1 /* 2 * linux/fs/super.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * super.c contains code to handle: - mount structures 7 * - super-block tables 8 * - filesystem drivers list 9 * - mount system call 10 * - umount system call 11 * - ustat system call 12 * 13 * GK 2/5/95 - Changed to support mounting the root fs via NFS 14 * 15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 17 * Added options to /proc/mounts: 18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 21 */ 22 23 #include <linux/export.h> 24 #include <linux/slab.h> 25 #include <linux/blkdev.h> 26 #include <linux/mount.h> 27 #include <linux/security.h> 28 #include <linux/writeback.h> /* for the emergency remount stuff */ 29 #include <linux/idr.h> 30 #include <linux/mutex.h> 31 #include <linux/backing-dev.h> 32 #include <linux/rculist_bl.h> 33 #include <linux/cleancache.h> 34 #include <linux/fsnotify.h> 35 #include <linux/lockdep.h> 36 #include "internal.h" 37 38 39 LIST_HEAD(super_blocks); 40 DEFINE_SPINLOCK(sb_lock); 41 42 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 43 "sb_writers", 44 "sb_pagefaults", 45 "sb_internal", 46 }; 47 48 /* 49 * One thing we have to be careful of with a per-sb shrinker is that we don't 50 * drop the last active reference to the superblock from within the shrinker. 51 * If that happens we could trigger unregistering the shrinker from within the 52 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 53 * take a passive reference to the superblock to avoid this from occurring. 54 */ 55 static unsigned long super_cache_scan(struct shrinker *shrink, 56 struct shrink_control *sc) 57 { 58 struct super_block *sb; 59 long fs_objects = 0; 60 long total_objects; 61 long freed = 0; 62 long dentries; 63 long inodes; 64 65 sb = container_of(shrink, struct super_block, s_shrink); 66 67 /* 68 * Deadlock avoidance. We may hold various FS locks, and we don't want 69 * to recurse into the FS that called us in clear_inode() and friends.. 70 */ 71 if (!(sc->gfp_mask & __GFP_FS)) 72 return SHRINK_STOP; 73 74 if (!grab_super_passive(sb)) 75 return SHRINK_STOP; 76 77 if (sb->s_op->nr_cached_objects) 78 fs_objects = sb->s_op->nr_cached_objects(sb, sc->nid); 79 80 inodes = list_lru_count_node(&sb->s_inode_lru, sc->nid); 81 dentries = list_lru_count_node(&sb->s_dentry_lru, sc->nid); 82 total_objects = dentries + inodes + fs_objects + 1; 83 84 /* proportion the scan between the caches */ 85 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 86 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 87 88 /* 89 * prune the dcache first as the icache is pinned by it, then 90 * prune the icache, followed by the filesystem specific caches 91 */ 92 freed = prune_dcache_sb(sb, dentries, sc->nid); 93 freed += prune_icache_sb(sb, inodes, sc->nid); 94 95 if (fs_objects) { 96 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, 97 total_objects); 98 freed += sb->s_op->free_cached_objects(sb, fs_objects, 99 sc->nid); 100 } 101 102 drop_super(sb); 103 return freed; 104 } 105 106 static unsigned long super_cache_count(struct shrinker *shrink, 107 struct shrink_control *sc) 108 { 109 struct super_block *sb; 110 long total_objects = 0; 111 112 sb = container_of(shrink, struct super_block, s_shrink); 113 114 /* 115 * Don't call grab_super_passive as it is a potential 116 * scalability bottleneck. The counts could get updated 117 * between super_cache_count and super_cache_scan anyway. 118 * Call to super_cache_count with shrinker_rwsem held 119 * ensures the safety of call to list_lru_count_node() and 120 * s_op->nr_cached_objects(). 121 */ 122 if (sb->s_op && sb->s_op->nr_cached_objects) 123 total_objects = sb->s_op->nr_cached_objects(sb, 124 sc->nid); 125 126 total_objects += list_lru_count_node(&sb->s_dentry_lru, 127 sc->nid); 128 total_objects += list_lru_count_node(&sb->s_inode_lru, 129 sc->nid); 130 131 total_objects = vfs_pressure_ratio(total_objects); 132 return total_objects; 133 } 134 135 /** 136 * destroy_super - frees a superblock 137 * @s: superblock to free 138 * 139 * Frees a superblock. 140 */ 141 static void destroy_super(struct super_block *s) 142 { 143 int i; 144 list_lru_destroy(&s->s_dentry_lru); 145 list_lru_destroy(&s->s_inode_lru); 146 for (i = 0; i < SB_FREEZE_LEVELS; i++) 147 percpu_counter_destroy(&s->s_writers.counter[i]); 148 security_sb_free(s); 149 WARN_ON(!list_empty(&s->s_mounts)); 150 kfree(s->s_subtype); 151 kfree(s->s_options); 152 kfree_rcu(s, rcu); 153 } 154 155 /** 156 * alloc_super - create new superblock 157 * @type: filesystem type superblock should belong to 158 * @flags: the mount flags 159 * 160 * Allocates and initializes a new &struct super_block. alloc_super() 161 * returns a pointer new superblock or %NULL if allocation had failed. 