xref: /openbmc/linux/fs/super.c (revision 2e554390)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/super.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  super.c contains code to handle: - mount structures
8  *                                   - super-block tables
9  *                                   - filesystem drivers list
10  *                                   - mount system call
11  *                                   - umount system call
12  *                                   - ustat system call
13  *
14  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
15  *
16  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18  *  Added options to /proc/mounts:
19  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22  */
23 
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include "internal.h"
39 
40 static int thaw_super_locked(struct super_block *sb);
41 
42 static LIST_HEAD(super_blocks);
43 static DEFINE_SPINLOCK(sb_lock);
44 
45 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
46 	"sb_writers",
47 	"sb_pagefaults",
48 	"sb_internal",
49 };
50 
51 /*
52  * One thing we have to be careful of with a per-sb shrinker is that we don't
53  * drop the last active reference to the superblock from within the shrinker.
54  * If that happens we could trigger unregistering the shrinker from within the
55  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
56  * take a passive reference to the superblock to avoid this from occurring.
57  */
58 static unsigned long super_cache_scan(struct shrinker *shrink,
59 				      struct shrink_control *sc)
60 {
61 	struct super_block *sb;
62 	long	fs_objects = 0;
63 	long	total_objects;
64 	long	freed = 0;
65 	long	dentries;
66 	long	inodes;
67 
68 	sb = container_of(shrink, struct super_block, s_shrink);
69 
70 	/*
71 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
72 	 * to recurse into the FS that called us in clear_inode() and friends..
73 	 */
74 	if (!(sc->gfp_mask & __GFP_FS))
75 		return SHRINK_STOP;
76 
77 	if (!trylock_super(sb))
78 		return SHRINK_STOP;
79 
80 	if (sb->s_op->nr_cached_objects)
81 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
82 
83 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
84 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
85 	total_objects = dentries + inodes + fs_objects + 1;
86 	if (!total_objects)
87 		total_objects = 1;
88 
89 	/* proportion the scan between the caches */
90 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
91 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
92 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
93 
94 	/*
95 	 * prune the dcache first as the icache is pinned by it, then
96 	 * prune the icache, followed by the filesystem specific caches
97 	 *
98 	 * Ensure that we always scan at least one object - memcg kmem
99 	 * accounting uses this to fully empty the caches.
100 	 */
101 	sc->nr_to_scan = dentries + 1;
102 	freed = prune_dcache_sb(sb, sc);
103 	sc->nr_to_scan = inodes + 1;
104 	freed += prune_icache_sb(sb, sc);
105 
106 	if (fs_objects) {
107 		sc->nr_to_scan = fs_objects + 1;
108 		freed += sb->s_op->free_cached_objects(sb, sc);
109 	}
110 
111 	up_read(&sb->s_umount);
112 	return freed;
113 }
114 
115 static unsigned long super_cache_count(struct shrinker *shrink,
116 				       struct shrink_control *sc)
117 {
118 	struct super_block *sb;
119 	long	total_objects = 0;
120 
121 	sb = container_of(shrink, struct super_block, s_shrink);
122 
123 	/*
124 	 * Don't call trylock_super as it is a potential
125 	 * scalability bottleneck. The counts could get updated
126 	 * between super_cache_count and super_cache_scan anyway.
127 	 * Call to super_cache_count with shrinker_rwsem held
128 	 * ensures the safety of call to list_lru_shrink_count() and
129 	 * s_op->nr_cached_objects().
130 	 */
131 	if (sb->s_op && sb->s_op->nr_cached_objects)
132 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
133 
134 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
135 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
136 
137 	total_objects = vfs_pressure_ratio(total_objects);
138 	return total_objects;
139 }
140 
141 static void destroy_super_work(struct work_struct *work)
142 {
143 	struct super_block *s = container_of(work, struct super_block,
144 							destroy_work);
145 	int i;
146 
147 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
148 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
149 	kfree(s);
150 }
151 
152 static void destroy_super_rcu(struct rcu_head *head)
153 {
154 	struct super_block *s = container_of(head, struct super_block, rcu);
155 	INIT_WORK(&s->destroy_work, destroy_super_work);
156 	schedule_work(&s->destroy_work);
157 }
158 
159 /* Free a superblock that has never been seen by anyone */
160 static void destroy_unused_super(struct super_block *s)
161 {
162 	if (!s)
163 		return;
164 	up_write(&s->s_umount);
165 	list_lru_destroy(&s->s_dentry_lru);
166 	list_lru_destroy(&s->s_inode_lru);
167 	security_sb_free(s);
168 	put_user_ns(s->s_user_ns);
169 	kfree(s->s_subtype);
170 	/* no delays needed */
171 	destroy_super_work(&s->destroy_work);
172 }
173 
174 /**
175  *	alloc_super	-	create new superblock
176  *	@type:	filesystem type superblock should belong to
177  *	@flags: the mount flags
178  *	@user_ns: User namespace for the super_block
179  *
180  *	Allocates and initializes a new &struct super_block.  alloc_super()
181  *	returns a pointer new superblock or %NULL if allocation had failed.
182  */
183 static struct super_block *alloc_super(struct file_system_type *type, int flags,
184 				       struct user_namespace *user_ns)
185 {
186 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
187 	static const struct super_operations default_op;
188 	int i;
189 
190 	if (!s)
191 		return NULL;
192 
193 	INIT_LIST_HEAD(&s->s_mounts);
194 	s->s_user_ns = get_user_ns(user_ns);
195 	init_rwsem(&s->s_umount);
196 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
197 	/*
198 	 * sget() can have s_umount recursion.
199 	 *
200 	 * When it cannot find a suitable sb, it allocates a new
201 	 * one (this one), and tries again to find a suitable old
202 	 * one.
203 	 *
204 	 * In case that succeeds, it will acquire the s_umount
205 	 * lock of the old one. Since these are clearly distrinct
206 	 * locks, and this object isn't exposed yet, there's no
207 	 * risk of deadlocks.
208 	 *
209 	 * Annotate this by putting this lock in a different
210 	 * subclass.
