1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/super.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * super.c contains code to handle: - mount structures 8 * - super-block tables 9 * - filesystem drivers list 10 * - mount system call 11 * - umount system call 12 * - ustat system call 13 * 14 * GK 2/5/95 - Changed to support mounting the root fs via NFS 15 * 16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 18 * Added options to /proc/mounts: 19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 22 */ 23 24 #include <linux/export.h> 25 #include <linux/slab.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/cleancache.h> 35 #include <linux/fsnotify.h> 36 #include <linux/lockdep.h> 37 #include <linux/user_namespace.h> 38 #include "internal.h" 39 40 static int thaw_super_locked(struct super_block *sb); 41 42 static LIST_HEAD(super_blocks); 43 static DEFINE_SPINLOCK(sb_lock); 44 45 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 46 "sb_writers", 47 "sb_pagefaults", 48 "sb_internal", 49 }; 50 51 /* 52 * One thing we have to be careful of with a per-sb shrinker is that we don't 53 * drop the last active reference to the superblock from within the shrinker. 54 * If that happens we could trigger unregistering the shrinker from within the 55 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 56 * take a passive reference to the superblock to avoid this from occurring. 57 */ 58 static unsigned long super_cache_scan(struct shrinker *shrink, 59 struct shrink_control *sc) 60 { 61 struct super_block *sb; 62 long fs_objects = 0; 63 long total_objects; 64 long freed = 0; 65 long dentries; 66 long inodes; 67 68 sb = container_of(shrink, struct super_block, s_shrink); 69 70 /* 71 * Deadlock avoidance. We may hold various FS locks, and we don't want 72 * to recurse into the FS that called us in clear_inode() and friends.. 73 */ 74 if (!(sc->gfp_mask & __GFP_FS)) 75 return SHRINK_STOP; 76 77 if (!trylock_super(sb)) 78 return SHRINK_STOP; 79 80 if (sb->s_op->nr_cached_objects) 81 fs_objects = sb->s_op->nr_cached_objects(sb, sc); 82 83 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc); 84 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc); 85 total_objects = dentries + inodes + fs_objects + 1; 86 if (!total_objects) 87 total_objects = 1; 88 89 /* proportion the scan between the caches */ 90 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 91 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 92 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects); 93 94 /* 95 * prune the dcache first as the icache is pinned by it, then 96 * prune the icache, followed by the filesystem specific caches 97 * 98 * Ensure that we always scan at least one object - memcg kmem 99 * accounting uses this to fully empty the caches. 100 */ 101 sc->nr_to_scan = dentries + 1; 102 freed = prune_dcache_sb(sb, sc); 103 sc->nr_to_scan = inodes + 1; 104 freed += prune_icache_sb(sb, sc); 105 106 if (fs_objects) { 107 sc->nr_to_scan = fs_objects + 1; 108 freed += sb->s_op->free_cached_objects(sb, sc); 109 } 110 111 up_read(&sb->s_umount); 112 return freed; 113 } 114 115 static unsigned long super_cache_count(struct shrinker *shrink, 116 struct shrink_control *sc) 117 { 118 struct super_block *sb; 119 long total_objects = 0; 120 121 sb = container_of(shrink, struct super_block, s_shrink); 122 123 /* 124 * Don't call trylock_super as it is a potential 125 * scalability bottleneck. The counts could get updated 126 * between super_cache_count and super_cache_scan anyway. 127 * Call to super_cache_count with shrinker_rwsem held 128 * ensures the safety of call to list_lru_shrink_count() and 129 * s_op->nr_cached_objects(). 130 */ 131 if (sb->s_op && sb->s_op->nr_cached_objects) 132 total_objects = sb->s_op->nr_cached_objects(sb, sc); 133 134 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc); 135 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc); 136 137 total_objects = vfs_pressure_ratio(total_objects); 138 return total_objects; 139 } 140 141 static void destroy_super_work(struct work_struct *work) 142 { 143 struct super_block *s = container_of(work, struct super_block, 144 destroy_work); 145 int i; 146 147 for (i = 0; i < SB_FREEZE_LEVELS; i++) 148 percpu_free_rwsem(&s->s_writers.rw_sem[i]); 149 kfree(s); 150 } 151 152 static void destroy_super_rcu(struct rcu_head *head) 153 { 154 struct super_block *s = container_of(head, struct super_block, rcu); 155 INIT_WORK(&s->destroy_work, destroy_super_work); 156 schedule_work(&s->destroy_work); 157 } 158 159 /* Free a superblock that has never been seen by anyone */ 160 static void destroy_unused_super(struct super_block *s) 161 { 162 if (!s) 163 return; 164 up_write(&s->s_umount); 165 list_lru_destroy(&s->s_dentry_lru); 166 list_lru_destroy(&s->s_inode_lru); 167 security_sb_free(s); 168 put_user_ns(s->s_user_ns); 169 kfree(s->s_subtype); 170 /* no delays needed */ 171 destroy_super_work(&s->destroy_work); 172 } 173 174 /** 175 * alloc_super - create new superblock 176 * @type: filesystem type superblock should belong to 177 * @flags: the mount flags 178 * @user_ns: User namespace for the super_block 179 * 180 * Allocates and initializes a new &struct super_block. alloc_super() 181 * returns a pointer new superblock or %NULL if allocation had failed. 182 */ 183 static struct super_block *alloc_super(struct file_system_type *type, int flags, 184 struct user_namespace *user_ns) 185 { 186 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 187 static const struct super_operations default_op; 188 int i; 189 190 if (!s) 191 return NULL; 192 193 INIT_LIST_HEAD(&s->s_mounts); 194 s->s_user_ns = get_user_ns(user_ns); 195 init_rwsem(&s->s_umount); 196 lockdep_set_class(&s->s_umount, &type->s_umount_key); 197 /* 198 * sget() can have s_umount recursion. 