1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/super.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * super.c contains code to handle: - mount structures 8 * - super-block tables 9 * - filesystem drivers list 10 * - mount system call 11 * - umount system call 12 * - ustat system call 13 * 14 * GK 2/5/95 - Changed to support mounting the root fs via NFS 15 * 16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 18 * Added options to /proc/mounts: 19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 22 */ 23 24 #include <linux/export.h> 25 #include <linux/slab.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/cleancache.h> 35 #include <linux/fsnotify.h> 36 #include <linux/lockdep.h> 37 #include <linux/user_namespace.h> 38 #include <linux/fs_context.h> 39 #include <uapi/linux/mount.h> 40 #include "internal.h" 41 42 static int thaw_super_locked(struct super_block *sb); 43 44 static LIST_HEAD(super_blocks); 45 static DEFINE_SPINLOCK(sb_lock); 46 47 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 48 "sb_writers", 49 "sb_pagefaults", 50 "sb_internal", 51 }; 52 53 /* 54 * One thing we have to be careful of with a per-sb shrinker is that we don't 55 * drop the last active reference to the superblock from within the shrinker. 56 * If that happens we could trigger unregistering the shrinker from within the 57 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 58 * take a passive reference to the superblock to avoid this from occurring. 59 */ 60 static unsigned long super_cache_scan(struct shrinker *shrink, 61 struct shrink_control *sc) 62 { 63 struct super_block *sb; 64 long fs_objects = 0; 65 long total_objects; 66 long freed = 0; 67 long dentries; 68 long inodes; 69 70 sb = container_of(shrink, struct super_block, s_shrink); 71 72 /* 73 * Deadlock avoidance. We may hold various FS locks, and we don't want 74 * to recurse into the FS that called us in clear_inode() and friends.. 75 */ 76 if (!(sc->gfp_mask & __GFP_FS)) 77 return SHRINK_STOP; 78 79 if (!trylock_super(sb)) 80 return SHRINK_STOP; 81 82 if (sb->s_op->nr_cached_objects) 83 fs_objects = sb->s_op->nr_cached_objects(sb, sc); 84 85 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc); 86 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc); 87 total_objects = dentries + inodes + fs_objects + 1; 88 if (!total_objects) 89 total_objects = 1; 90 91 /* proportion the scan between the caches */ 92 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 93 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 94 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects); 95 96 /* 97 * prune the dcache first as the icache is pinned by it, then 98 * prune the icache, followed by the filesystem specific caches 99 * 100 * Ensure that we always scan at least one object - memcg kmem 101 * accounting uses this to fully empty the caches. 102 */ 103 sc->nr_to_scan = dentries + 1; 104 freed = prune_dcache_sb(sb, sc); 105 sc->nr_to_scan = inodes + 1; 106 freed += prune_icache_sb(sb, sc); 107 108 if (fs_objects) { 109 sc->nr_to_scan = fs_objects + 1; 110 freed += sb->s_op->free_cached_objects(sb, sc); 111 } 112 113 up_read(&sb->s_umount); 114 return freed; 115 } 116 117 static unsigned long super_cache_count(struct shrinker *shrink, 118 struct shrink_control *sc) 119 { 120 struct super_block *sb; 121 long total_objects = 0; 122 123 sb = container_of(shrink, struct super_block, s_shrink); 124 125 /* 126 * We don't call trylock_super() here as it is a scalability bottleneck, 127 * so we're exposed to partial setup state. The shrinker rwsem does not 128 * protect filesystem operations backing list_lru_shrink_count() or 129 * s_op->nr_cached_objects(). Counts can change between 130 * super_cache_count and super_cache_scan, so we really don't need locks 131 * here. 132 * 133 * However, if we are currently mounting the superblock, the underlying 134 * filesystem might be in a state of partial construction and hence it 135 * is dangerous to access it. trylock_super() uses a SB_BORN check to 136 * avoid this situation, so do the same here. The memory barrier is 137 * matched with the one in mount_fs() as we don't hold locks here. 138 */ 139 if (!(sb->s_flags & SB_BORN)) 140 return 0; 141 smp_rmb(); 142 143 if (sb->s_op && sb->s_op->nr_cached_objects) 144 total_objects = sb->s_op->nr_cached_objects(sb, sc); 145 146 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc); 147 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc); 148 149 if (!total_objects) 150 return SHRINK_EMPTY; 151 152 total_objects = vfs_pressure_ratio(total_objects); 153 return total_objects; 154 } 155 156 static void destroy_super_work(struct work_struct *work) 157 { 158 struct super_block *s = container_of(work, struct super_block, 159 destroy_work); 160 int i; 161 162 for (i = 0; i < SB_FREEZE_LEVELS; i++) 163 percpu_free_rwsem(&s->s_writers.rw_sem[i]); 164 kfree(s); 165 } 166 167 static void destroy_super_rcu(struct rcu_head *head) 168 { 169 struct super_block *s = container_of(head, struct super_block, rcu); 170 INIT_WORK(&s->destroy_work, destroy_super_work); 171 schedule_work(&s->destroy_work); 172 } 173 174 /* Free a superblock that has never been seen by anyone */ 175 static void destroy_unused_super(struct super_block *s) 176 { 177 if (!s) 178 return; 179 up_write(&s->s_umount); 180 list_lru_destroy(&s->s_dentry_lru); 181 list_lru_destroy(&s->s_inode_lru); 182 security_sb_free(s); 183 put_user_ns(s->s_user_ns); 184 kfree(s->s_subtype); 185 free_prealloced_shrinker(&s->s_shrink); 186 /* no delays needed */ 187 destroy_super_work(&s->destroy_work); 188 } 189 190 /** 191 * alloc_super - create new superblock 192 * @type: filesystem type superblock should belong to 193 * @flags: the mount flags 194 * @user_ns: User namespace for the super_block 195 * 196 * Allocates and initializes a new &struct super_block. alloc_super() 197 * returns a pointer new superblock or %NULL if allocation had failed. 198 */ 199 static struct super_block *alloc_super(struct file_system_type *type, int flags, 200 struct user_namespace *user_ns) 201 { 202 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 203 static const struct super_operations default_op; 204 int i; 205 206 if (!s) 207 return NULL; 208 209 INIT_LIST_HEAD(&s->s_mounts); 210 s->s_user_ns = get_user_ns(user_ns); 211 init_rwsem(&s->s_umount); 212 lockdep_set_class(&s->s_umount, &type->s_umount_key); 213 /* 214 * sget() can have s_umount recursion. 