211 	 */
212 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
213 
214 	if (security_sb_alloc(s))
215 		goto fail;
216 
217 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
218 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
219 					sb_writers_name[i],
220 					&type->s_writers_key[i]))
221 			goto fail;
222 	}
223 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
224 	s->s_bdi = &noop_backing_dev_info;
225 	s->s_flags = flags;
226 	if (s->s_user_ns != &init_user_ns)
227 		s->s_iflags |= SB_I_NODEV;
228 	INIT_HLIST_NODE(&s->s_instances);
229 	INIT_HLIST_BL_HEAD(&s->s_roots);
230 	mutex_init(&s->s_sync_lock);
231 	INIT_LIST_HEAD(&s->s_inodes);
232 	spin_lock_init(&s->s_inode_list_lock);
233 	INIT_LIST_HEAD(&s->s_inodes_wb);
234 	spin_lock_init(&s->s_inode_wblist_lock);
235 
236 	if (list_lru_init_memcg(&s->s_dentry_lru))
237 		goto fail;
238 	if (list_lru_init_memcg(&s->s_inode_lru))
239 		goto fail;
240 	s->s_count = 1;
241 	atomic_set(&s->s_active, 1);
242 	mutex_init(&s->s_vfs_rename_mutex);
243 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
244 	init_rwsem(&s->s_dquot.dqio_sem);
245 	s->s_maxbytes = MAX_NON_LFS;
246 	s->s_op = &default_op;
247 	s->s_time_gran = 1000000000;
248 	s->cleancache_poolid = CLEANCACHE_NO_POOL;
249 
250 	s->s_shrink.seeks = DEFAULT_SEEKS;
251 	s->s_shrink.scan_objects = super_cache_scan;
252 	s->s_shrink.count_objects = super_cache_count;
253 	s->s_shrink.batch = 1024;
254 	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
255 	return s;
256 
257 fail:
258 	destroy_unused_super(s);
259 	return NULL;
260 }
261 
262 /* Superblock refcounting  */
263 
264 /*
265  * Drop a superblock's refcount.  The caller must hold sb_lock.
266  */
267 static void __put_super(struct super_block *s)
268 {
269 	if (!--s->s_count) {
270 		list_del_init(&s->s_list);
271 		WARN_ON(s->s_dentry_lru.node);
272 		WARN_ON(s->s_inode_lru.node);
273 		WARN_ON(!list_empty(&s->s_mounts));
274 		security_sb_free(s);
275 		put_user_ns(s->s_user_ns);
276 		kfree(s->s_subtype);
277 		call_rcu(&s->rcu, destroy_super_rcu);
278 	}
279 }
280 
281 /**
282  *	put_super	-	drop a temporary reference to superblock
283  *	@sb: superblock in question
284  *
285  *	Drops a temporary reference, frees superblock if there's no
286  *	references left.
287  */
288 static void put_super(struct super_block *sb)
289 {
290 	spin_lock(&sb_lock);
291 	__put_super(sb);
292 	spin_unlock(&sb_lock);
293 }
294 
295 
296 /**
297  *	deactivate_locked_super	-	drop an active reference to superblock
298  *	@s: superblock to deactivate
299  *
300  *	Drops an active reference to superblock, converting it into a temporary
301  *	one if there is no other active references left.  In that case we
302  *	tell fs driver to shut it down and drop the temporary reference we
303  *	had just acquired.
304  *
305  *	Caller holds exclusive lock on superblock; that lock is released.
306  */
307 void deactivate_locked_super(struct super_block *s)
308 {
309 	struct file_system_type *fs = s->s_type;
310 	if (atomic_dec_and_test(&s->s_active)) {
311 		cleancache_invalidate_fs(s);
312 		unregister_shrinker(&s->s_shrink);
313 		fs->kill_sb(s);
314 
315 		/*
316 		 * Since list_lru_destroy() may sleep, we cannot call it from
317 		 * put_super(), where we hold the sb_lock. Therefore we destroy
318 		 * the lru lists right now.
319 		 */
320 		list_lru_destroy(&s->s_dentry_lru);
321 		list_lru_destroy(&s->s_inode_lru);
322 
323 		put_filesystem(fs);
324 		put_super(s);
325 	} else {
326 		up_write(&s->s_umount);
327 	}
328 }
329 
330 EXPORT_SYMBOL(deactivate_locked_super);
331 
332 /**
333  *	deactivate_super	-	drop an active reference to superblock
334  *	@s: superblock to deactivate
335  *
336  *	Variant of deactivate_locked_super(), except that superblock is *not*
337  *	locked by caller.  If we are going to drop the final active reference,
338  *	lock will be acquired prior to that.
339  */
340 void deactivate_super(struct super_block *s)
341 {
342         if (!atomic_add_unless(&s->s_active, -1, 1)) {
343 		down_write(&s->s_umount);
344 		deactivate_locked_super(s);
345 	}
346 }
347 
348 EXPORT_SYMBOL(deactivate_super);
349 
350 /**
351  *	grab_super - acquire an active reference
352  *	@s: reference we are trying to make active
353  *
354  *	Tries to acquire an active reference.  grab_super() is used when we
355  * 	had just found a superblock in super_blocks or fs_type->fs_supers
356  *	and want to turn it into a full-blown active reference.  grab_super()
357  *	is called with sb_lock held and drops it.  Returns 1 in case of
358  *	success, 0 if we had failed (superblock contents was already dead or
359  *	dying when grab_super() had been called).  Note that this is only
360  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
361  *	of their type), so increment of ->s_count is OK here.
362  */
363 static int grab_super(struct super_block *s) __releases(sb_lock)
364 {
365 	s->s_count++;
366 	spin_unlock(&sb_lock);
367 	down_write(&s->s_umount);
368 	if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
369 		put_super(s);
370 		return 1;
371 	}
372 	up_write(&s->s_umount);
373 	put_super(s);
374 	return 0;
375 }
376 
377 /*
378  *	trylock_super - try to grab ->s_umount shared
379  *	@sb: reference we are trying to grab
380  *
381  *	Try to prevent fs shutdown.  This is used in places where we
382  *	cannot take an active reference but we need to ensure that the
383  *	filesystem is not shut down while we are working on it. It returns
384  *	false if we cannot acquire s_umount or if we lose the race and
385  *	filesystem already got into shutdown, and returns true with the s_umount
386  *	lock held in read mode in case of success. On successful return,
387  *	the caller must drop the s_umount lock when done.
388  *
389  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
390  *	The reason why it's safe is that we are OK with doing trylock instead
391  *	of down_read().  There's a couple of places that are OK with that, but
392  *	it's very much not a general-purpose interface.
