xref: /openbmc/linux/fs/super.c (revision 1b36955c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/super.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  super.c contains code to handle: - mount structures
8  *                                   - super-block tables
9  *                                   - filesystem drivers list
10  *                                   - mount system call
11  *                                   - umount system call
12  *                                   - ustat system call
13  *
14  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
15  *
16  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18  *  Added options to /proc/mounts:
19  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22  */
23 
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/fscrypt.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include <linux/fs_context.h>
39 #include <uapi/linux/mount.h>
40 #include "internal.h"
41 
42 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who);
43 
44 static LIST_HEAD(super_blocks);
45 static DEFINE_SPINLOCK(sb_lock);
46 
47 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
48 	"sb_writers",
49 	"sb_pagefaults",
50 	"sb_internal",
51 };
52 
53 static inline void __super_lock(struct super_block *sb, bool excl)
54 {
55 	if (excl)
56 		down_write(&sb->s_umount);
57 	else
58 		down_read(&sb->s_umount);
59 }
60 
61 static inline void super_unlock(struct super_block *sb, bool excl)
62 {
63 	if (excl)
64 		up_write(&sb->s_umount);
65 	else
66 		up_read(&sb->s_umount);
67 }
68 
69 static inline void __super_lock_excl(struct super_block *sb)
70 {
71 	__super_lock(sb, true);
72 }
73 
74 static inline void super_unlock_excl(struct super_block *sb)
75 {
76 	super_unlock(sb, true);
77 }
78 
79 static inline void super_unlock_shared(struct super_block *sb)
80 {
81 	super_unlock(sb, false);
82 }
83 
84 static inline bool wait_born(struct super_block *sb)
85 {
86 	unsigned int flags;
87 
88 	/*
89 	 * Pairs with smp_store_release() in super_wake() and ensures
90 	 * that we see SB_BORN or SB_DYING after we're woken.
91 	 */
92 	flags = smp_load_acquire(&sb->s_flags);
93 	return flags & (SB_BORN | SB_DYING);
94 }
95 
96 /**
97  * super_lock - wait for superblock to become ready and lock it
98  * @sb: superblock to wait for
99  * @excl: whether exclusive access is required
100  *
101  * If the superblock has neither passed through vfs_get_tree() or
102  * generic_shutdown_super() yet wait for it to happen. Either superblock
103  * creation will succeed and SB_BORN is set by vfs_get_tree() or we're
104  * woken and we'll see SB_DYING.
105  *
106  * The caller must have acquired a temporary reference on @sb->s_count.
107  *
108  * Return: This returns true if SB_BORN was set, false if SB_DYING was
109  *         set. The function acquires s_umount and returns with it held.
110  */
111 static __must_check bool super_lock(struct super_block *sb, bool excl)
112 {
113 
114 	lockdep_assert_not_held(&sb->s_umount);
115 
116 relock:
117 	__super_lock(sb, excl);
118 
119 	/*
120 	 * Has gone through generic_shutdown_super() in the meantime.
121 	 * @sb->s_root is NULL and @sb->s_active is 0. No one needs to
122 	 * grab a reference to this. Tell them so.
123 	 */
124 	if (sb->s_flags & SB_DYING)
125 		return false;
126 
127 	/* Has called ->get_tree() successfully. */
128 	if (sb->s_flags & SB_BORN)
129 		return true;
130 
131 	super_unlock(sb, excl);
132 
133 	/* wait until the superblock is ready or dying */
134 	wait_var_event(&sb->s_flags, wait_born(sb));
135 
136 	/*
137 	 * Neither SB_BORN nor SB_DYING are ever unset so we never loop.
138 	 * Just reacquire @sb->s_umount for the caller.
139 	 */
140 	goto relock;
141 }
142 
143 /* wait and acquire read-side of @sb->s_umount */
144 static inline bool super_lock_shared(struct super_block *sb)
145 {
146 	return super_lock(sb, false);
147 }
148 
149 /* wait and acquire write-side of @sb->s_umount */
150 static inline bool super_lock_excl(struct super_block *sb)
151 {
152 	return super_lock(sb, true);
153 }
154 
155 /* wake waiters */
156 #define SUPER_WAKE_FLAGS (SB_BORN | SB_DYING | SB_DEAD)
157 static void super_wake(struct super_block *sb, unsigned int flag)
158 {
159 	WARN_ON_ONCE((flag & ~SUPER_WAKE_FLAGS));
160 	WARN_ON_ONCE(hweight32(flag & SUPER_WAKE_FLAGS) > 1);
161 
162 	/*
163 	 * Pairs with smp_load_acquire() in super_lock() to make sure
164 	 * all initializations in the superblock are seen by the user
165 	 * seeing SB_BORN sent.
166 	 */
167 	smp_store_release(&sb->s_flags, sb->s_flags | flag);
168 	/*
169 	 * Pairs with the barrier in prepare_to_wait_event() to make sure
170 	 * ___wait_var_event() either sees SB_BORN set or
171 	 * waitqueue_active() check in wake_up_var() sees the waiter.
172 	 */
173 	smp_mb();
174 	wake_up_var(&sb->s_flags);
175 }
176 
177 /*
178  * One thing we have to be careful of with a per-sb shrinker is that we don't
179  * drop the last active reference to the superblock from within the shrinker.
180  * If that happens we could trigger unregistering the shrinker from within the
181  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
182  * take a passive reference to the superblock to avoid this from occurring.
183  */
184 static unsigned long super_cache_scan(struct shrinker *shrink,
185 				      struct shrink_control *sc)
186 {
187 	struct super_block *sb;
188 	long	fs_objects = 0;
189 	long	total_objects;
190 	long	freed = 0;
191 	long	dentries;
192 	long	inodes;
193 
194 	sb = container_of(shrink, struct super_block, s_shrink);
195 
196 	/*
197 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
198 	 * to recurse into the FS that called us in clear_inode() and friends..
199 	 */
200 	if (!(sc->gfp_mask & __GFP_FS))
201 		return SHRINK_STOP;
202 
203 	if (!super_trylock_shared(sb))
204 		return SHRINK_STOP;
205 
206 	if (sb->s_op->nr_cached_objects)
207 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
208 
209 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
210 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
211 	total_objects = dentries + inodes + fs_objects + 1;
212 	if (!total_objects)
213 		total_objects = 1;
214 
215 	/* proportion the scan between the caches */
216 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
217 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
218 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
219 
220 	/*
221 	 * prune the dcache first as the icache is pinned by it, then
222 	 * prune the icache, followed by the filesystem specific caches
223 	 *
224 	 * Ensure that we always scan at least one object - memcg kmem
225 	 * accounting uses this to fully empty the caches.
226 	 */
227 	sc->nr_to_scan = dentries + 1;
228 	freed = prune_dcache_sb(sb, sc);
229 	sc->nr_to_scan = inodes + 1;
230 	freed += prune_icache_sb(sb, sc);
231 
232 	if (fs_objects) {
233 		sc->nr_to_scan = fs_objects + 1;
234 		freed += sb->s_op->free_cached_objects(sb, sc);
235 	}
236 
237 	super_unlock_shared(sb);
238 	return freed;
239 }
240 
241 static unsigned long super_cache_count(struct shrinker *shrink,
242 				       struct shrink_control *sc)
243 {
244 	struct super_block *sb;
245 	long	total_objects = 0;
246 
247 	sb = container_of(shrink, struct super_block, s_shrink);
248 
249 	/*
250 	 * We don't call super_trylock_shared() here as it is a scalability
251 	 * bottleneck, so we're exposed to partial setup state. The shrinker
252 	 * rwsem does not protect filesystem operations backing
253 	 * list_lru_shrink_count() or s_op->nr_cached_objects(). Counts can
254 	 * change between super_cache_count and super_cache_scan, so we really
255 	 * don't need locks here.
256 	 *
257 	 * However, if we are currently mounting the superblock, the underlying
258 	 * filesystem might be in a state of partial construction and hence it
259 	 * is dangerous to access it.  super_trylock_shared() uses a SB_BORN check
260 	 * to avoid this situation, so do the same here. The memory barrier is
261 	 * matched with the one in mount_fs() as we don't hold locks here.