215 * 216 * When it cannot find a suitable sb, it allocates a new 217 * one (this one), and tries again to find a suitable old 218 * one. 219 * 220 * In case that succeeds, it will acquire the s_umount 221 * lock of the old one. Since these are clearly distrinct 222 * locks, and this object isn't exposed yet, there's no 223 * risk of deadlocks. 224 * 225 * Annotate this by putting this lock in a different 226 * subclass. 227 */ 228 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 229 230 if (security_sb_alloc(s)) 231 goto fail; 232 233 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 234 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i], 235 sb_writers_name[i], 236 &type->s_writers_key[i])) 237 goto fail; 238 } 239 init_waitqueue_head(&s->s_writers.wait_unfrozen); 240 s->s_bdi = &noop_backing_dev_info; 241 s->s_flags = flags; 242 if (s->s_user_ns != &init_user_ns) 243 s->s_iflags |= SB_I_NODEV; 244 INIT_HLIST_NODE(&s->s_instances); 245 INIT_HLIST_BL_HEAD(&s->s_roots); 246 mutex_init(&s->s_sync_lock); 247 INIT_LIST_HEAD(&s->s_inodes); 248 spin_lock_init(&s->s_inode_list_lock); 249 INIT_LIST_HEAD(&s->s_inodes_wb); 250 spin_lock_init(&s->s_inode_wblist_lock); 251 252 s->s_count = 1; 253 atomic_set(&s->s_active, 1); 254 mutex_init(&s->s_vfs_rename_mutex); 255 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 256 init_rwsem(&s->s_dquot.dqio_sem); 257 s->s_maxbytes = MAX_NON_LFS; 258 s->s_op = &default_op; 259 s->s_time_gran = 1000000000; 260 s->cleancache_poolid = CLEANCACHE_NO_POOL; 261 262 s->s_shrink.seeks = DEFAULT_SEEKS; 263 s->s_shrink.scan_objects = super_cache_scan; 264 s->s_shrink.count_objects = super_cache_count; 265 s->s_shrink.batch = 1024; 266 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE; 267 if (prealloc_shrinker(&s->s_shrink)) 268 goto fail; 269 if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink)) 270 goto fail; 271 if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink)) 272 goto fail; 273 return s; 274 275 fail: 276 destroy_unused_super(s); 277 return NULL; 278 } 279 280 /* Superblock refcounting */ 281 282 /* 283 * Drop a superblock's refcount. The caller must hold sb_lock. 284 */ 285 static void __put_super(struct super_block *s) 286 { 287 if (!--s->s_count) { 288 list_del_init(&s->s_list); 289 WARN_ON(s->s_dentry_lru.node); 290 WARN_ON(s->s_inode_lru.node); 291 WARN_ON(!list_empty(&s->s_mounts)); 292 security_sb_free(s); 293 put_user_ns(s->s_user_ns); 294 kfree(s->s_subtype); 295 call_rcu(&s->rcu, destroy_super_rcu); 296 } 297 } 298 299 /** 300 * put_super - drop a temporary reference to superblock 301 * @sb: superblock in question 302 * 303 * Drops a temporary reference, frees superblock if there's no 304 * references left. 305 */ 306 static void put_super(struct super_block *sb) 307 { 308 spin_lock(&sb_lock); 309 __put_super(sb); 310 spin_unlock(&sb_lock); 311 } 312 313 314 /** 315 * deactivate_locked_super - drop an active reference to superblock 316 * @s: superblock to deactivate 317 * 318 * Drops an active reference to superblock, converting it into a temporary 319 * one if there is no other active references left. In that case we 320 * tell fs driver to shut it down and drop the temporary reference we 321 * had just acquired. 322 * 323 * Caller holds exclusive lock on superblock; that lock is released. 324 */ 325 void deactivate_locked_super(struct super_block *s) 326 { 327 struct file_system_type *fs = s->s_type; 328 if (atomic_dec_and_test(&s->s_active)) { 329 cleancache_invalidate_fs(s); 330 unregister_shrinker(&s->s_shrink); 331 fs->kill_sb(s); 332 333 /* 334 * Since list_lru_destroy() may sleep, we cannot call it from 335 * put_super(), where we hold the sb_lock. Therefore we destroy 336 * the lru lists right now. 337 */ 338 list_lru_destroy(&s->s_dentry_lru); 339 list_lru_destroy(&s->s_inode_lru); 340 341 put_filesystem(fs); 342 put_super(s); 343 } else { 344 up_write(&s->s_umount); 345 } 346 } 347 348 EXPORT_SYMBOL(deactivate_locked_super); 349 350 /** 351 * deactivate_super - drop an active reference to superblock 352 * @s: superblock to deactivate 353 * 354 * Variant of deactivate_locked_super(), except that superblock is *not* 355 * locked by caller. If we are going to drop the final active reference, 356 * lock will be acquired prior to that. 357 */ 358 void deactivate_super(struct super_block *s) 359 { 360 if (!atomic_add_unless(&s->s_active, -1, 1)) { 361 down_write(&s->s_umount); 362 deactivate_locked_super(s); 363 } 364 } 365 366 EXPORT_SYMBOL(deactivate_super); 367 368 /** 369 * grab_super - acquire an active reference 370 * @s: reference we are trying to make active 371 * 372 * Tries to acquire an active reference. grab_super() is used when we 373 * had just found a superblock in super_blocks or fs_type->fs_supers 374 * and want to turn it into a full-blown active reference. grab_super() 375 * is called with sb_lock held and drops it. Returns 1 in case of 376 * success, 0 if we had failed (superblock contents was already dead or 377 * dying when grab_super() had been called). Note that this is only 378 * called for superblocks not in rundown mode (== ones still on ->fs_supers 379 * of their type), so increment of ->s_count is OK here. 380 */ 381 static int grab_super(struct super_block *s) __releases(sb_lock) 382 { 383 s->s_count++; 384 spin_unlock(&sb_lock); 385 down_write(&s->s_umount); 386 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) { 387 put_super(s); 388 return 1; 389 } 390 up_write(&s->s_umount); 391 put_super(s); 392 return 0; 393 } 394 395 /* 396 * trylock_super - try to grab ->s_umount shared 397 * @sb: reference we are trying to grab 398 * 399 * Try to prevent fs shutdown. This is used in places where we 400 * cannot take an active reference but we need to ensure that the 401 * filesystem is not shut down while we are working on it. It returns 402 * false if we cannot acquire s_umount or if we lose the race and 403 * filesystem already got into shutdown, and returns true with the s_umount 404 * lock held in read mode in case of success. On successful return, 405 * the caller must drop the s_umount lock when done. 406 * 407 * Note that unlike get_super() et.al. this one does *not* bump ->s_count. 