162 */ 163 static struct super_block *alloc_super(struct file_system_type *type, int flags) 164 { 165 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 166 static const struct super_operations default_op; 167 int i; 168 169 if (!s) 170 return NULL; 171 172 INIT_LIST_HEAD(&s->s_mounts); 173 174 if (security_sb_alloc(s)) 175 goto fail; 176 177 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 178 if (percpu_counter_init(&s->s_writers.counter[i], 0) < 0) 179 goto fail; 180 lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i], 181 &type->s_writers_key[i], 0); 182 } 183 init_waitqueue_head(&s->s_writers.wait); 184 init_waitqueue_head(&s->s_writers.wait_unfrozen); 185 s->s_flags = flags; 186 s->s_bdi = &default_backing_dev_info; 187 INIT_HLIST_NODE(&s->s_instances); 188 INIT_HLIST_BL_HEAD(&s->s_anon); 189 INIT_LIST_HEAD(&s->s_inodes); 190 191 if (list_lru_init(&s->s_dentry_lru)) 192 goto fail; 193 if (list_lru_init(&s->s_inode_lru)) 194 goto fail; 195 196 init_rwsem(&s->s_umount); 197 lockdep_set_class(&s->s_umount, &type->s_umount_key); 198 /* 199 * sget() can have s_umount recursion. 200 * 201 * When it cannot find a suitable sb, it allocates a new 202 * one (this one), and tries again to find a suitable old 203 * one. 204 * 205 * In case that succeeds, it will acquire the s_umount 206 * lock of the old one. Since these are clearly distrinct 207 * locks, and this object isn't exposed yet, there's no 208 * risk of deadlocks. 209 * 210 * Annotate this by putting this lock in a different 211 * subclass. 212 */ 213 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 214 s->s_count = 1; 215 atomic_set(&s->s_active, 1); 216 mutex_init(&s->s_vfs_rename_mutex); 217 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 218 mutex_init(&s->s_dquot.dqio_mutex); 219 mutex_init(&s->s_dquot.dqonoff_mutex); 220 s->s_maxbytes = MAX_NON_LFS; 221 s->s_op = &default_op; 222 s->s_time_gran = 1000000000; 223 s->cleancache_poolid = -1; 224 225 s->s_shrink.seeks = DEFAULT_SEEKS; 226 s->s_shrink.scan_objects = super_cache_scan; 227 s->s_shrink.count_objects = super_cache_count; 228 s->s_shrink.batch = 1024; 229 s->s_shrink.flags = SHRINKER_NUMA_AWARE; 230 return s; 231 232 fail: 233 destroy_super(s); 234 return NULL; 235 } 236 237 /* Superblock refcounting */ 238 239 /* 240 * Drop a superblock's refcount. The caller must hold sb_lock. 241 */ 242 static void __put_super(struct super_block *sb) 243 { 244 if (!--sb->s_count) { 245 list_del_init(&sb->s_list); 246 destroy_super(sb); 247 } 248 } 249 250 /** 251 * put_super - drop a temporary reference to superblock 252 * @sb: superblock in question 253 * 254 * Drops a temporary reference, frees superblock if there's no 255 * references left. 256 */ 257 static void put_super(struct super_block *sb) 258 { 259 spin_lock(&sb_lock); 260 __put_super(sb); 261 spin_unlock(&sb_lock); 262 } 263 264 265 /** 266 * deactivate_locked_super - drop an active reference to superblock 267 * @s: superblock to deactivate 268 * 269 * Drops an active reference to superblock, converting it into a temprory 270 * one if there is no other active references left. In that case we 271 * tell fs driver to shut it down and drop the temporary reference we 272 * had just acquired. 273 * 274 * Caller holds exclusive lock on superblock; that lock is released. 275 */ 276 void deactivate_locked_super(struct super_block *s) 277 { 278 struct file_system_type *fs = s->s_type; 279 if (atomic_dec_and_test(&s->s_active)) { 280 cleancache_invalidate_fs(s); 281 unregister_shrinker(&s->s_shrink); 282 fs->kill_sb(s); 283 284 put_filesystem(fs); 285 put_super(s); 286 } else { 287 up_write(&s->s_umount); 288 } 289 } 290 291 EXPORT_SYMBOL(deactivate_locked_super); 292 293 /** 294 * deactivate_super - drop an active reference to superblock 295 * @s: superblock to deactivate 296 * 297 * Variant of deactivate_locked_super(), except that superblock is *not* 298 * locked by caller. If we are going to drop the final active reference, 299 * lock will be acquired prior to that. 300 */ 301 void deactivate_super(struct super_block *s) 302 { 303 if (!atomic_add_unless(&s->s_active, -1, 1)) { 304 down_write(&s->s_umount); 305 deactivate_locked_super(s); 306 } 307 } 308 309 EXPORT_SYMBOL(deactivate_super); 310 311 /** 312 * grab_super - acquire an active reference 313 * @s: reference we are trying to make active 314 * 315 * Tries to acquire an active reference. grab_super() is used when we 316 * had just found a superblock in super_blocks or fs_type->fs_supers 317 * and want to turn it into a full-blown active reference. grab_super() 318 * is called with sb_lock held and drops it. Returns 1 in case of 319 * success, 0 if we had failed (superblock contents was already dead or 320 * dying when grab_super() had been called). Note that this is only 321 * called for superblocks not in rundown mode (== ones still on ->fs_supers 322 * of their type), so increment of ->s_count is OK here. 323 */ 324 static int grab_super(struct