1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/super.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * super.c contains code to handle: - mount structures 8 * - super-block tables 9 * - filesystem drivers list 10 * - mount system call 11 * - umount system call 12 * - ustat system call 13 * 14 * GK 2/5/95 - Changed to support mounting the root fs via NFS 15 * 16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 18 * Added options to /proc/mounts: 19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 22 */ 23 24 #include <linux/export.h> 25 #include <linux/slab.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/fscrypt.h> 35 #include <linux/fsnotify.h> 36 #include <linux/lockdep.h> 37 #include <linux/user_namespace.h> 38 #include <linux/fs_context.h> 39 #include <uapi/linux/mount.h> 40 #include "internal.h" 41 42 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who); 43 44 static LIST_HEAD(super_blocks); 45 static DEFINE_SPINLOCK(sb_lock); 46 47 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 48 "sb_writers", 49 "sb_pagefaults", 50 "sb_internal", 51 }; 52 53 static inline void __super_lock(struct super_block *sb, bool excl) 54 { 55 if (excl) 56 down_write(&sb->s_umount); 57 else 58 down_read(&sb->s_umount); 59 } 60 61 static inline void super_unlock(struct super_block *sb, bool excl) 62 { 63 if (excl) 64 up_write(&sb->s_umount); 65 else 66 up_read(&sb->s_umount); 67 } 68 69 static inline void __super_lock_excl(struct super_block *sb) 70 { 71 __super_lock(sb, true); 72 } 73 74 static inline void super_unlock_excl(struct super_block *sb) 75 { 76 super_unlock(sb, true); 77 } 78 79 static inline void super_unlock_shared(struct super_block *sb) 80 { 81 super_unlock(sb, false); 82 } 83 84 static inline bool wait_born(struct super_block *sb) 85 { 86 unsigned int flags; 87 88 /* 89 * Pairs with smp_store_release() in super_wake() and ensures 90 * that we see SB_BORN or SB_DYING after we're woken. 91 */ 92 flags = smp_load_acquire(&sb->s_flags); 93 return flags & (SB_BORN | SB_DYING); 94 } 95 96 /** 97 * super_lock - wait for superblock to become ready and lock it 98 * @sb: superblock to wait for 99 * @excl: whether exclusive access is required 100 * 101 * If the superblock has neither passed through vfs_get_tree() or 102 * generic_shutdown_super() yet wait for it to happen. Either superblock 103 * creation will succeed and SB_BORN is set by vfs_get_tree() or we're 104 * woken and we'll see SB_DYING. 105 * 106 * The caller must have acquired a temporary reference on @sb->s_count. 107 * 108 * Return: This returns true if SB_BORN was set, false if SB_DYING was 109 * set. The function acquires s_umount and returns with it held. 110 */ 111 static __must_check bool super_lock(struct super_block *sb, bool excl) 112 { 113 114 lockdep_assert_not_held(&sb->s_umount); 115 116 relock: 117 __super_lock(sb, excl); 118 119 /* 120 * Has gone through generic_shutdown_super() in the meantime. 121 * @sb->s_root is NULL and @sb->s_active is 0. No one needs to 122 * grab a reference to this. Tell them so. 123 */ 124 if (sb->s_flags & SB_DYING) 125 return false; 126 127 /* Has called ->get_tree() successfully. */ 128 if (sb->s_flags & SB_BORN) 129 return true; 130 131 super_unlock(sb, excl); 132 133 /* wait until the superblock is ready or dying */ 134 wait_var_event(&sb->s_flags, wait_born(sb)); 135 136 /* 137 * Neither SB_BORN nor SB_DYING are ever unset so we never loop. 138 * Just reacquire @sb->s_umount for the caller. 