquires 1008 * bd_mutex and can't be called under s_umount. Drop 1009 * s_umount temporarily. This is safe as we're 1010 * holding an active reference. 1011 */ 1012 up_write(&s->s_umount); 1013 blkdev_put(bdev, mode); 1014 down_write(&s->s_umount); 1015 } else { 1016 s->s_mode = mode; 1017 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1018 sb_set_blocksize(s, block_size(bdev)); 1019 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1020 if (error) { 1021 deactivate_locked_super(s); 1022 goto error; 1023 } 1024 1025 s->s_flags |= MS_ACTIVE; 1026 bdev->bd_super = s; 1027 } 1028 1029 return dget(s->s_root); 1030 1031 error_s: 1032 error = PTR_ERR(s); 1033 error_bdev: 1034 blkdev_put(bdev, mode); 1035 error: 1036 return ERR_PTR(error); 1037 } 1038 EXPORT_SYMBOL(mount_bdev); 1039 1040 void kill_block_super(struct super_block *sb) 1041 { 1042 struct block_device *bdev = sb->s_bdev; 1043 fmode_t mode = sb->s_mode; 1044 1045 bdev->bd_super = NULL; 1046 generic_shutdown_super(sb); 1047 sync_blockdev(bdev); 1048 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 1049 blkdev_put(bdev, mode | FMODE_EXCL); 1050 } 1051 1052 EXPORT_SYMBOL(kill_block_super); 1053 #endif 1054 1055 struct dentry *mount_nodev(struct file_system_type *fs_type, 1056 int flags, void *data, 1057 int (*fill_super)(struct super_block *, void *, int)) 1058 { 1059 int error; 1060 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1061 1062 if (IS_ERR(s)) 1063 return ERR_CAST(s); 1064 1065 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1066 if (error) { 1067 deactivate_locked_super(s); 1068 return ERR_PTR(error); 1069 } 1070 s->s_flags |= MS_ACTIVE; 1071 return dget(s->s_root); 1072 } 1073 EXPORT_SYMBOL(mount_nodev); 1074 1075 static int compare_single(struct super_block *s, void *p) 1076 { 1077 return 1; 1078 } 1079 1080 struct dentry *mount_single(struct file_system_type *fs_type, 1081 int flags, void *data, 1082 int (*fill_super)(struct super_block *, void *, int)) 1083 { 1084 struct super_block *s; 1085 int error; 1086 1087 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1088 if (IS_ERR(s)) 1089 return ERR_CAST(s); 1090 if (!s->s_root) { 1091 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1092 if (error) { 1093 deactivate_locked_super(s); 1094 return ERR_PTR(error); 1095 } 1096 s->s_flags |= MS_ACTIVE; 1097 } else { 1098 do_remount_sb(s, flags, data, 0); 1099 } 1100 return dget(s->s_root); 1101 } 1102 EXPORT_SYMBOL(mount_single); 1103 1104 struct dentry * 1105 mount_fs(struct file_system_type *type, int flags, const char *name, void *data) 1106 { 1107 struct dentry *root; 1108 struct super_block *sb; 1109 char *secdata = NULL; 1110 int error = -ENOMEM; 1111 1112 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) { 1113 secdata = alloc_secdata(); 1114 if (!secdata) 1115 goto out; 1116 1117 error = security_sb_copy_data(data, secdata); 1118 if (error) 1119 goto out_free_secdata; 1120 } 1121 1122 root = type->mount(type, flags, name, data); 1123 if (IS_ERR(root)) { 1124 error = PTR_ERR(root); 1125 goto out_free_secdata; 1126 } 1127 sb = root->d_sb; 1128 BUG_ON(!sb); 1129 WARN_ON(!sb->s_bdi); 1130 sb->s_flags |= MS_BORN; 1131 1132 error = security_sb_kern_mount(sb, flags, secdata); 1133 if (error) 1134 goto out_sb; 1135 1136 /* 1137 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1138 * but s_maxbytes was an unsigned long long for many releases. Throw 1139 * this warning for a little while to try and catch filesystems that 1140 * violate this rule. 1141 */ 1142 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1143 "negative value (%lld)\n", type->name, sb->s_maxbytes); 1144 1145 up_write(&sb->s_umount); 1146 free_secdata(secdata); 1147 return root; 1148 out_sb: 1149 dput(root); 1150 deactivate_locked_super(sb); 1151 out_free_secdata: 1152 free_secdata(secdata); 1153 out: 1154 return ERR_PTR(error); 1155 } 1156 1157 /* 1158 * This is an internal function, please use sb_end_{write,pagefault,intwrite} 1159 * instead. 