xref: /openbmc/linux/fs/super.c (revision 22fd411a)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include "internal.h"
35 
36 
37 LIST_HEAD(super_blocks);
38 DEFINE_SPINLOCK(sb_lock);
39 
40 /**
41  *	alloc_super	-	create new superblock
42  *	@type:	filesystem type superblock should belong to
43  *
44  *	Allocates and initializes a new &struct super_block.  alloc_super()
45  *	returns a pointer new superblock or %NULL if allocation had failed.
46  */
47 static struct super_block *alloc_super(struct file_system_type *type)
48 {
49 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
50 	static const struct super_operations default_op;
51 
52 	if (s) {
53 		if (security_sb_alloc(s)) {
54 			kfree(s);
55 			s = NULL;
56 			goto out;
57 		}
58 #ifdef CONFIG_SMP
59 		s->s_files = alloc_percpu(struct list_head);
60 		if (!s->s_files) {
61 			security_sb_free(s);
62 			kfree(s);
63 			s = NULL;
64 			goto out;
65 		} else {
66 			int i;
67 
68 			for_each_possible_cpu(i)
69 				INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
70 		}
71 #else
72 		INIT_LIST_HEAD(&s->s_files);
73 #endif
74 		INIT_LIST_HEAD(&s->s_instances);
75 		INIT_HLIST_BL_HEAD(&s->s_anon);
76 		INIT_LIST_HEAD(&s->s_inodes);
77 		INIT_LIST_HEAD(&s->s_dentry_lru);
78 		init_rwsem(&s->s_umount);
79 		mutex_init(&s->s_lock);
80 		lockdep_set_class(&s->s_umount, &type->s_umount_key);
81 		/*
82 		 * The locking rules for s_lock are up to the
83 		 * filesystem. For example ext3fs has different
84 		 * lock ordering than usbfs:
85 		 */
86 		lockdep_set_class(&s->s_lock, &type->s_lock_key);
87 		/*
88 		 * sget() can have s_umount recursion.
89 		 *
90 		 * When it cannot find a suitable sb, it allocates a new
91 		 * one (this one), and tries again to find a suitable old
92 		 * one.
93 		 *
94 		 * In case that succeeds, it will acquire the s_umount
95 		 * lock of the old one. Since these are clearly distrinct
96 		 * locks, and this object isn't exposed yet, there's no
97 		 * risk of deadlocks.
98 		 *
99 		 * Annotate this by putting this lock in a different
100 		 * subclass.
101 		 */
102 		down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
103 		s->s_count = 1;
104 		atomic_set(&s->s_active, 1);
105 		mutex_init(&s->s_vfs_rename_mutex);
106 		lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
107 		mutex_init(&s->s_dquot.dqio_mutex);
108 		mutex_init(&s->s_dquot.dqonoff_mutex);
109 		init_rwsem(&s->s_dquot.dqptr_sem);
110 		init_waitqueue_head(&s->s_wait_unfrozen);
111 		s->s_maxbytes = MAX_NON_LFS;
112 		s->s_op = &default_op;
113 		s->s_time_gran = 1000000000;
114 	}
115 out:
116 	return s;
117 }
118 
119 /**
120  *	destroy_super	-	frees a superblock
121  *	@s: superblock to free
122  *
123  *	Frees a superblock.
124  */
125 static inline void destroy_super(struct super_block *s)
126 {
127 #ifdef CONFIG_SMP
128 	free_percpu(s->s_files);
129 #endif
130 	security_sb_free(s);
131 	kfree(s->s_subtype);
132 	kfree(s->s_options);
133 	kfree(s);
134 }
135 
136 /* Superblock refcounting  */
137 
138 /*
139  * Drop a superblock's refcount.  The caller must hold sb_lock.
140  */
141 void __put_super(struct super_block *sb)
142 {
143 	if (!--sb->s_count) {
144 		list_del_init(&sb->s_list);
145 		destroy_super(sb);
146 	}
147 }
148 
149 /**
150  *	put_super	-	drop a temporary reference to superblock
151  *	@sb: superblock in question
152  *
153  *	Drops a temporary reference, frees superblock if there's no
154  *	references left.
155  */
156 void put_super(struct super_block *sb)
157 {
158 	spin_lock(&sb_lock);
159 	__put_super(sb);
160 	spin_unlock(&sb_lock);
161 }
162 
163 
164 /**
165  *	deactivate_locked_super	-	drop an active reference to superblock
166  *	@s: superblock to deactivate
167  *
168  *	Drops an active reference to superblock, converting it into a temprory
169  *	one if there is no other active references left.  In that case we
170  *	tell fs driver to shut it down and drop the temporary reference we
171  *	had just acquired.