408 * The reason why it's safe is that we are OK with doing trylock instead 409 * of down_read(). There's a couple of places that are OK with that, but 410 * it's very much not a general-purpose interface. 411 */ 412 bool trylock_super(struct super_block *sb) 413 { 414 if (down_read_trylock(&sb->s_umount)) { 415 if (!hlist_unhashed(&sb->s_instances) && 416 sb->s_root && (sb->s_flags & SB_BORN)) 417 return true; 418 up_read(&sb->s_umount); 419 } 420 421 return false; 422 } 423 424 /** 425 * generic_shutdown_super - common helper for ->kill_sb() 426 * @sb: superblock to kill 427 * 428 * generic_shutdown_super() does all fs-independent work on superblock 429 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 430 * that need destruction out of superblock, call generic_shutdown_super() 431 * and release aforementioned objects. Note: dentries and inodes _are_ 432 * taken care of and do not need specific handling. 433 * 434 * Upon calling this function, the filesystem may no longer alter or 435 * rearrange the set of dentries belonging to this super_block, nor may it 436 * change the attachments of dentries to inodes. 437 */ 438 void generic_shutdown_super(struct super_block *sb) 439 { 440 const struct super_operations *sop = sb->s_op; 441 442 if (sb->s_root) { 443 shrink_dcache_for_umount(sb); 444 sync_filesystem(sb); 445 sb->s_flags &= ~SB_ACTIVE; 446 447 fsnotify_sb_delete(sb); 448 cgroup_writeback_umount(); 449 450 evict_inodes(sb); 451 452 if (sb->s_dio_done_wq) { 453 destroy_workqueue(sb->s_dio_done_wq); 454 sb->s_dio_done_wq = NULL; 455 } 456 457 if (sop->put_super) 458 sop->put_super(sb); 459 460 if (!list_empty(&sb->s_inodes)) { 461 printk("VFS: Busy inodes after unmount of %s. " 462 "Self-destruct in 5 seconds. Have a nice day...\n", 463 sb->s_id); 464 } 465 } 466 spin_lock(&sb_lock); 467 /* should be initialized for __put_super_and_need_restart() */ 468 hlist_del_init(&sb->s_instances); 469 spin_unlock(&sb_lock); 470 up_write(&sb->s_umount); 471 if (sb->s_bdi != &noop_backing_dev_info) { 472 bdi_put(sb->s_bdi); 473 sb->s_bdi = &noop_backing_dev_info; 474 } 475 } 476 477 EXPORT_SYMBOL(generic_shutdown_super); 478 479 bool mount_capable(struct fs_context *fc) 480 { 481 struct user_namespace *user_ns = fc->global ? &init_user_ns 482 : fc->user_ns; 483 484 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) 485 return capable(CAP_SYS_ADMIN); 486 else 487 return ns_capable(user_ns, CAP_SYS_ADMIN); 488 } 489 490 /** 491 * sget_fc - Find or create a superblock 492 * @fc: Filesystem context. 493 * @test: Comparison callback 494 * @set: Setup callback 495 * 496 * Find or create a superblock using the parameters stored in the filesystem 497 * context and the two callback functions. 498 * 499 * If an extant superblock is matched, then that will be returned with an 500 * elevated reference count that the caller must transfer or discard. 501 * 502 * If no match is made, a new superblock will be allocated and basic 503 * initialisation will be performed (s_type, s_fs_info and s_id will be set and 504 * the set() callback will be invoked), the superblock will be published and it 505 * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE 506 * as yet unset. 507 */ 508 struct super_block *sget_fc(struct fs_context *fc, 509 int (*test)(struct super_block *, struct fs_context *), 510 int (*set)(struct super_block *, struct fs_context *)) 511 { 512 struct super_block *s = NULL; 513 struct super_block *old; 514 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns; 515 int err; 516 517 retry: 518 spin_lock(&sb_lock); 519 if (test) { 520 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) { 521 if (test(old, fc)) 522 goto share_extant_sb; 523 } 524 } 525 if (!s) { 526 spin_unlock(&sb_lock); 527 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns); 528 if (!s) 529 return ERR_PTR(-ENOMEM); 530 goto retry; 531 } 532 533 s->s_fs_info = fc->s_fs_info; 534 err = set(s, fc); 535 if (err) { 536 s->s_fs_info = NULL; 537 spin_unlock(&sb_lock); 538 destroy_unused_super(s); 539 return ERR_PTR(err); 540 } 541 fc->s_fs_info = NULL; 542 s->s_type = fc->fs_type; 543 s->s_iflags |= fc->s_iflags; 544 strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id)); 545 list_add_tail(&s->s_list, &super_blocks); 546 hlist_add_head(&s->s_instances, &s->s_type->fs_supers); 547 spin_unlock(&sb_lock); 548 get_filesystem(s->s_type); 549 register_shrinker_prepared(&s->s_shrink); 550 return s; 551 552 share_extant_sb: 553 if (user_ns != old->s_user_ns) { 554 spin_unlock(&sb_lock); 555 destroy_unused_super(s); 556 return ERR_PTR(-EBUSY); 557 } 558 if (!grab_super(old)) 559 goto retry; 560 destroy_unused_super(s); 561 return old; 562 } 563 EXPORT_SYMBOL(sget_fc); 564 565 /** 566 * sget - find or create a superblock 567 * @type: filesystem type superblock should belong to 568 * @test: comparison callback 569 * @set: setup callback 570 * @flags: mount flags 571 * @data: argument to each of them 572 */ 573 struct super_block *sget(struct file_system_type *type, 574 int (*test)(struct super_block *,void *), 575 int (*set)(struct super_block *,void *), 576 int flags, 577 void *data) 578 { 579 struct user_namespace *user_ns = current_user_ns(); 580 struct super_block *s = NULL; 581 struct super_block *old; 582 int err; 583 584 /* We don't yet pass the user namespace of the parent 585 * mount through to here so always use &init_user_ns 586 * until that changes. 