262 	 */
263 	if (!(sb->s_flags & SB_BORN))
264 		return 0;
265 	smp_rmb();
266 
267 	if (sb->s_op && sb->s_op->nr_cached_objects)
268 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
269 
270 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
271 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
272 
273 	if (!total_objects)
274 		return SHRINK_EMPTY;
275 
276 	total_objects = vfs_pressure_ratio(total_objects);
277 	return total_objects;
278 }
279 
280 static void destroy_super_work(struct work_struct *work)
281 {
282 	struct super_block *s = container_of(work, struct super_block,
283 							destroy_work);
284 	int i;
285 
286 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
287 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
288 	kfree(s);
289 }
290 
291 static void destroy_super_rcu(struct rcu_head *head)
292 {
293 	struct super_block *s = container_of(head, struct super_block, rcu);
294 	INIT_WORK(&s->destroy_work, destroy_super_work);
295 	schedule_work(&s->destroy_work);
296 }
297 
298 /* Free a superblock that has never been seen by anyone */
299 static void destroy_unused_super(struct super_block *s)
300 {
301 	if (!s)
302 		return;
303 	super_unlock_excl(s);
304 	list_lru_destroy(&s->s_dentry_lru);
305 	list_lru_destroy(&s->s_inode_lru);
306 	security_sb_free(s);
307 	put_user_ns(s->s_user_ns);
308 	kfree(s->s_subtype);
309 	free_prealloced_shrinker(&s->s_shrink);
310 	/* no delays needed */
311 	destroy_super_work(&s->destroy_work);
312 }
313 
314 /**
315  *	alloc_super	-	create new superblock
316  *	@type:	filesystem type superblock should belong to
317  *	@flags: the mount flags
318  *	@user_ns: User namespace for the super_block
319  *
320  *	Allocates and initializes a new &struct super_block.  alloc_super()
321  *	returns a pointer new superblock or %NULL if allocation had failed.
322  */
323 static struct super_block *alloc_super(struct file_system_type *type, int flags,
324 				       struct user_namespace *user_ns)
325 {
326 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
327 	static const struct super_operations default_op;
328 	int i;
329 
330 	if (!s)
331 		return NULL;
332 
333 	INIT_LIST_HEAD(&s->s_mounts);
334 	s->s_user_ns = get_user_ns(user_ns);
335 	init_rwsem(&s->s_umount);
336 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
337 	/*
338 	 * sget() can have s_umount recursion.
339 	 *
340 	 * When it cannot find a suitable sb, it allocates a new
341 	 * one (this one), and tries again to find a suitable old
342 	 * one.
343 	 *
344 	 * In case that succeeds, it will acquire the s_umount
345 	 * lock of the old one. Since these are clearly distrinct
346 	 * locks, and this object isn't exposed yet, there's no
347 	 * risk of deadlocks.
348 	 *
349 	 * Annotate this by putting this lock in a different
350 	 * subclass.
351 	 */
352 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
353 
354 	if (security_sb_alloc(s))
355 		goto fail;
356 
357 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
358 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
359 					sb_writers_name[i],
360 					&type->s_writers_key[i]))
361 			goto fail;
362 	}
363 	s->s_bdi = &noop_backing_dev_info;
364 	s->s_flags = flags;
365 	if (s->s_user_ns != &init_user_ns)
366 		s->s_iflags |= SB_I_NODEV;
367 	INIT_HLIST_NODE(&s->s_instances);
368 	INIT_HLIST_BL_HEAD(&s->s_roots);
369 	mutex_init(&s->s_sync_lock);
370 	INIT_LIST_HEAD(&s->s_inodes);
371 	spin_lock_init(&s->s_inode_list_lock);
372 	INIT_LIST_HEAD(&s->s_inodes_wb);
373 	spin_lock_init(&s->s_inode_wblist_lock);
374 
375 	s->s_count = 1;
376 	atomic_set(&s->s_active, 1);
377 	mutex_init(&s->s_vfs_rename_mutex);
378 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
379 	init_rwsem(&s->s_dquot.dqio_sem);
380 	s->s_maxbytes = MAX_NON_LFS;
381 	s->s_op = &default_op;
382 	s->s_time_gran = 1000000000;
383 	s->s_time_min = TIME64_MIN;
384 	s->s_time_max = TIME64_MAX;
385 
386 	s->s_shrink.seeks = DEFAULT_SEEKS;
387 	s->s_shrink.scan_objects = super_cache_scan;
388 	s->s_shrink.count_objects = super_cache_count;
389 	s->s_shrink.batch = 1024;
390 	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
391 	if (prealloc_shrinker(&s->s_shrink, "sb-%s", type->name))
392 		goto fail;
393 	if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
394 		goto fail;
395 	if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
396 		goto fail;
397 	return s;
398 
399 fail:
400 	destroy_unused_super(s);
401 	return NULL;
402 }
403 
404 /* Superblock refcounting  */
405 
406 /*
407  * Drop a superblock's refcount.  The caller must hold sb_lock.
408  */
409 static void __put_super(struct super_block *s)
410 {
411 	if (!--s->s_count) {
412 		list_del_init(&s->s_list);
413 		WARN_ON(s->s_dentry_lru.node);
414 		WARN_ON(s->s_inode_lru.node);
415 		WARN_ON(!list_empty(&s->s_mounts));
416 		security_sb_free(s);
417 		put_user_ns(s->s_user_ns);
418 		kfree(s->s_subtype);
419 		call_rcu(&s->rcu, destroy_super_rcu);
420 	}
421 }
422 
423 /**
424  *	put_super	-	drop a temporary reference to superblock
425  *	@sb: superblock in question
426  *
427  *	Drops a temporary reference, frees superblock if there's no
428  *	references left.
429  */
430 void put_super(struct super_block *sb)
431 {
432 	spin_lock(&sb_lock);
433 	__put_super(sb);
434 	spin_unlock(&sb_lock);
435 }
436 
437 
438 /**
439  *	deactivate_locked_super	-	drop an active reference to superblock
440  *	@s: superblock to deactivate
441  *
442  *	Drops an active reference to superblock, converting it into a temporary
443  *	one if there is no other active references left.  In that case we
444  *	tell fs driver to shut it down and drop the temporary reference we
445  *	had just acquired.
446  *
447  *	Caller holds exclusive lock on superblock; that lock is released.
448  */
449 void deactivate_locked_super(struct super_block *s)
450 {
451 	struct file_system_type *fs = s->s_type;
452 	if (atomic_dec_and_test(&s->s_active)) {
453 		unregister_shrinker(&s->s_shrink);
454 		fs->kill_sb(s);
455 
456 		/*
457 		 * Since list_lru_destroy() may sleep, we cannot call it from
458 		 * put_super(), where we hold the sb_lock. Therefore we destroy
459 		 * the lru lists right now.
460 		 */
461 		list_lru_destroy(&s->s_dentry_lru);
462 		list_lru_destroy(&s->s_inode_lru);
463 
464 		/*
465 		 * Remove it from @fs_supers so it isn't found by new
466 		 * sget{_fc}() walkers anymore. Any concurrent mounter still
467 		 * managing to grab a temporary reference is guaranteed to
468 		 * already see SB_DYING and will wait until we notify them about
469 		 * SB_DEAD.
470 		 */
471 		spin_lock(&sb_lock);
472 		hlist_del_init(&s->s_instances);
473 		spin_unlock(&sb_lock);
474 
475 		/*
476 		 * Let concurrent mounts know that this thing is really dead.
477 		 * We don't need @sb->s_umount here as every concurrent caller
478 		 * will see SB_DYING and either discard the superblock or wait
479 		 * for SB_DEAD.
480 		 */
481 		super_wake(s, SB_DEAD);
482 
483 		put_filesystem(fs);
484 		put_super(s);
485 	} else {
486 		super_unlock_excl(s);
487 	}
488 }
489 
490 EXPORT_SYMBOL(deactivate_locked_super);
491 
492 /**
493  *	deactivate_super	-	drop an active reference to superblock
494  *	@s: superblock to deactivate
495  *
496  *	Variant of deactivate_locked_super(), except that superblock is *not*
497  *	locked by caller.  If we are going to drop the final active reference,
498  *	lock will be acquired prior to that.
499  */
500 void deactivate_super(struct super_block *s)
501 {
502 	if (!atomic_add_unless(&s->s_active, -1, 1)) {
503 		__super_lock_excl(s);
504 		deactivate_locked_super(s);
505 	}
506 }
507 
508 EXPORT_SYMBOL(deactivate_super);
509 
510 /**
511  *	grab_super - acquire an active reference
512  *	@s: reference we are trying to make active
513  *
514  *	Tries to acquire an active reference.  grab_super() is used when we
515  * 	had just found a superblock in super_blocks or fs_type->fs_supers
516  *	and want to turn it into a full-blown active reference.  grab_super()
517  *	is called with sb_lock held and drops it.  Returns 1 in case of
518  *	success, 0 if we had failed (superblock contents was already dead or
519  *	dying when grab_super() had been called).  Note that this is only
520  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
521  *	of their type), so increment of ->s_count is OK here.
522  */
523 static int grab_super(struct super_block *s) __releases(sb_lock)
524 {
525 	bool born;
526 
527 	s->s_count++;
528 	spin_unlock(&sb_lock);
529 	born = super_lock_excl(s);
530 	if (born && atomic_inc_not_zero(&s->s_active)) {
531 		put_super(s);
532 		return 1;
533 	}
534 	super_unlock_excl(s);
535 	put_super(s);
536 	return 0;
537 }
538 
539 static inline bool wait_dead(struct super_block *sb)
540 {
541 	unsigned int flags;
542 
543 	/*
544 	 * Pairs with memory barrier in super_wake() and ensures
545 	 * that we see SB_DEAD after we're woken.