172  *
173  *	Caller holds exclusive lock on superblock; that lock is released.
174  */
175 void deactivate_locked_super(struct super_block *s)
176 {
177 	struct file_system_type *fs = s->s_type;
178 	if (atomic_dec_and_test(&s->s_active)) {
179 		fs->kill_sb(s);
180 		put_filesystem(fs);
181 		put_super(s);
182 	} else {
183 		up_write(&s->s_umount);
184 	}
185 }
186 
187 EXPORT_SYMBOL(deactivate_locked_super);
188 
189 /**
190  *	deactivate_super	-	drop an active reference to superblock
191  *	@s: superblock to deactivate
192  *
193  *	Variant of deactivate_locked_super(), except that superblock is *not*
194  *	locked by caller.  If we are going to drop the final active reference,
195  *	lock will be acquired prior to that.
196  */
197 void deactivate_super(struct super_block *s)
198 {
199         if (!atomic_add_unless(&s->s_active, -1, 1)) {
200 		down_write(&s->s_umount);
201 		deactivate_locked_super(s);
202 	}
203 }
204 
205 EXPORT_SYMBOL(deactivate_super);
206 
207 /**
208  *	grab_super - acquire an active reference
209  *	@s: reference we are trying to make active
210  *
211  *	Tries to acquire an active reference.  grab_super() is used when we
212  * 	had just found a superblock in super_blocks or fs_type->fs_supers
213  *	and want to turn it into a full-blown active reference.  grab_super()
214  *	is called with sb_lock held and drops it.  Returns 1 in case of
215  *	success, 0 if we had failed (superblock contents was already dead or
216  *	dying when grab_super() had been called).
217  */
218 static int grab_super(struct super_block *s) __releases(sb_lock)
219 {
220 	if (atomic_inc_not_zero(&s->s_active)) {
221 		spin_unlock(&sb_lock);
222 		return 1;
223 	}
224 	/* it's going away */
225 	s->s_count++;
226 	spin_unlock(&sb_lock);
227 	/* wait for it to die */
228 	down_write(&s->s_umount);
229 	up_write(&s->s_umount);
230 	put_super(s);
231 	return 0;
232 }
233 
234 /*
235  * Superblock locking.  We really ought to get rid of these two.
236  */
237 void lock_super(struct super_block * sb)
238 {
239 	get_fs_excl();
240 	mutex_lock(&sb->s_lock);
241 }
242 
243 void unlock_super(struct super_block * sb)
244 {
245 	put_fs_excl();
246 	mutex_unlock(&sb->s_lock);
247 }
248 
249 EXPORT_SYMBOL(lock_super);
250 EXPORT_SYMBOL(unlock_super);
251 
252 /**
253  *	generic_shutdown_super	-	common helper for ->kill_sb()
254  *	@sb: superblock to kill
255  *
256  *	generic_shutdown_super() does all fs-independent work on superblock
257  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
258  *	that need destruction out of superblock, call generic_shutdown_super()
259  *	and release aforementioned objects.  Note: dentries and inodes _are_
260  *	taken care of and do not need specific handling.
261  *
262  *	Upon calling this function, the filesystem may no longer alter or
263  *	rearrange the set of dentries belonging to this super_block, nor may it
264  *	change the attachments of dentries to inodes.