1160 */ 1161 void __sb_end_write(struct super_block *sb, int level) 1162 { 1163 percpu_up_read(sb->s_writers.rw_sem + level-1); 1164 } 1165 EXPORT_SYMBOL(__sb_end_write); 1166 1167 /* 1168 * This is an internal function, please use sb_start_{write,pagefault,intwrite} 1169 * instead. 1170 */ 1171 int __sb_start_write(struct super_block *sb, int level, bool wait) 1172 { 1173 bool force_trylock = false; 1174 int ret = 1; 1175 1176 #ifdef CONFIG_LOCKDEP 1177 /* 1178 * We want lockdep to tell us about possible deadlocks with freezing 1179 * but it's it bit tricky to properly instrument it. Getting a freeze 1180 * protection works as getting a read lock but there are subtle 1181 * problems. XFS for example gets freeze protection on internal level 1182 * twice in some cases, which is OK only because we already hold a 1183 * freeze protection also on higher level. Due to these cases we have 1184 * to use wait == F (trylock mode) which must not fail. 1185 */ 1186 if (wait) { 1187 int i; 1188 1189 for (i = 0; i < level - 1; i++) 1190 if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) { 1191 force_trylock = true; 1192 break; 1193 } 1194 } 1195 #endif 1196 if (wait && !force_trylock) 1197 percpu_down_read(sb->s_writers.rw_sem + level-1); 1198 else 1199 ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1); 1200 1201 WARN_ON(force_trylock && !ret); 1202 return ret; 1203 } 1204 EXPORT_SYMBOL(__sb_start_write); 1205 1206 /** 1207 * sb_wait_write - wait until all writers to given file system finish 1208 * @sb: the super for which we wait 1209 * @level: type of writers we wait for (normal vs page fault) 1210 * 1211 * This function waits until there are no writers of given type to given file 1212 * system. 1213 */ 1214 static void sb_wait_write(struct super_block *sb, int level) 1215 { 1216 percpu_down_write(sb->s_writers.rw_sem + level-1); 1217 /* 1218 * We are going to return to userspace and forget about this lock, the 1219 * ownership goes to the caller of thaw_super() which does unlock. 1220 * 1221 * FIXME: we should do this before return from freeze_super() after we 1222 * called sync_filesystem(sb) and s_op->freeze_fs(sb), and thaw_super() 1223 * should re-acquire these locks before s_op->unfreeze_fs(sb). However 1224 * this leads to lockdep false-positives, so currently we do the early 1225 * release right after acquire. 1226 */ 1227 percpu_rwsem_release(sb->s_writers.rw_sem + level-1, 0, _THIS_IP_); 1228 } 1229 1230 static void sb_freeze_unlock(struct super_block *sb) 1231 { 1232 int level; 1233 1234 for (level = 0; level < SB_FREEZE_LEVELS; ++level) 1235 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1236 1237 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1238 percpu_up_write(sb->s_writers.rw_sem + level); 1239 } 1240 1241 /** 1242 * freeze_super - lock the filesystem and force it into a consistent state 1243 * @sb: the super to lock 1244 * 1245 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1246 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1247 * -EBUSY. 1248 * 1249 * During this function, sb->s_writers.frozen goes through these values: 1250 * 1251 * SB_UNFROZEN: File system is normal, all writes progress as usual. 1252 * 1253 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 1254 * writes should be blocked, though page faults are still allowed. We wait for 1255 * all writes to complete and then proceed to the next stage. 