199 * 200 * When it cannot find a suitable sb, it allocates a new 201 * one (this one), and tries again to find a suitable old 202 * one. 203 * 204 * In case that succeeds, it will acquire the s_umount 205 * lock of the old one. Since these are clearly distrinct 206 * locks, and this object isn't exposed yet, there's no 207 * risk of deadlocks. 208 * 209 * Annotate this by putting this lock in a different 210 * subclass. 211 */ 212 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 213 214 if (security_sb_alloc(s)) 215 goto fail; 216 217 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 218 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i], 219 sb_writers_name[i], 220 &type->s_writers_key[i])) 221 goto fail; 222 } 223 init_waitqueue_head(&s->s_writers.wait_unfrozen); 224 s->s_bdi = &noop_backing_dev_info; 225 s->s_flags = flags; 226 if (s->s_user_ns != &init_user_ns) 227 s->s_iflags |= SB_I_NODEV; 228 INIT_HLIST_NODE(&s->s_instances); 229 INIT_HLIST_BL_HEAD(&s->s_roots); 230 mutex_init(&s->s_sync_lock); 231 INIT_LIST_HEAD(&s->s_inodes); 232 spin_lock_init(&s->s_inode_list_lock); 233 INIT_LIST_HEAD(&s->s_inodes_wb); 234 spin_lock_init(&s->s_inode_wblist_lock); 235 236 if (list_lru_init_memcg(&s->s_dentry_lru)) 237 goto fail; 238 if (list_lru_init_memcg(&s->s_inode_lru)) 239 goto fail; 240 s->s_count = 1; 241 atomic_set(&s->s_active, 1); 242 mutex_init(&s->s_vfs_rename_mutex); 243 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 244 init_rwsem(&s->s_dquot.dqio_sem); 245 s->s_maxbytes = MAX_NON_LFS; 246 s->s_op = &default_op; 247 s->s_time_gran = 1000000000; 248 s->cleancache_poolid = CLEANCACHE_NO_POOL; 249 250 s->s_shrink.seeks = DEFAULT_SEEKS; 251 s->s_shrink.scan_objects = super_cache_scan; 252 s->s_shrink.count_objects = super_cache_count; 253 s->s_shrink.batch = 1024; 254 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE; 255 return s; 256 257 fail: 258 destroy_unused_super(s); 259 return NULL; 260 } 261 262 /* Superblock refcounting */ 263 264 /* 265 * Drop a superblock's refcount. The caller must hold sb_lock. 266 */ 267 static void __put_super(struct super_block *s) 268 { 269 if (!--s->s_count) { 270 list_del_init(&s->s_list); 271 WARN_ON(s->s_dentry_lru.node); 272 WARN_ON(s->s_inode_lru.node); 273 WARN_ON(!list_empty(&s->s_mounts)); 274 security_sb_free(s); 275 put_user_ns(s->s_user_ns); 276 kfree(s->s_subtype); 277 call_rcu(&s->rcu, destroy_super_rcu); 278 } 279 } 280 281 /** 282 * put_super - drop a temporary reference to superblock 283 * @sb: superblock in question 284 * 285 * Drops a temporary reference, frees superblock if there's no 286 * references left. 287 */ 288 static void put_super(struct super_block *sb) 289 { 290 spin_lock(&sb_lock); 291 __put_super(sb); 292 spin_unlock(&sb_lock); 293 } 294 295 296 /** 297 * deactivate_locked_super - drop an active reference to superblock 298 * @s: superblock to deactivate 299 * 300 * Drops an active reference to superblock, converting it into a temporary 301 * one if there is no other active references left. In that case we 302 * tell fs driver to shut it down and drop the temporary reference we 303 * had just acquired. 304 * 305 * Caller holds exclusive lock on superblock; that lock is released. 306 */ 307 void deactivate_locked_super(struct super_block *s) 308 { 309 struct file_system_type *fs = s->s_type; 310 if (atomic_dec_and_test(&s->s_active)) { 311 cleancache_invalidate_fs(s); 312 unregister_shrinker(&s->s_shrink); 313 fs->kill_sb(s); 314 315 /* 316 * Since list_lru_destroy() may sleep, we cannot call it from 317 * put_super(), where we hold the sb_lock. Therefore we destroy 318 * the lru lists right now. 319 */ 320 list_lru_destroy(&s->s_dentry_lru); 321 list_lru_destroy(&s->s_inode_lru); 322 323 put_filesystem(fs); 324 put_super(s); 325 } else { 326 up_write(&s->s_umount); 327 } 328 } 329 330 EXPORT_SYMBOL(deactivate_locked_super); 331 332 /** 333 * deactivate_super - drop an active reference to superblock 334 * @s: superblock to deactivate 335 * 336 * Variant of deactivate_locked_super(), except that superblock is *not* 337 * locked by caller. If we are going to drop the final active reference, 338 * lock will be acquired prior to that. 339 */ 340 void deactivate_super(struct super_block *s) 341 { 342 if (!atomic_add_unless(&s->s_active, -1, 1)) { 343 down_write(&s->s_umount); 344 deactivate_locked_super(s); 345 } 346 } 347 348 EXPORT_SYMBOL(deactivate_super); 349 350 /** 351 * grab_super - acquire an active reference 352 * @s: reference we are trying to make active 353 * 354 * Tries to acquire an active reference. grab_super() is used when we 355 * had just found a superblock in super_blocks or fs_type->fs_supers 356 * and want to turn it into a full-blown active reference. grab_super() 357 * is called with sb_lock held and drops it. Returns 1 in case of 358 * success, 0 if we had failed (superblock contents was already dead or 359 * dying when grab_super() had been called). Note that this is only 360 * called for superblocks not in rundown mode (== ones still on ->fs_supers 361 * of their type), so increment of ->s_count is OK here. 362 */ 363 static int grab_super(struct super_block *s) __releases(sb_lock) 364 { 365 s->s_count++; 366 spin_unlock(&sb_lock); 367 down_write(&s->s_umount); 368 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) { 369 put_super(s); 370 return 1; 371 } 372 up_write(&s->s_umount); 373 put_super(s); 374 return 0; 375 } 376 377 /* 378 * trylock_super - try to grab ->s_umount shared 379 * @sb: reference we are trying to grab 380 * 381 * Try to prevent fs shutdown. This is used in places where we 382 * cannot take an active reference but we need to ensure that the 383 * filesystem is not shut down while we are working on it. It returns 384 * false if we cannot acquire s_umount or if we lose the race and 385 * filesystem already got into shutdown, and returns true with the s_umount 386 * lock held in read mode in case of success. On successful return, 387 * the caller must drop the s_umount lock when done. 388 * 389 * Note that unlike get_super() et.al. this one does *not* bump ->s_count. 