xref: /openbmc/linux/fs/super.c (revision 1b69c6d0ae90b7f1a4f61d5c8209d5cb7a55f849)
1  /*
2   *  linux/fs/super.c
3   *
4   *  Copyright (C) 1991, 1992  Linus Torvalds
5   *
6   *  super.c contains code to handle: - mount structures
7   *                                   - super-block tables
8   *                                   - filesystem drivers list
9   *                                   - mount system call
10   *                                   - umount system call
11   *                                   - ustat system call
12   *
13   * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14   *
15   *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16   *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17   *  Added options to /proc/mounts:
18   *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19   *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20   *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21   */
22  
23  #include <linux/export.h>
24  #include <linux/slab.h>
25  #include <linux/blkdev.h>
26  #include <linux/mount.h>
27  #include <linux/security.h>
28  #include <linux/writeback.h>		/* for the emergency remount stuff */
29  #include <linux/idr.h>
30  #include <linux/mutex.h>
31  #include <linux/backing-dev.h>
32  #include <linux/rculist_bl.h>
33  #include <linux/cleancache.h>
34  #include <linux/fsnotify.h>
35  #include <linux/lockdep.h>
36  #include "internal.h"
37  
38  
39  static LIST_HEAD(super_blocks);
40  static DEFINE_SPINLOCK(sb_lock);
41  
42  static char *sb_writers_name[SB_FREEZE_LEVELS] = {
43  	"sb_writers",
44  	"sb_pagefaults",
45  	"sb_internal",
46  };
47  
48  /*
49   * One thing we have to be careful of with a per-sb shrinker is that we don't
50   * drop the last active reference to the superblock from within the shrinker.
51   * If that happens we could trigger unregistering the shrinker from within the
52   * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
53   * take a passive reference to the superblock to avoid this from occurring.
54   */
55  static unsigned long super_cache_scan(struct shrinker *shrink,
56  				      struct shrink_control *sc)
57  {
58  	struct super_block *sb;
59  	long	fs_objects = 0;
60  	long	total_objects;
61  	long	freed = 0;
62  	long	dentries;
63  	long	inodes;
64  
65  	sb = container_of(shrink, struct super_block, s_shrink);
66  
67  	/*
68  	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
69  	 * to recurse into the FS that called us in clear_inode() and friends..
70  	 */
71  	if (!(sc->gfp_mask & __GFP_FS))
72  		return SHRINK_STOP;
73  
74  	if (!trylock_super(sb))
75  		return SHRINK_STOP;
76  
77  	if (sb->s_op->nr_cached_objects)
78  		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
79  
80  	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
81  	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
82  	total_objects = dentries + inodes + fs_objects + 1;
83  	if (!total_objects)
84  		total_objects = 1;
85  
86  	/* proportion the scan between the caches */
87  	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
88  	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
89  	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
90  
91  	/*
92  	 * prune the dcache first as the icache is pinned by it, then
93  	 * prune the icache, followed by the filesystem specific caches
94  	 *
95  	 * Ensure that we always scan at least one object - memcg kmem
96  	 * accounting uses this to fully empty the caches.
97  	 */
98  	sc->nr_to_scan = dentries + 1;
99  	freed = prune_dcache_sb(sb, sc);
100  	sc->nr_to_scan = inodes + 1;
101  	freed += prune_icache_sb(sb, sc);
102  
103  	if (fs_objects) {
104  		sc->nr_to_scan = fs_objects + 1;
105  		freed += sb->s_op->free_cached_objects(sb, sc);
106  	}
107  
108  	up_read(&sb->s_umount);
109  	return freed;
110  }
111  
112  static unsigned long super_cache_count(struct shrinker *shrink,
113  				       struct shrink_control *sc)
114  {
115  	struct super_block *sb;
116  	long	total_objects = 0;
117  
118  	sb = container_of(shrink, struct super_block, s_shrink);
119  
120  	/*
121  	 * Don't call trylock_super as it is a potential
122  	 * scalability bottleneck. The counts could get updated
123  	 * between super_cache_count and super_cache_scan anyway.
124  	 * Call to super_cache_count with shrinker_rwsem held
125  	 * ensures the safety of call to list_lru_shrink_count() and
126  	 * s_op->nr_cached_objects().
127  	 */
128  	if (sb->s_op && sb->s_op->nr_cached_objects)
129  		total_objects = sb->s_op->nr_cached_objects(sb, sc);
130  
131  	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
132  	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
133  
134  	total_objects = vfs_pressure_ratio(total_objects);
135  	return total_objects;
136  }
137  
138  static void destroy_super_work(struct work_struct *work)
139  {
140  	struct super_block *s = container_of(work, struct super_block,
141  							destroy_work);
142  	int i;
143  
144  	for (i = 0; i < SB_FREEZE_LEVELS; i++)
145  		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
146  	kfree(s);
147  }
148  
149  static void destroy_super_rcu(struct rcu_head *head)
150  {
151  	struct super_block *s = container_of(head, struct super_block, rcu);
152  	INIT_WORK(&s->destroy_work, destroy_super_work);
153  	schedule_work(&s->destroy_work);
154  }
155  
156  /**
157   *	destroy_super	-	frees a superblock
158   *	@s: superblock to free
159   *
160   *	Frees a superblock.
161   */
162  static void destroy_super(struct super_block *s)
163  {
164  	list_lru_destroy(&s->s_dentry_lru);
165  	list_lru_destroy(&s->s_inode_lru);
166  	security_sb_free(s);
167  	WARN_ON(!list_empty(&s->s_mounts));
168  	kfree(s->s_subtype);
169  	kfree(s->s_options);
170  	call_rcu(&s->rcu, destroy_super_rcu);
171  }
172  
173  /**
174   *	alloc_super	-	create new superblock
175   *	@type:	filesystem type superblock should belong to
176   *	@flags: the mount flags
177   *
178   *	Allocates and initializes a new &struct super_block.  alloc_super()
179   *	returns a pointer new superblock or %NULL if allocation had failed.