139 */ 140 goto relock; 141 } 142 143 /* wait and acquire read-side of @sb->s_umount */ 144 static inline bool super_lock_shared(struct super_block *sb) 145 { 146 return super_lock(sb, false); 147 } 148 149 /* wait and acquire write-side of @sb->s_umount */ 150 static inline bool super_lock_excl(struct super_block *sb) 151 { 152 return super_lock(sb, true); 153 } 154 155 /* wake waiters */ 156 #define SUPER_WAKE_FLAGS (SB_BORN | SB_DYING | SB_DEAD) 157 static void super_wake(struct super_block *sb, unsigned int flag) 158 { 159 WARN_ON_ONCE((flag & ~SUPER_WAKE_FLAGS)); 160 WARN_ON_ONCE(hweight32(flag & SUPER_WAKE_FLAGS) > 1); 161 162 /* 163 * Pairs with smp_load_acquire() in super_lock() to make sure 164 * all initializations in the superblock are seen by the user 165 * seeing SB_BORN sent. 166 */ 167 smp_store_release(&sb->s_flags, sb->s_flags | flag); 168 /* 169 * Pairs with the barrier in prepare_to_wait_event() to make sure 170 * ___wait_var_event() either sees SB_BORN set or 171 * waitqueue_active() check in wake_up_var() sees the waiter. 172 */ 173 smp_mb(); 174 wake_up_var(&sb->s_flags); 175 } 176 177 /* 178 * One thing we have to be careful of with a per-sb shrinker is that we don't 179 * drop the last active reference to the superblock from within the shrinker. 180 * If that happens we could trigger unregistering the shrinker from within the 181 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 182 * take a passive reference to the superblock to avoid this from occurring. 183 */ 184 static unsigned long super_cache_scan(struct shrinker *shrink, 185 struct shrink_control *sc) 186 { 187 struct super_block *sb; 188 long fs_objects = 0; 189 long total_objects; 190 long freed = 0; 191 long dentries; 192 long inodes; 193 194 sb = container_of(shrink, struct super_block, s_shrink); 195 196 /* 197 * Deadlock avoidance. We may hold various FS locks, and we don't want 198 * to recurse into the FS that called us in clear_inode() and friends.. 199 */ 200 if (!(sc->gfp_mask & __GFP_FS)) 201 return SHRINK_STOP; 202 203 if (!super_trylock_shared(sb)) 204 return SHRINK_STOP; 205 206 if (sb->s_op->nr_cached_objects) 207 fs_objects = sb->s_op->nr_cached_objects(sb, sc); 208 209 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc); 210 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc); 211 total_objects = dentries + inodes + fs_objects + 1; 212 if (!total_objects) 213 total_objects = 1; 214 215 /* proportion the scan between the caches */ 216 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 217 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 218 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects); 219 220 /* 221 * prune the dcache first as the icache is pinned by it, then 222 * prune the icache, followed by the filesystem specific caches 223 * 224 * Ensure that we always scan at least one object - memcg kmem 225 * accounting uses this to fully empty the caches. 226 */ 227 sc->nr_to_scan = dentries + 1; 228 freed = prune_dcache_sb(sb, sc); 229 sc->nr_to_scan = inodes + 1; 230 freed += prune_icache_sb(sb, sc); 231 232 if (fs_objects) { 233 sc->nr_to_scan = fs_objects + 1; 234 freed += sb->s_op->free_cached_objects(sb, sc); 235 } 236 237 super_unlock_shared(sb); 238 return freed; 239 } 240 241 static unsigned long super_cache_count(struct shrinker *shrink, 242 struct shrink_control *sc) 243 { 244 struct super_block *sb; 245 long total_objects = 0; 246 247 sb = container_of(shrink, struct super_block, s_shrink); 248 249 /* 250 * We don't call super_trylock_shared() here as it is a scalability 251 * bottleneck, so we're exposed to partial setup state. The shrinker 252 * rwsem does not protect filesystem operations backing 253 * list_lru_shrink_count() or s_op->nr_cached_objects(). Counts can 254 * change between super_cache_count and super_cache_scan, so we really 255 * don't need locks here. 256 * 257 * However, if we are currently mounting the superblock, the underlying 258 * filesystem might be in a state of partial construction and hence it 259 * is dangerous to access it. super_trylock_shared() uses a SB_BORN check 260 * to avoid this situation, so do the same here. The memory barrier is 261 * matched with the one in mount_fs() as we don't hold locks here. 262 */ 263 if (!