546 	 */
547 	flags = smp_load_acquire(&sb->s_flags);
548 	return flags & SB_DEAD;
549 }
550 
551 /**
552  * grab_super_dead - acquire an active reference to a superblock
553  * @sb: superblock to acquire
554  *
555  * Acquire a temporary reference on a superblock and try to trade it for
556  * an active reference. This is used in sget{_fc}() to wait for a
557  * superblock to either become SB_BORN or for it to pass through
558  * sb->kill() and be marked as SB_DEAD.
559  *
560  * Return: This returns true if an active reference could be acquired,
561  *         false if not.
562  */
563 static bool grab_super_dead(struct super_block *sb)
564 {
565 
566 	sb->s_count++;
567 	if (grab_super(sb)) {
568 		put_super(sb);
569 		lockdep_assert_held(&sb->s_umount);
570 		return true;
571 	}
572 	wait_var_event(&sb->s_flags, wait_dead(sb));
573 	put_super(sb);
574 	lockdep_assert_not_held(&sb->s_umount);
575 	return false;
576 }
577 
578 /*
579  *	super_trylock_shared - try to grab ->s_umount shared
580  *	@sb: reference we are trying to grab
581  *
582  *	Try to prevent fs shutdown.  This is used in places where we
583  *	cannot take an active reference but we need to ensure that the
584  *	filesystem is not shut down while we are working on it. It returns
585  *	false if we cannot acquire s_umount or if we lose the race and
586  *	filesystem already got into shutdown, and returns true with the s_umount
587  *	lock held in read mode in case of success. On successful return,
588  *	the caller must drop the s_umount lock when done.
589  *
590  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
591  *	The reason why it's safe is that we are OK with doing trylock instead
592  *	of down_read().  There's a couple of places that are OK with that, but
593  *	it's very much not a general-purpose interface.
594  */
595 bool super_trylock_shared(struct super_block *sb)
596 {
597 	if (down_read_trylock(&sb->s_umount)) {
598 		if (!(sb->s_flags & SB_DYING) && sb->s_root &&
599 		    (sb->s_flags & SB_BORN))
600 			return true;
601 		super_unlock_shared(sb);
602 	}
603 
604 	return false;
605 }
606 
607 /**
608  *	retire_super	-	prevents superblock from being reused
609  *	@sb: superblock to retire
610  *
611  *	The function marks superblock to be ignored in superblock test, which
612  *	prevents it from being reused for any new mounts.  If the superblock has
613  *	a private bdi, it also unregisters it, but doesn't reduce the refcount
614  *	of the superblock to prevent potential races.  The refcount is reduced
615  *	by generic_shutdown_super().  The function can not be called
616  *	concurrently with generic_shutdown_super().  It is safe to call the
617  *	function multiple times, subsequent calls have no effect.
618  *
619  *	The marker will affect the re-use only for block-device-based
620  *	superblocks.  Other superblocks will still get marked if this function
621  *	is used, but that will not affect their reusability.
622  */
623 void retire_super(struct super_block *sb)
624 {
625 	WARN_ON(!sb->s_bdev);
626 	__super_lock_excl(sb);
627 	if (sb->s_iflags & SB_I_PERSB_BDI) {
628 		bdi_unregister(sb->s_bdi);
629 		sb->s_iflags &= ~SB_I_PERSB_BDI;
630 	}
631 	sb->s_iflags |= SB_I_RETIRED;
632 	super_unlock_excl(sb);
633 }
634 EXPORT_SYMBOL(retire_super);
635 
636 /**
637  *	generic_shutdown_super	-	common helper for ->kill_sb()
638  *	@sb: superblock to kill
639  *
640  *	generic_shutdown_super() does all fs-independent work on superblock
641  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
642  *	that need destruction out of superblock, call generic_shutdown_super()
643  *	and release aforementioned objects.  Note: dentries and inodes _are_
644  *	taken care of and do not need specific handling.
645  *
646  *	Upon calling this function, the filesystem may no longer alter or
647  *	rearrange the set of dentries belonging to this super_block, nor may it
648  *	change the attachments of dentries to inodes.
649  */
650 void generic_shutdown_super(struct super_block *sb)
651 {
652 	const struct super_operations *sop = sb->s_op;
653 
654 	if (sb->s_root) {
655 		shrink_dcache_for_umount(sb);
656 		sync_filesystem(sb);
657 		sb->s_flags &= ~SB_ACTIVE;
658 
659 		cgroup_writeback_umount();
660 
661 		/* Evict all inodes with zero refcount. */
662 		evict_inodes(sb);
663 
664 		/*
665 		 * Clean up and evict any inodes that still have references due
666 		 * to fsnotify or the security policy.
667 		 */
668 		fsnotify_sb_delete(sb);
669 		security_sb_delete(sb);
670 
671 		/*
672 		 * Now that all potentially-encrypted inodes have been evicted,
673 		 * the fscrypt keyring can be destroyed.
674 		 */
675 		fscrypt_destroy_keyring(sb);
676 
677 		if (sb->s_dio_done_wq) {
678 			destroy_workqueue(sb->s_dio_done_wq);
679 			sb->s_dio_done_wq = NULL;
680 		}
681 
682 		if (sop->put_super)
683 			sop->put_super(sb);
684 
685 		if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes),
686 				"VFS: Busy inodes after unmount of %s (%s)",
687 				sb->s_id, sb->s_type->name)) {
688 			/*
689 			 * Adding a proper bailout path here would be hard, but
690 			 * we can at least make it more likely that a later
691 			 * iput_final() or such crashes cleanly.
692 			 */
693 			struct inode *inode;
694 
695 			spin_lock(&sb->s_inode_list_lock);
696 			list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
697 				inode->i_op = VFS_PTR_POISON;
698 				inode->i_sb = VFS_PTR_POISON;
699 				inode->i_mapping = VFS_PTR_POISON;
700 			}
701 			spin_unlock(&sb->s_inode_list_lock);
702 		}
703 	}
704 	/*
705 	 * Broadcast to everyone that grabbed a temporary reference to this
706 	 * superblock before we removed it from @fs_supers that the superblock
707 	 * is dying. Every walker of @fs_supers outside of sget{_fc}() will now
708 	 * discard this superblock and treat it as dead.
709 	 *
710 	 * We leave the superblock on @fs_supers so it can be found by
711 	 * sget{_fc}() until we passed sb->kill_sb().
712 	 */
713 	super_wake(sb, SB_DYING);
714 	super_unlock_excl(sb);
715 	if (sb->s_bdi != &noop_backing_dev_info) {
716 		if (sb->s_iflags & SB_I_PERSB_BDI)
717 			bdi_unregister(sb->s_bdi);
718 		bdi_put(sb->s_bdi);
719 		sb->s_bdi = &noop_backing_dev_info;
720 	}
721 }
722 
723 EXPORT_SYMBOL(generic_shutdown_super);
724 
725 bool mount_capable(struct fs_context *fc)
726 {
727 	if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
728 		return capable(CAP_SYS_ADMIN);
729 	else
730 		return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
731 }
732 
733 /**
734  * sget_fc - Find or create a superblock
735  * @fc:	Filesystem context.
736  * @test: Comparison callback
737  * @set: Setup callback
738  *
739  * Create a new superblock or find an existing one.
740  *
741  * The @test callback is used to find a matching existing superblock.
742  * Whether or not the requested parameters in @fc are taken into account
743  * is specific to the @test callback that is used. They may even be
744  * completely ignored.
745  *
746  * If an extant superblock is matched, it will be returned unless:
747  *
748  * (1) the namespace the filesystem context @fc and the extant
749  *     superblock's namespace differ
750  *
751  * (2) the filesystem context @fc has requested that reusing an extant
752  *     superblock is not allowed
753  *
754  * In both cases EBUSY will be returned.
755  *
756  * If no match is made, a new superblock will be allocated and basic
757  * initialisation will be performed (s_type, s_fs_info and s_id will be
758  * set and the @set callback will be invoked), the superblock will be
759  * published and it will be returned in a partially constructed state
760  * with SB_BORN and SB_ACTIVE as yet unset.
761  *
762  * Return: On success, an extant or newly created superblock is
763  *         returned. On failure an error pointer is returned.
764  */
765 struct super_block *sget_fc(struct fs_context *fc,
766 			    int (*test)(struct super_block *, struct fs_context *),
767 			    int (*set)(struct super_block *, struct fs_context *))
768 {
769 	struct super_block *s = NULL;
770 	struct super_block *old;
771 	struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
772 	int err;
773 
774 retry:
775 	spin_lock(&sb_lock);
776 	if (test) {
777 		hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
778 			if (test(old, fc))
779 				goto share_extant_sb;
780 		}
781 	}
782 	if (!s) {
783 		spin_unlock(&sb_lock);
784 		s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
785 		if (!s)
786 			return ERR_PTR(-ENOMEM);
787 		goto retry;
788 	}
789 
790 	s->s_fs_info = fc->s_fs_info;
791 	err = set(s, fc);
792 	if (err) {
793 		s->s_fs_info = NULL;
794 		spin_unlock(&sb_lock);
795 		destroy_unused_super(s);
796 		return ERR_PTR(err);
797 	}
798 	fc->s_fs_info = NULL;
799 	s->s_type = fc->fs_type;
800 	s->s_iflags |= fc->s_iflags;
801 	strscpy(s->s_id, s->s_type->name, sizeof(s->s_id));
802 	/*
803 	 * Make the superblock visible on @super_blocks and @fs_supers.