265  */
266 void generic_shutdown_super(struct super_block *sb)
267 {
268 	const struct super_operations *sop = sb->s_op;
269 
270 
271 	if (sb->s_root) {
272 		shrink_dcache_for_umount(sb);
273 		sync_filesystem(sb);
274 		get_fs_excl();
275 		sb->s_flags &= ~MS_ACTIVE;
276 
277 		fsnotify_unmount_inodes(&sb->s_inodes);
278 
279 		evict_inodes(sb);
280 
281 		if (sop->put_super)
282 			sop->put_super(sb);
283 
284 		if (!list_empty(&sb->s_inodes)) {
285 			printk("VFS: Busy inodes after unmount of %s. "
286 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
287 			   sb->s_id);
288 		}
289 		put_fs_excl();
290 	}
291 	spin_lock(&sb_lock);
292 	/* should be initialized for __put_super_and_need_restart() */
293 	list_del_init(&sb->s_instances);
294 	spin_unlock(&sb_lock);
295 	up_write(&sb->s_umount);
296 }
297 
298 EXPORT_SYMBOL(generic_shutdown_super);
299 
300 /**
301  *	sget	-	find or create a superblock
302  *	@type:	filesystem type superblock should belong to
303  *	@test:	comparison callback
304  *	@set:	setup callback
305  *	@data:	argument to each of them
306  */
307 struct super_block *sget(struct file_system_type *type,
308 			int (*test)(struct super_block *,void *),
309 			int (*set)(struct super_block *,void *),
310 			void *data)
311 {
312 	struct super_block *s = NULL;
313 	struct super_block *old;
314 	int err;
315 
316 retry:
317 	spin_lock(&sb_lock);
318 	if (test) {
319 		list_for_each_entry(old, &type->fs_supers, s_instances) {
320 			if (!test(old, data))
321 				continue;
322 			if (!grab_super(old))
323 				goto retry;
324 			if (s) {
325 				up_write(&s->s_umount);
326 				destroy_super(s);
327 				s = NULL;
328 			}
329 			down_write(&old->s_umount);
330 			if (unlikely(!(old->s_flags & MS_BORN))) {
331 				deactivate_locked_super(old);
332 				goto retry;
333 			}
334 			return old;
335 		}
336 	}
337 	if (!s) {
338 		spin_unlock(&sb_lock);
339 		s = alloc_super(type);
340 		if (!s)
341 			return ERR_PTR(-ENOMEM);
342 		goto retry;
343 	}
344 
345 	err = set(s, data);
346 	if (err) {
347 		spin_unlock(&sb_lock);
348 		up_write(&s->s_umount);
349 		destroy_super(s);
350 		return ERR_PTR(err);
351 	}
352 	s->s_type = type;
353 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
354 	list_add_tail(&s->s_list, &super_blocks);
355 	list_add(&s->s_instances, &type->fs_supers);
356 	spin_unlock(&sb_lock);
357 	get_filesystem(type);
358 	return s;
359 }
360 
361 EXPORT_SYMBOL(sget);
362 
363 void drop_super(struct super_block *sb)
364 {
365 	up_read(&sb->s_umount);
366 	put_super(sb);
367 }
368 
369 EXPORT_SYMBOL(drop_super);
370 
371 /**
372  * sync_supers - helper for periodic superblock writeback
373  *
374  * Call the write_super method if present on all dirty superblocks in
375  * the system.  This is for the periodic writeback used by most older
376  * filesystems.  For data integrity superblock writeback use
377  * sync_filesystems() instead.
378  *
379  * Note: check the dirty flag before waiting, so we don't
380  * hold up the sync while mounting a device. (The newly
381  * mounted device won't need syncing.)
382  */
383 void sync_supers(void)
384 {
385 	struct super_block *sb, *p = NULL;
386 
387 	spin_lock(&sb_lock);
388 	list_for_each_entry(sb, &super_blocks, s_list) {
389 		if (list_empty(&sb->s_instances))
390 			continue;
391 		if (sb->s_op->write_super && sb->s_dirt) {
392 			sb->s_count++;
393 			spin_unlock(&sb_lock);
394 
395 			down_read(&sb->s_umount);
396 			if (sb->s_root && sb->s_dirt)
397 				sb->s_op->write_super(sb);
398 			up_read(&sb->s_umount);
399 
400 			spin_lock(&sb_lock);
401 			if (p)
402 				__put_super(p);
403 			p = sb;
404 		}
405 	}
406 	if (p)
407 		__put_super(p);
408 	spin_unlock(&sb_lock);
409 }
410 
411 /**
412  *	iterate_supers - call function for all active superblocks
413  *	@f: function to call
414  *	@arg: argument to pass to it
415  *
416  *	Scans the superblock list and calls given function, passing it
417  *	locked superblock and given argument.
418  */
419 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
420 {
421 	struct super_block *sb, *p = NULL;
422 
423 	spin_lock(&sb_lock);
424 	list_for_each_entry(sb, &super_blocks, s_list) {
425 		if (list_empty(&sb->s_instances))
426 			continue;
427 		sb->s_count++;
428 		spin_unlock(&sb_lock);
429 
430 		down_read(&sb->s_umount);
431 		if (sb->s_root)
432 			f(sb, arg);
433 		up_read(&sb->s_umount);
434 
435 		spin_lock(&sb_lock);
436 		if (p)
437 			__put_super(p);
438 		p = sb;
439 	}
440 	if (p)
441 		__put_super(p);
442 	spin_unlock(&sb_lock);
443 }
444 
445 /**
446  *	get_super - get the superblock of a device
447  *	@bdev: device to get the superblock for
448  *
449  *	Scans the superblock list and finds the superblock of the file system
450  *	mounted on the device given. %NULL is returned if no match is found.