super_block *s) __releases(sb_lock) 325 { 326 s->s_count++; 327 spin_unlock(&sb_lock); 328 down_write(&s->s_umount); 329 if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) { 330 put_super(s); 331 return 1; 332 } 333 up_write(&s->s_umount); 334 put_super(s); 335 return 0; 336 } 337 338 /* 339 * grab_super_passive - acquire a passive reference 340 * @sb: reference we are trying to grab 341 * 342 * Tries to acquire a passive reference. This is used in places where we 343 * cannot take an active reference but we need to ensure that the 344 * superblock does not go away while we are working on it. It returns 345 * false if a reference was not gained, and returns true with the s_umount 346 * lock held in read mode if a reference is gained. On successful return, 347 * the caller must drop the s_umount lock and the passive reference when 348 * done. 349 */ 350 bool grab_super_passive(struct super_block *sb) 351 { 352 spin_lock(&sb_lock); 353 if (hlist_unhashed(&sb->s_instances)) { 354 spin_unlock(&sb_lock); 355 return false; 356 } 357 358 sb->s_count++; 359 spin_unlock(&sb_lock); 360 361 if (down_read_trylock(&sb->s_umount)) { 362 if (sb->s_root && (sb->s_flags & MS_BORN)) 363 return true; 364 up_read(&sb->s_umount); 365 } 366 367 put_super(sb); 368 return false; 369 } 370 371 /** 372 * generic_shutdown_super - common helper for ->kill_sb() 373 * @sb: superblock to kill 374 * 375 * generic_shutdown_super() does all fs-independent work on superblock 376 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 377 * that need destruction out of superblock, call generic_shutdown_super() 378 * and release aforementioned objects. Note: dentries and inodes _are_ 379 * taken care of and do not need specific handling. 380 * 381 * Upon calling this function, the filesystem may no longer alter or 382 * rearrange the set of dentries belonging to this super_block, nor may it 383 * change the attachments of dentries to inodes. 384 */ 385 void generic_shutdown_super(struct super_block *sb) 386 { 387 const struct super_operations *sop = sb->s_op; 388 389 if (sb->s_root) { 390 shrink_dcache_for_umount(sb); 391 sync_filesystem(sb); 392 sb->s_flags &= ~MS_ACTIVE; 393 394 fsnotify_unmount_inodes(&sb->s_inodes); 395 396 evict_inodes(sb); 397 398 if (sb->s_dio_done_wq) { 399 destroy_workqueue(sb->s_dio_done_wq); 400 sb->s_dio_done_wq = NULL; 401 } 402 403 if (sop->put_super) 404 sop->put_super(sb); 405 406 if (!list_empty(&sb->s_inodes)) { 407 printk("VFS: Busy inodes after unmount of %s. " 408 "Self-destruct in 5 seconds. Have a nice day...\n", 409 sb->s_id); 410 } 411 } 412 spin_lock(&sb_lock); 413 /* should be initialized for __put_super_and_need_restart() */ 414 hlist_del_init(&sb->s_instances); 415 spin_unlock(&sb_lock); 416 up_write(&sb->s_umount); 417 } 418 419 EXPORT_SYMBOL(generic_shutdown_super); 420 421 /** 422 * sget - find or create a superblock 423 * @type: filesystem type superblock should belong to 424 * @test: comparison callback 425 * @set: setup callback 426 * @flags: mount flags 427 * @data: argument to each of them 428 */ 429 struct super_block *sget(struct file_system_type *type, 430 int (*test)(struct super_block *,void *), 431 int (*set)(struct super_block *,void *), 432 int flags, 433 void *data) 434 { 435 struct super_block *s = NULL; 436 struct super_block *old; 437 int err; 438 439 retry: 440 spin_lock(&sb_lock); 441 if (test) { 442 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 443 if (!test(old, data)) 444 continue; 445 if (!grab_super(old)) 446 goto retry; 447 if (s) { 448 up_write(&s->s_umount); 449 destroy_super(s); 450 s = NULL; 451 } 452 return old; 453 } 454 } 455 if (!s) { 456 spin_unlock(&sb_lock); 457 s = alloc_super(type, flags); 458 if (!s) 459 return ERR_PTR(-ENOMEM); 460 goto retry; 461 } 462 463 err = set(s, data); 464 if (err) { 465 spin_unlock(&sb_lock); 466 up_write(&s->s_umount); 467 destroy_super(s); 468 return ERR_PTR(err); 469 } 470 s->s_type = type; 471 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 472 list_add_tail(&s->s_list, &super_blocks); 473 hlist_add_head(&s->s_instances, &type->fs_supers); 474 spin_unlock(&sb_lock); 475 get_filesystem(type); 476 register_shrinker(&s->s_shrink); 477 return s; 478 } 479 480 EXPORT_SYMBOL(sget); 481 482 void drop_super(struct super_block *sb) 483 { 484 up_read(&sb->s_umount); 485 put_super(sb); 486 } 487 488 EXPORT_SYMBOL(drop_super); 489 490 /** 491 * iterate_supers - call function for all active superblocks 492 * @f: function to call 493 * @arg: argument to pass to it 494 * 495 * Scans the superblock list and calls given function, passing it 496 * locked superblock and given argument. 