390 * The reason why it's safe is that we are OK with doing trylock instead 391 * of down_read(). There's a couple of places that are OK with that, but 392 * it's very much not a general-purpose interface. 393 */ 394 bool trylock_super(struct super_block *sb) 395 { 396 if (down_read_trylock(&sb->s_umount)) { 397 if (!hlist_unhashed(&sb->s_instances) && 398 sb->s_root && (sb->s_flags & SB_BORN)) 399 return true; 400 up_read(&sb->s_umount); 401 } 402 403 return false; 404 } 405 406 /** 407 * generic_shutdown_super - common helper for ->kill_sb() 408 * @sb: superblock to kill 409 * 410 * generic_shutdown_super() does all fs-independent work on superblock 411 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 412 * that need destruction out of superblock, call generic_shutdown_super() 413 * and release aforementioned objects. Note: dentries and inodes _are_ 414 * taken care of and do not need specific handling. 415 * 416 * Upon calling this function, the filesystem may no longer alter or 417 * rearrange the set of dentries belonging to this super_block, nor may it 418 * change the attachments of dentries to inodes. 419 */ 420 void generic_shutdown_super(struct super_block *sb) 421 { 422 const struct super_operations *sop = sb->s_op; 423 424 if (sb->s_root) { 425 shrink_dcache_for_umount(sb); 426 sync_filesystem(sb); 427 sb->s_flags &= ~SB_ACTIVE; 428 429 fsnotify_unmount_inodes(sb); 430 cgroup_writeback_umount(); 431 432 evict_inodes(sb); 433 434 if (sb->s_dio_done_wq) { 435 destroy_workqueue(sb->s_dio_done_wq); 436 sb->s_dio_done_wq = NULL; 437 } 438 439 if (sop->put_super) 440 sop->put_super(sb); 441 442 if (!list_empty(&sb->s_inodes)) { 443 printk("VFS: Busy inodes after unmount of %s. " 444 "Self-destruct in 5 seconds. Have a nice day...\n", 445 sb->s_id); 446 } 447 } 448 spin_lock(&sb_lock); 449 /* should be initialized for __put_super_and_need_restart() */ 450 hlist_del_init(&sb->s_instances); 451 spin_unlock(&sb_lock); 452 up_write(&sb->s_umount); 453 if (sb->s_bdi != &noop_backing_dev_info) { 454 bdi_put(sb->s_bdi); 455 sb->s_bdi = &noop_backing_dev_info; 456 } 457 } 458 459 EXPORT_SYMBOL(generic_shutdown_super); 460 461 /** 462 * sget_userns - find or create a superblock 463 * @type: filesystem type superblock should belong to 464 * @test: comparison callback 465 * @set: setup callback 466 * @flags: mount flags 467 * @user_ns: User namespace for the super_block 468 * @data: argument to each of them 469 */ 470 struct super_block *sget_userns(struct file_system_type *type, 471 int (*test)(struct super_block *,void *), 472 int (*set)(struct super_block *,void *), 473 int flags, struct user_namespace *user_ns, 474 void *data) 475 { 476 struct super_block *s = NULL; 477 struct super_block *old; 478 int err; 479 480 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && 481 !(type->fs_flags & FS_USERNS_MOUNT) && 482 !capable(CAP_SYS_ADMIN)) 483 return ERR_PTR(-EPERM); 484 retry: 485 spin_lock(&sb_lock); 486 if (test) { 487 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 488 if (!test(old, data)) 489 continue; 490 if (user_ns != old->s_user_ns) { 491 spin_unlock(&sb_lock); 492 destroy_unused_super(s); 493 return ERR_PTR(-EBUSY); 494 } 495 if (!grab_super(old)) 496 goto retry; 497 destroy_unused_super(s); 498 return old; 499 } 500 } 501 if (!s) { 502 spin_unlock(&sb_lock); 503 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns); 504 if (!s) 505 return ERR_PTR(-ENOMEM); 506 goto retry; 507 } 508 509 err = set(s, data); 510 if (err) { 511 spin_unlock(&sb_lock); 512 destroy_unused_super(s); 513 return ERR_PTR(err); 514 } 515 s->s_type = type; 516 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 517 list_add_tail(&s->s_list, &super_blocks); 518 hlist_add_head(&s->s_instances, &type->fs_supers); 519 spin_unlock(&sb_lock); 520 get_filesystem(type); 521 err = register_shrinker(&s->s_shrink); 522 if (err) { 523 deactivate_locked_super(s); 524 s = ERR_PTR(err); 525 } 526 return s; 527 } 528 529 EXPORT_SYMBOL(sget_userns); 530 531 /** 532 * sget - find or create a superblock 533 * @type: filesystem type superblock should belong to 534 * @test: comparison callback 535 * @set: setup callback 536 * @flags: mount flags 537 * @data: argument to each of them 538 */ 539 struct super_block *sget(struct file_system_type *type, 540 int (*test)(struct super_block *,void *), 541 int (*set)(struct super_block *,void *), 542 int flags, 543 void *data) 544 { 545 struct user_namespace *user_ns = current_user_ns(); 546 547 /* We don't yet pass the user namespace of the parent 548 * mount through to here so always use &init_user_ns 549 * until that changes. 