451  */
452 
453 struct super_block *get_super(struct block_device *bdev)
454 {
455 	struct super_block *sb;
456 
457 	if (!bdev)
458 		return NULL;
459 
460 	spin_lock(&sb_lock);
461 rescan:
462 	list_for_each_entry(sb, &super_blocks, s_list) {
463 		if (list_empty(&sb->s_instances))
464 			continue;
465 		if (sb->s_bdev == bdev) {
466 			sb->s_count++;
467 			spin_unlock(&sb_lock);
468 			down_read(&sb->s_umount);
469 			/* still alive? */
470 			if (sb->s_root)
471 				return sb;
472 			up_read(&sb->s_umount);
473 			/* nope, got unmounted */
474 			spin_lock(&sb_lock);
475 			__put_super(sb);
476 			goto rescan;
477 		}
478 	}
479 	spin_unlock(&sb_lock);
480 	return NULL;
481 }
482 
483 EXPORT_SYMBOL(get_super);
484 
485 /**
486  * get_active_super - get an active reference to the superblock of a device
487  * @bdev: device to get the superblock for
488  *
489  * Scans the superblock list and finds the superblock of the file system
490  * mounted on the device given.  Returns the superblock with an active
491  * reference or %NULL if none was found.
492  */
493 struct super_block *get_active_super(struct block_device *bdev)
494 {
495 	struct super_block *sb;
496 
497 	if (!bdev)
498 		return NULL;
499 
500 restart:
501 	spin_lock(&sb_lock);
502 	list_for_each_entry(sb, &super_blocks, s_list) {
503 		if (list_empty(&sb->s_instances))
504 			continue;
505 		if (sb->s_bdev == bdev) {
506 			if (grab_super(sb)) /* drops sb_lock */
507 				return sb;
508 			else
509 				goto restart;
510 		}
511 	}
512 	spin_unlock(&sb_lock);
513 	return NULL;
514 }
515 
516 struct super_block *user_get_super(dev_t dev)
517 {
518 	struct super_block *sb;
519 
520 	spin_lock(&sb_lock);
521 rescan:
522 	list_for_each_entry(sb, &super_blocks, s_list) {
523 		if (list_empty(&sb->s_instances))
524 			continue;
525 		if (sb->s_dev ==  dev) {
526 			sb->s_count++;
527 			spin_unlock(&sb_lock);
528 			down_read(&sb->s_umount);
529 			/* still alive? */
530 			if (sb->s_root)
531 				return sb;
532 			up_read(&sb->s_umount);
533 			/* nope, got unmounted */
534 			spin_lock(&sb_lock);
535 			__put_super(sb);
536 			goto rescan;
537 		}
538 	}
539 	spin_unlock(&sb_lock);
540 	return NULL;
541 }
542 
543 /**
544  *	do_remount_sb - asks filesystem to change mount options.
545  *	@sb:	superblock in question
546  *	@flags:	numeric part of options
547  *	@data:	the rest of options
548  *      @force: whether or not to force the change
549  *
550  *	Alters the mount options of a mounted file system.
551  */
552 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
553 {
554 	int retval;
555 	int remount_ro;
556 
557 	if (sb->s_frozen != SB_UNFROZEN)
558 		return -EBUSY;
559 
560 #ifdef CONFIG_BLOCK
561 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
562 		return -EACCES;
563 #endif
564 
565 	if (flags & MS_RDONLY)
566 		acct_auto_close(sb);
567 	shrink_dcache_sb(sb);
568 	sync_filesystem(sb);
569 
570 	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
571 
572 	/* If we are remounting RDONLY and current sb is read/write,
573 	   make sure there are no rw files opened */
574 	if (remount_ro) {
575 		if (force)
576 			mark_files_ro(sb);
577 		else if (!fs_may_remount_ro(sb))
578 			return -EBUSY;
579 	}
580 
581 	if (sb->s_op->remount_fs) {
582 		retval = sb->s_op->remount_fs(sb, &flags, data);
583 		if (retval)
584 			return retval;
585 	}
586 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
587 
588 	/*
589 	 * Some filesystems modify their metadata via some other path than the
590 	 * bdev buffer cache (eg. use a private mapping, or directories in
591 	 * pagecache, etc). Also file data modifications go via their own
592 	 * mappings. So If we try to mount readonly then copy the filesystem
593 	 * from bdev, we could get stale data, so invalidate it to give a best
594 	 * effort at coherency.