497 */ 498 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 499 { 500 struct super_block *sb, *p = NULL; 501 502 spin_lock(&sb_lock); 503 list_for_each_entry(sb, &super_blocks, s_list) { 504 if (hlist_unhashed(&sb->s_instances)) 505 continue; 506 sb->s_count++; 507 spin_unlock(&sb_lock); 508 509 down_read(&sb->s_umount); 510 if (sb->s_root && (sb->s_flags & MS_BORN)) 511 f(sb, arg); 512 up_read(&sb->s_umount); 513 514 spin_lock(&sb_lock); 515 if (p) 516 __put_super(p); 517 p = sb; 518 } 519 if (p) 520 __put_super(p); 521 spin_unlock(&sb_lock); 522 } 523 524 /** 525 * iterate_supers_type - call function for superblocks of given type 526 * @type: fs type 527 * @f: function to call 528 * @arg: argument to pass to it 529 * 530 * Scans the superblock list and calls given function, passing it 531 * locked superblock and given argument. 532 */ 533 void iterate_supers_type(struct file_system_type *type, 534 void (*f)(struct super_block *, void *), void *arg) 535 { 536 struct super_block *sb, *p = NULL; 537 538 spin_lock(&sb_lock); 539 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 540 sb->s_count++; 541 spin_unlock(&sb_lock); 542 543 down_read(&sb->s_umount); 544 if (sb->s_root && (sb->s_flags & MS_BORN)) 545 f(sb, arg); 546 up_read(&sb->s_umount); 547 548 spin_lock(&sb_lock); 549 if (p) 550 __put_super(p); 551 p = sb; 552 } 553 if (p) 554 __put_super(p); 555 spin_unlock(&sb_lock); 556 } 557 558 EXPORT_SYMBOL(iterate_supers_type); 559 560 /** 561 * get_super - get the superblock of a device 562 * @bdev: device to get the superblock for 563 * 564 * Scans the superblock list and finds the superblock of the file system 565 * mounted on the device given. %NULL is returned if no match is found. 566 */ 567 568 struct super_block *get_super(struct block_device *bdev) 569 { 570 struct super_block *sb; 571 572 if (!bdev) 573 return NULL; 574 575 spin_lock(&sb_lock); 576 rescan: 577 list_for_each_entry(sb, &super_blocks, s_list) { 578 if (hlist_unhashed(&sb->s_instances)) 579 continue; 580 if (sb->s_bdev == bdev) { 581 sb->s_count++; 582 spin_unlock(&sb_lock); 583 down_read(&sb->s_umount); 584 /* still alive? */ 585 if (sb->s_root && (sb->s_flags & MS_BORN)) 586 return sb; 587 up_read(&sb->s_umount); 588 /* nope, got unmounted */ 589 spin_lock(&sb_lock); 590 __put_super(sb); 591 goto rescan; 592 } 593 } 594 spin_unlock(&sb_lock); 595 return NULL; 596 } 597 598 EXPORT_SYMBOL(get_super); 599 600 /** 601 * get_super_thawed - get thawed superblock of a device 602 * @bdev: device to get the superblock for 603 * 604 * Scans the superblock list and finds the superblock of the file system 605 * mounted on the device. The superblock is returned once it is thawed 606 * (or immediately if it was not frozen). %NULL is returned if no match 607 * is found. 608 */ 609 struct super_block *get_super_thawed(struct block_device *bdev) 610 { 611 while (1) { 612 struct super_block *s = get_super(bdev); 613 if (!s || s->s_writers.frozen == SB_UNFROZEN) 614 return s; 615 up_read(&s->s_umount); 616 wait_event(s->s_writers.wait_unfrozen, 617 s->s_writers.frozen == SB_UNFROZEN); 618 put_super(s); 619 } 620 } 621 EXPORT_SYMBOL(get_super_thawed); 622 623 /** 624 * get_active_super - get an active reference to the superblock of a device 625 * @bdev: device to get the superblock for 626 * 627 * Scans the superblock list and finds the superblock of the file system 628 * mounted on the device given. Returns the superblock with an active 629 * reference or %NULL if none was found. 630 */ 631 struct super_block *get_active_super(struct block_device *bdev) 632 { 633 struct super_block *sb; 634 635 if (!bdev) 636 return NULL; 637 638 restart: 639 spin_lock(&sb_lock); 640 list_for_each_entry(sb, &super_blocks, s_list) { 641 if (hlist_unhashed(&sb->s_instances)) 642 continue; 643 if (sb->s_bdev == bdev) { 644 if (!grab_super(sb)) 645 goto restart; 646 up_write(&sb->s_umount); 647 return sb; 648 } 649 } 650 spin_unlock(&sb_lock); 651 return NULL; 652 } 653 654 struct super_block *user_get_super(dev_t dev) 655 { 656 struct super_block *sb; 657 658 spin_lock(&sb_lock); 659 rescan: 660 list_for_each_entry(sb, &super_blocks, s_list) { 661 if (hlist_unhashed(&sb->s_instances)) 662 continue; 663 if (sb->s_dev == dev) { 664 sb->s_count++; 665 spin_unlock(&sb_lock); 666 down_read(&sb->s_umount); 667 /* still alive? */ 668 if (sb->s_root && (sb->s_flags & MS_BORN)) 669 return sb; 670 up_read(&sb->s_umount); 671 /* nope, got unmounted */ 672 spin_lock(&sb_lock); 673 __put_super(sb); 674 goto rescan; 675 } 676 } 677 spin_unlock(&sb_lock); 678 return NULL; 679 } 680 681 /** 682 * do_remount_sb - asks filesystem to change mount options. 683 * @sb: superblock in question 684 * @flags: numeric part of options 685 * @data: the rest of options 686 * @force: whether or not to force the change 687 * 688 * Alters the mount options of a mounted file system. 