550 */ 551 if (flags & SB_SUBMOUNT) 552 user_ns = &init_user_ns; 553 554 /* Ensure the requestor has permissions over the target filesystem */ 555 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN)) 556 return ERR_PTR(-EPERM); 557 558 return sget_userns(type, test, set, flags, user_ns, data); 559 } 560 561 EXPORT_SYMBOL(sget); 562 563 void drop_super(struct super_block *sb) 564 { 565 up_read(&sb->s_umount); 566 put_super(sb); 567 } 568 569 EXPORT_SYMBOL(drop_super); 570 571 void drop_super_exclusive(struct super_block *sb) 572 { 573 up_write(&sb->s_umount); 574 put_super(sb); 575 } 576 EXPORT_SYMBOL(drop_super_exclusive); 577 578 static void __iterate_supers(void (*f)(struct super_block *)) 579 { 580 struct super_block *sb, *p = NULL; 581 582 spin_lock(&sb_lock); 583 list_for_each_entry(sb, &super_blocks, s_list) { 584 if (hlist_unhashed(&sb->s_instances)) 585 continue; 586 sb->s_count++; 587 spin_unlock(&sb_lock); 588 589 f(sb); 590 591 spin_lock(&sb_lock); 592 if (p) 593 __put_super(p); 594 p = sb; 595 } 596 if (p) 597 __put_super(p); 598 spin_unlock(&sb_lock); 599 } 600 /** 601 * iterate_supers - call function for all active superblocks 602 * @f: function to call 603 * @arg: argument to pass to it 604 * 605 * Scans the superblock list and calls given function, passing it 606 * locked superblock and given argument. 607 */ 608 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 609 { 610 struct super_block *sb, *p = NULL; 611 612 spin_lock(&sb_lock); 613 list_for_each_entry(sb, &super_blocks, s_list) { 614 if (hlist_unhashed(&sb->s_instances)) 615 continue; 616 sb->s_count++; 617 spin_unlock(&sb_lock); 618 619 down_read(&sb->s_umount); 620 if (sb->s_root && (sb->s_flags & SB_BORN)) 621 f(sb, arg); 622 up_read(&sb->s_umount); 623 624 spin_lock(&sb_lock); 625 if (p) 626 __put_super(p); 627 p = sb; 628 } 629 if (p) 630 __put_super(p); 631 spin_unlock(&sb_lock); 632 } 633 634 /** 635 * iterate_supers_type - call function for superblocks of given type 636 * @type: fs type 637 * @f: function to call 638 * @arg: argument to pass to it 639 * 640 * Scans the superblock list and calls given function, passing it 641 * locked superblock and given argument. 642 */ 643 void iterate_supers_type(struct file_system_type *type, 644 void (*f)(struct super_block *, void *), void *arg) 645 { 646 struct super_block *sb, *p = NULL; 647 648 spin_lock(&sb_lock); 649 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 650 sb->s_count++; 651 spin_unlock(&sb_lock); 652 653 down_read(&sb->s_umount); 654 if (sb->s_root && (sb->s_flags & SB_BORN)) 655 f(sb, arg); 656 up_read(&sb->s_umount); 657 658 spin_lock(&sb_lock); 659 if (p) 660 __put_super(p); 661 p = sb; 662 } 663 if (p) 664 __put_super(p); 665 spin_unlock(&sb_lock); 666 } 667 668 EXPORT_SYMBOL(iterate_supers_type); 669 670 static struct super_block *__get_super(struct block_device *bdev, bool excl) 671 { 672 struct super_block *sb; 673 674 if (!bdev) 675 return NULL; 676 677 spin_lock(&sb_lock); 678 rescan: 679 list_for_each_entry(sb, &super_blocks, s_list) { 680 if (hlist_unhashed(&sb->s_instances)) 681 continue; 682 if (sb->s_bdev == bdev) { 683 sb->s_count++; 684 spin_unlock(&sb_lock); 685 if (!excl) 686 down_read(&sb->s_umount); 687 else 688 down_write(&sb->s_umount); 689 /* still alive? */ 690 if (sb->s_root && (sb->s_flags & SB_BORN)) 691 return sb; 692 if (!excl) 693 up_read(&sb->s_umount); 694 else 695 up_write(&sb->s_umount); 696 /* nope, got unmounted */ 697 spin_lock(&sb_lock); 698 __put_super(sb); 699 goto rescan; 700 } 701 } 702 spin_unlock(&sb_lock); 703 return NULL; 704 } 705 706 /** 707 * get_super - get the superblock of a device 708 * @bdev: device to get the superblock for 709 * 710 * Scans the superblock list and finds the superblock of the file system 711 * mounted on the device given. %NULL is returned if no match is found. 712 */ 713 struct super_block *get_super(struct block_device *bdev) 714 { 715 return __get_super(bdev, false); 716 } 717 EXPORT_SYMBOL(get_super); 718 719 static struct super_block *__get_super_thawed(struct block_device *bdev, 720 bool excl) 721 { 722 while (1) { 723 struct super_block *s = __get_super(bdev, excl); 724 if (!s || s->s_writers.frozen == SB_UNFROZEN) 725 return s; 726 if (!excl) 727 up_read(&s->s_umount); 728 else 729 up_write(&s->s_umount); 730 wait_event(s->s_writers.wait_unfrozen, 731 s->s_writers.frozen == SB_UNFROZEN); 732 put_super(s); 733 } 734 } 735 736 /** 737 * get_super_thawed - get thawed superblock of a device 738 * @bdev: device to get the superblock for 739 * 740 * Scans the superblock list and finds the superblock of the file system 741 * mounted on the device. The superblock is returned once it is thawed 742 * (or immediately if it was not frozen). %NULL is returned if no match 743 * is found. 744 */ 745 struct super_block *get_super_thawed(struct block_device *bdev) 746 { 747 return __get_super_thawed(bdev, false); 748 } 749 EXPORT_SYMBOL(get_super_thawed); 750 751 /** 752 * get_super_exclusive_thawed - get thawed superblock of a device 753 * @bdev: device to get the superblock for 754 * 755 * Scans the superblock list and finds the superblock of the file system 756 * mounted on the device. The superblock is returned once it is thawed 757 * (or immediately if it was not frozen) and s_umount semaphore is held 758 * in exclusive mode. %NULL is returned if no match is found. 759 */ 760 struct super_block *get_super_exclusive_thawed(struct block_device *bdev) 761 { 762 return __get_super_thawed(bdev, true); 763 } 764 EXPORT_SYMBOL(get_super_exclusive_thawed); 765 766 /** 767 * get_active_super - get an active reference to the superblock of a device 768 * @bdev: device to get the superblock for 769 * 770 * Scans the superblock list and finds the superblock of the file system 771 * mounted on the device given. Returns the superblock with an active 772 * reference or %NULL if none was found. 