393  */
394 bool trylock_super(struct super_block *sb)
395 {
396 	if (down_read_trylock(&sb->s_umount)) {
397 		if (!hlist_unhashed(&sb->s_instances) &&
398 		    sb->s_root && (sb->s_flags & SB_BORN))
399 			return true;
400 		up_read(&sb->s_umount);
401 	}
402 
403 	return false;
404 }
405 
406 /**
407  *	generic_shutdown_super	-	common helper for ->kill_sb()
408  *	@sb: superblock to kill
409  *
410  *	generic_shutdown_super() does all fs-independent work on superblock
411  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
412  *	that need destruction out of superblock, call generic_shutdown_super()
413  *	and release aforementioned objects.  Note: dentries and inodes _are_
414  *	taken care of and do not need specific handling.
415  *
416  *	Upon calling this function, the filesystem may no longer alter or
417  *	rearrange the set of dentries belonging to this super_block, nor may it
418  *	change the attachments of dentries to inodes.
419  */
420 void generic_shutdown_super(struct super_block *sb)
421 {
422 	const struct super_operations *sop = sb->s_op;
423 
424 	if (sb->s_root) {
425 		shrink_dcache_for_umount(sb);
426 		sync_filesystem(sb);
427 		sb->s_flags &= ~SB_ACTIVE;
428 
429 		fsnotify_unmount_inodes(sb);
430 		cgroup_writeback_umount();
431 
432 		evict_inodes(sb);
433 
434 		if (sb->s_dio_done_wq) {
435 			destroy_workqueue(sb->s_dio_done_wq);
436 			sb->s_dio_done_wq = NULL;
437 		}
438 
439 		if (sop->put_super)
440 			sop->put_super(sb);
441 
442 		if (!list_empty(&sb->s_inodes)) {
443 			printk("VFS: Busy inodes after unmount of %s. "
444 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
445 			   sb->s_id);
446 		}
447 	}
448 	spin_lock(&sb_lock);
449 	/* should be initialized for __put_super_and_need_restart() */
450 	hlist_del_init(&sb->s_instances);
451 	spin_unlock(&sb_lock);
452 	up_write(&sb->s_umount);
453 	if (sb->s_bdi != &noop_backing_dev_info) {
454 		bdi_put(sb->s_bdi);
455 		sb->s_bdi = &noop_backing_dev_info;
456 	}
457 }
458 
459 EXPORT_SYMBOL(generic_shutdown_super);
460 
461 /**
462  *	sget_userns -	find or create a superblock
463  *	@type:	filesystem type superblock should belong to
464  *	@test:	comparison callback
465  *	@set:	setup callback
466  *	@flags:	mount flags
467  *	@user_ns: User namespace for the super_block
468  *	@data:	argument to each of them
469  */
470 struct super_block *sget_userns(struct file_system_type *type,
471 			int (*test)(struct super_block *,void *),
472 			int (*set)(struct super_block *,void *),
473 			int flags, struct user_namespace *user_ns,
474 			void *data)
475 {
476 	struct super_block *s = NULL;
477 	struct super_block *old;
478 	int err;
479 
480 	if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) &&
481 	    !(type->fs_flags & FS_USERNS_MOUNT) &&
482 	    !capable(CAP_SYS_ADMIN))
483 		return ERR_PTR(-EPERM);
484 retry:
485 	spin_lock(&sb_lock);
486 	if (test) {
487 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
488 			if (!test(old, data))
489 				continue;
490 			if (user_ns != old->s_user_ns) {
491 				spin_unlock(&sb_lock);
492 				destroy_unused_super(s);
493 				return ERR_PTR(-EBUSY);
494 			}
495 			if (!grab_super(old))
496 				goto retry;
497 			destroy_unused_super(s);
498 			return old;
499 		}
500 	}
501 	if (!s) {
502 		spin_unlock(&sb_lock);
503 		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
504 		if (!s)
505 			return ERR_PTR(-ENOMEM);
506 		goto retry;
507 	}
508 
509 	err = set(s, data);
510 	if (err) {
511 		spin_unlock(&sb_lock);
512 		destroy_unused_super(s);
513 		return ERR_PTR(err);
514 	}
515 	s->s_type = type;
516 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
517 	list_add_tail(&s->s_list, &super_blocks);
518 	hlist_add_head(&s->s_instances, &type->fs_supers);
519 	spin_unlock(&sb_lock);
520 	get_filesystem(type);
521 	err = register_shrinker(&s->s_shrink);
522 	if (err) {
523 		deactivate_locked_super(s);
524 		s = ERR_PTR(err);
525 	}
526 	return s;
527 }
528 
529 EXPORT_SYMBOL(sget_userns);
530 
531 /**
532  *	sget	-	find or create a superblock
533  *	@type:	  filesystem type superblock should belong to
534  *	@test:	  comparison callback
535  *	@set:	  setup callback
536  *	@flags:	  mount flags
537  *	@data:	  argument to each of them
538  */
539 struct super_block *sget(struct file_system_type *type,
540 			int (*test)(struct super_block *,void *),
541 			int (*set)(struct super_block *,void *),
542 			int flags,
543 			void *data)
544 {
545 	struct user_namespace *user_ns = current_user_ns();
546 
547 	/* We don't yet pass the user namespace of the parent
548 	 * mount through to here so always use &init_user_ns
549 	 * until that changes.
550 	 */
551 	if (flags & SB_SUBMOUNT)
552 		user_ns = &init_user_ns;
553 
554 	/* Ensure the requestor has permissions over the target filesystem */
555 	if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN))
556 		return ERR_PTR(-EPERM);
557 
558 	return sget_userns(type, test, set, flags, user_ns, data);
559 }
560 
561 EXPORT_SYMBOL(sget);
562 
563 void drop_super(struct super_block *sb)
564 {
565 	up_read(&sb->s_umount);
566 	put_super(sb);
567 }
568 
569 EXPORT_SYMBOL(drop_super);
570 
571 void drop_super_exclusive(struct super_block *sb)
572 {
573 	up_write(&sb->s_umount);
574 	put_super(sb);
575 }
576 EXPORT_SYMBOL(drop_super_exclusive);
577 
578 static void __iterate_supers(void (*f)(struct super_block *))
579 {
580 	struct super_block *sb, *p = NULL;
581 
582 	spin_lock(&sb_lock);
583 	list_for_each_entry(sb, &super_blocks, s_list) {
584 		if (hlist_unhashed(&sb->s_instances))
585 			continue;
586 		sb->s_count++;
587 		spin_unlock(&sb_lock);
588 
589 		f(sb);
590 
591 		spin_lock(&sb_lock);
592 		if (p)
593 			__put_super(p);
594 		p = sb;
595 	}
596 	if (p)
597 		__put_super(p);
598 	spin_unlock(&sb_lock);
599 }
600 /**
601  *	iterate_supers - call function for all active superblocks
602  *	@f: function to call
603  *	@arg: argument to pass to it
604  *
605  *	Scans the superblock list and calls given function, passing it
606  *	locked superblock and given argument.