(sb->s_flags & SB_BORN)) 264 return 0; 265 smp_rmb(); 266 267 if (sb->s_op && sb->s_op->nr_cached_objects) 268 total_objects = sb->s_op->nr_cached_objects(sb, sc); 269 270 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc); 271 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc); 272 273 if (!total_objects) 274 return SHRINK_EMPTY; 275 276 total_objects = vfs_pressure_ratio(total_objects); 277 return total_objects; 278 } 279 280 static void destroy_super_work(struct work_struct *work) 281 { 282 struct super_block *s = container_of(work, struct super_block, 283 destroy_work); 284 int i; 285 286 for (i = 0; i < SB_FREEZE_LEVELS; i++) 287 percpu_free_rwsem(&s->s_writers.rw_sem[i]); 288 kfree(s); 289 } 290 291 static void destroy_super_rcu(struct rcu_head *head) 292 { 293 struct super_block *s = container_of(head, struct super_block, rcu); 294 INIT_WORK(&s->destroy_work, destroy_super_work); 295 schedule_work(&s->destroy_work); 296 } 297 298 /* Free a superblock that has never been seen by anyone */ 299 static void destroy_unused_super(struct super_block *s) 300 { 301 if (!s) 302 return; 303 super_unlock_excl(s); 304 list_lru_destroy(&s->s_dentry_lru); 305 list_lru_destroy(&s->s_inode_lru); 306 security_sb_free(s); 307 put_user_ns(s->s_user_ns); 308 kfree(s->s_subtype); 309 free_prealloced_shrinker(&s->s_shrink); 310 /* no delays needed */ 311 destroy_super_work(&s->destroy_work); 312 } 313 314 /** 315 * alloc_super - create new superblock 316 * @type: filesystem type superblock should belong to 317 * @flags: the mount flags 318 * @user_ns: User namespace for the super_block 319 * 320 * Allocates and initializes a new &struct super_block. alloc_super() 321 * returns a pointer new superblock or %NULL if allocation had failed. 322 */ 323 static struct super_block *alloc_super(struct file_system_type *type, int flags, 324 struct user_namespace *user_ns) 325 { 326 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 327 static const struct super_operations default_op; 328 int i; 329 330 if (!s) 331 return NULL; 332 333 INIT_LIST_HEAD(&s->s_mounts); 334 s->s_user_ns = get_user_ns(user_ns); 335 init_rwsem(&s->s_umount); 336 lockdep_set_class(&s->s_umount, &type->s_umount_key); 337 /* 338 * sget() can have s_umount recursion. 339 * 340 * When it cannot find a suitable sb, it allocates a new 341 * one (this one), and tries again to find a suitable old 342 * one. 343 * 344 * In case that succeeds, it will acquire the s_umount 345 * lock of the old one. Since these are clearly distrinct 346 * locks, and this object isn't exposed yet, there's no 347 * risk of deadlocks. 348 * 349 * Annotate this by putting this lock in a different 350 * subclass. 351 */ 352 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 353 354 if (security_sb_alloc(s)) 355 goto fail; 356 357 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 358 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i], 359 sb_writers_name[i], 360 &type->s_writers_key[i])) 361 goto fail; 362 } 363 s->s_bdi = &noop_backing_dev_info; 364 s->s_flags = flags; 365 if (s->s_user_ns != &init_user_ns) 366 s->s_iflags |= SB_I_NODEV; 367 INIT_HLIST_NODE(&s->s_instances); 368 INIT_HLIST_BL_HEAD(&s->s_roots); 369 mutex_init(&s->s_sync_lock); 370 INIT_LIST_HEAD(&s->s_inodes); 371 spin_lock_init(&s->s_inode_list_lock); 372 INIT_LIST_HEAD(&s->s_inodes_wb); 373 spin_lock_init(&s->s_inode_wblist_lock); 374 375 s->s_count = 1; 376 atomic_set(&s->s_active, 1); 377 mutex_init(&s->s_vfs_rename_mutex); 378 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 379 init_rwsem(&s->s_dquot.dqio_sem); 380 s->s_maxbytes = MAX_NON_LFS; 381 s->s_op = &default_op; 382 s->s_time_gran = 1000000000; 383 s->s_time_min = TIME64_MIN; 384 s->s_time_max = TIME64_MAX; 385 386 s->s_shrink.seeks = DEFAULT_SEEKS; 387 s->s_shrink.scan_objects = super_cache_scan; 388 s->s_shrink.count_objects = super_cache_count; 389 s->s_shrink.batch = 1024; 390 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE; 391 if (prealloc_shrinker(&s->s_shrink, "sb-%s", type->name)) 392 goto fail; 393 if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink)) 394 goto fail; 395 if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink)) 396 goto fail; 397 return s; 398 399 fail: 400 destroy_unused_super(s); 401 return NULL; 402 } 403 404 /* Superblock refcounting */ 405 406 /* 407 * Drop a superblock's refcount. The caller must hold sb_lock. 408 */ 409 static void __put_super(struct super_block *s) 410 { 411 if (!