804 	 * It's in a nascent state and users should wait on SB_BORN or
805 	 * SB_DYING to be set.
806 	 */
807 	list_add_tail(&s->s_list, &super_blocks);
808 	hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
809 	spin_unlock(&sb_lock);
810 	get_filesystem(s->s_type);
811 	register_shrinker_prepared(&s->s_shrink);
812 	return s;
813 
814 share_extant_sb:
815 	if (user_ns != old->s_user_ns || fc->exclusive) {
816 		spin_unlock(&sb_lock);
817 		destroy_unused_super(s);
818 		if (fc->exclusive)
819 			warnfc(fc, "reusing existing filesystem not allowed");
820 		else
821 			warnfc(fc, "reusing existing filesystem in another namespace not allowed");
822 		return ERR_PTR(-EBUSY);
823 	}
824 	if (!grab_super_dead(old))
825 		goto retry;
826 	destroy_unused_super(s);
827 	return old;
828 }
829 EXPORT_SYMBOL(sget_fc);
830 
831 /**
832  *	sget	-	find or create a superblock
833  *	@type:	  filesystem type superblock should belong to
834  *	@test:	  comparison callback
835  *	@set:	  setup callback
836  *	@flags:	  mount flags
837  *	@data:	  argument to each of them
838  */
839 struct super_block *sget(struct file_system_type *type,
840 			int (*test)(struct super_block *,void *),
841 			int (*set)(struct super_block *,void *),
842 			int flags,
843 			void *data)
844 {
845 	struct user_namespace *user_ns = current_user_ns();
846 	struct super_block *s = NULL;
847 	struct super_block *old;
848 	int err;
849 
850 	/* We don't yet pass the user namespace of the parent
851 	 * mount through to here so always use &init_user_ns
852 	 * until that changes.
853 	 */
854 	if (flags & SB_SUBMOUNT)
855 		user_ns = &init_user_ns;
856 
857 retry:
858 	spin_lock(&sb_lock);
859 	if (test) {
860 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
861 			if (!test(old, data))
862 				continue;
863 			if (user_ns != old->s_user_ns) {
864 				spin_unlock(&sb_lock);
865 				destroy_unused_super(s);
866 				return ERR_PTR(-EBUSY);
867 			}
868 			if (!grab_super_dead(old))
869 				goto retry;
870 			destroy_unused_super(s);
871 			return old;
872 		}
873 	}
874 	if (!s) {
875 		spin_unlock(&sb_lock);
876 		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
877 		if (!s)
878 			return ERR_PTR(-ENOMEM);
879 		goto retry;
880 	}
881 
882 	err = set(s, data);
883 	if (err) {
884 		spin_unlock(&sb_lock);
885 		destroy_unused_super(s);
886 		return ERR_PTR(err);
887 	}
888 	s->s_type = type;
889 	strscpy(s->s_id, type->name, sizeof(s->s_id));
890 	list_add_tail(&s->s_list, &super_blocks);
891 	hlist_add_head(&s->s_instances, &type->fs_supers);
892 	spin_unlock(&sb_lock);
893 	get_filesystem(type);
894 	register_shrinker_prepared(&s->s_shrink);
895 	return s;
896 }
897 EXPORT_SYMBOL(sget);
898 
899 void drop_super(struct super_block *sb)
900 {
901 	super_unlock_shared(sb);
902 	put_super(sb);
903 }
904 
905 EXPORT_SYMBOL(drop_super);
906 
907 void drop_super_exclusive(struct super_block *sb)
908 {
909 	super_unlock_excl(sb);
910 	put_super(sb);
911 }
912 EXPORT_SYMBOL(drop_super_exclusive);
913 
914 static void __iterate_supers(void (*f)(struct super_block *))
915 {
916 	struct super_block *sb, *p = NULL;
917 
918 	spin_lock(&sb_lock);
919 	list_for_each_entry(sb, &super_blocks, s_list) {
920 		/* Pairs with memory marrier in super_wake(). */
921 		if (smp_load_acquire(&sb->s_flags) & SB_DYING)
922 			continue;
923 		sb->s_count++;
924 		spin_unlock(&sb_lock);
925 
926 		f(sb);
927 
928 		spin_lock(&sb_lock);
929 		if (p)
930 			__put_super(p);
931 		p = sb;
932 	}
933 	if (p)
934 		__put_super(p);
935 	spin_unlock(&sb_lock);
936 }
937 /**
938  *	iterate_supers - call function for all active superblocks
939  *	@f: function to call
940  *	@arg: argument to pass to it
941  *
942  *	Scans the superblock list and calls given function, passing it
943  *	locked superblock and given argument.
944  */
945 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
946 {
947 	struct super_block *sb, *p = NULL;
948 
949 	spin_lock(&sb_lock);
950 	list_for_each_entry(sb, &super_blocks, s_list) {
951 		bool born;
952 
953 		sb->s_count++;
954 		spin_unlock(&sb_lock);
955 
956 		born = super_lock_shared(sb);
957 		if (born && sb->s_root)
958 			f(sb, arg);
959 		super_unlock_shared(sb);
960 
961 		spin_lock(&sb_lock);
962 		if (p)
963 			__put_super(p);
964 		p = sb;
965 	}
966 	if (p)
967 		__put_super(p);
968 	spin_unlock(&sb_lock);
969 }
970 
971 /**
972  *	iterate_supers_type - call function for superblocks of given type
973  *	@type: fs type
974  *	@f: function to call
975  *	@arg: argument to pass to it
976  *
977  *	Scans the superblock list and calls given function, passing it
978  *	locked superblock and given argument.
979  */
980 void iterate_supers_type(struct file_system_type *type,
981 	void (*f)(struct super_block *, void *), void *arg)
982 {
983 	struct super_block *sb, *p = NULL;
984 
985 	spin_lock(&sb_lock);
986 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
987 		bool born;
988 
989 		sb->s_count++;
990 		spin_unlock(&sb_lock);
991 
992 		born = super_lock_shared(sb);
993 		if (born && sb->s_root)
994 			f(sb, arg);
995 		super_unlock_shared(sb);
996 
997 		spin_lock(&sb_lock);
998 		if (p)
999 			__put_super(p);
1000 		p = sb;
1001 	}
1002 	if (p)
1003 		__put_super(p);
1004 	spin_unlock(&sb_lock);
1005 }
1006 
1007 EXPORT_SYMBOL(iterate_supers_type);
1008 
1009 /**
1010  * get_active_super - get an active reference to the superblock of a device
1011  * @bdev: device to get the superblock for
1012  *
1013  * Scans the superblock list and finds the superblock of the file system
1014  * mounted on the device given.  Returns the superblock with an active
1015  * reference or %NULL if none was found.
1016  */
1017 struct super_block *get_active_super(struct block_device *bdev)
1018 {
1019 	struct super_block *sb;
1020 
1021 	if (!bdev)
1022 		return NULL;
1023 
1024 	spin_lock(&sb_lock);
1025 	list_for_each_entry(sb, &super_blocks, s_list) {
1026 		if (sb->s_bdev == bdev) {
1027 			if (!grab_super(sb))
1028 				return NULL;
1029 			super_unlock_excl(sb);
1030 			return sb;
1031 		}
1032 	}
1033 	spin_unlock(&sb_lock);
1034 	return NULL;
1035 }
1036 
1037 struct super_block *user_get_super(dev_t dev, bool excl)
1038 {
1039 	struct super_block *sb;
1040 
1041 	spin_lock(&sb_lock);
1042 	list_for_each_entry(sb, &super_blocks, s_list) {
1043 		if (sb->s_dev ==  dev) {
1044 			bool born;
1045 
1046 			sb->s_count++;
1047 			spin_unlock(&sb_lock);
1048 			/* still alive? */
1049 			born = super_lock(sb, excl);
1050 			if (born && sb->s_root)
1051 				return sb;
1052 			super_unlock(sb, excl);
1053 			/* nope, got unmounted */
1054 			spin_lock(&sb_lock);
1055 			__put_super(sb);
1056 			break;
1057 		}
1058 	}
1059 	spin_unlock(&sb_lock);
1060 	return NULL;
1061 }
1062 
1063 /**
1064  * reconfigure_super - asks filesystem to change superblock parameters
1065  * @fc: The superblock and configuration
1066  *
1067  * Alters the configuration parameters of a live superblock.