607  */
608 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
609 {
610 	struct super_block *sb, *p = NULL;
611 
612 	spin_lock(&sb_lock);
613 	list_for_each_entry(sb, &super_blocks, s_list) {
614 		if (hlist_unhashed(&sb->s_instances))
615 			continue;
616 		sb->s_count++;
617 		spin_unlock(&sb_lock);
618 
619 		down_read(&sb->s_umount);
620 		if (sb->s_root && (sb->s_flags & SB_BORN))
621 			f(sb, arg);
622 		up_read(&sb->s_umount);
623 
624 		spin_lock(&sb_lock);
625 		if (p)
626 			__put_super(p);
627 		p = sb;
628 	}
629 	if (p)
630 		__put_super(p);
631 	spin_unlock(&sb_lock);
632 }
633 
634 /**
635  *	iterate_supers_type - call function for superblocks of given type
636  *	@type: fs type
637  *	@f: function to call
638  *	@arg: argument to pass to it
639  *
640  *	Scans the superblock list and calls given function, passing it
641  *	locked superblock and given argument.
642  */
643 void iterate_supers_type(struct file_system_type *type,
644 	void (*f)(struct super_block *, void *), void *arg)
645 {
646 	struct super_block *sb, *p = NULL;
647 
648 	spin_lock(&sb_lock);
649 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
650 		sb->s_count++;
651 		spin_unlock(&sb_lock);
652 
653 		down_read(&sb->s_umount);
654 		if (sb->s_root && (sb->s_flags & SB_BORN))
655 			f(sb, arg);
656 		up_read(&sb->s_umount);
657 
658 		spin_lock(&sb_lock);
659 		if (p)
660 			__put_super(p);
661 		p = sb;
662 	}
663 	if (p)
664 		__put_super(p);
665 	spin_unlock(&sb_lock);
666 }
667 
668 EXPORT_SYMBOL(iterate_supers_type);
669 
670 static struct super_block *__get_super(struct block_device *bdev, bool excl)
671 {
672 	struct super_block *sb;
673 
674 	if (!bdev)
675 		return NULL;
676 
677 	spin_lock(&sb_lock);
678 rescan:
679 	list_for_each_entry(sb, &super_blocks, s_list) {
680 		if (hlist_unhashed(&sb->s_instances))
681 			continue;
682 		if (sb->s_bdev == bdev) {
683 			sb->s_count++;
684 			spin_unlock(&sb_lock);
685 			if (!excl)
686 				down_read(&sb->s_umount);
687 			else
688 				down_write(&sb->s_umount);
689 			/* still alive? */
690 			if (sb->s_root && (sb->s_flags & SB_BORN))
691 				return sb;
692 			if (!excl)
693 				up_read(&sb->s_umount);
694 			else
695 				up_write(&sb->s_umount);
696 			/* nope, got unmounted */
697 			spin_lock(&sb_lock);
698 			__put_super(sb);
699 			goto rescan;
700 		}
701 	}
702 	spin_unlock(&sb_lock);
703 	return NULL;
704 }
705 
706 /**
707  *	get_super - get the superblock of a device
708  *	@bdev: device to get the superblock for
709  *
710  *	Scans the superblock list and finds the superblock of the file system
711  *	mounted on the device given. %NULL is returned if no match is found.
712  */
713 struct super_block *get_super(struct block_device *bdev)
714 {
715 	return __get_super(bdev, false);
716 }
717 EXPORT_SYMBOL(get_super);
718 
719 static struct super_block *__get_super_thawed(struct block_device *bdev,
720 					      bool excl)
721 {
722 	while (1) {
723 		struct super_block *s = __get_super(bdev, excl);
724 		if (!s || s->s_writers.frozen == SB_UNFROZEN)
725 			return s;
726 		if (!excl)
727 			up_read(&s->s_umount);
728 		else
729 			up_write(&s->s_umount);
730 		wait_event(s->s_writers.wait_unfrozen,
731 			   s->s_writers.frozen == SB_UNFROZEN);
732 		put_super(s);
733 	}
734 }
735 
736 /**
737  *	get_super_thawed - get thawed superblock of a device
738  *	@bdev: device to get the superblock for
739  *
740  *	Scans the superblock list and finds the superblock of the file system
741  *	mounted on the device. The superblock is returned once it is thawed
742  *	(or immediately if it was not frozen). %NULL is returned if no match
743  *	is found.
744  */
745 struct super_block *get_super_thawed(struct block_device *bdev)
746 {
747 	return __get_super_thawed(bdev, false);
748 }
749 EXPORT_SYMBOL(get_super_thawed);
750 
751 /**
752  *	get_super_exclusive_thawed - get thawed superblock of a device
753  *	@bdev: device to get the superblock for
754  *
755  *	Scans the superblock list and finds the superblock of the file system
756  *	mounted on the device. The superblock is returned once it is thawed
757  *	(or immediately if it was not frozen) and s_umount semaphore is held
758  *	in exclusive mode. %NULL is returned if no match is found.
759  */
760 struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
761 {
762 	return __get_super_thawed(bdev, true);
763 }
764 EXPORT_SYMBOL(get_super_exclusive_thawed);
765 
766 /**
767  * get_active_super - get an active reference to the superblock of a device
768  * @bdev: device to get the superblock for
769  *
770  * Scans the superblock list and finds the superblock of the file system
771  * mounted on the device given.  Returns the superblock with an active
772  * reference or %NULL if none was found.