595 	 */
596 	if (remount_ro && sb->s_bdev)
597 		invalidate_bdev(sb->s_bdev);
598 	return 0;
599 }
600 
601 static void do_emergency_remount(struct work_struct *work)
602 {
603 	struct super_block *sb, *p = NULL;
604 
605 	spin_lock(&sb_lock);
606 	list_for_each_entry(sb, &super_blocks, s_list) {
607 		if (list_empty(&sb->s_instances))
608 			continue;
609 		sb->s_count++;
610 		spin_unlock(&sb_lock);
611 		down_write(&sb->s_umount);
612 		if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
613 			/*
614 			 * What lock protects sb->s_flags??
615 			 */
616 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
617 		}
618 		up_write(&sb->s_umount);
619 		spin_lock(&sb_lock);
620 		if (p)
621 			__put_super(p);
622 		p = sb;
623 	}
624 	if (p)
625 		__put_super(p);
626 	spin_unlock(&sb_lock);
627 	kfree(work);
628 	printk("Emergency Remount complete\n");
629 }
630 
631 void emergency_remount(void)
632 {
633 	struct work_struct *work;
634 
635 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
636 	if (work) {
637 		INIT_WORK(work, do_emergency_remount);
638 		schedule_work(work);
639 	}
640 }
641 
642 /*
643  * Unnamed block devices are dummy devices used by virtual
644  * filesystems which don't use real block-devices.  -- jrs
645  */
646 
647 static DEFINE_IDA(unnamed_dev_ida);
648 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
649 static int unnamed_dev_start = 0; /* don't bother trying below it */
650 
651 int set_anon_super(struct super_block *s, void *data)
652 {
653 	int dev;
654 	int error;
655 
656  retry:
657 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
658 		return -ENOMEM;
659 	spin_lock(&unnamed_dev_lock);
660 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
661 	if (!error)
662 		unnamed_dev_start = dev + 1;
663 	spin_unlock(&unnamed_dev_lock);
664 	if (error == -EAGAIN)
665 		/* We raced and lost with another CPU. */
666 		goto retry;
667 	else if (error)
668 		return -EAGAIN;
669 
670 	if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
671 		spin_lock(&unnamed_dev_lock);
672 		ida_remove(&unnamed_dev_ida, dev);
673 		if (unnamed_dev_start > dev)
674 			unnamed_dev_start = dev;
675 		spin_unlock(&unnamed_dev_lock);
676 		return -EMFILE;
677 	}
678 	s->s_dev = MKDEV(0, dev & MINORMASK);
679 	s->s_bdi = &noop_backing_dev_info;
680 	return 0;
681 }
682 
683 EXPORT_SYMBOL(set_anon_super);
684 
685 void kill_anon_super(struct super_block *sb)
686 {
687 	int slot = MINOR(sb->s_dev);
688 
689 	generic_shutdown_super(sb);
690 	spin_lock(&unnamed_dev_lock);
691 	ida_remove(&unnamed_dev_ida, slot);
692 	if (slot < unnamed_dev_start)
693 		unnamed_dev_start = slot;
694 	spin_unlock(&unnamed_dev_lock);
695 }
696 
697 EXPORT_SYMBOL(kill_anon_super);
698 
699 void kill_litter_super(struct super_block *sb)
700 {
701 	if (sb->s_root)
702 		d_genocide(sb->s_root);
703 	kill_anon_super(sb);
704 }
705 
706 EXPORT_SYMBOL(kill_litter_super);
707 
708 static int ns_test_super(struct super_block *sb, void *data)
709 {
710 	return sb->s_fs_info == data;
711 }
712 
713 static int ns_set_super(struct super_block *sb, void *data)
714 {
715 	sb->s_fs_info = data;
716 	return set_anon_super(sb, NULL);
717 }
718 
719 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
720 	void *data, int (*fill_super)(struct super_block *, void *, int))
721 {
722 	struct super_block *sb;
723 
724 	sb = sget(fs_type, ns_test_super, ns_set_super, data);
725 	if (IS_ERR(sb))
726 		return ERR_CAST(sb);
727 
728 	if (!sb->s_root) {
729 		int err;
730 		sb->s_flags = flags;
731 		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
732 		if (err) {
733 			deactivate_locked_super(sb);
734 			return ERR_PTR(err);
735 		}
736 
737 		sb->s_flags |= MS_ACTIVE;
738 	}
739 
740 	return dget(sb->s_root);
741 }
742 
743 EXPORT_SYMBOL(mount_ns);
744 
745 #ifdef CONFIG_BLOCK
746 static int set_bdev_super(struct super_block *s, void *data)
747 {
748 	s->s_bdev = data;
749 	s->s_dev = s->s_bdev->bd_dev;
750 
751 	/*