--s->s_count) { 412 list_del_init(&s->s_list); 413 WARN_ON(s->s_dentry_lru.node); 414 WARN_ON(s->s_inode_lru.node); 415 WARN_ON(!list_empty(&s->s_mounts)); 416 security_sb_free(s); 417 put_user_ns(s->s_user_ns); 418 kfree(s->s_subtype); 419 call_rcu(&s->rcu, destroy_super_rcu); 420 } 421 } 422 423 /** 424 * put_super - drop a temporary reference to superblock 425 * @sb: superblock in question 426 * 427 * Drops a temporary reference, frees superblock if there's no 428 * references left. 429 */ 430 void put_super(struct super_block *sb) 431 { 432 spin_lock(&sb_lock); 433 __put_super(sb); 434 spin_unlock(&sb_lock); 435 } 436 437 438 /** 439 * deactivate_locked_super - drop an active reference to superblock 440 * @s: superblock to deactivate 441 * 442 * Drops an active reference to superblock, converting it into a temporary 443 * one if there is no other active references left. In that case we 444 * tell fs driver to shut it down and drop the temporary reference we 445 * had just acquired. 446 * 447 * Caller holds exclusive lock on superblock; that lock is released. 448 */ 449 void deactivate_locked_super(struct super_block *s) 450 { 451 struct file_system_type *fs = s->s_type; 452 if (atomic_dec_and_test(&s->s_active)) { 453 unregister_shrinker(&s->s_shrink); 454 fs->kill_sb(s); 455 456 /* 457 * Since list_lru_destroy() may sleep, we cannot call it from 458 * put_super(), where we hold the sb_lock. Therefore we destroy 459 * the lru lists right now. 460 */ 461 list_lru_destroy(&s->s_dentry_lru); 462 list_lru_destroy(&s->s_inode_lru); 463 464 /* 465 * Remove it from @fs_supers so it isn't found by new 466 * sget{_fc}() walkers anymore. Any concurrent mounter still 467 * managing to grab a temporary reference is guaranteed to 468 * already see SB_DYING and will wait until we notify them about 469 * SB_DEAD. 470 */ 471 spin_lock(&sb_lock); 472 hlist_del_init(&s->s_instances); 473 spin_unlock(&sb_lock); 474 475 /* 476 * Let concurrent mounts know that this thing is really dead. 477 * We don't need @sb->s_umount here as every concurrent caller 478 * will see SB_DYING and either discard the superblock or wait 479 * for SB_DEAD. 480 */ 481 super_wake(s, SB_DEAD); 482 483 put_filesystem(fs); 484 put_super(s); 485 } else { 486 super_unlock_excl(s); 487 } 488 } 489 490 EXPORT_SYMBOL(deactivate_locked_super); 491 492 /** 493 * deactivate_super - drop an active reference to superblock 494 * @s: superblock to deactivate 495 * 496 * Variant of deactivate_locked_super(), except that superblock is *not* 497 * locked by caller. If we are going to drop the final active reference, 498 * lock will be acquired prior to that. 499 */ 500 void deactivate_super(struct super_block *s) 501 { 502 if (!atomic_add_unless(&s->s_active, -1, 1)) { 503 __super_lock_excl(s); 504 deactivate_locked_super(s); 505 } 506 } 507 508 EXPORT_SYMBOL(deactivate_super); 509 510 /** 511 * grab_super - acquire an active reference 512 * @s: reference we are trying to make active 513 * 514 * Tries to acquire an active reference. grab_super() is used when we 515 * had just found a superblock in super_blocks or fs_type->fs_supers 516 * and want to turn it into a full-blown active reference. grab_super() 517 * is called with sb_lock held and drops it. Returns 1 in case of 518 * success, 0 if we had failed (superblock contents was already dead or 519 * dying when grab_super() had been called). Note that this is only 520 * called for superblocks not in rundown mode (== ones still on ->fs_supers 521 * of their type), so increment of ->s_count is OK here. 522 */ 523 static int grab_super(struct super_block *s) __releases(sb_lock) 524 { 525 bool born; 526 527 s->s_count++; 528 spin_unlock(&sb_lock); 529 born = super_lock_excl(s); 530 if (born && atomic_inc_not_zero(&s->s_active)) { 531 put_super(s); 532 return 1; 533 } 534 super_unlock_excl(s); 535 put_super(s); 536 return 0; 537 } 538 539 static inline bool wait_dead(struct super_block *sb) 540 { 541 unsigned int flags; 542 543 /* 544 * Pairs with memory barrier in super_wake() and ensures 545 * that we see SB_DEAD after we're woken. 