773  */
774 struct super_block *get_active_super(struct block_device *bdev)
775 {
776 	struct super_block *sb;
777 
778 	if (!bdev)
779 		return NULL;
780 
781 restart:
782 	spin_lock(&sb_lock);
783 	list_for_each_entry(sb, &super_blocks, s_list) {
784 		if (hlist_unhashed(&sb->s_instances))
785 			continue;
786 		if (sb->s_bdev == bdev) {
787 			if (!grab_super(sb))
788 				goto restart;
789 			up_write(&sb->s_umount);
790 			return sb;
791 		}
792 	}
793 	spin_unlock(&sb_lock);
794 	return NULL;
795 }
796 
797 struct super_block *user_get_super(dev_t dev)
798 {
799 	struct super_block *sb;
800 
801 	spin_lock(&sb_lock);
802 rescan:
803 	list_for_each_entry(sb, &super_blocks, s_list) {
804 		if (hlist_unhashed(&sb->s_instances))
805 			continue;
806 		if (sb->s_dev ==  dev) {
807 			sb->s_count++;
808 			spin_unlock(&sb_lock);
809 			down_read(&sb->s_umount);
810 			/* still alive? */
811 			if (sb->s_root && (sb->s_flags & SB_BORN))
812 				return sb;
813 			up_read(&sb->s_umount);
814 			/* nope, got unmounted */
815 			spin_lock(&sb_lock);
816 			__put_super(sb);
817 			goto rescan;
818 		}
819 	}
820 	spin_unlock(&sb_lock);
821 	return NULL;
822 }
823 
824 /**
825  *	do_remount_sb - asks filesystem to change mount options.
826  *	@sb:	superblock in question
827  *	@sb_flags: revised superblock flags
828  *	@data:	the rest of options
829  *      @force: whether or not to force the change
830  *
831  *	Alters the mount options of a mounted file system.
832  */
833 int do_remount_sb(struct super_block *sb, int sb_flags, void *data, int force)
834 {
835 	int retval;
836 	int remount_ro;
837 
838 	if (sb->s_writers.frozen != SB_UNFROZEN)
839 		return -EBUSY;
840 
841 #ifdef CONFIG_BLOCK
842 	if (!(sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
843 		return -EACCES;
844 #endif
845 
846 	remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
847 
848 	if (remount_ro) {
849 		if (!hlist_empty(&sb->s_pins)) {
850 			up_write(&sb->s_umount);
851 			group_pin_kill(&sb->s_pins);
852 			down_write(&sb->s_umount);
853 			if (!sb->s_root)
854 				return 0;
855 			if (sb->s_writers.frozen != SB_UNFROZEN)
856 				return -EBUSY;
857 			remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
858 		}
859 	}
860 	shrink_dcache_sb(sb);
861 
862 	/* If we are remounting RDONLY and current sb is read/write,
863 	   make sure there are no rw files opened */
864 	if (remount_ro) {
865 		if (force) {
866 			sb->s_readonly_remount = 1;
867 			smp_wmb();
868 		} else {
869 			retval = sb_prepare_remount_readonly(sb);
870 			if (retval)
871 				return retval;
872 		}
873 	}
874 
875 	if (sb->s_op->remount_fs) {
876 		retval = sb->s_op->remount_fs(sb, &sb_flags, data);
877 		if (retval) {
878 			if (!force)
879 				goto cancel_readonly;
880 			/* If forced remount, go ahead despite any errors */
881 			WARN(1, "forced remount of a %s fs returned %i\n",
882 			     sb->s_type->name, retval);
883 		}
884 	}
885 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (sb_flags & MS_RMT_MASK);
886 	/* Needs to be ordered wrt mnt_is_readonly() */
887 	smp_wmb();
888 	sb->s_readonly_remount = 0;
889 
890 	/*
891 	 * Some filesystems modify their metadata via some other path than the
892 	 * bdev buffer cache (eg. use a private mapping, or directories in
893 	 * pagecache, etc). Also file data modifications go via their own
894 	 * mappings. So If we try to mount readonly then copy the filesystem
895 	 * from bdev, we could get stale data, so invalidate it to give a best
896 	 * effort at coherency.
897 	 */
898 	if (remount_ro && sb->s_bdev)
899 		invalidate_bdev(sb->s_bdev);
900 	return 0;
901 
902 cancel_readonly:
903 	sb->s_readonly_remount = 0;
904 	return retval;
905 }
906 
907 static void do_emergency_remount_callback(struct super_block *sb)
908 {
909 	down_write(&sb->s_umount);
910 	if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
911 	    !sb_rdonly(sb)) {
912 		/*
913 		 * What lock protects sb->s_flags??
914 		 */
915 		do_remount_sb(sb, SB_RDONLY, NULL, 1);
916 	}
917 	up_write(&sb->s_umount);
918 }
919 
920 static void do_emergency_remount(struct work_struct *work)
921 {
922 	__iterate_supers(do_emergency_remount_callback);
923 	kfree(work);
924 	printk("Emergency Remount complete\n");
925 }
926 
927 void emergency_remount(void)
928 {
929 	struct work_struct *work;
930 
931 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
932 	if (work) {
933 		INIT_WORK(work, do_emergency_remount);
934 		schedule_work(work);
935 	}
936 }
937 
938 static void do_thaw_all_callback(struct super_block *sb)
939 {
940 	down_write(&sb->s_umount);
941 	if (sb->s_root && sb->s_flags & MS_BORN) {
942 		emergency_thaw_bdev(sb);
943 		thaw_super_locked(sb);
944 	} else {
945 		up_write(&sb->s_umount);
946 	}
947 }
948 
949 static void do_thaw_all(struct work_struct *work)
950 {
951 	__iterate_supers(do_thaw_all_callback);
952 	kfree(work);
953 	printk(KERN_WARNING "Emergency Thaw complete\n");
954 }
955 
956 /**
957  * emergency_thaw_all -- forcibly thaw every frozen filesystem
958  *
959  * Used for emergency unfreeze of all filesystems via SysRq
960  */
961 void emergency_thaw_all(void)
962 {
963 	struct work_struct *work;
964 
965 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
966 	if (work) {
967 		INIT_WORK(work, do_thaw_all);
968 		schedule_work(work);
969 	}
970 }
971 
972 /*
973  * Unnamed block devices are dummy devices used by virtual
974  * filesystems which don't use real block-devices.  -- jrs
975  */
976 
977 static DEFINE_IDA(unnamed_dev_ida);
978 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
979 /* Many userspace utilities consider an FSID of 0 invalid.
980  * Always return at least 1 from get_anon_bdev.