752 	 * We set the bdi here to the queue backing, file systems can
753 	 * overwrite this in ->fill_super()
754 	 */
755 	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
756 	return 0;
757 }
758 
759 static int test_bdev_super(struct super_block *s, void *data)
760 {
761 	return (void *)s->s_bdev == data;
762 }
763 
764 struct dentry *mount_bdev(struct file_system_type *fs_type,
765 	int flags, const char *dev_name, void *data,
766 	int (*fill_super)(struct super_block *, void *, int))
767 {
768 	struct block_device *bdev;
769 	struct super_block *s;
770 	fmode_t mode = FMODE_READ | FMODE_EXCL;
771 	int error = 0;
772 
773 	if (!(flags & MS_RDONLY))
774 		mode |= FMODE_WRITE;
775 
776 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
777 	if (IS_ERR(bdev))
778 		return ERR_CAST(bdev);
779 
780 	/*
781 	 * once the super is inserted into the list by sget, s_umount
782 	 * will protect the lockfs code from trying to start a snapshot
783 	 * while we are mounting
784 	 */
785 	mutex_lock(&bdev->bd_fsfreeze_mutex);
786 	if (bdev->bd_fsfreeze_count > 0) {
787 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
788 		error = -EBUSY;
789 		goto error_bdev;
790 	}
791 	s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
792 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
793 	if (IS_ERR(s))
794 		goto error_s;
795 
796 	if (s->s_root) {
797 		if ((flags ^ s->s_flags) & MS_RDONLY) {
798 			deactivate_locked_super(s);
799 			error = -EBUSY;
800 			goto error_bdev;
801 		}
802 
803 		/*
804 		 * s_umount nests inside bd_mutex during
805 		 * __invalidate_device().  blkdev_put() acquires
806 		 * bd_mutex and can't be called under s_umount.  Drop
807 		 * s_umount temporarily.  This is safe as we're
808 		 * holding an active reference.
809 		 */
810 		up_write(&s->s_umount);
811 		blkdev_put(bdev, mode);
812 		down_write(&s->s_umount);
813 	} else {
814 		char b[BDEVNAME_SIZE];
815 
816 		s->s_flags = flags;
817 		s->s_mode = mode;
818 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
819 		sb_set_blocksize(s, block_size(bdev));
820 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
821 		if (error) {
822 			deactivate_locked_super(s);
823 			goto error;
824 		}
825 
826 		s->s_flags |= MS_ACTIVE;
827 		bdev->bd_super = s;
828 	}
829 
830 	return dget(s->s_root);
831 
832 error_s:
833 	error = PTR_ERR(s);
834 error_bdev:
835 	blkdev_put(bdev, mode);
836 error:
837 	return ERR_PTR(error);
838 }
839 EXPORT_SYMBOL(mount_bdev);
840 
841 int get_sb_bdev(struct file_system_type *fs_type,
842 	int flags, const char *dev_name, void *data,
843 	int (*fill_super)(struct super_block *, void *, int),
844 	struct vfsmount *mnt)
845 {
846 	struct dentry *root;
847 
848 	root = mount_bdev(fs_type, flags, dev_name, data, fill_super);
849 	if (IS_ERR(root))
850 		return PTR_ERR(root);
851 	mnt->mnt_root = root;
852 	mnt->mnt_sb = root->d_sb;
853 	return 0;
854 }
855 
856 EXPORT_SYMBOL(get_sb_bdev);
857 
858 void kill_block_super(struct super_block *sb)
859 {
860 	struct block_device *bdev = sb->s_bdev;
861 	fmode_t mode = sb->s_mode;
862 
863 	bdev->bd_super = NULL;
864 	generic_shutdown_super(sb);
865 	sync_blockdev(bdev);
866 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
867 	blkdev_put(bdev, mode | FMODE_EXCL);
868 }
869 
870 EXPORT_SYMBOL(kill_block_super);
871 #endif
872 
873 struct dentry *mount_nodev(struct file_system_type *fs_type,
874 	int flags, void *data,
875 	int (*fill_super)(struct super_block *, void *, int))
876 {
877 	int error;
878 	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
879 
880 	if (IS_ERR(s))
881 		return ERR_CAST(s);
882 
883 	s->s_flags = flags;
884 
885 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
886 	if (error) {
887 		deactivate_locked_super(s);
888 		return ERR_PTR(error);
889 	}
890 	s->s_flags |= MS_ACTIVE;
891 	return dget(s->s_root);
892 }
893 EXPORT_SYMBOL(mount_nodev);
894 
895 int get_sb_nodev(struct file_system_type *fs_type,
896 	int flags, void *data,