180   */
181  static struct super_block *alloc_super(struct file_system_type *type, int flags)
182  {
183  	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
184  	static const struct super_operations default_op;
185  	int i;
186  
187  	if (!s)
188  		return NULL;
189  
190  	INIT_LIST_HEAD(&s->s_mounts);
191  
192  	if (security_sb_alloc(s))
193  		goto fail;
194  
195  	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
196  		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
197  					sb_writers_name[i],
198  					&type->s_writers_key[i]))
199  			goto fail;
200  	}
201  	init_waitqueue_head(&s->s_writers.wait_unfrozen);
202  	s->s_bdi = &noop_backing_dev_info;
203  	s->s_flags = flags;
204  	INIT_HLIST_NODE(&s->s_instances);
205  	INIT_HLIST_BL_HEAD(&s->s_anon);
206  	mutex_init(&s->s_sync_lock);
207  	INIT_LIST_HEAD(&s->s_inodes);
208  	spin_lock_init(&s->s_inode_list_lock);
209  
210  	if (list_lru_init_memcg(&s->s_dentry_lru))
211  		goto fail;
212  	if (list_lru_init_memcg(&s->s_inode_lru))
213  		goto fail;
214  
215  	init_rwsem(&s->s_umount);
216  	lockdep_set_class(&s->s_umount, &type->s_umount_key);
217  	/*
218  	 * sget() can have s_umount recursion.
219  	 *
220  	 * When it cannot find a suitable sb, it allocates a new
221  	 * one (this one), and tries again to find a suitable old
222  	 * one.
223  	 *
224  	 * In case that succeeds, it will acquire the s_umount
225  	 * lock of the old one. Since these are clearly distrinct
226  	 * locks, and this object isn't exposed yet, there's no
227  	 * risk of deadlocks.
228  	 *
229  	 * Annotate this by putting this lock in a different
230  	 * subclass.
231  	 */
232  	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
233  	s->s_count = 1;
234  	atomic_set(&s->s_active, 1);
235  	mutex_init(&s->s_vfs_rename_mutex);
236  	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
237  	mutex_init(&s->s_dquot.dqio_mutex);
238  	mutex_init(&s->s_dquot.dqonoff_mutex);
239  	s->s_maxbytes = MAX_NON_LFS;
240  	s->s_op = &default_op;
241  	s->s_time_gran = 1000000000;
242  	s->cleancache_poolid = CLEANCACHE_NO_POOL;
243  
244  	s->s_shrink.seeks = DEFAULT_SEEKS;
245  	s->s_shrink.scan_objects = super_cache_scan;
246  	s->s_shrink.count_objects = super_cache_count;
247  	s->s_shrink.batch = 1024;
248  	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
249  	return s;
250  
251  fail:
252  	destroy_super(s);
253  	return NULL;
254  }
255  
256  /* Superblock refcounting  */
257  
258  /*
259   * Drop a superblock's refcount.  The caller must hold sb_lock.
260   */
261  static void __put_super(struct super_block *sb)
262  {
263  	if (!--sb->s_count) {
264  		list_del_init(&sb->s_list);
265  		destroy_super(sb);
266  	}
267  }
268  
269  /**
270   *	put_super	-	drop a temporary reference to superblock
271   *	@sb: superblock in question
272   *
273   *	Drops a temporary reference, frees superblock if there's no
274   *	references left.
275   */
276  static void put_super(struct super_block *sb)
277  {
278  	spin_lock(&sb_lock);
279  	__put_super(sb);
280  	spin_unlock(&sb_lock);
281  }
282  
283  
284  /**
285   *	deactivate_locked_super	-	drop an active reference to superblock
286   *	@s: superblock to deactivate
287   *
288   *	Drops an active reference to superblock, converting it into a temprory
289   *	one if there is no other active references left.  In that case we
290   *	tell fs driver to shut it down and drop the temporary reference we
291   *	had just acquired.
292   *
293   *	Caller holds exclusive lock on superblock; that lock is released.
294   */
295  void deactivate_locked_super(struct super_block *s)
296  {
297  	struct file_system_type *fs = s->s_type;
298  	if (atomic_dec_and_test(&s->s_active)) {
299  		cleancache_invalidate_fs(s);
300  		unregister_shrinker(&s->s_shrink);
301  		fs->kill_sb(s);
302  
303  		/*
304  		 * Since list_lru_destroy() may sleep, we cannot call it from
305  		 * put_super(), where we hold the sb_lock. Therefore we destroy
306  		 * the lru lists right now.
307  		 */
308  		list_lru_destroy(&s->s_dentry_lru);
309  		list_lru_destroy(&s->s_inode_lru);
310  
311  		put_filesystem(fs);
312  		put_super(s);
313  	} else {
314  		up_write(&s->s_umount);
315  	}
316  }
317  
318  EXPORT_SYMBOL(deactivate_locked_super);
319  
320  /**
321   *	deactivate_super	-	drop an active reference to superblock
322   *	@s: superblock to deactivate
323   *
324   *	Variant of deactivate_locked_super(), except that superblock is *not*
325   *	locked by caller.  If we are going to drop the final active reference,
326   *	lock will be acquired prior to that.