1068  */
1069 int reconfigure_super(struct fs_context *fc)
1070 {
1071 	struct super_block *sb = fc->root->d_sb;
1072 	int retval;
1073 	bool remount_ro = false;
1074 	bool remount_rw = false;
1075 	bool force = fc->sb_flags & SB_FORCE;
1076 
1077 	if (fc->sb_flags_mask & ~MS_RMT_MASK)
1078 		return -EINVAL;
1079 	if (sb->s_writers.frozen != SB_UNFROZEN)
1080 		return -EBUSY;
1081 
1082 	retval = security_sb_remount(sb, fc->security);
1083 	if (retval)
1084 		return retval;
1085 
1086 	if (fc->sb_flags_mask & SB_RDONLY) {
1087 #ifdef CONFIG_BLOCK
1088 		if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
1089 		    bdev_read_only(sb->s_bdev))
1090 			return -EACCES;
1091 #endif
1092 		remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb);
1093 		remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
1094 	}
1095 
1096 	if (remount_ro) {
1097 		if (!hlist_empty(&sb->s_pins)) {
1098 			super_unlock_excl(sb);
1099 			group_pin_kill(&sb->s_pins);
1100 			__super_lock_excl(sb);
1101 			if (!sb->s_root)
1102 				return 0;
1103 			if (sb->s_writers.frozen != SB_UNFROZEN)
1104 				return -EBUSY;
1105 			remount_ro = !sb_rdonly(sb);
1106 		}
1107 	}
1108 	shrink_dcache_sb(sb);
1109 
1110 	/* If we are reconfiguring to RDONLY and current sb is read/write,
1111 	 * make sure there are no files open for writing.
1112 	 */
1113 	if (remount_ro) {
1114 		if (force) {
1115 			sb_start_ro_state_change(sb);
1116 		} else {
1117 			retval = sb_prepare_remount_readonly(sb);
1118 			if (retval)
1119 				return retval;
1120 		}
1121 	} else if (remount_rw) {
1122 		/*
1123 		 * Protect filesystem's reconfigure code from writes from
1124 		 * userspace until reconfigure finishes.
1125 		 */
1126 		sb_start_ro_state_change(sb);
1127 	}
1128 
1129 	if (fc->ops->reconfigure) {
1130 		retval = fc->ops->reconfigure(fc);
1131 		if (retval) {
1132 			if (!force)
1133 				goto cancel_readonly;
1134 			/* If forced remount, go ahead despite any errors */
1135 			WARN(1, "forced remount of a %s fs returned %i\n",
1136 			     sb->s_type->name, retval);
1137 		}
1138 	}
1139 
1140 	WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
1141 				 (fc->sb_flags & fc->sb_flags_mask)));
1142 	sb_end_ro_state_change(sb);
1143 
1144 	/*
1145 	 * Some filesystems modify their metadata via some other path than the
1146 	 * bdev buffer cache (eg. use a private mapping, or directories in
1147 	 * pagecache, etc). Also file data modifications go via their own
1148 	 * mappings. So If we try to mount readonly then copy the filesystem
1149 	 * from bdev, we could get stale data, so invalidate it to give a best
1150 	 * effort at coherency.
1151 	 */
1152 	if (remount_ro && sb->s_bdev)
1153 		invalidate_bdev(sb->s_bdev);
1154 	return 0;
1155 
1156 cancel_readonly:
1157 	sb_end_ro_state_change(sb);
1158 	return retval;
1159 }
1160 
1161 static void do_emergency_remount_callback(struct super_block *sb)
1162 {
1163 	bool born = super_lock_excl(sb);
1164 
1165 	if (born && sb->s_root && sb->s_bdev && !sb_rdonly(sb)) {
1166 		struct fs_context *fc;
1167 
1168 		fc = fs_context_for_reconfigure(sb->s_root,
1169 					SB_RDONLY | SB_FORCE, SB_RDONLY);
1170 		if (!IS_ERR(fc)) {
1171 			if (parse_monolithic_mount_data(fc, NULL) == 0)
1172 				(void)reconfigure_super(fc);
1173 			put_fs_context(fc);
1174 		}
1175 	}
1176 	super_unlock_excl(sb);
1177 }
1178 
1179 static void do_emergency_remount(struct work_struct *work)
1180 {
1181 	__iterate_supers(do_emergency_remount_callback);
1182 	kfree(work);
1183 	printk("Emergency Remount complete\n");
1184 }
1185 
1186 void emergency_remount(void)
1187 {
1188 	struct work_struct *work;
1189 
1190 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1191 	if (work) {
1192 		INIT_WORK(work, do_emergency_remount);
1193 		schedule_work(work);
1194 	}
1195 }
1196 
1197 static void do_thaw_all_callback(struct super_block *sb)
1198 {
1199 	bool born = super_lock_excl(sb);
1200 
1201 	if (born && sb->s_root) {
1202 		emergency_thaw_bdev(sb);
1203 		thaw_super_locked(sb, FREEZE_HOLDER_USERSPACE);
1204 	} else {
1205 		super_unlock_excl(sb);
1206 	}
1207 }
1208 
1209 static void do_thaw_all(struct work_struct *work)
1210 {
1211 	__iterate_supers(do_thaw_all_callback);
1212 	kfree(work);
1213 	printk(KERN_WARNING "Emergency Thaw complete\n");
1214 }
1215 
1216 /**
1217  * emergency_thaw_all -- forcibly thaw every frozen filesystem
1218  *
1219  * Used for emergency unfreeze of all filesystems via SysRq
1220  */
1221 void emergency_thaw_all(void)
1222 {
1223 	struct work_struct *work;
1224 
1225 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1226 	if (work) {
1227 		INIT_WORK(work, do_thaw_all);
1228 		schedule_work(work);
1229 	}
1230 }
1231 
1232 static DEFINE_IDA(unnamed_dev_ida);
1233 
1234 /**
1235  * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1236  * @p: Pointer to a dev_t.
1237  *
1238  * Filesystems which don't use real block devices can call this function
1239  * to allocate a virtual block device.
1240  *
1241  * Context: Any context.  Frequently called while holding sb_lock.
1242  * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1243  * or -ENOMEM if memory allocation failed.
1244  */
1245 int get_anon_bdev(dev_t *p)
1246 {
1247 	int dev;
1248 
1249 	/*
1250 	 * Many userspace utilities consider an FSID of 0 invalid.
1251 	 * Always return at least 1 from get_anon_bdev.
1252 	 */
1253 	dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1254 			GFP_ATOMIC);
1255 	if (dev == -ENOSPC)
1256 		dev = -EMFILE;
1257 	if (dev < 0)
1258 		return dev;
1259 
1260 	*p = MKDEV(0, dev);
1261 	return 0;
1262 }
1263 EXPORT_SYMBOL(get_anon_bdev);
1264 
1265 void free_anon_bdev(dev_t dev)
1266 {
1267 	ida_free(&unnamed_dev_ida, MINOR(dev));
1268 }
1269 EXPORT_SYMBOL(free_anon_bdev);
1270 
1271 int set_anon_super(struct super_block *s, void *data)
1272 {
1273 	return get_anon_bdev(&s->s_dev);
1274 }
1275 EXPORT_SYMBOL(set_anon_super);
1276 
1277 void kill_anon_super(struct super_block *sb)
1278 {
1279 	dev_t dev = sb->s_dev;
1280 	generic_shutdown_super(sb);
1281 	free_anon_bdev(dev);
1282 }
1283 EXPORT_SYMBOL(kill_anon_super);
1284 
1285 void kill_litter_super(struct super_block *sb)
1286 {
1287 	if (sb->s_root)
1288 		d_genocide(sb->s_root);
1289 	kill_anon_super(sb);
1290 }
1291 EXPORT_SYMBOL(kill_litter_super);
1292 
1293 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1294 {
1295 	return set_anon_super(sb, NULL);
1296 }
1297 EXPORT_SYMBOL(set_anon_super_fc);
1298 
1299 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1300 {
1301 	return sb->s_fs_info == fc->s_fs_info;
1302 }
1303 
1304 static int test_single_super(struct super_block *s, struct fs_context *fc)
1305 {
1306 	return 1;
1307 }
1308 
1309 static int vfs_get_super(struct fs_context *fc,
1310 		int (*test)(struct super_block *, struct fs_context *),
1311 		int (*fill_super)(struct super_block *sb,
1312 				  struct fs_context *fc))
1313 {
1314 	struct super_block *sb;
1315 	int err;
1316 
1317 	sb = sget_fc(fc, test, set_anon_super_fc);
1318 	if (IS_ERR(sb))
1319 		return PTR_ERR(sb);
1320 
1321 	if (!sb->s_root) {
1322 		err = fill_super(sb, fc);
1323 		if (err)
1324 			goto error;
1325 
1326 		sb->s_flags |= SB_ACTIVE;
1327 	}
1328 
1329 	fc->root = dget(sb->s_root);
1330 	return 0;
1331 
1332 error:
1333 	deactivate_locked_super(sb);
1334 	return err;
1335 }
1336 
1337 int get_tree_nodev(struct fs_context *fc,
1338 		  int (*fill_super)(struct super_block *sb,
1339 				    struct fs_context *fc))
1340 {
1341 	return vfs_get_super(fc, NULL, fill_super);
1342 }
1343 EXPORT_SYMBOL(get_tree_nodev);
1344 
1345 int get_tree_single(struct fs_context *fc,
1346 		  int (*fill_super)(struct super_block *sb,
1347 				    struct fs_context *fc))
1348 {
1349 	return vfs_get_super(fc, test_single_super, fill_super);
1350 }
1351 EXPORT_SYMBOL(get_tree_single);
1352 
1353 int get_tree_keyed(struct fs_context *fc,
1354 		  int (*fill_super)(struct super_block *sb,
1355 				    struct fs_context *fc),
1356 		void *key)
1357 {
1358 	fc->s_fs_info = key;
1359 	return vfs_get_super(fc, test_keyed_super, fill_super);
1360 }
1361 EXPORT_SYMBOL(get_tree_keyed);
1362 
1363 #ifdef CONFIG_BLOCK
1364 /*
1365  * Lock a super block that the callers holds a reference to.