773 */ 774 struct super_block *get_active_super(struct block_device *bdev) 775 { 776 struct super_block *sb; 777 778 if (!bdev) 779 return NULL; 780 781 restart: 782 spin_lock(&sb_lock); 783 list_for_each_entry(sb, &super_blocks, s_list) { 784 if (hlist_unhashed(&sb->s_instances)) 785 continue; 786 if (sb->s_bdev == bdev) { 787 if (!grab_super(sb)) 788 goto restart; 789 up_write(&sb->s_umount); 790 return sb; 791 } 792 } 793 spin_unlock(&sb_lock); 794 return NULL; 795 } 796 797 struct super_block *user_get_super(dev_t dev) 798 { 799 struct super_block *sb; 800 801 spin_lock(&sb_lock); 802 rescan: 803 list_for_each_entry(sb, &super_blocks, s_list) { 804 if (hlist_unhashed(&sb->s_instances)) 805 continue; 806 if (sb->s_dev == dev) { 807 sb->s_count++; 808 spin_unlock(&sb_lock); 809 down_read(&sb->s_umount); 810 /* still alive? */ 811 if (sb->s_root && (sb->s_flags & SB_BORN)) 812 return sb; 813 up_read(&sb->s_umount); 814 /* nope, got unmounted */ 815 spin_lock(&sb_lock); 816 __put_super(sb); 817 goto rescan; 818 } 819 } 820 spin_unlock(&sb_lock); 821 return NULL; 822 } 823 824 /** 825 * do_remount_sb - asks filesystem to change mount options. 826 * @sb: superblock in question 827 * @sb_flags: revised superblock flags 828 * @data: the rest of options 829 * @force: whether or not to force the change 830 * 831 * Alters the mount options of a mounted file system. 832 */ 833 int do_remount_sb(struct super_block *sb, int sb_flags, void *data, int force) 834 { 835 int retval; 836 int remount_ro; 837 838 if (sb->s_writers.frozen != SB_UNFROZEN) 839 return -EBUSY; 840 841 #ifdef CONFIG_BLOCK 842 if (!(sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev)) 843 return -EACCES; 844 #endif 845 846 remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb); 847 848 if (remount_ro) { 849 if (!hlist_empty(&sb->s_pins)) { 850 up_write(&sb->s_umount); 851 group_pin_kill(&sb->s_pins); 852 down_write(&sb->s_umount); 853 if (!sb->s_root) 854 return 0; 855 if (sb->s_writers.frozen != SB_UNFROZEN) 856 return -EBUSY; 857 remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb); 858 } 859 } 860 shrink_dcache_sb(sb); 861 862 /* If we are remounting RDONLY and current sb is read/write, 863 make sure there are no rw files opened */ 864 if (remount_ro) { 865 if (force) { 866 sb->s_readonly_remount = 1; 867 smp_wmb(); 868 } else { 869 retval = sb_prepare_remount_readonly(sb); 870 if (retval) 871 return retval; 872 } 873 } 874 875 if (sb->s_op->remount_fs) { 876 retval = sb->s_op->remount_fs(sb, &sb_flags, data); 877 if (retval) { 878 if (!force) 879 goto cancel_readonly; 880 /* If forced remount, go ahead despite any errors */ 881 WARN(1, "forced remount of a %s fs returned %i\n", 882 sb->s_type->name, retval); 883 } 884 } 885 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (sb_flags & MS_RMT_MASK); 886 /* Needs to be ordered wrt mnt_is_readonly() */ 887 smp_wmb(); 888 sb->s_readonly_remount = 0; 889 890 /* 891 * Some filesystems modify their metadata via some other path than the 892 * bdev buffer cache (eg. use a private mapping, or directories in 893 * pagecache, etc). Also file data modifications go via their own 894 * mappings. So If we try to mount readonly then copy the filesystem 895 * from bdev, we could get stale data, so invalidate it to give a best 896 * effort at coherency. 897 */ 898 if (remount_ro && sb->s_bdev) 899 invalidate_bdev(sb->s_bdev); 900 return 0; 901 902 cancel_readonly: 903 sb->s_readonly_remount = 0; 904 return retval; 905 } 906 907 static void do_emergency_remount_callback(struct super_block *sb) 908 { 909 down_write(&sb->s_umount); 910 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) && 911 !sb_rdonly(sb)) { 912 /* 913 * What lock protects sb->s_flags?? 914 */ 915 do_remount_sb(sb, SB_RDONLY, NULL, 1); 916 } 917 up_write(&sb->s_umount); 918 } 919 920 static void do_emergency_remount(struct work_struct *work) 921 { 922 __iterate_supers(do_emergency_remount_callback); 923 kfree(work); 924 printk("Emergency Remount complete\n"); 925 } 926 927 void emergency_remount(void) 928 { 929 struct work_struct *work; 930 931 work = kmalloc(sizeof(*work), GFP_ATOMIC); 932 if (work) { 933 INIT_WORK(work, do_emergency_remount); 934 schedule_work(work); 935 } 936 } 937 938 static void do_thaw_all_callback(struct super_block *sb) 939 { 940 down_write(&sb->s_umount); 941 if (sb->s_root && sb->s_flags & MS_BORN) { 942 emergency_thaw_bdev(sb); 943 thaw_super_locked(sb); 944 } else { 945 up_write(&sb->s_umount); 946 } 947 } 948 949 static void do_thaw_all(struct work_struct *work) 950 { 951 __iterate_supers(do_thaw_all_callback); 952 kfree(work); 953 printk(KERN_WARNING "Emergency Thaw complete\n"); 954 } 955 956 /** 957 * emergency_thaw_all -- forcibly thaw every frozen filesystem 958 * 959 * Used for emergency unfreeze of all filesystems via SysRq 960 */ 961 void emergency_thaw_all(void) 962 { 963 struct work_struct *work; 964 965 work = kmalloc(sizeof(*work), GFP_ATOMIC); 966 if (work) { 967 INIT_WORK(work, do_thaw_all); 968 schedule_work(work); 969 } 970 } 971 972 /* 973 * Unnamed block devices are dummy devices used by virtual 974 * filesystems which don't use real block-devices. -- jrs 975 */ 976 977 static DEFINE_IDA(unnamed_dev_ida); 978 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */ 979 /* Many userspace utilities consider an FSID of 0 invalid. 