327   */
328  void deactivate_super(struct super_block *s)
329  {
330          if (!atomic_add_unless(&s->s_active, -1, 1)) {
331  		down_write(&s->s_umount);
332  		deactivate_locked_super(s);
333  	}
334  }
335  
336  EXPORT_SYMBOL(deactivate_super);
337  
338  /**
339   *	grab_super - acquire an active reference
340   *	@s: reference we are trying to make active
341   *
342   *	Tries to acquire an active reference.  grab_super() is used when we
343   * 	had just found a superblock in super_blocks or fs_type->fs_supers
344   *	and want to turn it into a full-blown active reference.  grab_super()
345   *	is called with sb_lock held and drops it.  Returns 1 in case of
346   *	success, 0 if we had failed (superblock contents was already dead or
347   *	dying when grab_super() had been called).  Note that this is only
348   *	called for superblocks not in rundown mode (== ones still on ->fs_supers
349   *	of their type), so increment of ->s_count is OK here.
350   */
351  static int grab_super(struct super_block *s) __releases(sb_lock)
352  {
353  	s->s_count++;
354  	spin_unlock(&sb_lock);
355  	down_write(&s->s_umount);
356  	if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
357  		put_super(s);
358  		return 1;
359  	}
360  	up_write(&s->s_umount);
361  	put_super(s);
362  	return 0;
363  }
364  
365  /*
366   *	trylock_super - try to grab ->s_umount shared
367   *	@sb: reference we are trying to grab
368   *
369   *	Try to prevent fs shutdown.  This is used in places where we
370   *	cannot take an active reference but we need to ensure that the
371   *	filesystem is not shut down while we are working on it. It returns
372   *	false if we cannot acquire s_umount or if we lose the race and
373   *	filesystem already got into shutdown, and returns true with the s_umount
374   *	lock held in read mode in case of success. On successful return,
375   *	the caller must drop the s_umount lock when done.
376   *
377   *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
378   *	The reason why it's safe is that we are OK with doing trylock instead
379   *	of down_read().  There's a couple of places that are OK with that, but
380   *	it's very much not a general-purpose interface.
381   */
382  bool trylock_super(struct super_block *sb)
383  {
384  	if (down_read_trylock(&sb->s_umount)) {
385  		if (!hlist_unhashed(&sb->s_instances) &&
386  		    sb->s_root && (sb->s_flags & MS_BORN))
387  			return true;
388  		up_read(&sb->s_umount);
389  	}
390  
391  	return false;
392  }
393  
394  /**
395   *	generic_shutdown_super	-	common helper for ->kill_sb()
396   *	@sb: superblock to kill
397   *
398   *	generic_shutdown_super() does all fs-independent work on superblock
399   *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
400   *	that need destruction out of superblock, call generic_shutdown_super()
401   *	and release aforementioned objects.  Note: dentries and inodes _are_
402   *	taken care of and do not need specific handling.
403   *
404   *	Upon calling this function, the filesystem may no longer alter or
405   *	rearrange the set of dentries belonging to this super_block, nor may it
406   *	change the attachments of dentries to inodes.
407   */
408  void generic_shutdown_super(struct super_block *sb)
409  {
410  	const struct super_operations *sop = sb->s_op;
411  
412  	if (sb->s_root) {
413  		shrink_dcache_for_umount(sb);
414  		sync_filesystem(sb);
415  		sb->s_flags &= ~MS_ACTIVE;
416  
417  		fsnotify_unmount_inodes(sb);
418  
419  		evict_inodes(sb);
420  
421  		if (sb->s_dio_done_wq) {
422  			destroy_workqueue(sb->s_dio_done_wq);
423  			sb->s_dio_done_wq = NULL;
424  		}
425  
426  		if (sop->put_super)
427  			sop->put_super(sb);
428  
429  		if (!list_empty(&sb->s_inodes)) {
430  			printk("VFS: Busy inodes after unmount of %s. "
431  			   "Self-destruct in 5 seconds.  Have a nice day...\n",
432  			   sb->s_id);
433  		}
434  	}
435  	spin_lock(&sb_lock);
436  	/* should be initialized for __put_super_and_need_restart() */
437  	hlist_del_init(&sb->s_instances);
438  	spin_unlock(&sb_lock);
439  	up_write(&sb->s_umount);
440  }
441  
442  EXPORT_SYMBOL(generic_shutdown_super);
443  
444  /**
445   *	sget	-	find or create a superblock
446   *	@type:	filesystem type superblock should belong to
447   *	@test:	comparison callback
448   *	@set:	setup callback
449   *	@flags:	mount flags
450   *	@data:	argument to each of them
451   */
452  struct super_block *sget(struct file_system_type *type,
453  			int (*test)(struct super_block *,void *),
454  			int (*set)(struct super_block *,void *),
455  			int flags,
456  			void *data)
457  {
458  	struct super_block *s = NULL;
459  	struct super_block *old;
460  	int err;
461  
462  retry:
463  	spin_lock(&sb_lock);
464  	if (test) {
465  		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
466  			if (!test(old, data))
467  				continue;
468  			if (!grab_super(old))
469  				goto retry;
470  			if (s) {
471  				up_write(&s->s_umount);
472  				destroy_super(s);
473  				s = NULL;
474  			}
475  			return old;
476  		}
477  	}
478  	if (!s) {
479  		spin_unlock(&sb_lock);
480  		s = alloc_super(type, flags);
481  		if (!s)
482  			return ERR_PTR(-ENOMEM);
483  		goto retry;
484  	}
485  
486  	err = set(s, data);
487  	if (err) {
488  		spin_unlock(&sb_lock);
489  		up_write(&s->s_umount);
490  		destroy_super(s);
491  		return ERR_PTR(err);
492  	}
493  	s->s_type = type;
494  	strlcpy(s->s_id, type->name, sizeof(s->s_id));
495  	list_add_tail(&s->s_list, &super_blocks);
496  	hlist_add_head(&s->s_instances, &type->fs_supers);
497  	spin_unlock(&sb_lock);
498  	get_filesystem(type);
499  	register_shrinker(&s->s_shrink);
500  	return s;
501  }
502  
503  EXPORT_SYMBOL(sget);
504  
505  void drop_super(struct super_block *sb)
506  {
507  	up_read(&sb->s_umount);
508  	put_super(sb);
509  }
510  
511  EXPORT_SYMBOL(drop_super);
512  
513  /**
514   *	iterate_supers - call function for all active superblocks
515   *	@f: function to call
516   *	@arg: argument to pass to it
517   *
518   *	Scans the superblock list and calls given function, passing it
519   *	locked superblock and given argument.