1366  *
1367  * The caller needs to ensure that the super_block isn't being freed while
1368  * calling this function, e.g. by holding a lock over the call to this function
1369  * and the place that clears the pointer to the superblock used by this function
1370  * before freeing the superblock.
1371  */
1372 static bool super_lock_shared_active(struct super_block *sb)
1373 {
1374 	bool born = super_lock_shared(sb);
1375 
1376 	if (!born || !sb->s_root || !(sb->s_flags & SB_ACTIVE)) {
1377 		super_unlock_shared(sb);
1378 		return false;
1379 	}
1380 	return true;
1381 }
1382 
1383 static void fs_bdev_mark_dead(struct block_device *bdev, bool surprise)
1384 {
1385 	struct super_block *sb = bdev->bd_holder;
1386 
1387 	/* bd_holder_lock ensures that the sb isn't freed */
1388 	lockdep_assert_held(&bdev->bd_holder_lock);
1389 
1390 	if (!super_lock_shared_active(sb))
1391 		return;
1392 
1393 	if (!surprise)
1394 		sync_filesystem(sb);
1395 	shrink_dcache_sb(sb);
1396 	invalidate_inodes(sb);
1397 	if (sb->s_op->shutdown)
1398 		sb->s_op->shutdown(sb);
1399 
1400 	super_unlock_shared(sb);
1401 }
1402 
1403 static void fs_bdev_sync(struct block_device *bdev)
1404 {
1405 	struct super_block *sb = bdev->bd_holder;
1406 
1407 	lockdep_assert_held(&bdev->bd_holder_lock);
1408 
1409 	if (!super_lock_shared_active(sb))
1410 		return;
1411 	sync_filesystem(sb);
1412 	super_unlock_shared(sb);
1413 }
1414 
1415 const struct blk_holder_ops fs_holder_ops = {
1416 	.mark_dead		= fs_bdev_mark_dead,
1417 	.sync			= fs_bdev_sync,
1418 };
1419 EXPORT_SYMBOL_GPL(fs_holder_ops);
1420 
1421 static int set_bdev_super(struct super_block *s, void *data)
1422 {
1423 	s->s_dev = *(dev_t *)data;
1424 	return 0;
1425 }
1426 
1427 static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1428 {
1429 	return set_bdev_super(s, fc->sget_key);
1430 }
1431 
1432 static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1433 {
1434 	return !(s->s_iflags & SB_I_RETIRED) &&
1435 		s->s_dev == *(dev_t *)fc->sget_key;
1436 }
1437 
1438 int setup_bdev_super(struct super_block *sb, int sb_flags,
1439 		struct fs_context *fc)
1440 {
1441 	blk_mode_t mode = sb_open_mode(sb_flags);
1442 	struct block_device *bdev;
1443 
1444 	bdev = blkdev_get_by_dev(sb->s_dev, mode, sb, &fs_holder_ops);
1445 	if (IS_ERR(bdev)) {
1446 		if (fc)
1447 			errorf(fc, "%s: Can't open blockdev", fc->source);
1448 		return PTR_ERR(bdev);
1449 	}
1450 
1451 	/*
1452 	 * This really should be in blkdev_get_by_dev, but right now can't due
1453 	 * to legacy issues that require us to allow opening a block device node
1454 	 * writable from userspace even for a read-only block device.
1455 	 */
1456 	if ((mode & BLK_OPEN_WRITE) && bdev_read_only(bdev)) {
1457 		blkdev_put(bdev, sb);
1458 		return -EACCES;
1459 	}
1460 
1461 	/*
1462 	 * Until SB_BORN flag is set, there can be no active superblock
1463 	 * references and thus no filesystem freezing. get_active_super() will
1464 	 * just loop waiting for SB_BORN so even freeze_bdev() cannot proceed.
1465 	 *
1466 	 * It is enough to check bdev was not frozen before we set s_bdev.
1467 	 */
1468 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1469 	if (bdev->bd_fsfreeze_count > 0) {
1470 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1471 		if (fc)
1472 			warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1473 		blkdev_put(bdev, sb);
1474 		return -EBUSY;
1475 	}
1476 	spin_lock(&sb_lock);
1477 	sb->s_bdev = bdev;
1478 	sb->s_bdi = bdi_get(bdev->bd_disk->bdi);
1479 	if (bdev_stable_writes(bdev))
1480 		sb->s_iflags |= SB_I_STABLE_WRITES;
1481 	spin_unlock(&sb_lock);
1482 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1483 
1484 	snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1485 	shrinker_debugfs_rename(&sb->s_shrink, "sb-%s:%s", sb->s_type->name,
1486 				sb->s_id);
1487 	sb_set_blocksize(sb, block_size(bdev));
1488 	return 0;
1489 }
1490 EXPORT_SYMBOL_GPL(setup_bdev_super);
1491 
1492 /**
1493  * get_tree_bdev - Get a superblock based on a single block device
1494  * @fc: The filesystem context holding the parameters
1495  * @fill_super: Helper to initialise a new superblock
1496  */
1497 int get_tree_bdev(struct fs_context *fc,
1498 		int (*fill_super)(struct super_block *,
1499 				  struct fs_context *))
1500 {
1501 	struct super_block *s;
1502 	int error = 0;
1503 	dev_t dev;
1504 
1505 	if (!fc->source)
1506 		return invalf(fc, "No source specified");
1507 
1508 	error = lookup_bdev(fc->source, &dev);
1509 	if (error) {
1510 		errorf(fc, "%s: Can't lookup blockdev", fc->source);
1511 		return error;
1512 	}
1513 
1514 	fc->sb_flags |= SB_NOSEC;
1515 	fc->sget_key = &dev;
1516 	s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc);
1517 	if (IS_ERR(s))
1518 		return PTR_ERR(s);
1519 
1520 	if (s->s_root) {
1521 		/* Don't summarily change the RO/RW state. */
1522 		if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1523 			warnf(fc, "%pg: Can't mount, would change RO state", s->s_bdev);
1524 			deactivate_locked_super(s);
1525 			return -EBUSY;
1526 		}
1527 	} else {
1528 		/*
1529 		 * We drop s_umount here because we need to open the bdev and
1530 		 * bdev->open_mutex ranks above s_umount (blkdev_put() ->
1531 		 * bdev_mark_dead()). It is safe because we have active sb
1532 		 * reference and SB_BORN is not set yet.
1533 		 */
1534 		super_unlock_excl(s);
1535 		error = setup_bdev_super(s, fc->sb_flags, fc);
1536 		__super_lock_excl(s);
1537 		if (!error)
1538 			error = fill_super(s, fc);
1539 		if (error) {
1540 			deactivate_locked_super(s);
1541 			return error;
1542 		}
1543 		s->s_flags |= SB_ACTIVE;
1544 	}
1545 
1546 	BUG_ON(fc->root);
1547 	fc->root = dget(s->s_root);
1548 	return 0;
1549 }
1550 EXPORT_SYMBOL(get_tree_bdev);
1551 
1552 static int test_bdev_super(struct super_block *s, void *data)
1553 {
1554 	return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data;
1555 }
1556 
1557 struct dentry *mount_bdev(struct file_system_type *fs_type,
1558 	int flags, const char *dev_name, void *data,
1559 	int (*fill_super)(struct super_block *, void *, int))
1560 {
1561 	struct super_block *s;
1562 	int error;
1563 	dev_t dev;
1564 
1565 	error = lookup_bdev(dev_name, &dev);
1566 	if (error)
1567 		return ERR_PTR(error);
1568 
1569 	flags |= SB_NOSEC;
1570 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags, &dev);
1571 	if (IS_ERR(s))
1572 		return ERR_CAST(s);
1573 
1574 	if (s->s_root) {
1575 		if ((flags ^ s->s_flags) & SB_RDONLY) {
1576 			deactivate_locked_super(s);
1577 			return ERR_PTR(-EBUSY);
1578 		}
1579 	} else {
1580 		/*
1581 		 * We drop s_umount here because we need to open the bdev and
1582 		 * bdev->open_mutex ranks above s_umount (blkdev_put() ->
1583 		 * bdev_mark_dead()). It is safe because we have active sb
1584 		 * reference and SB_BORN is not set yet.