546 */ 547 flags = smp_load_acquire(&sb->s_flags); 548 return flags & SB_DEAD; 549 } 550 551 /** 552 * grab_super_dead - acquire an active reference to a superblock 553 * @sb: superblock to acquire 554 * 555 * Acquire a temporary reference on a superblock and try to trade it for 556 * an active reference. This is used in sget{_fc}() to wait for a 557 * superblock to either become SB_BORN or for it to pass through 558 * sb->kill() and be marked as SB_DEAD. 559 * 560 * Return: This returns true if an active reference could be acquired, 561 * false if not. 562 */ 563 static bool grab_super_dead(struct super_block *sb) 564 { 565 566 sb->s_count++; 567 if (grab_super(sb)) { 568 put_super(sb); 569 lockdep_assert_held(&sb->s_umount); 570 return true; 571 } 572 wait_var_event(&sb->s_flags, wait_dead(sb)); 573 put_super(sb); 574 lockdep_assert_not_held(&sb->s_umount); 575 return false; 576 } 577 578 /* 579 * super_trylock_shared - try to grab ->s_umount shared 580 * @sb: reference we are trying to grab 581 * 582 * Try to prevent fs shutdown. This is used in places where we 583 * cannot take an active reference but we need to ensure that the 584 * filesystem is not shut down while we are working on it. It returns 585 * false if we cannot acquire s_umount or if we lose the race and 586 * filesystem already got into shutdown, and returns true with the s_umount 587 * lock held in read mode in case of success. On successful return, 588 * the caller must drop the s_umount lock when done. 589 * 590 * Note that unlike get_super() et.al. this one does *not* bump ->s_count. 591 * The reason why it's safe is that we are OK with doing trylock instead 592 * of down_read(). There's a couple of places that are OK with that, but 593 * it's very much not a general-purpose interface. 594 */ 595 bool super_trylock_shared(struct super_block *sb) 596 { 597 if (down_read_trylock(&sb->s_umount)) { 598 if (!(sb->s_flags & SB_DYING) && sb->s_root && 599 (sb->s_flags & SB_BORN)) 600 return true; 601 super_unlock_shared(sb); 602 } 603 604 return false; 605 } 606 607 /** 608 * retire_super - prevents superblock from being reused 609 * @sb: superblock to retire 610 * 611 * The function marks superblock to be ignored in superblock test, which 612 * prevents it from being reused for any new mounts. If the superblock has 613 * a private bdi, it also unregisters it, but doesn't reduce the refcount 614 * of the superblock to prevent potential races. The refcount is reduced 615 * by generic_shutdown_super(). The function can not be called 616 * concurrently with generic_shutdown_super(). It is safe to call the 617 * function multiple times, subsequent calls have no effect. 618 * 619 * The marker will affect the re-use only for block-device-based 620 * superblocks. Other superblocks will still get marked if this function 621 * is used, but that will not affect their reusability. 622 */ 623 void retire_super(struct super_block *sb) 624 { 625 WARN_ON(!sb->s_bdev); 626 __super_lock_excl(sb); 627 if (sb->s_iflags & SB_I_PERSB_BDI) { 628 bdi_unregister(sb->s_bdi); 629 sb->s_iflags &= ~SB_I_PERSB_BDI; 630 } 631 sb->s_iflags |= SB_I_RETIRED; 632 super_unlock_excl(sb); 633 } 634 EXPORT_SYMBOL(retire_super); 635 636 /** 637 * generic_shutdown_super - common helper for ->kill_sb() 638 * @sb: superblock to kill 639 * 640 * generic_shutdown_super() does all fs-independent work on superblock 641 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 642 * that need destruction out of superblock, call generic_shutdown_super() 643 * and release aforementioned objects. Note: dentries and inodes _are_ 644 * taken care of and do not need specific handling. 