520   */
521  void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
522  {
523  	struct super_block *sb, *p = NULL;
524  
525  	spin_lock(&sb_lock);
526  	list_for_each_entry(sb, &super_blocks, s_list) {
527  		if (hlist_unhashed(&sb->s_instances))
528  			continue;
529  		sb->s_count++;
530  		spin_unlock(&sb_lock);
531  
532  		down_read(&sb->s_umount);
533  		if (sb->s_root && (sb->s_flags & MS_BORN))
534  			f(sb, arg);
535  		up_read(&sb->s_umount);
536  
537  		spin_lock(&sb_lock);
538  		if (p)
539  			__put_super(p);
540  		p = sb;
541  	}
542  	if (p)
543  		__put_super(p);
544  	spin_unlock(&sb_lock);
545  }
546  
547  /**
548   *	iterate_supers_type - call function for superblocks of given type
549   *	@type: fs type
550   *	@f: function to call
551   *	@arg: argument to pass to it
552   *
553   *	Scans the superblock list and calls given function, passing it
554   *	locked superblock and given argument.
555   */
556  void iterate_supers_type(struct file_system_type *type,
557  	void (*f)(struct super_block *, void *), void *arg)
558  {
559  	struct super_block *sb, *p = NULL;
560  
561  	spin_lock(&sb_lock);
562  	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
563  		sb->s_count++;
564  		spin_unlock(&sb_lock);
565  
566  		down_read(&sb->s_umount);
567  		if (sb->s_root && (sb->s_flags & MS_BORN))
568  			f(sb, arg);
569  		up_read(&sb->s_umount);
570  
571  		spin_lock(&sb_lock);
572  		if (p)
573  			__put_super(p);
574  		p = sb;
575  	}
576  	if (p)
577  		__put_super(p);
578  	spin_unlock(&sb_lock);
579  }
580  
581  EXPORT_SYMBOL(iterate_supers_type);
582  
583  /**
584   *	get_super - get the superblock of a device
585   *	@bdev: device to get the superblock for
586   *
587   *	Scans the superblock list and finds the superblock of the file system
588   *	mounted on the device given. %NULL is returned if no match is found.
589   */
590  
591  struct super_block *get_super(struct block_device *bdev)
592  {
593  	struct super_block *sb;
594  
595  	if (!bdev)
596  		return NULL;
597  
598  	spin_lock(&sb_lock);
599  rescan:
600  	list_for_each_entry(sb, &super_blocks, s_list) {
601  		if (hlist_unhashed(&sb->s_instances))
602  			continue;
603  		if (sb->s_bdev == bdev) {
604  			sb->s_count++;
605  			spin_unlock(&sb_lock);
606  			down_read(&sb->s_umount);
607  			/* still alive? */
608  			if (sb->s_root && (sb->s_flags & MS_BORN))
609  				return sb;
610  			up_read(&sb->s_umount);
611  			/* nope, got unmounted */
612  			spin_lock(&sb_lock);
613  			__put_super(sb);
614  			goto rescan;
615  		}
616  	}
617  	spin_unlock(&sb_lock);
618  	return NULL;
619  }
620  
621  EXPORT_SYMBOL(get_super);
622  
623  /**
624   *	get_super_thawed - get thawed superblock of a device
625   *	@bdev: device to get the superblock for
626   *
627   *	Scans the superblock list and finds the superblock of the file system
628   *	mounted on the device. The superblock is returned once it is thawed
629   *	(or immediately if it was not frozen). %NULL is returned if no match
630   *	is found.
631   */
632  struct super_block *get_super_thawed(struct block_device *bdev)
633  {
634  	while (1) {
635  		struct super_block *s = get_super(bdev);
636  		if (!s || s->s_writers.frozen == SB_UNFROZEN)
637  			return s;
638  		up_read(&s->s_umount);
639  		wait_event(s->s_writers.wait_unfrozen,
640  			   s->s_writers.frozen == SB_UNFROZEN);
641  		put_super(s);
642  	}
643  }
644  EXPORT_SYMBOL(get_super_thawed);
645  
646  /**
647   * get_active_super - get an active reference to the superblock of a device
648   * @bdev: device to get the superblock for
649   *
650   * Scans the superblock list and finds the superblock of the file system
651   * mounted on the device given.  Returns the superblock with an active
652   * reference or %NULL if none was found.
653   */
654  struct super_block *get_active_super(struct block_device *bdev)
655  {
656  	struct super_block *sb;
657  
658  	if (!bdev)
659  		return NULL;
660  
661  restart:
662  	spin_lock(&sb_lock);
663  	list_for_each_entry(sb, &super_blocks, s_list) {
664  		if (hlist_unhashed(&sb->s_instances))
665  			continue;
666  		if (sb->s_bdev == bdev) {
667  			if (!grab_super(sb))
668  				goto restart;
669  			up_write(&sb->s_umount);
670  			return sb;
671  		}
672  	}
673  	spin_unlock(&sb_lock);
674  	return NULL;
675  }
676  
677  struct super_block *user_get_super(dev_t dev)
678  {
679  	struct super_block *sb;
680  
681  	spin_lock(&sb_lock);
682  rescan:
683  	list_for_each_entry(sb, &super_blocks, s_list) {
684  		if (hlist_unhashed(&sb->s_instances))
685  			continue;
686  		if (sb->s_dev ==  dev) {
687  			sb->s_count++;
688  			spin_unlock(&sb_lock);
689  			down_read(&sb->s_umount);
690  			/* still alive? */
691  			if (sb->s_root && (sb->s_flags & MS_BORN))
692  				return sb;
693  			up_read(&sb->s_umount);
694  			/* nope, got unmounted */
695  			spin_lock(&sb_lock);
696  			__put_super(sb);
697  			goto rescan;
698  		}
699  	}
700  	spin_unlock(&sb_lock);
701  	return NULL;
702  }
703  
704  /**
705   *	do_remount_sb - asks filesystem to change mount options.