587 */ 588 if (flags & SB_SUBMOUNT) 589 user_ns = &init_user_ns; 590 591 retry: 592 spin_lock(&sb_lock); 593 if (test) { 594 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 595 if (!test(old, data)) 596 continue; 597 if (user_ns != old->s_user_ns) { 598 spin_unlock(&sb_lock); 599 destroy_unused_super(s); 600 return ERR_PTR(-EBUSY); 601 } 602 if (!grab_super(old)) 603 goto retry; 604 destroy_unused_super(s); 605 return old; 606 } 607 } 608 if (!s) { 609 spin_unlock(&sb_lock); 610 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns); 611 if (!s) 612 return ERR_PTR(-ENOMEM); 613 goto retry; 614 } 615 616 err = set(s, data); 617 if (err) { 618 spin_unlock(&sb_lock); 619 destroy_unused_super(s); 620 return ERR_PTR(err); 621 } 622 s->s_type = type; 623 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 624 list_add_tail(&s->s_list, &super_blocks); 625 hlist_add_head(&s->s_instances, &type->fs_supers); 626 spin_unlock(&sb_lock); 627 get_filesystem(type); 628 register_shrinker_prepared(&s->s_shrink); 629 return s; 630 } 631 EXPORT_SYMBOL(sget); 632 633 void drop_super(struct super_block *sb) 634 { 635 up_read(&sb->s_umount); 636 put_super(sb); 637 } 638 639 EXPORT_SYMBOL(drop_super); 640 641 void drop_super_exclusive(struct super_block *sb) 642 { 643 up_write(&sb->s_umount); 644 put_super(sb); 645 } 646 EXPORT_SYMBOL(drop_super_exclusive); 647 648 static void __iterate_supers(void (*f)(struct super_block *)) 649 { 650 struct super_block *sb, *p = NULL; 651 652 spin_lock(&sb_lock); 653 list_for_each_entry(sb, &super_blocks, s_list) { 654 if (hlist_unhashed(&sb->s_instances)) 655 continue; 656 sb->s_count++; 657 spin_unlock(&sb_lock); 658 659 f(sb); 660 661 spin_lock(&sb_lock); 662 if (p) 663 __put_super(p); 664 p = sb; 665 } 666 if (p) 667 __put_super(p); 668 spin_unlock(&sb_lock); 669 } 670 /** 671 * iterate_supers - call function for all active superblocks 672 * @f: function to call 673 * @arg: argument to pass to it 674 * 675 * Scans the superblock list and calls given function, passing it 676 * locked superblock and given argument. 677 */ 678 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 679 { 680 struct super_block *sb, *p = NULL; 681 682 spin_lock(&sb_lock); 683 list_for_each_entry(sb, &super_blocks, s_list) { 684 if (hlist_unhashed(&sb->s_instances)) 685 continue; 686 sb->s_count++; 687 spin_unlock(&sb_lock); 688 689 down_read(&sb->s_umount); 690 if (sb->s_root && (sb->s_flags & SB_BORN)) 691 f(sb, arg); 692 up_read(&sb->s_umount); 693 694 spin_lock(&sb_lock); 695 if (p) 696 __put_super(p); 697 p = sb; 698 } 699 if (p) 700 __put_super(p); 701 spin_unlock(&sb_lock); 702 } 703 704 /** 705 * iterate_supers_type - call function for superblocks of given type 706 * @type: fs type 707 * @f: function to call 708 * @arg: argument to pass to it 709 * 710 * Scans the superblock list and calls given function, passing it 711 * locked superblock and given argument. 712 */ 713 void iterate_supers_type(struct file_system_type *type, 714 void (*f)(struct super_block *, void *), void *arg) 715 { 716 struct super_block *sb, *p = NULL; 717 718 spin_lock(&sb_lock); 719 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 720 sb->s_count++; 721 spin_unlock(&sb_lock); 722 723 down_read(&sb->s_umount); 724 if (sb->s_root && (sb->s_flags & SB_BORN)) 725 f(sb, arg); 726 up_read(&sb->s_umount); 727 728 spin_lock(&sb_lock); 729 if (p) 730 __put_super(p); 731 p = sb; 732 } 733 if (p) 734 __put_super(p); 735 spin_unlock(&sb_lock); 736 } 737 738 EXPORT_SYMBOL(iterate_supers_type); 739 740 static struct super_block *__get_super(struct block_device *bdev, bool excl) 741 { 742 struct super_block *sb; 743 744 if (!bdev) 745 return NULL; 746 747 spin_lock(&sb_lock); 748 rescan: 749 list_for_each_entry(sb, &super_blocks, s_list) { 750 if (hlist_unhashed(&sb->s_instances)) 751 continue; 752 if (sb->s_bdev == bdev) { 753 sb->s_count++; 754 spin_unlock(&sb_lock); 755 if (!excl) 756 down_read(&sb->s_umount); 757 else 758 down_write(&sb->s_umount); 759 /* still alive? */ 760 if (sb->s_root && (sb->s_flags & SB_BORN)) 761 return sb; 762 if (!excl) 763 up_read(&sb->s_umount); 764 else 765 up_write(&sb->s_umount); 766 /* nope, got unmounted */ 767 spin_lock(&sb_lock); 768 __put_super(sb); 769 goto rescan; 770 } 771 } 772 spin_unlock(&sb_lock); 773 return NULL; 774 } 775 776 /** 777 * get_super - get the superblock of a device 778 * @bdev: device to get the superblock for 779 * 780 * Scans the superblock list and finds the superblock of the file system 781 * mounted on the device given. %NULL is returned if no match is found. 782 */ 783 struct super_block *get_super(struct block_device *bdev) 784 { 785 return __get_super(bdev, false); 786 } 787 EXPORT_SYMBOL(get_super); 788 789 static struct super_block *__get_super_thawed(struct block_device *bdev, 790 bool excl) 791 { 792 while (1) { 793 struct super_block *s = __get_super(bdev, excl); 794 if (!s || s->s_writers.frozen == SB_UNFROZEN) 795 return s; 796 if (!excl) 797 up_read(&s->s_umount); 798 else 799 up_write(&s->s_umount); 800 wait_event(s->s_writers.wait_unfrozen, 801 s->s_writers.frozen == SB_UNFROZEN); 802 put_super(s); 803 } 804 } 805 806 /** 807 * get_super_thawed - get thawed superblock of a device 808 * @bdev: device to get the superblock for 809 * 810 * Scans the superblock list and finds the superblock of the file system 811 * mounted on the device. The superblock is returned once it is thawed 812 * (or immediately if it was not frozen). %NULL is returned if no match 813 * is found. 814 */ 815 struct super_block *get_super_thawed(struct block_device *bdev) 816 { 817 return __get_super_thawed(bdev, false); 818 } 819 EXPORT_SYMBOL(get_super_thawed); 820 821 /** 822 * get_super_exclusive_thawed - get thawed superblock of a device 823 * @bdev: device to get the superblock for 824 * 825 * Scans the superblock list and finds the superblock of the file system 826 * mounted on the device. The superblock is returned once it is thawed 827 * (or immediately if it was not frozen) and s_umount semaphore is held 828 * in exclusive mode. %NULL is returned if no match is found. 829 */ 830 struct super_block *get_super_exclusive_thawed(struct block_device *bdev) 831 { 832 return __get_super_thawed(bdev, true); 833 } 834 EXPORT_SYMBOL(get_super_exclusive_thawed); 835 836 /** 837 * get_active_super - get an active reference to the superblock of a device 838 * @bdev: device to get the superblock for 839 * 840 * Scans the superblock list and finds the superblock of the file system 841 * mounted on the device given. Returns the superblock with an active 842 * reference or %NULL if none was found. 