980 * Always return at least 1 from get_anon_bdev. 981 */ 982 static int unnamed_dev_start = 1; 983 984 int get_anon_bdev(dev_t *p) 985 { 986 int dev; 987 int error; 988 989 retry: 990 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0) 991 return -ENOMEM; 992 spin_lock(&unnamed_dev_lock); 993 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev); 994 if (!error) 995 unnamed_dev_start = dev + 1; 996 spin_unlock(&unnamed_dev_lock); 997 if (error == -EAGAIN) 998 /* We raced and lost with another CPU. */ 999 goto retry; 1000 else if (error) 1001 return -EAGAIN; 1002 1003 if (dev >= (1 << MINORBITS)) { 1004 spin_lock(&unnamed_dev_lock); 1005 ida_remove(&unnamed_dev_ida, dev); 1006 if (unnamed_dev_start > dev) 1007 unnamed_dev_start = dev; 1008 spin_unlock(&unnamed_dev_lock); 1009 return -EMFILE; 1010 } 1011 *p = MKDEV(0, dev & MINORMASK); 1012 return 0; 1013 } 1014 EXPORT_SYMBOL(get_anon_bdev); 1015 1016 void free_anon_bdev(dev_t dev) 1017 { 1018 int slot = MINOR(dev); 1019 spin_lock(&unnamed_dev_lock); 1020 ida_remove(&unnamed_dev_ida, slot); 1021 if (slot < unnamed_dev_start) 1022 unnamed_dev_start = slot; 1023 spin_unlock(&unnamed_dev_lock); 1024 } 1025 EXPORT_SYMBOL(free_anon_bdev); 1026 1027 int set_anon_super(struct super_block *s, void *data) 1028 { 1029 return get_anon_bdev(&s->s_dev); 1030 } 1031 1032 EXPORT_SYMBOL(set_anon_super); 1033 1034 void kill_anon_super(struct super_block *sb) 1035 { 1036 dev_t dev = sb->s_dev; 1037 generic_shutdown_super(sb); 1038 free_anon_bdev(dev); 1039 } 1040 1041 EXPORT_SYMBOL(kill_anon_super); 1042 1043 void kill_litter_super(struct super_block *sb) 1044 { 1045 if (sb->s_root) 1046 d_genocide(sb->s_root); 1047 kill_anon_super(sb); 1048 } 1049 1050 EXPORT_SYMBOL(kill_litter_super); 1051 1052 static int ns_test_super(struct super_block *sb, void *data) 1053 { 1054 return sb->s_fs_info == data; 1055 } 1056 1057 static int ns_set_super(struct super_block *sb, void *data) 1058 { 1059 sb->s_fs_info = data; 1060 return set_anon_super(sb, NULL); 1061 } 1062 1063 struct dentry *mount_ns(struct file_system_type *fs_type, 1064 int flags, void *data, void *ns, struct user_namespace *user_ns, 1065 int (*fill_super)(struct super_block *, void *, int)) 1066 { 1067 struct super_block *sb; 1068 1069 /* Don't allow mounting unless the caller has CAP_SYS_ADMIN 1070 * over the namespace. 1071 */ 1072 if (!(flags & SB_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN)) 1073 return ERR_PTR(-EPERM); 1074 1075 sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags, 1076 user_ns, ns); 1077 if (IS_ERR(sb)) 1078 return ERR_CAST(sb); 1079 1080 if (!sb->s_root) { 1081 int err; 1082 err = fill_super(sb, data, flags & SB_SILENT ? 1 : 0); 1083 if (err) { 1084 deactivate_locked_super(sb); 1085 return ERR_PTR(err); 1086 } 1087 1088 sb->s_flags |= SB_ACTIVE; 1089 } 1090 1091 return dget(sb->s_root); 1092 } 1093 1094 EXPORT_SYMBOL(mount_ns); 1095 1096 #ifdef CONFIG_BLOCK 1097 static int set_bdev_super(struct super_block *s, void *data) 1098 { 1099 s->s_bdev = data; 1100 s->s_dev = s->s_bdev->bd_dev; 1101 s->s_bdi = bdi_get(s->s_bdev->bd_bdi); 1102 1103 return 0; 1104 } 1105 1106 static int test_bdev_super(struct super_block *s, void *data) 1107 { 1108 return (void *)s->s_bdev == data; 1109 } 1110 1111 struct dentry *mount_bdev(struct file_system_type *fs_type, 1112 int flags, const char *dev_name, void *data, 1113 int (*fill_super)(struct super_block *, void *, int)) 1114 { 1115 struct block_device *bdev; 1116 struct super_block *s; 1117 fmode_t mode = FMODE_READ | FMODE_EXCL; 1118 int error = 0; 1119 1120 if (!(flags & SB_RDONLY)) 1121 mode |= FMODE_WRITE; 1122 1123 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 1124 if (IS_ERR(bdev)) 1125 return ERR_CAST(bdev); 1126 1127 /* 1128 * once the super is inserted into the list by sget, s_umount 1129 * will protect the lockfs code from trying to start a snapshot 1130 * while we are mounting 1131 */ 1132 mutex_lock(&bdev->bd_fsfreeze_mutex); 1133 if (bdev->bd_fsfreeze_count > 0) { 1134 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1135 error = -EBUSY; 1136 goto error_bdev; 1137 } 1138 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC, 1139 bdev); 1140 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1141 if (IS_ERR(s)) 1142 goto error_s; 1143 1144 if (s->s_root) { 1145 if ((flags ^ s->s_flags) & SB_RDONLY) { 1146 deactivate_locked_super(s); 1147 error = -EBUSY; 1148 goto error_bdev; 1149 } 1150 1151 /* 1152 * s_umount nests inside bd_mutex during 1153 * __invalidate_device(). blkdev_put() acquires 1154 * bd_mutex and can't be called under s_umount. Drop 1155 * s_umount temporarily. This is safe as we're 1156 * holding an active reference. 1157 */ 1158 up_write(&s->s_umount); 1159 blkdev_put(bdev, mode); 1160 down_write(&s->s_umount); 1161 } else { 1162 s->s_mode = mode; 1163 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1164 sb_set_blocksize(s, block_size(bdev)); 1165 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1166 if (error) { 1167 deactivate_locked_super(s); 1168 goto error; 1169 } 1170 1171 s->s_flags |= SB_ACTIVE; 1172 bdev->bd_super = s; 1173 } 1174 1175 return dget(s->s_root); 1176 1177 error_s: 1178 error = PTR_ERR(s); 1179 error_bdev: 1180 blkdev_put(bdev, mode); 1181 error: 1182 return ERR_PTR(error); 1183 } 1184 EXPORT_SYMBOL(mount_bdev); 1185 1186 void kill_block_super(struct super_block *sb) 1187 { 1188 struct block_device *bdev = sb->s_bdev; 1189 fmode_t mode = sb->s_mode; 1190 1191 bdev->bd_super = NULL; 1192 generic_shutdown_super(sb); 1193 sync_blockdev(bdev); 1194 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 1195 blkdev_put(bdev, mode | FMODE_EXCL); 1196 } 1197 1198 EXPORT_SYMBOL(kill_block_super); 1199 #endif 1200 1201 struct dentry *mount_nodev(struct file_system_type *fs_type, 1202 int flags, void *data, 1203 int (*fill_super)(struct super_block *, void *, int)) 1204 { 1205 int error; 1206 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1207 1208 if (IS_ERR(s)) 1209 return ERR_CAST(s); 1210 1211 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1212 if (error) { 1213 deactivate_locked_super(s); 1214 return ERR_PTR(error); 1215 } 1216 s->s_flags |= SB_ACTIVE; 1217 return dget(s->s_root); 1218 } 1219 EXPORT_SYMBOL(mount_nodev); 1220 1221 static int compare_single(struct super_block *s, void *p) 1222 { 1223 return 1; 1224 } 1225 1226 struct dentry *mount_single(struct file_system_type *fs_type, 1227 int flags, void *data, 1228 int (*fill_super)(struct super_block *, void *, int)) 1229 { 1230 struct super_block *s; 1231 int error; 1232 1233 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1234 if (IS_ERR(s)) 1235 return ERR_CAST(s); 1236 if (!s->s_root) { 1237 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1238 if (error) { 1239 deactivate_locked_super(s); 1240 return ERR_PTR(error); 1241 } 1242 s->s_flags |= SB_ACTIVE; 1243 } else { 1244 do_remount_sb(s, flags, data, 0); 1245 } 1246 return dget(s->s_root); 1247 } 1248 EXPORT_SYMBOL(mount_single); 1249 1250 struct dentry * 1251 mount_fs(struct file_system_type *type, int flags, const char *name, void *data) 1252 { 1253 struct dentry *root; 1254 struct super_block *sb; 1255 char *secdata = NULL; 1256 int error = -ENOMEM; 1257 1258 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) { 1259 secdata = alloc_secdata(); 1260 if (!secdata) 1261 goto out; 1262 1263 error = security_sb_copy_data(data, secdata); 1264 if (error) 1265 goto out_free_secdata; 1266 } 1267 1268 root = type->mount(type, flags, name, data); 1269 if (IS_ERR(root)) { 1270 error = PTR_ERR(root); 1271 goto out_free_secdata; 1272 } 1273 sb = root->d_sb; 1274 BUG_ON(!sb); 1275 WARN_ON(!sb->s_bdi); 1276 sb->s_flags |= SB_BORN; 1277 1278 error = security_sb_kern_mount(sb, flags, secdata); 1279 if (error) 1280 goto out_sb; 1281 1282 /* 1283 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1284 * but s_maxbytes was an unsigned long long for many releases. Throw 1285 * this warning for a little while to try and catch filesystems that 1286 * violate this rule. 1287 */ 1288 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1289 "negative value (%lld)\n", type->name, sb->s_maxbytes); 1290 1291 up_write(&sb->s_umount); 1292 free_secdata(secdata); 1293 return root; 1294 out_sb: 1295 dput(root); 1296 deactivate_locked_super(sb); 1297 out_free_secdata: 1298 free_secdata(secdata); 1299 out: 1300 return ERR_PTR(error); 1301 } 1302 1303 /* 1304 * Setup private BDI for given superblock. It gets automatically cleaned up 1305 * in generic_shutdown_super(). 1306 */ 1307 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...) 1308 { 1309 struct backing_dev_info *bdi; 1310 int err; 1311 va_list args; 1312 1313 bdi = bdi_alloc(GFP_KERNEL); 1314 if (!bdi) 1315 return -ENOMEM; 1316 1317 bdi->name = sb->s_type->name; 1318 1319 va_start(args, fmt); 1320 err = bdi_register_va(bdi, fmt, args); 1321 va_end(args); 1322 if (err) { 1323 bdi_put(bdi); 1324 return err; 1325 } 1326 WARN_ON(sb->s_bdi != &noop_backing_dev_info); 1327 sb->s_bdi = bdi; 1328 1329 return 0; 1330 } 1331 EXPORT_SYMBOL(super_setup_bdi_name); 1332 1333 /* 1334 * Setup private BDI for given superblock. I gets automatically cleaned up 1335 * in generic_shutdown_super(). 1336 */ 1337 int super_setup_bdi(struct super_block *sb) 1338 { 1339 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0); 1340 1341 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name, 1342 atomic_long_inc_return(&bdi_seq)); 1343 } 1344 EXPORT_SYMBOL(super_setup_bdi); 1345 1346 /* 1347 * This is an internal function, please use sb_end_{write,pagefault,intwrite} 1348 * instead. 1349 */ 1350 void __sb_end_write(struct super_block *sb, int level) 1351 { 1352 percpu_up_read(sb->s_writers.rw_sem + level-1); 1353 } 1354 EXPORT_SYMBOL(__sb_end_write); 1355 1356 /* 1357 * This is an internal function, please use sb_start_{write,pagefault,intwrite} 1358 * instead. 1359 */ 1360 int __sb_start_write(struct super_block *sb, int level, bool wait) 1361 { 1362 bool force_trylock = false; 1363 int ret = 1; 1364 1365 #ifdef CONFIG_LOCKDEP 1366 /* 1367 * We want lockdep to tell us about possible deadlocks with freezing 1368 * but it's it bit tricky to properly instrument it. Getting a freeze 1369 * protection works as getting a read lock but there are subtle 1370 * problems. XFS for example gets freeze protection on internal level 1371 * twice in some cases, which is OK only because we already hold a 1372 * freeze protection also on higher level. Due to these cases we have 1373 * to use wait == F (trylock mode) which must not fail. 1374 */ 1375 if (wait) { 1376 int i; 1377 1378 for (i = 0; i < level - 1; i++) 1379 if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) { 1380 force_trylock = true; 1381 break; 1382 } 1383 } 1384 #endif 1385 if (wait && !force_trylock) 1386 percpu_down_read(sb->s_writers.rw_sem + level-1); 1387 else 1388 ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1); 1389 1390 WARN_ON(force_trylock && !ret); 1391 return ret; 1392 } 1393 EXPORT_SYMBOL(__sb_start_write); 1394 1395 /** 1396 * sb_wait_write - wait until all writers to given file system finish 1397 * @sb: the super for which we wait 1398 * @level: type of writers we wait for (normal vs page fault) 1399 * 1400 * This function waits until there are no writers of given type to given file 1401 * system. 