706   *	@sb:	superblock in question
707   *	@flags:	numeric part of options
708   *	@data:	the rest of options
709   *      @force: whether or not to force the change
710   *
711   *	Alters the mount options of a mounted file system.
712   */
713  int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
714  {
715  	int retval;
716  	int remount_ro;
717  
718  	if (sb->s_writers.frozen != SB_UNFROZEN)
719  		return -EBUSY;
720  
721  #ifdef CONFIG_BLOCK
722  	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
723  		return -EACCES;
724  #endif
725  
726  	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
727  
728  	if (remount_ro) {
729  		if (!hlist_empty(&sb->s_pins)) {
730  			up_write(&sb->s_umount);
731  			group_pin_kill(&sb->s_pins);
732  			down_write(&sb->s_umount);
733  			if (!sb->s_root)
734  				return 0;
735  			if (sb->s_writers.frozen != SB_UNFROZEN)
736  				return -EBUSY;
737  			remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
738  		}
739  	}
740  	shrink_dcache_sb(sb);
741  
742  	/* If we are remounting RDONLY and current sb is read/write,
743  	   make sure there are no rw files opened */
744  	if (remount_ro) {
745  		if (force) {
746  			sb->s_readonly_remount = 1;
747  			smp_wmb();
748  		} else {
749  			retval = sb_prepare_remount_readonly(sb);
750  			if (retval)
751  				return retval;
752  		}
753  	}
754  
755  	if (sb->s_op->remount_fs) {
756  		retval = sb->s_op->remount_fs(sb, &flags, data);
757  		if (retval) {
758  			if (!force)
759  				goto cancel_readonly;
760  			/* If forced remount, go ahead despite any errors */
761  			WARN(1, "forced remount of a %s fs returned %i\n",
762  			     sb->s_type->name, retval);
763  		}
764  	}
765  	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
766  	/* Needs to be ordered wrt mnt_is_readonly() */
767  	smp_wmb();
768  	sb->s_readonly_remount = 0;
769  
770  	/*
771  	 * Some filesystems modify their metadata via some other path than the
772  	 * bdev buffer cache (eg. use a private mapping, or directories in
773  	 * pagecache, etc). Also file data modifications go via their own
774  	 * mappings. So If we try to mount readonly then copy the filesystem
775  	 * from bdev, we could get stale data, so invalidate it to give a best
776  	 * effort at coherency.
777  	 */
778  	if (remount_ro && sb->s_bdev)
779  		invalidate_bdev(sb->s_bdev);
780  	return 0;
781  
782  cancel_readonly:
783  	sb->s_readonly_remount = 0;
784  	return retval;
785  }
786  
787  static void do_emergency_remount(struct work_struct *work)
788  {
789  	struct super_block *sb, *p = NULL;
790  
791  	spin_lock(&sb_lock);
792  	list_for_each_entry(sb, &super_blocks, s_list) {
793  		if (hlist_unhashed(&sb->s_instances))
794  			continue;
795  		sb->s_count++;
796  		spin_unlock(&sb_lock);
797  		down_write(&sb->s_umount);
798  		if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
799  		    !(sb->s_flags & MS_RDONLY)) {
800  			/*
801  			 * What lock protects sb->s_flags??
802  			 */
803  			do_remount_sb(sb, MS_RDONLY, NULL, 1);
804  		}
805  		up_write(&sb->s_umount);
806  		spin_lock(&sb_lock);
807  		if (p)
808  			__put_super(p);
809  		p = sb;
810  	}
811  	if (p)
812  		__put_super(p);
813  	spin_unlock(&sb_lock);
814  	kfree(work);
815  	printk("Emergency Remount complete\n");
816  }
817  
818  void emergency_remount(void)
819  {
820  	struct work_struct *work;
821  
822  	work = kmalloc(sizeof(*work), GFP_ATOMIC);
823  	if (work) {
824  		INIT_WORK(work, do_emergency_remount);
825  		schedule_work(work);
826  	}
827  }
828  
829  /*
830   * Unnamed block devices are dummy devices used by virtual
831   * filesystems which don't use real block-devices.  -- jrs
832   */
833  
834  static DEFINE_IDA(unnamed_dev_ida);
835  static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
836  /* Many userspace utilities consider an FSID of 0 invalid.
837   * Always return at least 1 from get_anon_bdev.