981  */
982 static int unnamed_dev_start = 1;
983 
984 int get_anon_bdev(dev_t *p)
985 {
986 	int dev;
987 	int error;
988 
989  retry:
990 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
991 		return -ENOMEM;
992 	spin_lock(&unnamed_dev_lock);
993 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
994 	if (!error)
995 		unnamed_dev_start = dev + 1;
996 	spin_unlock(&unnamed_dev_lock);
997 	if (error == -EAGAIN)
998 		/* We raced and lost with another CPU. */
999 		goto retry;
1000 	else if (error)
1001 		return -EAGAIN;
1002 
1003 	if (dev >= (1 << MINORBITS)) {
1004 		spin_lock(&unnamed_dev_lock);
1005 		ida_remove(&unnamed_dev_ida, dev);
1006 		if (unnamed_dev_start > dev)
1007 			unnamed_dev_start = dev;
1008 		spin_unlock(&unnamed_dev_lock);
1009 		return -EMFILE;
1010 	}
1011 	*p = MKDEV(0, dev & MINORMASK);
1012 	return 0;
1013 }
1014 EXPORT_SYMBOL(get_anon_bdev);
1015 
1016 void free_anon_bdev(dev_t dev)
1017 {
1018 	int slot = MINOR(dev);
1019 	spin_lock(&unnamed_dev_lock);
1020 	ida_remove(&unnamed_dev_ida, slot);
1021 	if (slot < unnamed_dev_start)
1022 		unnamed_dev_start = slot;
1023 	spin_unlock(&unnamed_dev_lock);
1024 }
1025 EXPORT_SYMBOL(free_anon_bdev);
1026 
1027 int set_anon_super(struct super_block *s, void *data)
1028 {
1029 	return get_anon_bdev(&s->s_dev);
1030 }
1031 
1032 EXPORT_SYMBOL(set_anon_super);
1033 
1034 void kill_anon_super(struct super_block *sb)
1035 {
1036 	dev_t dev = sb->s_dev;
1037 	generic_shutdown_super(sb);
1038 	free_anon_bdev(dev);
1039 }
1040 
1041 EXPORT_SYMBOL(kill_anon_super);
1042 
1043 void kill_litter_super(struct super_block *sb)
1044 {
1045 	if (sb->s_root)
1046 		d_genocide(sb->s_root);
1047 	kill_anon_super(sb);
1048 }
1049 
1050 EXPORT_SYMBOL(kill_litter_super);
1051 
1052 static int ns_test_super(struct super_block *sb, void *data)
1053 {
1054 	return sb->s_fs_info == data;
1055 }
1056 
1057 static int ns_set_super(struct super_block *sb, void *data)
1058 {
1059 	sb->s_fs_info = data;
1060 	return set_anon_super(sb, NULL);
1061 }
1062 
1063 struct dentry *mount_ns(struct file_system_type *fs_type,
1064 	int flags, void *data, void *ns, struct user_namespace *user_ns,
1065 	int (*fill_super)(struct super_block *, void *, int))
1066 {
1067 	struct super_block *sb;
1068 
1069 	/* Don't allow mounting unless the caller has CAP_SYS_ADMIN
1070 	 * over the namespace.
1071 	 */
1072 	if (!(flags & SB_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
1073 		return ERR_PTR(-EPERM);
1074 
1075 	sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags,
1076 			 user_ns, ns);
1077 	if (IS_ERR(sb))
1078 		return ERR_CAST(sb);
1079 
1080 	if (!sb->s_root) {
1081 		int err;
1082 		err = fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
1083 		if (err) {
1084 			deactivate_locked_super(sb);
1085 			return ERR_PTR(err);
1086 		}
1087 
1088 		sb->s_flags |= SB_ACTIVE;
1089 	}
1090 
1091 	return dget(sb->s_root);
1092 }
1093 
1094 EXPORT_SYMBOL(mount_ns);
1095 
1096 #ifdef CONFIG_BLOCK
1097 static int set_bdev_super(struct super_block *s, void *data)
1098 {
1099 	s->s_bdev = data;
1100 	s->s_dev = s->s_bdev->bd_dev;
1101 	s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1102 
1103 	return 0;
1104 }
1105 
1106 static int test_bdev_super(struct super_block *s, void *data)
1107 {
1108 	return (void *)s->s_bdev == data;
1109 }
1110 
1111 struct dentry *mount_bdev(struct file_system_type *fs_type,
1112 	int flags, const char *dev_name, void *data,
1113 	int (*fill_super)(struct super_block *, void *, int))
1114 {
1115 	struct block_device *bdev;
1116 	struct super_block *s;
1117 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1118 	int error = 0;
1119 
1120 	if (!(flags & SB_RDONLY))
1121 		mode |= FMODE_WRITE;
1122 
1123 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1124 	if (IS_ERR(bdev))
1125 		return ERR_CAST(bdev);
1126 
1127 	/*
1128 	 * once the super is inserted into the list by sget, s_umount
1129 	 * will protect the lockfs code from trying to start a snapshot
1130 	 * while we are mounting
1131 	 */
1132 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1133 	if (bdev->bd_fsfreeze_count > 0) {
1134 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1135 		error = -EBUSY;
1136 		goto error_bdev;
1137 	}
1138 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1139 		 bdev);
1140 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1141 	if (IS_ERR(s))
1142 		goto error_s;
1143 
1144 	if (s->s_root) {
1145 		if ((flags ^ s->s_flags) & SB_RDONLY) {
1146 			deactivate_locked_super(s);
1147 			error = -EBUSY;
1148 			goto error_bdev;
1149 		}
1150 
1151 		/*
1152 		 * s_umount nests inside bd_mutex during
1153 		 * __invalidate_device().  blkdev_put() acquires
1154 		 * bd_mutex and can't be called under s_umount.  Drop
1155 		 * s_umount temporarily.  This is safe as we're
1156 		 * holding an active reference.