897 	int (*fill_super)(struct super_block *, void *, int),
898 	struct vfsmount *mnt)
899 {
900 	struct dentry *root;
901 
902 	root = mount_nodev(fs_type, flags, data, fill_super);
903 	if (IS_ERR(root))
904 		return PTR_ERR(root);
905 	mnt->mnt_root = root;
906 	mnt->mnt_sb = root->d_sb;
907 	return 0;
908 }
909 EXPORT_SYMBOL(get_sb_nodev);
910 
911 static int compare_single(struct super_block *s, void *p)
912 {
913 	return 1;
914 }
915 
916 struct dentry *mount_single(struct file_system_type *fs_type,
917 	int flags, void *data,
918 	int (*fill_super)(struct super_block *, void *, int))
919 {
920 	struct super_block *s;
921 	int error;
922 
923 	s = sget(fs_type, compare_single, set_anon_super, NULL);
924 	if (IS_ERR(s))
925 		return ERR_CAST(s);
926 	if (!s->s_root) {
927 		s->s_flags = flags;
928 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
929 		if (error) {
930 			deactivate_locked_super(s);
931 			return ERR_PTR(error);
932 		}
933 		s->s_flags |= MS_ACTIVE;
934 	} else {
935 		do_remount_sb(s, flags, data, 0);
936 	}
937 	return dget(s->s_root);
938 }
939 EXPORT_SYMBOL(mount_single);
940 
941 int get_sb_single(struct file_system_type *fs_type,
942 	int flags, void *data,
943 	int (*fill_super)(struct super_block *, void *, int),
944 	struct vfsmount *mnt)
945 {
946 	struct dentry *root;
947 	root = mount_single(fs_type, flags, data, fill_super);
948 	if (IS_ERR(root))
949 		return PTR_ERR(root);
950 	mnt->mnt_root = root;
951 	mnt->mnt_sb = root->d_sb;
952 	return 0;
953 }
954 
955 EXPORT_SYMBOL(get_sb_single);
956 
957 struct vfsmount *
958 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
959 {
960 	struct vfsmount *mnt;
961 	struct dentry *root;
962 	char *secdata = NULL;
963 	int error;
964 
965 	if (!type)
966 		return ERR_PTR(-ENODEV);
967 
968 	error = -ENOMEM;
969 	mnt = alloc_vfsmnt(name);
970 	if (!mnt)
971 		goto out;
972 
973 	if (flags & MS_KERNMOUNT)
974 		mnt->mnt_flags = MNT_INTERNAL;
975 
976 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
977 		secdata = alloc_secdata();
978 		if (!secdata)
979 			goto out_mnt;
980 
981 		error = security_sb_copy_data(data, secdata);
982 		if (error)
983 			goto out_free_secdata;
984 	}
985 
986 	if (type->mount) {
987 		root = type->mount(type, flags, name, data);
988 		if (IS_ERR(root)) {
989 			error = PTR_ERR(root);
990 			goto out_free_secdata;
991 		}
992 		mnt->mnt_root = root;
993 		mnt->mnt_sb = root->d_sb;
994 	} else {
995 		error = type->get_sb(type, flags, name, data, mnt);
996 		if (error < 0)
997 			goto out_free_secdata;
998 	}
999 	BUG_ON(!mnt->mnt_sb);
1000 	WARN_ON(!mnt->mnt_sb->s_bdi);
1001 	mnt->mnt_sb->s_flags |= MS_BORN;
1002 
1003 	error = security_sb_kern_mount(mnt->mnt_sb, flags, secdata);
1004 	if (error)
1005 		goto out_sb;
1006 
1007 	/*
1008 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1009 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1010 	 * this warning for a little while to try and catch filesystems that
1011 	 * violate this rule. This warning should be either removed or
1012 	 * converted to a BUG() in 2.6.34.
1013 	 */
1014 	WARN((mnt->mnt_sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1015 		"negative value (%lld)\n", type->name, mnt->mnt_sb->s_maxbytes);
1016 
1017 	mnt->mnt_mountpoint = mnt->mnt_root;
1018 	mnt->mnt_parent = mnt;
1019 	up_write(&mnt->mnt_sb->s_umount);
1020 	free_secdata(secdata);
1021 	return mnt;
1022 out_sb:
1023 	dput(mnt->mnt_root);
1024 	deactivate_locked_super(mnt->mnt_sb);
1025 out_free_secdata:
1026 	free_secdata(secdata);
1027 out_mnt:
1028 	free_vfsmnt(mnt);
1029 out:
1030 	return ERR_PTR(error);
1031 }
1032 
1033 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1034 
1035 /**
1036  * freeze_super - lock the filesystem and force it into a consistent state
1037  * @sb: the super to lock
1038  *
1039  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1040  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1041  * -EBUSY.