689 */ 690 int do_remount_sb(struct super_block *sb, int flags, void *data, int force) 691 { 692 int retval; 693 int remount_ro; 694 695 if (sb->s_writers.frozen != SB_UNFROZEN) 696 return -EBUSY; 697 698 #ifdef CONFIG_BLOCK 699 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev)) 700 return -EACCES; 701 #endif 702 703 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY); 704 705 if (remount_ro) { 706 if (sb->s_pins.first) { 707 up_write(&sb->s_umount); 708 sb_pin_kill(sb); 709 down_write(&sb->s_umount); 710 if (!sb->s_root) 711 return 0; 712 if (sb->s_writers.frozen != SB_UNFROZEN) 713 return -EBUSY; 714 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY); 715 } 716 } 717 shrink_dcache_sb(sb); 718 719 /* If we are remounting RDONLY and current sb is read/write, 720 make sure there are no rw files opened */ 721 if (remount_ro) { 722 if (force) { 723 sb->s_readonly_remount = 1; 724 smp_wmb(); 725 } else { 726 retval = sb_prepare_remount_readonly(sb); 727 if (retval) 728 return retval; 729 } 730 } 731 732 if (sb->s_op->remount_fs) { 733 retval = sb->s_op->remount_fs(sb, &flags, data); 734 if (retval) { 735 if (!force) 736 goto cancel_readonly; 737 /* If forced remount, go ahead despite any errors */ 738 WARN(1, "forced remount of a %s fs returned %i\n", 739 sb->s_type->name, retval); 740 } 741 } 742 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK); 743 /* Needs to be ordered wrt mnt_is_readonly() */ 744 smp_wmb(); 745 sb->s_readonly_remount = 0; 746 747 /* 748 * Some filesystems modify their metadata via some other path than the 749 * bdev buffer cache (eg. use a private mapping, or directories in 750 * pagecache, etc). Also file data modifications go via their own 751 * mappings. So If we try to mount readonly then copy the filesystem 752 * from bdev, we could get stale data, so invalidate it to give a best 753 * effort at coherency. 754 */ 755 if (remount_ro && sb->s_bdev) 756 invalidate_bdev(sb->s_bdev); 757 return 0; 758 759 cancel_readonly: 760 sb->s_readonly_remount = 0; 761 return retval; 762 } 763 764 static void do_emergency_remount(struct work_struct *work) 765 { 766 struct super_block *sb, *p = NULL; 767 768 spin_lock(&sb_lock); 769 list_for_each_entry(sb, &super_blocks, s_list) { 770 if (hlist_unhashed(&sb->s_instances)) 771 continue; 772 sb->s_count++; 773 spin_unlock(&sb_lock); 774 down_write(&sb->s_umount); 775 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) && 776 !(sb->s_flags & MS_RDONLY)) { 777 /* 778 * What lock protects sb->s_flags?? 779 */ 780 do_remount_sb(sb, MS_RDONLY, NULL, 1); 781 } 782 up_write(&sb->s_umount); 783 spin_lock(&sb_lock); 784 if (p) 785 __put_super(p); 786 p = sb; 787 } 788 if (p) 789 __put_super(p); 790 spin_unlock(&sb_lock); 791 kfree(work); 792 printk("Emergency Remount complete\n"); 793 } 794 795 void emergency_remount(void) 796 { 797 struct work_struct *work; 798 799 work = kmalloc(sizeof(*work), GFP_ATOMIC); 800 if (work) { 801 INIT_WORK(work, do_emergency_remount); 802 schedule_work(work); 803 } 804 } 805 806 /* 807 * Unnamed block devices are dummy devices used by virtual 808 * filesystems which don't use real block-devices. -- jrs 809 */ 810 811 static DEFINE_IDA(unnamed_dev_ida); 812 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */ 813 /* Many userspace utilities consider an FSID of 0 invalid. 814 * Always return at least 1 from get_anon_bdev. 815 */ 816 static int unnamed_dev_start = 1; 817 818 int get_anon_bdev(dev_t *p) 819 { 820 int dev; 821 int error; 822 823 retry: 824 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0) 825 return -ENOMEM; 826 spin_lock(&unnamed_dev_lock); 827 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev); 828 if (!error) 829 unnamed_dev_start = dev + 1; 830 spin_unlock(&unnamed_dev_lock); 831 if (error == -EAGAIN) 832 /* We raced and lost with another CPU. */ 833 goto retry; 834 else if (error) 835 return -EAGAIN; 836 837 if (dev == (1 << MINORBITS)) { 838 spin_lock(&unnamed_dev_lock); 839 ida_remove(&unnamed_dev_ida, dev); 840 if (unnamed_dev_start > dev) 841 unnamed_dev_start = dev; 842 spin_unlock(&unnamed_dev_lock); 843 return -EMFILE; 844 } 845 *p = MKDEV(0, dev & MINORMASK); 846 return 0; 847 } 848 EXPORT_SYMBOL(get_anon_bdev); 849 850 void free_anon_bdev(dev_t dev) 851 { 852 int slot = MINOR(dev); 853 spin_lock(&unnamed_dev_lock); 854 ida_remove(&unnamed_dev_ida, slot); 855 if (slot < unnamed_dev_start) 856 unnamed_dev_start = slot; 857 spin_unlock(&unnamed_dev_lock); 858 } 859 EXPORT_SYMBOL(free_anon_bdev); 860 861 int set_anon_super(struct super_block *s, void *data) 862 { 863 int error = get_anon_bdev(&s->s_dev); 864 if (!error) 865 s->s_bdi = &noop_backing_dev_info; 866 return error; 867 } 868 869 EXPORT_SYMBOL(set_anon_super); 870 871 void kill_anon_super(struct super_block *sb) 872 { 873 dev_t dev = sb->s_dev; 874 generic_shutdown_super(sb); 875 free_anon_bdev(dev); 876 } 877 878 EXPORT_SYMBOL(kill_anon_super); 879 880 void kill_litter_super(struct super_block *sb) 881 { 882 if (sb->s_root) 883 d_genocide(sb->s_root); 884 