1157 		 */
1158 		up_write(&s->s_umount);
1159 		blkdev_put(bdev, mode);
1160 		down_write(&s->s_umount);
1161 	} else {
1162 		s->s_mode = mode;
1163 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1164 		sb_set_blocksize(s, block_size(bdev));
1165 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1166 		if (error) {
1167 			deactivate_locked_super(s);
1168 			goto error;
1169 		}
1170 
1171 		s->s_flags |= SB_ACTIVE;
1172 		bdev->bd_super = s;
1173 	}
1174 
1175 	return dget(s->s_root);
1176 
1177 error_s:
1178 	error = PTR_ERR(s);
1179 error_bdev:
1180 	blkdev_put(bdev, mode);
1181 error:
1182 	return ERR_PTR(error);
1183 }
1184 EXPORT_SYMBOL(mount_bdev);
1185 
1186 void kill_block_super(struct super_block *sb)
1187 {
1188 	struct block_device *bdev = sb->s_bdev;
1189 	fmode_t mode = sb->s_mode;
1190 
1191 	bdev->bd_super = NULL;
1192 	generic_shutdown_super(sb);
1193 	sync_blockdev(bdev);
1194 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1195 	blkdev_put(bdev, mode | FMODE_EXCL);
1196 }
1197 
1198 EXPORT_SYMBOL(kill_block_super);
1199 #endif
1200 
1201 struct dentry *mount_nodev(struct file_system_type *fs_type,
1202 	int flags, void *data,
1203 	int (*fill_super)(struct super_block *, void *, int))
1204 {
1205 	int error;
1206 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1207 
1208 	if (IS_ERR(s))
1209 		return ERR_CAST(s);
1210 
1211 	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1212 	if (error) {
1213 		deactivate_locked_super(s);
1214 		return ERR_PTR(error);
1215 	}
1216 	s->s_flags |= SB_ACTIVE;
1217 	return dget(s->s_root);
1218 }
1219 EXPORT_SYMBOL(mount_nodev);
1220 
1221 static int compare_single(struct super_block *s, void *p)
1222 {
1223 	return 1;
1224 }
1225 
1226 struct dentry *mount_single(struct file_system_type *fs_type,
1227 	int flags, void *data,
1228 	int (*fill_super)(struct super_block *, void *, int))
1229 {
1230 	struct super_block *s;
1231 	int error;
1232 
1233 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1234 	if (IS_ERR(s))
1235 		return ERR_CAST(s);
1236 	if (!s->s_root) {
1237 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1238 		if (error) {
1239 			deactivate_locked_super(s);
1240 			return ERR_PTR(error);
1241 		}
1242 		s->s_flags |= SB_ACTIVE;
1243 	} else {
1244 		do_remount_sb(s, flags, data, 0);
1245 	}
1246 	return dget(s->s_root);
1247 }
1248 EXPORT_SYMBOL(mount_single);
1249 
1250 struct dentry *
1251 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1252 {
1253 	struct dentry *root;
1254 	struct super_block *sb;
1255 	char *secdata = NULL;
1256 	int error = -ENOMEM;
1257 
1258 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1259 		secdata = alloc_secdata();
1260 		if (!secdata)
1261 			goto out;
1262 
1263 		error = security_sb_copy_data(data, secdata);
1264 		if (error)
1265 			goto out_free_secdata;
1266 	}
1267 
1268 	root = type->mount(type, flags, name, data);
1269 	if (IS_ERR(root)) {
1270 		error = PTR_ERR(root);
1271 		goto out_free_secdata;
1272 	}
1273 	sb = root->d_sb;
1274 	BUG_ON(!sb);
1275 	WARN_ON(!sb->s_bdi);
1276 	sb->s_flags |= SB_BORN;
1277 
1278 	error = security_sb_kern_mount(sb, flags, secdata);
1279 	if (error)
1280 		goto out_sb;
1281 
1282 	/*
1283 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1284 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1285 	 * this warning for a little while to try and catch filesystems that
1286 	 * violate this rule.
1287 	 */
1288 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1289 		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1290 
1291 	up_write(&sb->s_umount);
1292 	free_secdata(secdata);
1293 	return root;
1294 out_sb:
1295 	dput(root);
1296 	deactivate_locked_super(sb);
1297 out_free_secdata:
1298 	free_secdata(secdata);
1299 out:
1300 	return ERR_PTR(error);
1301 }
1302 
1303 /*
1304  * Setup private BDI for given superblock. It gets automatically cleaned up
1305  * in generic_shutdown_super().
1306  */
1307 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1308 {
1309 	struct backing_dev_info *bdi;
1310 	int err;
1311 	va_list args;
1312 
1313 	bdi = bdi_alloc(GFP_KERNEL);
1314 	if (!bdi)
1315 		return -ENOMEM;
1316 
1317 	bdi->name = sb->s_type->name;
1318 
1319 	va_start(args, fmt);
1320 	err = bdi_register_va(bdi, fmt, args);
1321 	va_end(args);
1322 	if (err) {
1323 		bdi_put(bdi);
1324 		return err;
1325 	}
1326 	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1327 	sb->s_bdi = bdi;
1328 
1329 	return 0;
1330 }
1331 EXPORT_SYMBOL(super_setup_bdi_name);
1332 
1333 /*
1334  * Setup private BDI for given superblock. I gets automatically cleaned up
1335  * in generic_shutdown_super().
1336  */
1337 int super_setup_bdi(struct super_block *sb)
1338 {
1339 	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1340 
1341 	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1342 				    atomic_long_inc_return(&bdi_seq));
1343 }
1344 EXPORT_SYMBOL(super_setup_bdi);
1345 
1346 /*
1347  * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1348  * instead.
1349  */
1350 void __sb_end_write(struct super_block *sb, int level)
1351 {
1352 	percpu_up_read(sb->s_writers.rw_sem + level-1);
1353 }
1354 EXPORT_SYMBOL(__sb_end_write);
1355 
1356 /*
1357  * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1358  * instead.
1359  */
1360 int __sb_start_write(struct super_block *sb, int level, bool wait)
1361 {
1362 	bool force_trylock = false;
1363 	int ret = 1;
1364 
1365 #ifdef CONFIG_LOCKDEP
1366 	/*
1367 	 * We want lockdep to tell us about possible deadlocks with freezing
1368 	 * but it's it bit tricky to properly instrument it. Getting a freeze
1369 	 * protection works as getting a read lock but there are subtle
1370 	 * problems. XFS for example gets freeze protection on internal level
1371 	 * twice in some cases, which is OK only because we already hold a
1372 	 * freeze protection also on higher level. Due to these cases we have
1373 	 * to use wait == F (trylock mode) which must not fail.