1402 */ 1403 static void sb_wait_write(struct super_block *sb, int level) 1404 { 1405 percpu_down_write(sb->s_writers.rw_sem + level-1); 1406 } 1407 1408 /* 1409 * We are going to return to userspace and forget about these locks, the 1410 * ownership goes to the caller of thaw_super() which does unlock(). 1411 */ 1412 static void lockdep_sb_freeze_release(struct super_block *sb) 1413 { 1414 int level; 1415 1416 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1417 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1418 } 1419 1420 /* 1421 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb). 1422 */ 1423 static void lockdep_sb_freeze_acquire(struct super_block *sb) 1424 { 1425 int level; 1426 1427 for (level = 0; level < SB_FREEZE_LEVELS; ++level) 1428 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1429 } 1430 1431 static void sb_freeze_unlock(struct super_block *sb) 1432 { 1433 int level; 1434 1435 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1436 percpu_up_write(sb->s_writers.rw_sem + level); 1437 } 1438 1439 /** 1440 * freeze_super - lock the filesystem and force it into a consistent state 1441 * @sb: the super to lock 1442 * 1443 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1444 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1445 * -EBUSY. 1446 * 1447 * During this function, sb->s_writers.frozen goes through these values: 1448 * 1449 * SB_UNFROZEN: File system is normal, all writes progress as usual. 1450 * 1451 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 1452 * writes should be blocked, though page faults are still allowed. We wait for 1453 * all writes to complete and then proceed to the next stage. 1454 * 1455 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 1456 * but internal fs threads can still modify the filesystem (although they 1457 * should not dirty new pages or inodes), writeback can run etc. After waiting 1458 * for all running page faults we sync the filesystem which will clean all 1459 * dirty pages and inodes (no new dirty pages or inodes can be created when 1460 * sync is running). 1461 * 1462 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 1463 * modification are blocked (e.g. XFS preallocation truncation on inode 1464 * reclaim). This is usually implemented by blocking new transactions for 1465 * filesystems that have them and need this additional guard. After all 1466 * internal writers are finished we call ->freeze_fs() to finish filesystem 1467 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 1468 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 1469 * 1470 * sb->s_writers.frozen is protected by sb->s_umount. 1471 */ 1472 int freeze_super(struct super_block *sb) 1473 { 1474 int ret; 1475 1476 atomic_inc(&sb->s_active); 1477 down_write(&sb->s_umount); 1478 if (sb->s_writers.frozen != SB_UNFROZEN) { 1479 deactivate_locked_super(sb); 1480 return -EBUSY; 1481 } 1482 1483 if (!(sb->s_flags & SB_BORN)) { 1484 up_write(&sb->s_umount); 1485 return 0; /* sic - it's "nothing to do" */ 1486 } 1487 1488 if (sb_rdonly(sb)) { 1489 /* Nothing to do really... */ 1490 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1491 up_write(&sb->s_umount); 1492 return 0; 1493 } 1494 1495 sb->s_writers.frozen = SB_FREEZE_WRITE; 1496 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 1497 up_write(&sb->s_umount); 1498 sb_wait_write(sb, SB_FREEZE_WRITE); 1499 down_write(&sb->s_umount); 1500 1501 /* Now we go and block page faults... */ 1502 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 1503 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 1504 1505 /* All writers are done so after syncing there won't be dirty data */ 1506 sync_filesystem(sb); 1507 1508 /* Now wait for internal filesystem counter */ 1509 sb->s_writers.frozen = SB_FREEZE_FS; 1510 sb_wait_write(sb, SB_FREEZE_FS); 1511 1512 if (sb->s_op->freeze_fs) { 1513 ret = sb->s_op->freeze_fs(sb); 1514 if (ret) { 1515 printk(KERN_ERR 1516 "VFS:Filesystem freeze failed\n"); 1517 sb->s_writers.frozen = SB_UNFROZEN; 1518 sb_freeze_unlock(sb); 1519 wake_up(&sb->s_writers.wait_unfrozen); 1520 deactivate_locked_super(sb); 1521 return ret; 1522 } 1523 } 1524 /* 1525 * For debugging purposes so that fs can warn if it sees write activity 1526 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super(). 1527 */ 1528 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1529 lockdep_sb_freeze_release(sb); 1530 up_write(&sb->s_umount); 1531 return 0; 1532 } 1533 EXPORT_SYMBOL(freeze_super); 1534 1535 /** 1536 * thaw_super -- unlock filesystem 1537 * @sb: the super to thaw 1538 * 1539 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1540 */ 1541 static int thaw_super_locked(struct super_block *sb) 1542 { 1543 int error; 1544 1545 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) { 1546 up_write(&sb->s_umount); 1547 return -EINVAL; 1548 } 1549 1550 if (sb_rdonly(sb)) { 1551 sb->s_writers.frozen = SB_UNFROZEN; 1552 goto out; 1553 } 1554 1555 lockdep_sb_freeze_acquire(sb); 1556 1557 if (sb->s_op->unfreeze_fs) { 1558 error = sb->s_op->unfreeze_fs(sb); 1559 if (error) { 1560 printk(KERN_ERR 1561 "VFS:Filesystem thaw failed\n"); 1562 lockdep_sb_freeze_release(sb); 1563 up_write(&sb->s_umount); 1564 return error; 1565 } 1566 } 1567 1568 sb->s_writers.frozen = SB_UNFROZEN; 1569 sb_freeze_unlock(sb); 1570 out: 1571 wake_up(&sb->s_writers.wait_unfrozen); 1572 deactivate_locked_super(sb); 1573 return 0; 1574 } 1575 1576 int thaw_super(struct super_block *sb) 1577 { 1578 down_write(&sb->s_umount); 1579 return thaw_super_locked(sb); 1580 } 1581 EXPORT_SYMBOL(thaw_super); 1582