843 */ 844 struct super_block *get_active_super(struct block_device *bdev) 845 { 846 struct super_block *sb; 847 848 if (!bdev) 849 return NULL; 850 851 restart: 852 spin_lock(&sb_lock); 853 list_for_each_entry(sb, &super_blocks, s_list) { 854 if (hlist_unhashed(&sb->s_instances)) 855 continue; 856 if (sb->s_bdev == bdev) { 857 if (!grab_super(sb)) 858 goto restart; 859 up_write(&sb->s_umount); 860 return sb; 861 } 862 } 863 spin_unlock(&sb_lock); 864 return NULL; 865 } 866 867 struct super_block *user_get_super(dev_t dev) 868 { 869 struct super_block *sb; 870 871 spin_lock(&sb_lock); 872 rescan: 873 list_for_each_entry(sb, &super_blocks, s_list) { 874 if (hlist_unhashed(&sb->s_instances)) 875 continue; 876 if (sb->s_dev == dev) { 877 sb->s_count++; 878 spin_unlock(&sb_lock); 879 down_read(&sb->s_umount); 880 /* still alive? */ 881 if (sb->s_root && (sb->s_flags & SB_BORN)) 882 return sb; 883 up_read(&sb->s_umount); 884 /* nope, got unmounted */ 885 spin_lock(&sb_lock); 886 __put_super(sb); 887 goto rescan; 888 } 889 } 890 spin_unlock(&sb_lock); 891 return NULL; 892 } 893 894 /** 895 * reconfigure_super - asks filesystem to change superblock parameters 896 * @fc: The superblock and configuration 897 * 898 * Alters the configuration parameters of a live superblock. 899 */ 900 int reconfigure_super(struct fs_context *fc) 901 { 902 struct super_block *sb = fc->root->d_sb; 903 int retval; 904 bool remount_ro = false; 905 bool force = fc->sb_flags & SB_FORCE; 906 907 if (fc->sb_flags_mask & ~MS_RMT_MASK) 908 return -EINVAL; 909 if (sb->s_writers.frozen != SB_UNFROZEN) 910 return -EBUSY; 911 912 retval = security_sb_remount(sb, fc->security); 913 if (retval) 914 return retval; 915 916 if (fc->sb_flags_mask & SB_RDONLY) { 917 #ifdef CONFIG_BLOCK 918 if (!(fc->sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev)) 919 return -EACCES; 920 #endif 921 922 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb); 923 } 924 925 if (remount_ro) { 926 if (!hlist_empty(&sb->s_pins)) { 927 up_write(&sb->s_umount); 928 group_pin_kill(&sb->s_pins); 929 down_write(&sb->s_umount); 930 if (!sb->s_root) 931 return 0; 932 if (sb->s_writers.frozen != SB_UNFROZEN) 933 return -EBUSY; 934 remount_ro = !sb_rdonly(sb); 935 } 936 } 937 shrink_dcache_sb(sb); 938 939 /* If we are reconfiguring to RDONLY and current sb is read/write, 940 * make sure there are no files open for writing. 941 */ 942 if (remount_ro) { 943 if (force) { 944 sb->s_readonly_remount = 1; 945 smp_wmb(); 946 } else { 947 retval = sb_prepare_remount_readonly(sb); 948 if (retval) 949 return retval; 950 } 951 } 952 953 if (fc->ops->reconfigure) { 954 retval = fc->ops->reconfigure(fc); 955 if (retval) { 956 if (!force) 957 goto cancel_readonly; 958 /* If forced remount, go ahead despite any errors */ 959 WARN(1, "forced remount of a %s fs returned %i\n", 960 sb->s_type->name, retval); 961 } 962 } 963 964 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) | 965 (fc->sb_flags & fc->sb_flags_mask))); 966 /* Needs to be ordered wrt mnt_is_readonly() */ 967 smp_wmb(); 968 sb->s_readonly_remount = 0; 969 970 /* 971 * Some filesystems modify their metadata via some other path than the 972 * bdev buffer cache (eg. use a private mapping, or directories in 973 * pagecache, etc). Also file data modifications go via their own 974 * mappings. So If we try to mount readonly then copy the filesystem 975 * from bdev, we could get stale data, so invalidate it to give a best 976 * effort at coherency. 977 */ 978 if (remount_ro && sb->s_bdev) 979 invalidate_bdev(sb->s_bdev); 980 return 0; 981 982 cancel_readonly: 983 sb->s_readonly_remount = 0; 984 return retval; 985 } 986 987 static void do_emergency_remount_callback(struct super_block *sb) 988 { 989 down_write(&sb->s_umount); 990 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) && 991 !sb_rdonly(sb)) { 992 struct fs_context *fc; 993 994 fc = fs_context_for_reconfigure(sb->s_root, 995 SB_RDONLY | SB_FORCE, SB_RDONLY); 996 if (!IS_ERR(fc)) { 997 if (parse_monolithic_mount_data(fc, NULL) == 0) 998 (void)reconfigure_super(fc); 999 put_fs_context(fc); 1000 } 1001 } 1002 up_write(&sb->s_umount); 1003 } 1004 1005 static void do_emergency_remount(struct work_struct *work) 1006 { 1007 __iterate_supers(do_emergency_remount_callback); 1008 kfree(work); 1009 printk("Emergency Remount complete\n"); 1010 } 1011 1012 void emergency_remount(void) 1013 { 1014 struct work_struct *work; 1015 1016 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1017 if (work) { 1018 INIT_WORK(work, do_emergency_remount); 1019 schedule_work(work); 1020 } 1021 } 1022 1023 static void do_thaw_all_callback(struct super_block *sb) 1024 { 1025 down_write(&sb->s_umount); 1026 if (sb->s_root && sb->s_flags & SB_BORN) { 1027 emergency_thaw_bdev(sb); 1028 thaw_super_locked(sb); 1029 } else { 1030 up_write(&sb->s_umount); 1031 } 1032 } 1033 1034 static void do_thaw_all(struct work_struct *work) 1035 { 1036 __iterate_supers(do_thaw_all_callback); 1037 kfree(work); 1038 printk(KERN_WARNING "Emergency Thaw complete\n"); 1039 } 1040 1041 /** 1042 * emergency_thaw_all -- forcibly thaw every frozen filesystem 1043 * 1044 * Used for emergency unfreeze of all filesystems via SysRq 1045 */ 1046 void emergency_thaw_all(void) 1047 { 1048 struct work_struct *work; 1049 1050 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1051 if (work) { 1052 INIT_WORK(work, do_thaw_all); 1053 schedule_work(work); 1054 } 1055 } 1056 1057 static DEFINE_IDA(unnamed_dev_ida); 1058 1059 /** 1060 * get_anon_bdev - Allocate a block device for filesystems which don't have one. 1061 * @p: Pointer to a dev_t. 1062 * 1063 * Filesystems which don't use real block devices can call this function 1064 * to allocate a virtual block device. 1065 * 1066 * Context: Any context. Frequently called while holding sb_lock. 1067 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left 1068 * or -ENOMEM if memory allocation failed. 1069 */ 1070 int get_anon_bdev(dev_t *p) 1071 { 1072 int dev; 1073 1074 /* 1075 * Many userspace utilities consider an FSID of 0 invalid. 