1585 		 */
1586 		super_unlock_excl(s);
1587 		error = setup_bdev_super(s, flags, NULL);
1588 		__super_lock_excl(s);
1589 		if (!error)
1590 			error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1591 		if (error) {
1592 			deactivate_locked_super(s);
1593 			return ERR_PTR(error);
1594 		}
1595 
1596 		s->s_flags |= SB_ACTIVE;
1597 	}
1598 
1599 	return dget(s->s_root);
1600 }
1601 EXPORT_SYMBOL(mount_bdev);
1602 
1603 void kill_block_super(struct super_block *sb)
1604 {
1605 	struct block_device *bdev = sb->s_bdev;
1606 
1607 	generic_shutdown_super(sb);
1608 	if (bdev) {
1609 		sync_blockdev(bdev);
1610 		blkdev_put(bdev, sb);
1611 	}
1612 }
1613 
1614 EXPORT_SYMBOL(kill_block_super);
1615 #endif
1616 
1617 struct dentry *mount_nodev(struct file_system_type *fs_type,
1618 	int flags, void *data,
1619 	int (*fill_super)(struct super_block *, void *, int))
1620 {
1621 	int error;
1622 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1623 
1624 	if (IS_ERR(s))
1625 		return ERR_CAST(s);
1626 
1627 	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1628 	if (error) {
1629 		deactivate_locked_super(s);
1630 		return ERR_PTR(error);
1631 	}
1632 	s->s_flags |= SB_ACTIVE;
1633 	return dget(s->s_root);
1634 }
1635 EXPORT_SYMBOL(mount_nodev);
1636 
1637 int reconfigure_single(struct super_block *s,
1638 		       int flags, void *data)
1639 {
1640 	struct fs_context *fc;
1641 	int ret;
1642 
1643 	/* The caller really need to be passing fc down into mount_single(),
1644 	 * then a chunk of this can be removed.  [Bollocks -- AV]
1645 	 * Better yet, reconfiguration shouldn't happen, but rather the second
1646 	 * mount should be rejected if the parameters are not compatible.
1647 	 */
1648 	fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1649 	if (IS_ERR(fc))
1650 		return PTR_ERR(fc);
1651 
1652 	ret = parse_monolithic_mount_data(fc, data);
1653 	if (ret < 0)
1654 		goto out;
1655 
1656 	ret = reconfigure_super(fc);
1657 out:
1658 	put_fs_context(fc);
1659 	return ret;
1660 }
1661 
1662 static int compare_single(struct super_block *s, void *p)
1663 {
1664 	return 1;
1665 }
1666 
1667 struct dentry *mount_single(struct file_system_type *fs_type,
1668 	int flags, void *data,
1669 	int (*fill_super)(struct super_block *, void *, int))
1670 {
1671 	struct super_block *s;
1672 	int error;
1673 
1674 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1675 	if (IS_ERR(s))
1676 		return ERR_CAST(s);
1677 	if (!s->s_root) {
1678 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1679 		if (!error)
1680 			s->s_flags |= SB_ACTIVE;
1681 	} else {
1682 		error = reconfigure_single(s, flags, data);
1683 	}
1684 	if (unlikely(error)) {
1685 		deactivate_locked_super(s);
1686 		return ERR_PTR(error);
1687 	}
1688 	return dget(s->s_root);
1689 }
1690 EXPORT_SYMBOL(mount_single);
1691 
1692 /**
1693  * vfs_get_tree - Get the mountable root
1694  * @fc: The superblock configuration context.
1695  *
1696  * The filesystem is invoked to get or create a superblock which can then later
1697  * be used for mounting.  The filesystem places a pointer to the root to be
1698  * used for mounting in @fc->root.
1699  */
1700 int vfs_get_tree(struct fs_context *fc)
1701 {
1702 	struct super_block *sb;
1703 	int error;
1704 
1705 	if (fc->root)
1706 		return -EBUSY;
1707 
1708 	/* Get the mountable root in fc->root, with a ref on the root and a ref
1709 	 * on the superblock.
1710 	 */
1711 	error = fc->ops->get_tree(fc);
1712 	if (error < 0)
1713 		return error;
1714 
1715 	if (!fc->root) {
1716 		pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1717 		       fc->fs_type->name);
1718 		/* We don't know what the locking state of the superblock is -
1719 		 * if there is a superblock.
1720 		 */
1721 		BUG();
1722 	}
1723 
1724 	sb = fc->root->d_sb;
1725 	WARN_ON(!sb->s_bdi);
1726 
1727 	/*
1728 	 * super_wake() contains a memory barrier which also care of
1729 	 * ordering for super_cache_count(). We place it before setting
1730 	 * SB_BORN as the data dependency between the two functions is
1731 	 * the superblock structure contents that we just set up, not
1732 	 * the SB_BORN flag.
1733 	 */
1734 	super_wake(sb, SB_BORN);
1735 
1736 	error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1737 	if (unlikely(error)) {
1738 		fc_drop_locked(fc);
1739 		return error;
1740 	}
1741 
1742 	/*
1743 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1744 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1745 	 * this warning for a little while to try and catch filesystems that
1746 	 * violate this rule.
1747 	 */
1748 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1749 		"negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1750 
1751 	return 0;
1752 }
1753 EXPORT_SYMBOL(vfs_get_tree);
1754 
1755 /*
1756  * Setup private BDI for given superblock. It gets automatically cleaned up
1757  * in generic_shutdown_super().
1758  */
1759 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1760 {
1761 	struct backing_dev_info *bdi;
1762 	int err;
1763 	va_list args;
1764 
1765 	bdi = bdi_alloc(NUMA_NO_NODE);
1766 	if (!bdi)
1767 		return -ENOMEM;
1768 
1769 	va_start(args, fmt);
1770 	err = bdi_register_va(bdi, fmt, args);
1771 	va_end(args);
1772 	if (err) {
1773 		bdi_put(bdi);
1774 		return err;
1775 	}
1776 	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1777 	sb->s_bdi = bdi;
1778 	sb->s_iflags |= SB_I_PERSB_BDI;
1779 
1780 	return 0;
1781 }
1782 EXPORT_SYMBOL(super_setup_bdi_name);
1783 
1784 /*
1785  * Setup private BDI for given superblock. I gets automatically cleaned up
1786  * in generic_shutdown_super().
1787  */
1788 int super_setup_bdi(struct super_block *sb)
1789 {
1790 	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1791 
1792 	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1793 				    atomic_long_inc_return(&bdi_seq));
1794 }
1795 EXPORT_SYMBOL(super_setup_bdi);
1796 
1797 /**
1798  * sb_wait_write - wait until all writers to given file system finish
1799  * @sb: the super for which we wait
1800  * @level: type of writers we wait for (normal vs page fault)
1801  *
1802  * This function waits until there are no writers of given type to given file
1803  * system.
1804  */
1805 static void sb_wait_write(struct super_block *sb, int level)
1806 {
1807 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1808 }
1809 
1810 /*
1811  * We are going to return to userspace and forget about these locks, the
1812  * ownership goes to the caller of thaw_super() which does unlock().
1813  */
1814 static void lockdep_sb_freeze_release(struct super_block *sb)
1815 {
1816 	int level;
1817 
1818 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1819 		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1820 }
1821 
1822 /*
1823  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1824  */
1825 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1826 {
1827 	int level;
1828 
1829 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1830 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1831 }
1832 
1833 static void sb_freeze_unlock(struct super_block *sb, int level)
1834 {
1835 	for (level--; level >= 0; level--)
1836 		percpu_up_write(sb->s_writers.rw_sem + level);
1837 }
1838 
1839 static int wait_for_partially_frozen(struct super_block *sb)
1840 {
1841 	int ret = 0;
1842 
1843 	do {
1844 		unsigned short old = sb->s_writers.frozen;
1845 
1846 		up_write(&sb->s_umount);
1847 		ret = wait_var_event_killable(&sb->s_writers.frozen,
1848 					       sb->s_writers.frozen != old);
1849 		down_write(&sb->s_umount);
1850 	} while (ret == 0 &&
1851 		 sb->s_writers.frozen != SB_UNFROZEN &&
1852 		 sb->s_writers.frozen != SB_FREEZE_COMPLETE);
1853 
1854 	return ret;
1855 }
1856 
1857 /**
1858  * freeze_super - lock the filesystem and force it into a consistent state
1859  * @sb: the super to lock
1860  * @who: context that wants to freeze
1861  *
1862  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1863  * freeze_fs.  Subsequent calls to this without first thawing the fs may return
1864  * -EBUSY.