838   */
839  static int unnamed_dev_start = 1;
840  
841  int get_anon_bdev(dev_t *p)
842  {
843  	int dev;
844  	int error;
845  
846   retry:
847  	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
848  		return -ENOMEM;
849  	spin_lock(&unnamed_dev_lock);
850  	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
851  	if (!error)
852  		unnamed_dev_start = dev + 1;
853  	spin_unlock(&unnamed_dev_lock);
854  	if (error == -EAGAIN)
855  		/* We raced and lost with another CPU. */
856  		goto retry;
857  	else if (error)
858  		return -EAGAIN;
859  
860  	if (dev >= (1 << MINORBITS)) {
861  		spin_lock(&unnamed_dev_lock);
862  		ida_remove(&unnamed_dev_ida, dev);
863  		if (unnamed_dev_start > dev)
864  			unnamed_dev_start = dev;
865  		spin_unlock(&unnamed_dev_lock);
866  		return -EMFILE;
867  	}
868  	*p = MKDEV(0, dev & MINORMASK);
869  	return 0;
870  }
871  EXPORT_SYMBOL(get_anon_bdev);
872  
873  void free_anon_bdev(dev_t dev)
874  {
875  	int slot = MINOR(dev);
876  	spin_lock(&unnamed_dev_lock);
877  	ida_remove(&unnamed_dev_ida, slot);
878  	if (slot < unnamed_dev_start)
879  		unnamed_dev_start = slot;
880  	spin_unlock(&unnamed_dev_lock);
881  }
882  EXPORT_SYMBOL(free_anon_bdev);
883  
884  int set_anon_super(struct super_block *s, void *data)
885  {
886  	return get_anon_bdev(&s->s_dev);
887  }
888  
889  EXPORT_SYMBOL(set_anon_super);
890  
891  void kill_anon_super(struct super_block *sb)
892  {
893  	dev_t dev = sb->s_dev;
894  	generic_shutdown_super(sb);
895  	free_anon_bdev(dev);
896  }
897  
898  EXPORT_SYMBOL(kill_anon_super);
899  
900  void kill_litter_super(struct super_block *sb)
901  {
902  	if (sb->s_root)
903  		d_genocide(sb->s_root);
904  	kill_anon_super(sb);
905  }
906  
907  EXPORT_SYMBOL(kill_litter_super);
908  
909  static int ns_test_super(struct super_block *sb, void *data)
910  {
911  	return sb->s_fs_info == data;
912  }
913  
914  static int ns_set_super(struct super_block *sb, void *data)
915  {
916  	sb->s_fs_info = data;
917  	return set_anon_super(sb, NULL);
918  }
919  
920  struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
921  	void *data, int (*fill_super)(struct super_block *, void *, int))
922  {
923  	struct super_block *sb;
924  
925  	sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
926  	if (IS_ERR(sb))
927  		return ERR_CAST(sb);
928  
929  	if (!sb->s_root) {
930  		int err;
931  		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
932  		if (err) {
933  			deactivate_locked_super(sb);
934  			return ERR_PTR(err);
935  		}
936  
937  		sb->s_flags |= MS_ACTIVE;
938  	}
939  
940  	return dget(sb->s_root);
941  }
942  
943  EXPORT_SYMBOL(mount_ns);
944  
945  #ifdef CONFIG_BLOCK
946  static int set_bdev_super(struct super_block *s, void *data)
947  {
948  	s->s_bdev = data;
949  	s->s_dev = s->s_bdev->bd_dev;
950  
951  	/*
952  	 * We set the bdi here to the queue backing, file systems can
953  	 * overwrite this in ->fill_super()
954  	 */
955  	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
956  	return 0;
957  }
958  
959  static int test_bdev_super(struct super_block *s, void *data)
960  {
961  	return (void *)s->s_bdev == data;
962  }
963  
964  struct dentry *mount_bdev(struct file_system_type *fs_type,
965  	int flags, const char *dev_name, void *data,
966  	int (*fill_super)(struct super_block *, void *, int))
967  {
968  	struct block_device *bdev;
969  	struct super_block *s;
970  	fmode_t mode = FMODE_READ | FMODE_EXCL;
971  	int error = 0;
972  
973  	if (!(flags & MS_RDONLY))
974  		mode |= FMODE_WRITE;
975  
976  	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
977  	if (IS_ERR(bdev))
978  		return ERR_CAST(bdev);
979  
980  	/*
981  	 * once the super is inserted into the list by sget, s_umount
982  	 * will protect the lockfs code from trying to start a snapshot
983  	 * while we are mounting
984  	 */
985  	mutex_lock(&bdev->bd_fsfreeze_mutex);
986  	if (bdev->bd_fsfreeze_count > 0) {
987  		mutex_unlock(&bdev->bd_fsfreeze_mutex);
988  		error = -EBUSY;
989  		goto error_bdev;
990  	}
991  	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
992  		 bdev);
993  	mutex_unlock(&bdev->bd_fsfreeze_mutex);
994  	if (IS_ERR(s))
995  		goto error_s;
996  
997  	if (s->s_root) {
998  		if ((flags ^ s->s_flags) & MS_RDONLY) {
999  			deactivate_locked_super(s);
1000  			error = -EBUSY;
1001  			goto error_bdev;
1002  		}
1003  
1004  		/*
1005  		 * s_umount nests inside bd_mutex during
1006  		 * __invalidate_device().  blkdev_put() acquires
1007  		 * bd_mutex and can't be called under s_umount.  Drop
1008  		 * s_umount temporarily.  This is safe as we're
1009  		 * holding an active reference.