1076 * Always return at least 1 from get_anon_bdev. 1077 */ 1078 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1, 1079 GFP_ATOMIC); 1080 if (dev == -ENOSPC) 1081 dev = -EMFILE; 1082 if (dev < 0) 1083 return dev; 1084 1085 *p = MKDEV(0, dev); 1086 return 0; 1087 } 1088 EXPORT_SYMBOL(get_anon_bdev); 1089 1090 void free_anon_bdev(dev_t dev) 1091 { 1092 ida_free(&unnamed_dev_ida, MINOR(dev)); 1093 } 1094 EXPORT_SYMBOL(free_anon_bdev); 1095 1096 int set_anon_super(struct super_block *s, void *data) 1097 { 1098 return get_anon_bdev(&s->s_dev); 1099 } 1100 EXPORT_SYMBOL(set_anon_super); 1101 1102 void kill_anon_super(struct super_block *sb) 1103 { 1104 dev_t dev = sb->s_dev; 1105 generic_shutdown_super(sb); 1106 free_anon_bdev(dev); 1107 } 1108 EXPORT_SYMBOL(kill_anon_super); 1109 1110 void kill_litter_super(struct super_block *sb) 1111 { 1112 if (sb->s_root) 1113 d_genocide(sb->s_root); 1114 kill_anon_super(sb); 1115 } 1116 EXPORT_SYMBOL(kill_litter_super); 1117 1118 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc) 1119 { 1120 return set_anon_super(sb, NULL); 1121 } 1122 EXPORT_SYMBOL(set_anon_super_fc); 1123 1124 static int test_keyed_super(struct super_block *sb, struct fs_context *fc) 1125 { 1126 return sb->s_fs_info == fc->s_fs_info; 1127 } 1128 1129 static int test_single_super(struct super_block *s, struct fs_context *fc) 1130 { 1131 return 1; 1132 } 1133 1134 /** 1135 * vfs_get_super - Get a superblock with a search key set in s_fs_info. 1136 * @fc: The filesystem context holding the parameters 1137 * @keying: How to distinguish superblocks 1138 * @fill_super: Helper to initialise a new superblock 1139 * 1140 * Search for a superblock and create a new one if not found. The search 1141 * criterion is controlled by @keying. If the search fails, a new superblock 1142 * is created and @fill_super() is called to initialise it. 1143 * 1144 * @keying can take one of a number of values: 1145 * 1146 * (1) vfs_get_single_super - Only one superblock of this type may exist on the 1147 * system. This is typically used for special system filesystems. 1148 * 1149 * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have 1150 * distinct keys (where the key is in s_fs_info). Searching for the same 1151 * key again will turn up the superblock for that key. 1152 * 1153 * (3) vfs_get_independent_super - Multiple superblocks may exist and are 1154 * unkeyed. Each call will get a new superblock. 1155 * 1156 * A permissions check is made by sget_fc() unless we're getting a superblock 1157 * for a kernel-internal mount or a submount. 1158 */ 1159 int vfs_get_super(struct fs_context *fc, 1160 enum vfs_get_super_keying keying, 1161 int (*fill_super)(struct super_block *sb, 1162 struct fs_context *fc)) 1163 { 1164 int (*test)(struct super_block *, struct fs_context *); 1165 struct super_block *sb; 1166 1167 switch (keying) { 1168 case vfs_get_single_super: 1169 test = test_single_super; 1170 break; 1171 case vfs_get_keyed_super: 1172 test = test_keyed_super; 1173 break; 1174 case vfs_get_independent_super: 1175 test = NULL; 1176 break; 1177 default: 1178 BUG(); 1179 } 1180 1181 sb = sget_fc(fc, test, set_anon_super_fc); 1182 if (IS_ERR(sb)) 1183 return PTR_ERR(sb); 1184 1185 if (!sb->s_root) { 1186 int err = fill_super(sb, fc); 1187 if (err) { 1188 deactivate_locked_super(sb); 1189 return err; 1190 } 1191 1192 sb->s_flags |= SB_ACTIVE; 1193 } 1194 1195 BUG_ON(fc->root); 1196 fc->root = dget(sb->s_root); 1197 return 0; 1198 } 1199 EXPORT_SYMBOL(vfs_get_super); 1200 1201 int get_tree_nodev(struct fs_context *fc, 1202 int (*fill_super)(struct super_block *sb, 1203 struct fs_context *fc)) 1204 { 1205 return vfs_get_super(fc, vfs_get_independent_super, fill_super); 1206 } 1207 EXPORT_SYMBOL(get_tree_nodev); 1208 1209 int get_tree_single(struct fs_context *fc, 1210 int (*fill_super)(struct super_block *sb, 1211 struct fs_context *fc)) 1212 { 1213 return vfs_get_super(fc, vfs_get_single_super, fill_super); 1214 } 1215 EXPORT_SYMBOL(get_tree_single); 1216 1217 #ifdef CONFIG_BLOCK 1218 static int set_bdev_super(struct super_block *s, void *data) 1219 { 1220 s->s_bdev = data; 1221 s->s_dev = s->s_bdev->bd_dev; 1222 s->s_bdi = bdi_get(s->s_bdev->bd_bdi); 1223 1224 return 0; 1225 } 1226 1227 static int test_bdev_super(struct super_block *s, void *data) 1228 { 1229 return (void *)s->s_bdev == data; 1230 } 1231 1232 struct dentry *mount_bdev(struct file_system_type *fs_type, 1233 int flags, const char *dev_name, void *data, 1234 int (*fill_super)(struct super_block *, void *, int)) 1235 { 1236 struct block_device *bdev; 1237 struct super_block *s; 1238 fmode_t mode = FMODE_READ | FMODE_EXCL; 1239 int error = 0; 1240 1241 if (!(flags & SB_RDONLY)) 1242 mode |= FMODE_WRITE; 1243 1244 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 1245 if (IS_ERR(bdev)) 1246 return ERR_CAST(bdev); 1247 1248 /* 1249 * once the super is inserted into the list by sget, s_umount 1250 * will protect the lockfs code from trying to start a snapshot 1251 * while we are mounting 1252 */ 1253 mutex_lock(&bdev->bd_fsfreeze_mutex); 1254 if (bdev->bd_fsfreeze_count > 0) { 1255 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1256 error = -EBUSY; 1257 goto error_bdev; 1258 } 1259 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC, 1260 bdev); 1261 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1262 if (IS_ERR(s)) 1263 goto error_s; 1264 1265 if (s->s_root) { 1266 if ((flags ^ s->s_flags) & SB_RDONLY) { 1267 deactivate_locked_super(s); 1268 error = -EBUSY; 1269 goto error_bdev; 1270 } 1271 1272 /* 1273 * s_umount nests inside bd_mutex during 1274 * __invalidate_device(). blkdev_put() acquires 1275 * bd_mutex and can't be called under s_umount. Drop 1276 * s_umount temporarily. This is safe as we're 1277 * holding an active reference. 1278 */ 1279 up_write(&s->s_umount); 1280 blkdev_put(bdev, mode); 1281 down_write(&s->s_umount); 1282 } else { 1283 s->s_mode = mode; 1284 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1285 sb_set_blocksize(s, block_size(bdev)); 1286 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1287 if (error) { 1288 deactivate_locked_super(s); 1289 goto error; 1290 } 1291 1292 s->s_flags |= SB_ACTIVE; 1293 bdev->bd_super = s; 1294 } 1295 1296 return dget(s->s_root); 1297 1298 error_s: 1299 error = PTR_ERR(s); 1300 error_bdev: 1301 blkdev_put(bdev, mode); 1302 error: 1303 return ERR_PTR(error); 1304 } 1305 EXPORT_SYMBOL(mount_bdev); 1306 1307 void kill_block_super(struct super_block *sb) 1308 { 1309 struct block_device *bdev = sb->s_bdev; 1310 fmode_t mode = sb->s_mode; 1311 1312 bdev->bd_super = NULL; 1313 generic_shutdown_super(sb); 1314 sync_blockdev(bdev); 1315 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 1316 blkdev_put(bdev, mode | FMODE_EXCL); 1317 } 1318 1319 EXPORT_SYMBOL(kill_block_super); 