1865  *
1866  * @who should be:
1867  * * %FREEZE_HOLDER_USERSPACE if userspace wants to freeze the fs;
1868  * * %FREEZE_HOLDER_KERNEL if the kernel wants to freeze the fs.
1869  *
1870  * The @who argument distinguishes between the kernel and userspace trying to
1871  * freeze the filesystem.  Although there cannot be multiple kernel freezes or
1872  * multiple userspace freezes in effect at any given time, the kernel and
1873  * userspace can both hold a filesystem frozen.  The filesystem remains frozen
1874  * until there are no kernel or userspace freezes in effect.
1875  *
1876  * During this function, sb->s_writers.frozen goes through these values:
1877  *
1878  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1879  *
1880  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1881  * writes should be blocked, though page faults are still allowed. We wait for
1882  * all writes to complete and then proceed to the next stage.
1883  *
1884  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1885  * but internal fs threads can still modify the filesystem (although they
1886  * should not dirty new pages or inodes), writeback can run etc. After waiting
1887  * for all running page faults we sync the filesystem which will clean all
1888  * dirty pages and inodes (no new dirty pages or inodes can be created when
1889  * sync is running).
1890  *
1891  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1892  * modification are blocked (e.g. XFS preallocation truncation on inode
1893  * reclaim). This is usually implemented by blocking new transactions for
1894  * filesystems that have them and need this additional guard. After all
1895  * internal writers are finished we call ->freeze_fs() to finish filesystem
1896  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1897  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1898  *
1899  * sb->s_writers.frozen is protected by sb->s_umount.
1900  */
1901 int freeze_super(struct super_block *sb, enum freeze_holder who)
1902 {
1903 	int ret;
1904 
1905 	atomic_inc(&sb->s_active);
1906 	if (!super_lock_excl(sb))
1907 		WARN(1, "Dying superblock while freezing!");
1908 
1909 retry:
1910 	if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) {
1911 		if (sb->s_writers.freeze_holders & who) {
1912 			deactivate_locked_super(sb);
1913 			return -EBUSY;
1914 		}
1915 
1916 		WARN_ON(sb->s_writers.freeze_holders == 0);
1917 
1918 		/*
1919 		 * Someone else already holds this type of freeze; share the
1920 		 * freeze and assign the active ref to the freeze.
1921 		 */
1922 		sb->s_writers.freeze_holders |= who;
1923 		super_unlock_excl(sb);
1924 		return 0;
1925 	}
1926 
1927 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1928 		ret = wait_for_partially_frozen(sb);
1929 		if (ret) {
1930 			deactivate_locked_super(sb);
1931 			return ret;
1932 		}
1933 
1934 		goto retry;
1935 	}
1936 
1937 	if (!(sb->s_flags & SB_BORN)) {
1938 		super_unlock_excl(sb);
1939 		return 0;	/* sic - it's "nothing to do" */
1940 	}
1941 
1942 	if (sb_rdonly(sb)) {
1943 		/* Nothing to do really... */
1944 		sb->s_writers.freeze_holders |= who;
1945 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1946 		wake_up_var(&sb->s_writers.frozen);
1947 		super_unlock_excl(sb);
1948 		return 0;
1949 	}
1950 
1951 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1952 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1953 	super_unlock_excl(sb);
1954 	sb_wait_write(sb, SB_FREEZE_WRITE);
1955 	if (!super_lock_excl(sb))
1956 		WARN(1, "Dying superblock while freezing!");
1957 
1958 	/* Now we go and block page faults... */
1959 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1960 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1961 
1962 	/* All writers are done so after syncing there won't be dirty data */
1963 	ret = sync_filesystem(sb);
1964 	if (ret) {
1965 		sb->s_writers.frozen = SB_UNFROZEN;
1966 		sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
1967 		wake_up_var(&sb->s_writers.frozen);
1968 		deactivate_locked_super(sb);
1969 		return ret;
1970 	}
1971 
1972 	/* Now wait for internal filesystem counter */
1973 	sb->s_writers.frozen = SB_FREEZE_FS;
1974 	sb_wait_write(sb, SB_FREEZE_FS);
1975 
1976 	if (sb->s_op->freeze_fs) {
1977 		ret = sb->s_op->freeze_fs(sb);
1978 		if (ret) {
1979 			printk(KERN_ERR
1980 				"VFS:Filesystem freeze failed\n");
1981 			sb->s_writers.frozen = SB_UNFROZEN;
1982 			sb_freeze_unlock(sb, SB_FREEZE_FS);
1983 			wake_up_var(&sb->s_writers.frozen);
1984 			deactivate_locked_super(sb);
1985 			return ret;
1986 		}
1987 	}
1988 	/*
1989 	 * For debugging purposes so that fs can warn if it sees write activity
1990 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1991 	 */
1992 	sb->s_writers.freeze_holders |= who;
1993 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1994 	wake_up_var(&sb->s_writers.frozen);
1995 	lockdep_sb_freeze_release(sb);
1996 	super_unlock_excl(sb);
1997 	return 0;
1998 }
1999 EXPORT_SYMBOL(freeze_super);
2000 
2001 /*
2002  * Undoes the effect of a freeze_super_locked call.  If the filesystem is
2003  * frozen both by userspace and the kernel, a thaw call from either source
2004  * removes that state without releasing the other state or unlocking the
2005  * filesystem.
2006  */
2007 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who)
2008 {
2009 	int error;
2010 
2011 	if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) {
2012 		if (!(sb->s_writers.freeze_holders & who)) {
2013 			super_unlock_excl(sb);
2014 			return -EINVAL;
2015 		}
2016 
2017 		/*
2018 		 * Freeze is shared with someone else.  Release our hold and
2019 		 * drop the active ref that freeze_super assigned to the
2020 		 * freezer.
2021 		 */
2022 		if (sb->s_writers.freeze_holders & ~who) {
2023 			sb->s_writers.freeze_holders &= ~who;
2024 			deactivate_locked_super(sb);
2025 			return 0;
2026 		}
2027 	} else {
2028 		super_unlock_excl(sb);
2029 		return -EINVAL;
2030 	}
2031 
2032 	if (sb_rdonly(sb)) {
2033 		sb->s_writers.freeze_holders &= ~who;
2034 		sb->s_writers.frozen = SB_UNFROZEN;
2035 		wake_up_var(&sb->s_writers.frozen);
2036 		goto out;
2037 	}
2038 
2039 	lockdep_sb_freeze_acquire(sb);
2040 
2041 	if (sb->s_op->unfreeze_fs) {
2042 		error = sb->s_op->unfreeze_fs(sb);
2043 		if (error) {
2044 			printk(KERN_ERR "VFS:Filesystem thaw failed\n");
2045 			lockdep_sb_freeze_release(sb);
2046 			super_unlock_excl(sb);
2047 			return error;
2048 		}
2049 	}
2050 
2051 	sb->s_writers.freeze_holders &= ~who;
2052 	sb->s_writers.frozen = SB_UNFROZEN;
2053 	wake_up_var(&sb->s_writers.frozen);
2054 	sb_freeze_unlock(sb, SB_FREEZE_FS);
2055 out:
2056 	deactivate_locked_super(sb);
2057 	return 0;
2058 }
2059 
2060 /**
2061  * thaw_super -- unlock filesystem
2062  * @sb: the super to thaw
2063  * @who: context that wants to freeze
2064  *
2065  * Unlocks the filesystem and marks it writeable again after freeze_super()
2066  * if there are no remaining freezes on the filesystem.
2067  *
2068  * @who should be:
2069  * * %FREEZE_HOLDER_USERSPACE if userspace wants to thaw the fs;
2070  * * %FREEZE_HOLDER_KERNEL if the kernel wants to thaw the fs.
2071  */
2072 int thaw_super(struct super_block *sb, enum freeze_holder who)
2073 {
2074 	if (!super_lock_excl(sb))
2075 		WARN(1, "Dying superblock while thawing!");
2076 	return thaw_super_locked(sb, who);
2077 }
2078 EXPORT_SYMBOL(thaw_super);
2079 
2080 /*
2081  * Create workqueue for deferred direct IO completions. We allocate the
2082  * workqueue when it's first needed. This avoids creating workqueue for
2083  * filesystems that don't need it and also allows us to create the workqueue
2084  * late enough so the we can include s_id in the name of the workqueue.
2085  */
2086 int sb_init_dio_done_wq(struct super_block *sb)
2087 {
2088 	struct workqueue_struct *old;
2089 	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
2090 						      WQ_MEM_RECLAIM, 0,
2091 						      sb->s_id);
2092 	if (!wq)
2093 		return -ENOMEM;
2094 	/*
2095 	 * This has to be atomic as more DIOs can race to create the workqueue
2096 	 */
2097 	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
2098 	/* Someone created workqueue before us? Free ours... */
2099 	if (old)
2100 		destroy_workqueue(wq);
2101 	return 0;
2102 }
2103