1010  		 */
1011  		up_write(&s->s_umount);
1012  		blkdev_put(bdev, mode);
1013  		down_write(&s->s_umount);
1014  	} else {
1015  		char b[BDEVNAME_SIZE];
1016  
1017  		s->s_mode = mode;
1018  		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1019  		sb_set_blocksize(s, block_size(bdev));
1020  		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1021  		if (error) {
1022  			deactivate_locked_super(s);
1023  			goto error;
1024  		}
1025  
1026  		s->s_flags |= MS_ACTIVE;
1027  		bdev->bd_super = s;
1028  	}
1029  
1030  	return dget(s->s_root);
1031  
1032  error_s:
1033  	error = PTR_ERR(s);
1034  error_bdev:
1035  	blkdev_put(bdev, mode);
1036  error:
1037  	return ERR_PTR(error);
1038  }
1039  EXPORT_SYMBOL(mount_bdev);
1040  
1041  void kill_block_super(struct super_block *sb)
1042  {
1043  	struct block_device *bdev = sb->s_bdev;
1044  	fmode_t mode = sb->s_mode;
1045  
1046  	bdev->bd_super = NULL;
1047  	generic_shutdown_super(sb);
1048  	sync_blockdev(bdev);
1049  	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1050  	blkdev_put(bdev, mode | FMODE_EXCL);
1051  }
1052  
1053  EXPORT_SYMBOL(kill_block_super);
1054  #endif
1055  
1056  struct dentry *mount_nodev(struct file_system_type *fs_type,
1057  	int flags, void *data,
1058  	int (*fill_super)(struct super_block *, void *, int))
1059  {
1060  	int error;
1061  	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1062  
1063  	if (IS_ERR(s))
1064  		return ERR_CAST(s);
1065  
1066  	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1067  	if (error) {
1068  		deactivate_locked_super(s);
1069  		return ERR_PTR(error);
1070  	}
1071  	s->s_flags |= MS_ACTIVE;
1072  	return dget(s->s_root);
1073  }
1074  EXPORT_SYMBOL(mount_nodev);
1075  
1076  static int compare_single(struct super_block *s, void *p)
1077  {
1078  	return 1;
1079  }
1080  
1081  struct dentry *mount_single(struct file_system_type *fs_type,
1082  	int flags, void *data,
1083  	int (*fill_super)(struct super_block *, void *, int))
1084  {
1085  	struct super_block *s;
1086  	int error;
1087  
1088  	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1089  	if (IS_ERR(s))
1090  		return ERR_CAST(s);
1091  	if (!s->s_root) {
1092  		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1093  		if (error) {
1094  			deactivate_locked_super(s);
1095  			return ERR_PTR(error);
1096  		}
1097  		s->s_flags |= MS_ACTIVE;
1098  	} else {
1099  		do_remount_sb(s, flags, data, 0);
1100  	}
1101  	return dget(s->s_root);
1102  }
1103  EXPORT_SYMBOL(mount_single);
1104  
1105  struct dentry *
1106  mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1107  {
1108  	struct dentry *root;
1109  	struct super_block *sb;
1110  	char *secdata = NULL;
1111  	int error = -ENOMEM;
1112  
1113  	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1114  		secdata = alloc_secdata();
1115  		if (!secdata)
1116  			goto out;
1117  
1118  		error = security_sb_copy_data(data, secdata);
1119  		if (error)
1120  			goto out_free_secdata;
1121  	}
1122  
1123  	root = type->mount(type, flags, name, data);
1124  	if (IS_ERR(root)) {
1125  		error = PTR_ERR(root);
1126  		goto out_free_secdata;
1127  	}
1128  	sb = root->d_sb;
1129  	BUG_ON(!sb);
1130  	WARN_ON(!sb->s_bdi);
1131  	sb->s_flags |= MS_BORN;
1132  
1133  	error = security_sb_kern_mount(sb, flags, secdata);
1134  	if (error)
1135  		goto out_sb;
1136  
1137  	/*
1138  	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1139  	 * but s_maxbytes was an unsigned long long for many releases. Throw
1140  	 * this warning for a little while to try and catch filesystems that
1141  	 * violate this rule.
1142  	 */
1143  	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1144  		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1145  
1146  	up_write(&sb->s_umount);
1147  	free_secdata(secdata);
1148  	return root;
1149  out_sb:
1150  	dput(root);
1151  	deactivate_locked_super(sb);
1152  out_free_secdata:
1153  	free_secdata(secdata);
1154  out:
1155  	return ERR_PTR(error);
1156  }
1157  
1158  /*
1159   * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1160   * instead.
1161   */
1162  void __sb_end_write(struct super_block *sb, int level)
1163  {
1164  	percpu_up_read(sb->s_writers.rw_sem + level-1);
1165  }
1166  EXPORT_SYMBOL(__sb_end_write);
1167  
1168  /*
1169   * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1170   * instead.
1171   */
1172  int __sb_start_write(struct super_block *sb, int level, bool wait)
1173  {
1174  	bool force_trylock = false;
1175  	int ret = 1;
1176  
1177  #ifdef CONFIG_LOCKDEP
1178  	/*
1179  	 * We want lockdep to tell us about possible deadlocks with freezing
1180  	 * but it's it bit tricky to properly instrument it. Getting a freeze
1181  	 * protection works as getting a read lock but there are subtle
1182  	 * problems. XFS for example gets freeze protection on internal level
1183  	 * twice in some cases, which is OK only because we already hold a
1184  	 * freeze protection also on higher level. Due to these cases we have
1185  	 * to use wait == F (trylock mode) which must not fail.
1186  	 */
1187  	if (wait) {
1188  		int i;
1189  
1190  		for (i = 0; i < level - 1; i++)
1191  			if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1192  				force_trylock = true;
1193  				break;
1194  			}
1195  	}
1196  #endif
1197  	if (wait && !force_trylock)
1198  		percpu_down_read(sb->s_writers.rw_sem + level-1);
1199  	else
1200  		ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1201  
1202  	WARN_ON(force_trylock & !ret);
1203  	return ret;
1204  }
1205  EXPORT_SYMBOL(__sb_start_write);
1206  
1207  /**
1208   * sb_wait_write - wait until all writers to given file system finish
1209   * @sb: the super for which we wait
1210   * @level: type of writers we wait for (normal vs page fault)
1211   *
1212   * This function waits until there are no writers of given type to given file
1213   * system.
1214   */
1215  static void sb_wait_write(struct super_block *sb, int level)
1216  {
1217  	percpu_down_write(sb->s_writers.rw_sem + level-1);
1218  	/*
1219  	 * We are going to return to userspace and forget about this lock, the
1220  	 * ownership goes to the caller of thaw_super() which does unlock.