1320 #endif 1321 1322 struct dentry *mount_nodev(struct file_system_type *fs_type, 1323 int flags, void *data, 1324 int (*fill_super)(struct super_block *, void *, int)) 1325 { 1326 int error; 1327 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1328 1329 if (IS_ERR(s)) 1330 return ERR_CAST(s); 1331 1332 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1333 if (error) { 1334 deactivate_locked_super(s); 1335 return ERR_PTR(error); 1336 } 1337 s->s_flags |= SB_ACTIVE; 1338 return dget(s->s_root); 1339 } 1340 EXPORT_SYMBOL(mount_nodev); 1341 1342 static int reconfigure_single(struct super_block *s, 1343 int flags, void *data) 1344 { 1345 struct fs_context *fc; 1346 int ret; 1347 1348 /* The caller really need to be passing fc down into mount_single(), 1349 * then a chunk of this can be removed. [Bollocks -- AV] 1350 * Better yet, reconfiguration shouldn't happen, but rather the second 1351 * mount should be rejected if the parameters are not compatible. 1352 */ 1353 fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK); 1354 if (IS_ERR(fc)) 1355 return PTR_ERR(fc); 1356 1357 ret = parse_monolithic_mount_data(fc, data); 1358 if (ret < 0) 1359 goto out; 1360 1361 ret = reconfigure_super(fc); 1362 out: 1363 put_fs_context(fc); 1364 return ret; 1365 } 1366 1367 static int compare_single(struct super_block *s, void *p) 1368 { 1369 return 1; 1370 } 1371 1372 struct dentry *mount_single(struct file_system_type *fs_type, 1373 int flags, void *data, 1374 int (*fill_super)(struct super_block *, void *, int)) 1375 { 1376 struct super_block *s; 1377 int error; 1378 1379 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1380 if (IS_ERR(s)) 1381 return ERR_CAST(s); 1382 if (!s->s_root) { 1383 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1384 if (!error) 1385 s->s_flags |= SB_ACTIVE; 1386 } else { 1387 error = reconfigure_single(s, flags, data); 1388 } 1389 if (unlikely(error)) { 1390 deactivate_locked_super(s); 1391 return ERR_PTR(error); 1392 } 1393 return dget(s->s_root); 1394 } 1395 EXPORT_SYMBOL(mount_single); 1396 1397 /** 1398 * vfs_get_tree - Get the mountable root 1399 * @fc: The superblock configuration context. 1400 * 1401 * The filesystem is invoked to get or create a superblock which can then later 1402 * be used for mounting. The filesystem places a pointer to the root to be 1403 * used for mounting in @fc->root. 1404 */ 1405 int vfs_get_tree(struct fs_context *fc) 1406 { 1407 struct super_block *sb; 1408 int error; 1409 1410 if (fc->root) 1411 return -EBUSY; 1412 1413 /* Get the mountable root in fc->root, with a ref on the root and a ref 1414 * on the superblock. 1415 */ 1416 error = fc->ops->get_tree(fc); 1417 if (error < 0) 1418 return error; 1419 1420 if (!fc->root) { 1421 pr_err("Filesystem %s get_tree() didn't set fc->root\n", 1422 fc->fs_type->name); 1423 /* We don't know what the locking state of the superblock is - 1424 * if there is a superblock. 1425 */ 1426 BUG(); 1427 } 1428 1429 sb = fc->root->d_sb; 1430 WARN_ON(!sb->s_bdi); 1431 1432 if (fc->subtype && !sb->s_subtype) { 1433 sb->s_subtype = fc->subtype; 1434 fc->subtype = NULL; 1435 } 1436 1437 /* 1438 * Write barrier is for super_cache_count(). We place it before setting 1439 * SB_BORN as the data dependency between the two functions is the 1440 * superblock structure contents that we just set up, not the SB_BORN 1441 * flag. 1442 */ 1443 smp_wmb(); 1444 sb->s_flags |= SB_BORN; 1445 1446 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL); 1447 if (unlikely(error)) { 1448 fc_drop_locked(fc); 1449 return error; 1450 } 1451 1452 /* 1453 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1454 * but s_maxbytes was an unsigned long long for many releases. Throw 1455 * this warning for a little while to try and catch filesystems that 1456 * violate this rule. 1457 */ 1458 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1459 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes); 1460 1461 return 0; 1462 } 1463 EXPORT_SYMBOL(vfs_get_tree); 1464 1465 /* 1466 * Setup private BDI for given superblock. It gets automatically cleaned up 1467 * in generic_shutdown_super(). 1468 */ 1469 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...) 1470 { 1471 struct backing_dev_info *bdi; 1472 int err; 1473 va_list args; 1474 1475 bdi = bdi_alloc(GFP_KERNEL); 1476 if (!bdi) 1477 return -ENOMEM; 1478 1479 bdi->name = sb->s_type->name; 1480 1481 va_start(args, fmt); 1482 err = bdi_register_va(bdi, fmt, args); 1483 va_end(args); 1484 if (err) { 1485 bdi_put(bdi); 1486 return err; 1487 } 1488 WARN_ON(sb->s_bdi != &noop_backing_dev_info); 1489 sb->s_bdi = bdi; 1490 1491 return 0; 1492 } 1493 EXPORT_SYMBOL(super_setup_bdi_name); 1494 1495 /* 1496 * Setup private BDI for given superblock. I gets automatically cleaned up 1497 * in generic_shutdown_super(). 1498 */ 1499 int super_setup_bdi(struct super_block *sb) 1500 { 1501 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0); 1502 1503 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name, 1504 atomic_long_inc_return(&bdi_seq)); 1505 } 1506 EXPORT_SYMBOL(super_setup_bdi); 1507 1508 /* 1509 * This is an internal function, please use sb_end_{write,pagefault,intwrite} 1510 * instead. 1511 */ 1512 void __sb_end_write(struct super_block *sb, int level) 1513 { 1514 percpu_up_read(sb->s_writers.rw_sem + level-1); 1515 } 1516 EXPORT_SYMBOL(__sb_end_write); 1517 1518 /* 1519 * This is an internal function, please use sb_start_{write,pagefault,intwrite} 1520 * instead. 1521 */ 1522 int __sb_start_write(struct super_block *sb, int level, bool wait) 1523 { 1524 bool force_trylock = false; 1525 int ret = 1; 1526 1527 #ifdef CONFIG_LOCKDEP 1528 /* 1529 * We want lockdep to tell us about possible deadlocks with freezing 1530 * but it's it bit tricky to properly instrument it. Getting a freeze 1531 * protection works as getting a read lock but there are subtle 1532 * problems. XFS for example gets freeze protection on internal level 1533 * twice in some cases, which is OK only because we already hold a 1534 * freeze protection also on higher level. Due to these cases we have 1535 * to use wait == F (trylock mode) which must not fail. 1536 */ 1537 if (wait) { 1538 int i; 1539 1540 for (i = 0; i < level - 1; i++) 1541 if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) { 1542 force_trylock = true; 1543 break; 1544 } 1545 } 1546 #endif 1547 if (wait && !force_trylock) 1548 percpu_down_read(sb->s_writers.rw_sem + level-1); 1549 else 1550 ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1); 1551 1552 WARN_ON(force_trylock && !ret); 1553 return ret; 1554 } 1555 EXPORT_SYMBOL(__sb_start_write); 1556 1557 /** 1558 * sb_wait_write - wait until all writers to given file system finish 1559 * @sb: the super for which we wait 1560 * @level: type of writers we wait for (normal vs page fault) 1561 * 1562 * This function waits until there are no writers of given type to given file 1563 * system. 