kill_anon_super(sb); 885 } 886 887 EXPORT_SYMBOL(kill_litter_super); 888 889 static int ns_test_super(struct super_block *sb, void *data) 890 { 891 return sb->s_fs_info == data; 892 } 893 894 static int ns_set_super(struct super_block *sb, void *data) 895 { 896 sb->s_fs_info = data; 897 return set_anon_super(sb, NULL); 898 } 899 900 struct dentry *mount_ns(struct file_system_type *fs_type, int flags, 901 void *data, int (*fill_super)(struct super_block *, void *, int)) 902 { 903 struct super_block *sb; 904 905 sb = sget(fs_type, ns_test_super, ns_set_super, flags, data); 906 if (IS_ERR(sb)) 907 return ERR_CAST(sb); 908 909 if (!sb->s_root) { 910 int err; 911 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 912 if (err) { 913 deactivate_locked_super(sb); 914 return ERR_PTR(err); 915 } 916 917 sb->s_flags |= MS_ACTIVE; 918 } 919 920 return dget(sb->s_root); 921 } 922 923 EXPORT_SYMBOL(mount_ns); 924 925 #ifdef CONFIG_BLOCK 926 static int set_bdev_super(struct super_block *s, void *data) 927 { 928 s->s_bdev = data; 929 s->s_dev = s->s_bdev->bd_dev; 930 931 /* 932 * We set the bdi here to the queue backing, file systems can 933 * overwrite this in ->fill_super() 934 */ 935 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info; 936 return 0; 937 } 938 939 static int test_bdev_super(struct super_block *s, void *data) 940 { 941 return (void *)s->s_bdev == data; 942 } 943 944 struct dentry *mount_bdev(struct file_system_type *fs_type, 945 int flags, const char *dev_name, void *data, 946 int (*fill_super)(struct super_block *, void *, int)) 947 { 948 struct block_device *bdev; 949 struct super_block *s; 950 fmode_t mode = FMODE_READ | FMODE_EXCL; 951 int error = 0; 952 953 if (!(flags & MS_RDONLY)) 954 mode |= FMODE_WRITE; 955 956 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 957 if (IS_ERR(bdev)) 958 return ERR_CAST(bdev); 959 960 /* 961 * once the super is inserted into the list by sget, s_umount 962 * will protect the lockfs code from trying to start a snapshot 963 * while we are mounting 964 */ 965 mutex_lock(&bdev->bd_fsfreeze_mutex); 966 if (bdev->bd_fsfreeze_count > 0) { 967 mutex_unlock(&bdev->bd_fsfreeze_mutex); 968 error = -EBUSY; 969 goto error_bdev; 970 } 971 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC, 972 bdev); 973 mutex_unlock(&bdev->bd_fsfreeze_mutex); 974 if (IS_ERR(s)) 975 goto error_s; 976 977 if (s->s_root) { 978 if ((flags ^ s->s_flags) & MS_RDONLY) { 979 deactivate_locked_super(s); 980 error = -EBUSY; 981 goto error_bdev; 982 } 983 984 /* 985 * s_umount nests inside bd_mutex during 986 * __invalidate_device(). blkdev_put() acquires 987 * bd_mutex and can't be called under s_umount. Drop 988 * s_umount temporarily. This is safe as we're 989 * holding an active reference. 990 */ 991 up_write(&s->s_umount); 992 blkdev_put(bdev, mode); 993 down_write(&s->s_umount); 994 } else { 995 char b[BDEVNAME_SIZE]; 996 997 s->s_mode = mode; 998 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); 999 sb_set_blocksize(s, block_size(bdev)); 1000 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1001 if (error) { 1002 deactivate_locked_super(s); 1003 goto error; 1004 } 1005 1006 s->s_flags |= MS_ACTIVE; 1007 bdev->bd_super = s; 1008 } 1009 1010 return dget(s->s_root); 1011 1012 error_s: 1013 error = PTR_ERR(s); 1014 error_bdev: 1015 blkdev_put(bdev, mode); 1016 error: 1017 return ERR_PTR(error); 1018 } 1019 EXPORT_SYMBOL(mount_bdev); 1020 1021 void kill_block_super(struct super_block *sb) 1022 { 1023 struct block_device *bdev = sb->s_bdev; 1024 fmode_t mode = sb->s_mode; 1025 1026 bdev->bd_super = NULL; 1027 generic_shutdown_super(sb); 1028 sync_blockdev(bdev); 1029 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 1030 blkdev_put(bdev, mode | FMODE_EXCL); 1031 } 1032 1033 EXPORT_SYMBOL(kill_block_super); 1034 #endif 1035 1036 struct dentry *mount_nodev(struct file_system_type *fs_type, 1037 int flags, void *data, 1038 int (*fill_super)(struct super_block *, void *, int)) 1039 { 1040 int error; 1041 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1042 1043 if (IS_ERR(s)) 1044 return ERR_CAST(s); 1045 1046 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1047 if (error) { 1048 deactivate_locked_super(s); 1049 return ERR_PTR(error); 1050 } 1051 s->s_flags |= MS_ACTIVE; 1052 return dget(s->s_root); 1053 } 1054 EXPORT_SYMBOL(mount_nodev); 1055 1056 static int compare_single(struct super_block *s, void *p) 1057 { 1058 return 1; 1059 } 1060 1061 struct dentry *mount_single(struct file_system_type *fs_type, 1062 int flags, void *data, 1063 int (*fill_super)(struct super_block *, void *, int)) 1064 { 1065 struct super_block *s; 1066 int error; 1067 1068 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1069 if (IS_ERR(s)) 1070 return ERR_CAST(s); 1071 if (!s->s_root) { 1072 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1073 if (error) { 1074 deactivate_locked_super(s); 1075 return ERR_PTR(error); 1076 } 1077 s->s_flags |= MS_ACTIVE; 1078 } else { 1079 do_remount_sb(s, flags, data, 0); 1080 } 1081 return dget(s->s_root); 1082 } 1083 EXPORT_SYMBOL(mount_single); 1084 1085 struct dentry * 1086 mount_fs(struct file_system_type *type, int flags, const char *name, void *data) 1087 { 1088 struct dentry *root; 1089 struct super_block *sb; 1090 char *secdata = NULL; 1091 int error = -ENOMEM; 1092 1093 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) { 1094 secdata = alloc_secdata(); 1095 if (!secdata) 1096 goto out; 1097 1098 error = security_sb_copy_data(data, secdata); 1099 if (error) 1100 goto out_free_secdata; 1101 } 1102 1103 root = type->mount(type, flags, name, data); 1104 if (IS_ERR(root)) { 1105 error = PTR_ERR(root); 1106 goto out_free_secdata; 1107 } 1108 sb = root->d_sb; 1109 BUG_ON(!sb); 1110 WARN_ON(!sb->s_bdi); 1111 WARN_ON(sb->s_bdi == &default_backing_dev_info); 1112 sb->s_flags |= MS_BORN; 1113 1114 error = security_sb_kern_mount(sb, flags, secdata); 1115 if (error) 1116 goto out_sb; 1117 1118 /* 1119 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1120 * but s_maxbytes was an unsigned long long for many releases. Throw 1121 * this warning for a little while to try and catch filesystems that 1122 * violate this rule. 1123 */ 1124 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1125 "negative value (%lld)\n", type->name, sb->s_maxbytes); 1126 1127 up_write(&sb->s_umount); 1128 free_secdata(secdata); 1129 return root; 1130 out_sb: 1131 dput(root); 1132 deactivate_locked_super(sb); 1133 out_free_secdata: 1134 free_secdata(secdata); 1135 out: 1136 return ERR_PTR(error); 1137 } 1138 1139 /* 1140 * This is an internal function, please use sb_end_{write,pagefault,intwrite} 1141 * instead. 1142 */ 1143 void __sb_end_write(struct super_block *sb, int level) 1144 { 1145 percpu_counter_dec(&sb->s_writers.counter[level-1]); 1146 /* 1147 * Make sure s_writers are updated before we wake up waiters in 1148 * freeze_super(). 1149 */ 1150 smp_mb(); 1151 if (waitqueue_active(&sb->s_writers.wait)) 1152 wake_up(&sb->s_writers.wait); 1153 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_); 1154 } 1155 EXPORT_SYMBOL(__sb_end_write); 1156 1157 #ifdef CONFIG_LOCKDEP 1158 /* 1159 * We want lockdep to tell us about possible deadlocks with freezing but 1160 * it's it bit tricky to properly instrument it. Getting a freeze protection 1161 * works as getting a read lock but there are subtle problems. XFS for example 1162 * gets freeze protection on internal level twice in some cases, which is OK 1163 * only because we already hold a freeze protection also on higher level. Due 1164 * to these cases we have to tell lockdep we are doing trylock when we 1165 * already hold a freeze protection for a higher freeze level. 1166 */ 1167 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock, 1168 unsigned long ip) 1169 { 1170 int i; 1171 1172 if (!trylock) { 1173 for (i = 0; i < level - 1; i++) 1174 if (lock_is_held(&sb->s_writers.lock_map[i])) { 1175 trylock = true; 1176 break; 1177 } 1178 } 1179 rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip); 1180 } 1181 #endif 1182 1183 /* 1184 * This is an internal function, please use sb_start_{write,pagefault,intwrite} 1185 * instead. 1186 */ 1187 int __sb_start_write(struct super_block *sb, int level, bool wait) 1188 { 1189 retry: 1190 if (unlikely(sb->s_writers.frozen >= level)) { 1191 if (!wait) 1192 return 0; 1193 wait_event(sb->s_writers.wait_unfrozen, 1194 sb->s_writers.frozen < level); 1195 } 1196 1197 #ifdef CONFIG_LOCKDEP 1198 acquire_freeze_lock(sb, level, !wait, _RET_IP_); 1199 #endif 1200 percpu_counter_inc(&sb->s_writers.counter[level-1]); 1201 /* 1202 * Make sure counter is updated before we check for frozen. 1203 * freeze_super() first sets frozen and then checks the counter. 1204 */ 1205 smp_mb(); 1206 if (unlikely(sb->s_writers.frozen >= level)) { 1207 __sb_end_write(sb, level); 1208 goto retry; 1209 } 1210 return 1; 1211 } 1212 EXPORT_SYMBOL(__sb_start_write); 1213 1214 /** 1215 * sb_wait_write - wait until all writers to given file system finish 1216 * @sb: the super for which we wait 1217 * @level: type of writers we wait for (normal vs page fault) 1218 * 1219 * This function waits until there are no writers of given type to given file 1220 * system. Caller of this function should make sure there can be no new writers 1221 * of type @level before calling this function. Otherwise this function can 1222 * livelock. 