1221  	 *
1222  	 * FIXME: we should do this before return from freeze_super() after we
1223  	 * called sync_filesystem(sb) and s_op->freeze_fs(sb), and thaw_super()
1224  	 * should re-acquire these locks before s_op->unfreeze_fs(sb). However
1225  	 * this leads to lockdep false-positives, so currently we do the early
1226  	 * release right after acquire.
1227  	 */
1228  	percpu_rwsem_release(sb->s_writers.rw_sem + level-1, 0, _THIS_IP_);
1229  }
1230  
1231  static void sb_freeze_unlock(struct super_block *sb)
1232  {
1233  	int level;
1234  
1235  	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1236  		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1237  
1238  	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1239  		percpu_up_write(sb->s_writers.rw_sem + level);
1240  }
1241  
1242  /**
1243   * freeze_super - lock the filesystem and force it into a consistent state
1244   * @sb: the super to lock
1245   *
1246   * Syncs the super to make sure the filesystem is consistent and calls the fs's
1247   * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1248   * -EBUSY.
1249   *
1250   * During this function, sb->s_writers.frozen goes through these values:
1251   *
1252   * SB_UNFROZEN: File system is normal, all writes progress as usual.
1253   *
1254   * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1255   * writes should be blocked, though page faults are still allowed. We wait for
1256   * all writes to complete and then proceed to the next stage.
1257   *
1258   * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1259   * but internal fs threads can still modify the filesystem (although they
1260   * should not dirty new pages or inodes), writeback can run etc. After waiting
1261   * for all running page faults we sync the filesystem which will clean all
1262   * dirty pages and inodes (no new dirty pages or inodes can be created when
1263   * sync is running).
1264   *
1265   * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1266   * modification are blocked (e.g. XFS preallocation truncation on inode
1267   * reclaim). This is usually implemented by blocking new transactions for
1268   * filesystems that have them and need this additional guard. After all
1269   * internal writers are finished we call ->freeze_fs() to finish filesystem
1270   * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1271   * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1272   *
1273   * sb->s_writers.frozen is protected by sb->s_umount.
1274   */
1275  int freeze_super(struct super_block *sb)
1276  {
1277  	int ret;
1278  
1279  	atomic_inc(&sb->s_active);
1280  	down_write(&sb->s_umount);
1281  	if (sb->s_writers.frozen != SB_UNFROZEN) {
1282  		deactivate_locked_super(sb);
1283  		return -EBUSY;
1284  	}
1285  
1286  	if (!(sb->s_flags & MS_BORN)) {
1287  		up_write(&sb->s_umount);
1288  		return 0;	/* sic - it's "nothing to do" */
1289  	}
1290  
1291  	if (sb->s_flags & MS_RDONLY) {
1292  		/* Nothing to do really... */
1293  		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1294  		up_write(&sb->s_umount);
1295  		return 0;
1296  	}
1297  
1298  	sb->s_writers.frozen = SB_FREEZE_WRITE;
1299  	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1300  	up_write(&sb->s_umount);
1301  	sb_wait_write(sb, SB_FREEZE_WRITE);
1302  	down_write(&sb->s_umount);
1303  
1304  	/* Now we go and block page faults... */
1305  	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1306  	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1307  
1308  	/* All writers are done so after syncing there won't be dirty data */
1309  	sync_filesystem(sb);
1310  
1311  	/* Now wait for internal filesystem counter */
1312  	sb->s_writers.frozen = SB_FREEZE_FS;
1313  	sb_wait_write(sb, SB_FREEZE_FS);
1314  
1315  	if (sb->s_op->freeze_fs) {
1316  		ret = sb->s_op->freeze_fs(sb);
1317  		if (ret) {
1318  			printk(KERN_ERR
1319  				"VFS:Filesystem freeze failed\n");
1320  			sb->s_writers.frozen = SB_UNFROZEN;
1321  			sb_freeze_unlock(sb);
1322  			wake_up(&sb->s_writers.wait_unfrozen);
1323  			deactivate_locked_super(sb);
1324  			return ret;
1325  		}
1326  	}
1327  	/*
1328  	 * This is just for debugging purposes so that fs can warn if it
1329  	 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1330  	 */
1331  	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1332  	up_write(&sb->s_umount);
1333  	return 0;
1334  }
1335  EXPORT_SYMBOL(freeze_super);
1336  
1337  /**
1338   * thaw_super -- unlock filesystem
1339   * @sb: the super to thaw
1340   *
1341   * Unlocks the filesystem and marks it writeable again after freeze_super().
1342   */
1343  int thaw_super(struct super_block *sb)
1344  {
1345  	int error;
1346  
1347  	down_write(&sb->s_umount);
1348  	if (sb->s_writers.frozen == SB_UNFROZEN) {
1349  		up_write(&sb->s_umount);
1350  		return -EINVAL;
1351  	}
1352  
1353  	if (sb->s_flags & MS_RDONLY) {
1354  		sb->s_writers.frozen = SB_UNFROZEN;
1355  		goto out;
1356  	}
1357  
1358  	if (sb->s_op->unfreeze_fs) {
1359  		error = sb->s_op->unfreeze_fs(sb);
1360  		if (error) {
1361  			printk(KERN_ERR
1362  				"VFS:Filesystem thaw failed\n");
1363  			up_write(&sb->s_umount);
1364  			return error;
1365  		}
1366  	}
1367  
1368  	sb->s_writers.frozen = SB_UNFROZEN;
1369  	sb_freeze_unlock(sb);
1370  out:
1371  	wake_up(&sb->s_writers.wait_unfrozen);
1372  	deactivate_locked_super(sb);
1373  	return 0;
1374  }
1375  EXPORT_SYMBOL(thaw_super);
1376