1564 */ 1565 static void sb_wait_write(struct super_block *sb, int level) 1566 { 1567 percpu_down_write(sb->s_writers.rw_sem + level-1); 1568 } 1569 1570 /* 1571 * We are going to return to userspace and forget about these locks, the 1572 * ownership goes to the caller of thaw_super() which does unlock(). 1573 */ 1574 static void lockdep_sb_freeze_release(struct super_block *sb) 1575 { 1576 int level; 1577 1578 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1579 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1580 } 1581 1582 /* 1583 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb). 1584 */ 1585 static void lockdep_sb_freeze_acquire(struct super_block *sb) 1586 { 1587 int level; 1588 1589 for (level = 0; level < SB_FREEZE_LEVELS; ++level) 1590 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1591 } 1592 1593 static void sb_freeze_unlock(struct super_block *sb) 1594 { 1595 int level; 1596 1597 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1598 percpu_up_write(sb->s_writers.rw_sem + level); 1599 } 1600 1601 /** 1602 * freeze_super - lock the filesystem and force it into a consistent state 1603 * @sb: the super to lock 1604 * 1605 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1606 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1607 * -EBUSY. 1608 * 1609 * During this function, sb->s_writers.frozen goes through these values: 1610 * 1611 * SB_UNFROZEN: File system is normal, all writes progress as usual. 1612 * 1613 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 1614 * writes should be blocked, though page faults are still allowed. We wait for 1615 * all writes to complete and then proceed to the next stage. 1616 * 1617 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 1618 * but internal fs threads can still modify the filesystem (although they 1619 * should not dirty new pages or inodes), writeback can run etc. After waiting 1620 * for all running page faults we sync the filesystem which will clean all 1621 * dirty pages and inodes (no new dirty pages or inodes can be created when 1622 * sync is running). 1623 * 1624 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 1625 * modification are blocked (e.g. XFS preallocation truncation on inode 1626 * reclaim). This is usually implemented by blocking new transactions for 1627 * filesystems that have them and need this additional guard. After all 1628 * internal writers are finished we call ->freeze_fs() to finish filesystem 1629 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 1630 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 1631 * 1632 * sb->s_writers.frozen is protected by sb->s_umount. 1633 */ 1634 int freeze_super(struct super_block *sb) 1635 { 1636 int ret; 1637 1638 atomic_inc(&sb->s_active); 1639 down_write(&sb->s_umount); 1640 if (sb->s_writers.frozen != SB_UNFROZEN) { 1641 deactivate_locked_super(sb); 1642 return -EBUSY; 1643 } 1644 1645 if (!(sb->s_flags & SB_BORN)) { 1646 up_write(&sb->s_umount); 1647 return 0; /* sic - it's "nothing to do" */ 1648 } 1649 1650 if (sb_rdonly(sb)) { 1651 /* Nothing to do really... */ 1652 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1653 up_write(&sb->s_umount); 1654 return 0; 1655 } 1656 1657 sb->s_writers.frozen = SB_FREEZE_WRITE; 1658 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 1659 up_write(&sb->s_umount); 1660 sb_wait_write(sb, SB_FREEZE_WRITE); 1661 down_write(&sb->s_umount); 1662 1663 /* Now we go and block page faults... */ 1664 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 1665 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 1666 1667 /* All writers are done so after syncing there won't be dirty data */ 1668 sync_filesystem(sb); 1669 1670 /* Now wait for internal filesystem counter */ 1671 sb->s_writers.frozen = SB_FREEZE_FS; 1672 sb_wait_write(sb, SB_FREEZE_FS); 1673 1674 if (sb->s_op->freeze_fs) { 1675 ret = sb->s_op->freeze_fs(sb); 1676 if (ret) { 1677 printk(KERN_ERR 1678 "VFS:Filesystem freeze failed\n"); 1679 sb->s_writers.frozen = SB_UNFROZEN; 1680 sb_freeze_unlock(sb); 1681 wake_up(&sb->s_writers.wait_unfrozen); 1682 deactivate_locked_super(sb); 1683 return ret; 1684 } 1685 } 1686 /* 1687 * For debugging purposes so that fs can warn if it sees write activity 1688 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super(). 1689 */ 1690 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1691 lockdep_sb_freeze_release(sb); 1692 up_write(&sb->s_umount); 1693 return 0; 1694 } 1695 EXPORT_SYMBOL(freeze_super); 1696 1697 /** 1698 * thaw_super -- unlock filesystem 1699 * @sb: the super to thaw 1700 * 1701 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1702 */ 1703 static int thaw_super_locked(struct super_block *sb) 1704 { 1705 int error; 1706 1707 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) { 1708 up_write(&sb->s_umount); 1709 return -EINVAL; 1710 } 1711 1712 if (sb_rdonly(sb)) { 1713 sb->s_writers.frozen = SB_UNFROZEN; 1714 goto out; 1715 } 1716 1717 lockdep_sb_freeze_acquire(sb); 1718 1719 if (sb->s_op->unfreeze_fs) { 1720 error = sb->s_op->unfreeze_fs(sb); 1721 if (error) { 1722 printk(KERN_ERR 1723 "VFS:Filesystem thaw failed\n"); 1724 lockdep_sb_freeze_release(sb); 1725 up_write(&sb->s_umount); 1726 return error; 1727 } 1728 } 1729 1730 sb->s_writers.frozen = SB_UNFROZEN; 1731 sb_freeze_unlock(sb); 1732 out: 1733 wake_up(&sb->s_writers.wait_unfrozen); 1734 deactivate_locked_super(sb); 1735 return 0; 1736 } 1737 1738 int thaw_super(struct super_block *sb) 1739 { 1740 down_write(&sb->s_umount); 1741 return thaw_super_locked(sb); 1742 } 1743 EXPORT_SYMBOL(thaw_super); 1744