1042  */
1043 int freeze_super(struct super_block *sb)
1044 {
1045 	int ret;
1046 
1047 	atomic_inc(&sb->s_active);
1048 	down_write(&sb->s_umount);
1049 	if (sb->s_frozen) {
1050 		deactivate_locked_super(sb);
1051 		return -EBUSY;
1052 	}
1053 
1054 	if (sb->s_flags & MS_RDONLY) {
1055 		sb->s_frozen = SB_FREEZE_TRANS;
1056 		smp_wmb();
1057 		up_write(&sb->s_umount);
1058 		return 0;
1059 	}
1060 
1061 	sb->s_frozen = SB_FREEZE_WRITE;
1062 	smp_wmb();
1063 
1064 	sync_filesystem(sb);
1065 
1066 	sb->s_frozen = SB_FREEZE_TRANS;
1067 	smp_wmb();
1068 
1069 	sync_blockdev(sb->s_bdev);
1070 	if (sb->s_op->freeze_fs) {
1071 		ret = sb->s_op->freeze_fs(sb);
1072 		if (ret) {
1073 			printk(KERN_ERR
1074 				"VFS:Filesystem freeze failed\n");
1075 			sb->s_frozen = SB_UNFROZEN;
1076 			deactivate_locked_super(sb);
1077 			return ret;
1078 		}
1079 	}
1080 	up_write(&sb->s_umount);
1081 	return 0;
1082 }
1083 EXPORT_SYMBOL(freeze_super);
1084 
1085 /**
1086  * thaw_super -- unlock filesystem
1087  * @sb: the super to thaw
1088  *
1089  * Unlocks the filesystem and marks it writeable again after freeze_super().
1090  */
1091 int thaw_super(struct super_block *sb)
1092 {
1093 	int error;
1094 
1095 	down_write(&sb->s_umount);
1096 	if (sb->s_frozen == SB_UNFROZEN) {
1097 		up_write(&sb->s_umount);
1098 		return -EINVAL;
1099 	}
1100 
1101 	if (sb->s_flags & MS_RDONLY)
1102 		goto out;
1103 
1104 	if (sb->s_op->unfreeze_fs) {
1105 		error = sb->s_op->unfreeze_fs(sb);
1106 		if (error) {
1107 			printk(KERN_ERR
1108 				"VFS:Filesystem thaw failed\n");
1109 			sb->s_frozen = SB_FREEZE_TRANS;
1110 			up_write(&sb->s_umount);
1111 			return error;
1112 		}
1113 	}
1114 
1115 out:
1116 	sb->s_frozen = SB_UNFROZEN;
1117 	smp_wmb();
1118 	wake_up(&sb->s_wait_unfrozen);
1119 	deactivate_locked_super(sb);
1120 
1121 	return 0;
1122 }
1123 EXPORT_SYMBOL(thaw_super);
1124 
1125 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1126 {
1127 	int err;
1128 	const char *subtype = strchr(fstype, '.');
1129 	if (subtype) {
1130 		subtype++;
1131 		err = -EINVAL;
1132 		if (!subtype[0])
1133 			goto err;
1134 	} else
1135 		subtype = "";
1136 
1137 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1138 	err = -ENOMEM;
1139 	if (!mnt->mnt_sb->s_subtype)
1140 		goto err;
1141 	return mnt;
1142 
1143  err:
1144 	mntput(mnt);
1145 	return ERR_PTR(err);
1146 }
1147 
1148 struct vfsmount *
1149 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1150 {
1151 	struct file_system_type *type = get_fs_type(fstype);
1152 	struct vfsmount *mnt;
1153 	if (!type)
1154 		return ERR_PTR(-ENODEV);
1155 	mnt = vfs_kern_mount(type, flags, name, data);
1156 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1157 	    !mnt->mnt_sb->s_subtype)
1158 		mnt = fs_set_subtype(mnt, fstype);
1159 	put_filesystem(type);
1160 	return mnt;
1161 }
1162 EXPORT_SYMBOL_GPL(do_kern_mount);
1163 
1164 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
1165 {
1166 	return vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
1167 }
1168 
1169 EXPORT_SYMBOL_GPL(kern_mount_data);
1170