1374 	 */
1375 	if (wait) {
1376 		int i;
1377 
1378 		for (i = 0; i < level - 1; i++)
1379 			if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1380 				force_trylock = true;
1381 				break;
1382 			}
1383 	}
1384 #endif
1385 	if (wait && !force_trylock)
1386 		percpu_down_read(sb->s_writers.rw_sem + level-1);
1387 	else
1388 		ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1389 
1390 	WARN_ON(force_trylock && !ret);
1391 	return ret;
1392 }
1393 EXPORT_SYMBOL(__sb_start_write);
1394 
1395 /**
1396  * sb_wait_write - wait until all writers to given file system finish
1397  * @sb: the super for which we wait
1398  * @level: type of writers we wait for (normal vs page fault)
1399  *
1400  * This function waits until there are no writers of given type to given file
1401  * system.
1402  */
1403 static void sb_wait_write(struct super_block *sb, int level)
1404 {
1405 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1406 }
1407 
1408 /*
1409  * We are going to return to userspace and forget about these locks, the
1410  * ownership goes to the caller of thaw_super() which does unlock().
1411  */
1412 static void lockdep_sb_freeze_release(struct super_block *sb)
1413 {
1414 	int level;
1415 
1416 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1417 		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1418 }
1419 
1420 /*
1421  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1422  */
1423 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1424 {
1425 	int level;
1426 
1427 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1428 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1429 }
1430 
1431 static void sb_freeze_unlock(struct super_block *sb)
1432 {
1433 	int level;
1434 
1435 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1436 		percpu_up_write(sb->s_writers.rw_sem + level);
1437 }
1438 
1439 /**
1440  * freeze_super - lock the filesystem and force it into a consistent state
1441  * @sb: the super to lock
1442  *
1443  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1444  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1445  * -EBUSY.
1446  *
1447  * During this function, sb->s_writers.frozen goes through these values:
1448  *
1449  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1450  *
1451  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1452  * writes should be blocked, though page faults are still allowed. We wait for
1453  * all writes to complete and then proceed to the next stage.
1454  *
1455  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1456  * but internal fs threads can still modify the filesystem (although they
1457  * should not dirty new pages or inodes), writeback can run etc. After waiting
1458  * for all running page faults we sync the filesystem which will clean all
1459  * dirty pages and inodes (no new dirty pages or inodes can be created when
1460  * sync is running).
1461  *
1462  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1463  * modification are blocked (e.g. XFS preallocation truncation on inode
1464  * reclaim). This is usually implemented by blocking new transactions for
1465  * filesystems that have them and need this additional guard. After all
1466  * internal writers are finished we call ->freeze_fs() to finish filesystem
1467  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1468  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1469  *
1470  * sb->s_writers.frozen is protected by sb->s_umount.
1471  */
1472 int freeze_super(struct super_block *sb)
1473 {
1474 	int ret;
1475 
1476 	atomic_inc(&sb->s_active);
1477 	down_write(&sb->s_umount);
1478 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1479 		deactivate_locked_super(sb);
1480 		return -EBUSY;
1481 	}
1482 
1483 	if (!(sb->s_flags & SB_BORN)) {
1484 		up_write(&sb->s_umount);
1485 		return 0;	/* sic - it's "nothing to do" */
1486 	}
1487 
1488 	if (sb_rdonly(sb)) {
1489 		/* Nothing to do really... */
1490 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1491 		up_write(&sb->s_umount);
1492 		return 0;
1493 	}
1494 
1495 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1496 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1497 	up_write(&sb->s_umount);
1498 	sb_wait_write(sb, SB_FREEZE_WRITE);
1499 	down_write(&sb->s_umount);
1500 
1501 	/* Now we go and block page faults... */
1502 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1503 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1504 
1505 	/* All writers are done so after syncing there won't be dirty data */
1506 	sync_filesystem(sb);
1507 
1508 	/* Now wait for internal filesystem counter */
1509 	sb->s_writers.frozen = SB_FREEZE_FS;
1510 	sb_wait_write(sb, SB_FREEZE_FS);
1511 
1512 	if (sb->s_op->freeze_fs) {
1513 		ret = sb->s_op->freeze_fs(sb);
1514 		if (ret) {
1515 			printk(KERN_ERR
1516 				"VFS:Filesystem freeze failed\n");
1517 			sb->s_writers.frozen = SB_UNFROZEN;
1518 			sb_freeze_unlock(sb);
1519 			wake_up(&sb->s_writers.wait_unfrozen);
1520 			deactivate_locked_super(sb);
1521 			return ret;
1522 		}
1523 	}
1524 	/*
1525 	 * For debugging purposes so that fs can warn if it sees write activity
1526 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1527 	 */
1528 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1529 	lockdep_sb_freeze_release(sb);
1530 	up_write(&sb->s_umount);
1531 	return 0;
1532 }
1533 EXPORT_SYMBOL(freeze_super);
1534 
1535 /**
1536  * thaw_super -- unlock filesystem
1537  * @sb: the super to thaw
1538  *
1539  * Unlocks the filesystem and marks it writeable again after freeze_super().
1540  */
1541 static int thaw_super_locked(struct super_block *sb)
1542 {
1543 	int error;
1544 
1545 	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1546 		up_write(&sb->s_umount);
1547 		return -EINVAL;
1548 	}
1549 
1550 	if (sb_rdonly(sb)) {
1551 		sb->s_writers.frozen = SB_UNFROZEN;
1552 		goto out;
1553 	}
1554 
1555 	lockdep_sb_freeze_acquire(sb);
1556 
1557 	if (sb->s_op->unfreeze_fs) {
1558 		error = sb->s_op->unfreeze_fs(sb);
1559 		if (error) {
1560 			printk(KERN_ERR
1561 				"VFS:Filesystem thaw failed\n");
1562 			lockdep_sb_freeze_release(sb);
1563 			up_write(&sb->s_umount);
1564 			return error;
1565 		}
1566 	}
1567 
1568 	sb->s_writers.frozen = SB_UNFROZEN;
1569 	sb_freeze_unlock(sb);
1570 out:
1571 	wake_up(&sb->s_writers.wait_unfrozen);
1572 	deactivate_locked_super(sb);
1573 	return 0;
1574 }
1575 
1576 int thaw_super(struct super_block *sb)
1577 {
1578 	down_write(&sb->s_umount);
1579 	return thaw_super_locked(sb);
1580 }
1581 EXPORT_SYMBOL(thaw_super);
1582