1223 */ 1224 static void sb_wait_write(struct super_block *sb, int level) 1225 { 1226 s64 writers; 1227 1228 /* 1229 * We just cycle-through lockdep here so that it does not complain 1230 * about returning with lock to userspace 1231 */ 1232 rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_); 1233 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_); 1234 1235 do { 1236 DEFINE_WAIT(wait); 1237 1238 /* 1239 * We use a barrier in prepare_to_wait() to separate setting 1240 * of frozen and checking of the counter 1241 */ 1242 prepare_to_wait(&sb->s_writers.wait, &wait, 1243 TASK_UNINTERRUPTIBLE); 1244 1245 writers = percpu_counter_sum(&sb->s_writers.counter[level-1]); 1246 if (writers) 1247 schedule(); 1248 1249 finish_wait(&sb->s_writers.wait, &wait); 1250 } while (writers); 1251 } 1252 1253 /** 1254 * freeze_super - lock the filesystem and force it into a consistent state 1255 * @sb: the super to lock 1256 * 1257 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1258 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1259 * -EBUSY. 1260 * 1261 * During this function, sb->s_writers.frozen goes through these values: 1262 * 1263 * SB_UNFROZEN: File system is normal, all writes progress as usual. 1264 * 1265 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 1266 * writes should be blocked, though page faults are still allowed. We wait for 1267 * all writes to complete and then proceed to the next stage. 1268 * 1269 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 1270 * but internal fs threads can still modify the filesystem (although they 1271 * should not dirty new pages or inodes), writeback can run etc. After waiting 1272 * for all running page faults we sync the filesystem which will clean all 1273 * dirty pages and inodes (no new dirty pages or inodes can be created when 1274 * sync is running). 1275 * 1276 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 1277 * modification are blocked (e.g. XFS preallocation truncation on inode 1278 * reclaim). This is usually implemented by blocking new transactions for 1279 * filesystems that have them and need this additional guard. After all 1280 * internal writers are finished we call ->freeze_fs() to finish filesystem 1281 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 1282 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 1283 * 1284 * sb->s_writers.frozen is protected by sb->s_umount. 1285 */ 1286 int freeze_super(struct super_block *sb) 1287 { 1288 int ret; 1289 1290 atomic_inc(&sb->s_active); 1291 down_write(&sb->s_umount); 1292 if (sb->s_writers.frozen != SB_UNFROZEN) { 1293 deactivate_locked_super(sb); 1294 return -EBUSY; 1295 } 1296 1297 if (!(sb->s_flags & MS_BORN)) { 1298 up_write(&sb->s_umount); 1299 return 0; /* sic - it's "nothing to do" */ 1300 } 1301 1302 if (sb->s_flags & MS_RDONLY) { 1303 /* Nothing to do really... */ 1304 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1305 up_write(&sb->s_umount); 1306 return 0; 1307 } 1308 1309 /* From now on, no new normal writers can start */ 1310 sb->s_writers.frozen = SB_FREEZE_WRITE; 1311 smp_wmb(); 1312 1313 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 1314 up_write(&sb->s_umount); 1315 1316 sb_wait_write(sb, SB_FREEZE_WRITE); 1317 1318 /* Now we go and block page faults... */ 1319 down_write(&sb->s_umount); 1320 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 1321 smp_wmb(); 1322 1323 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 1324 1325 /* All writers are done so after syncing there won't be dirty data */ 1326 sync_filesystem(sb); 1327 1328 /* Now wait for internal filesystem counter */ 1329 sb->s_writers.frozen = SB_FREEZE_FS; 1330 smp_wmb(); 1331 sb_wait_write(sb, SB_FREEZE_FS); 1332 1333 if (sb->s_op->freeze_fs) { 1334 ret = sb->s_op->freeze_fs(sb); 1335 if (ret) { 1336 printk(KERN_ERR 1337 "VFS:Filesystem freeze failed\n"); 1338 sb->s_writers.frozen = SB_UNFROZEN; 1339 smp_wmb(); 1340 wake_up(&sb->s_writers.wait_unfrozen); 1341 deactivate_locked_super(sb); 1342 return ret; 1343 } 1344 } 1345 /* 1346 * This is just for debugging purposes so that fs can warn if it 1347 * sees write activity when frozen is set to SB_FREEZE_COMPLETE. 1348 */ 1349 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1350 up_write(&sb->s_umount); 1351 return 0; 1352 } 1353 EXPORT_SYMBOL(freeze_super); 1354 1355 /** 1356 * thaw_super -- unlock filesystem 1357 * @sb: the super to thaw 1358 * 1359 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1360 */ 1361 int thaw_super(struct super_block *sb) 1362 { 1363 int error; 1364 1365 down_write(&sb->s_umount); 1366 if (sb->s_writers.frozen == SB_UNFROZEN) { 1367 up_write(&sb->s_umount); 1368 return -EINVAL; 1369 } 1370 1371 if (sb->s_flags & MS_RDONLY) 1372 goto out; 1373 1374 if (sb->s_op->unfreeze_fs) { 1375 error = sb->s_op->unfreeze_fs(sb); 1376 if (error) { 1377 printk(KERN_ERR 1378 "VFS:Filesystem thaw failed\n"); 1379 up_write(&sb->s_umount); 1380 return error; 1381 } 1382 } 1383 1384 out: 1385 sb->s_writers.frozen = SB_UNFROZEN; 1386 smp_wmb(); 1387 wake_up(&sb->s_writers.wait_unfrozen); 1388 deactivate_locked_super(sb); 1389 1390 return 0; 1391 } 1392 EXPORT_SYMBOL(thaw_super); 1393