1256 * 1257 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 1258 * but internal fs threads can still modify the filesystem (although they 1259 * should not dirty new pages or inodes), writeback can run etc. After waiting 1260 * for all running page faults we sync the filesystem which will clean all 1261 * dirty pages and inodes (no new dirty pages or inodes can be created when 1262 * sync is running). 1263 * 1264 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 1265 * modification are blocked (e.g. XFS preallocation truncation on inode 1266 * reclaim). This is usually implemented by blocking new transactions for 1267 * filesystems that have them and need this additional guard. After all 1268 * internal writers are finished we call ->freeze_fs() to finish filesystem 1269 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 1270 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 1271 * 1272 * sb->s_writers.frozen is protected by sb->s_umount. 1273 */ 1274 int freeze_super(struct super_block *sb) 1275 { 1276 int ret; 1277 1278 atomic_inc(&sb->s_active); 1279 down_write(&sb->s_umount); 1280 if (sb->s_writers.frozen != SB_UNFROZEN) { 1281 deactivate_locked_super(sb); 1282 return -EBUSY; 1283 } 1284 1285 if (!(sb->s_flags & MS_BORN)) { 1286 up_write(&sb->s_umount); 1287 return 0; /* sic - it's "nothing to do" */ 1288 } 1289 1290 if (sb->s_flags & MS_RDONLY) { 1291 /* Nothing to do really... */ 1292 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1293 up_write(&sb->s_umount); 1294 return 0; 1295 } 1296 1297 sb->s_writers.frozen = SB_FREEZE_WRITE; 1298 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 1299 up_write(&sb->s_umount); 1300 sb_wait_write(sb, SB_FREEZE_WRITE); 1301 down_write(&sb->s_umount); 1302 1303 /* Now we go and block page faults... */ 1304 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 1305 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 1306 1307 /* All writers are done so after syncing there won't be dirty data */ 1308 sync_filesystem(sb); 1309 1310 /* Now wait for internal filesystem counter */ 1311 sb->s_writers.frozen = SB_FREEZE_FS; 1312 sb_wait_write(sb, SB_FREEZE_FS); 1313 1314 if (sb->s_op->freeze_fs) { 1315 ret = sb->s_op->freeze_fs(sb); 1316 if (ret) { 1317 printk(KERN_ERR 1318 "VFS:Filesystem freeze failed\n"); 1319 sb->s_writers.frozen = SB_UNFROZEN; 1320 sb_freeze_unlock(sb); 1321 wake_up(&sb->s_writers.wait_unfrozen); 1322 deactivate_locked_super(sb); 1323 return ret; 1324 } 1325 } 1326 /* 1327 * This is just for debugging purposes so that fs can warn if it 1328 * sees write activity when frozen is set to SB_FREEZE_COMPLETE. 1329 */ 1330 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1331 up_write(&sb->s_umount); 1332 return 0; 1333 } 1334 EXPORT_SYMBOL(freeze_super); 1335 1336 /** 1337 * thaw_super -- unlock filesystem 1338 * @sb: the super to thaw 1339 * 1340 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1341 */ 1342 int thaw_super(struct super_block *sb) 1343 { 1344 int error; 1345 1346 down_write(&sb->s_umount); 1347 if (sb->s_writers.frozen == SB_UNFROZEN) { 1348 up_write(&sb->s_umount); 1349 return -EINVAL; 1350 } 1351 1352 if (sb->s_flags & MS_RDONLY) { 1353 sb->s_writers.frozen = SB_UNFROZEN; 1354 goto out; 1355 } 1356 1357 if (sb->s_op->unfreeze_fs) { 1358 error = sb->s_op->unfreeze_fs(sb); 1359 if (error) { 1360 printk(KERN_ERR 1361 "VFS:Filesystem thaw failed\n"); 1362 up_write(&sb->s_umount); 1363 return error; 1364 } 1365 } 1366 1367 sb->s_writers.frozen = SB_UNFROZEN; 1368 sb_freeze_unlock(sb); 1369 out: 1370 wake_up(&sb->s_writers.wait_unfrozen); 1371 deactivate_locked_super(sb); 1372 return 0; 1373 } 1374 EXPORT_SYMBOL(thaw_super); 1375