645 * 646 * Upon calling this function, the filesystem may no longer alter or 647 * rearrange the set of dentries belonging to this super_block, nor may it 648 * change the attachments of dentries to inodes. 649 */ 650 void generic_shutdown_super(struct super_block *sb) 651 { 652 const struct super_operations *sop = sb->s_op; 653 654 if (sb->s_root) { 655 shrink_dcache_for_umount(sb); 656 sync_filesystem(sb); 657 sb->s_flags &= ~SB_ACTIVE; 658 659 cgroup_writeback_umount(); 660 661 /* Evict all inodes with zero refcount. */ 662 evict_inodes(sb); 663 664 /* 665 * Clean up and evict any inodes that still have references due 666 * to fsnotify or the security policy. 667 */ 668 fsnotify_sb_delete(sb); 669 security_sb_delete(sb); 670 671 /* 672 * Now that all potentially-encrypted inodes have been evicted, 673 * the fscrypt keyring can be destroyed. 674 */ 675 fscrypt_destroy_keyring(sb); 676 677 if (sb->s_dio_done_wq) { 678 destroy_workqueue(sb->s_dio_done_wq); 679 sb->s_dio_done_wq = NULL; 680 } 681 682 if (sop->put_super) 683 sop->put_super(sb); 684 685 if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes), 686 "VFS: Busy inodes after unmount of %s (%s)", 687 sb->s_id, sb->s_type->name)) { 688 /* 689 * Adding a proper bailout path here would be hard, but 690 * we can at least make it more likely that a later 691 * iput_final() or such crashes cleanly. 692 */ 693 struct inode *inode; 694 695 spin_lock(&sb->s_inode_list_lock); 696 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 697 inode->i_op = VFS_PTR_POISON; 698 inode->i_sb = VFS_PTR_POISON; 699 inode->i_mapping = VFS_PTR_POISON; 700 } 701 spin_unlock(&sb->s_inode_list_lock); 702 } 703 } 704 /* 705 * Broadcast to everyone that grabbed a temporary reference to this 706 * superblock before we removed it from @fs_supers that the superblock 707 * is dying. Every walker of @fs_supers outside of sget{_fc}() will now 708 * discard this superblock and treat it as dead. 709 * 710 * We leave the superblock on @fs_supers so it can be found by 711 * sget{_fc}() until we passed sb->kill_sb(). 712 */ 713 super_wake(sb, SB_DYING); 714 super_unlock_excl(sb); 715 if (sb->s_bdi != &noop_backing_dev_info) { 716 if (sb->s_iflags & SB_I_PERSB_BDI) 717 bdi_unregister(sb->s_bdi); 718 bdi_put(sb->s_bdi); 719 sb->s_bdi = &noop_backing_dev_info; 720 } 721 } 722 723 EXPORT_SYMBOL(generic_shutdown_super); 724 725 bool mount_capable(struct fs_context *fc) 726 { 727 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) 728 return capable(CAP_SYS_ADMIN); 729 else 730 return ns_capable(fc->user_ns, CAP_SYS_ADMIN); 731 } 732 733 /** 734 * sget_fc - Find or create a superblock 735 * @fc: Filesystem context. 736 * @test: Comparison callback 737 * @set: Setup callback 738 * 739 * Create a new superblock or find an existing one. 740 * 741 * The @test callback is used to find a matching existing superblock. 742 * Whether or not the requested parameters in @fc are taken into account 743 * is specific to the @test callback that is used. They may even be 744 * completely ignored. 745 * 746 * If an extant superblock is matched, it will be returned unless: 747 * 748 * (1) the namespace the filesystem context @fc and the extant 749 * superblock's namespace differ 750 * 751 * (2) the filesystem context @fc has requested that reusing an extant 752 * superblock is not allowed 753 * 754 * In both cases EBUSY will be returned. 755 * 756 * If no match is made, a new superblock will be allocated and basic 757 * initialisation will be performed (s_type, s_fs_info and s_id will be 758 * set and the @set callback will be invoked), the superblock will be 759 * published and it will be returned in a partially constructed state 760 * with SB_BORN and SB_ACTIVE as yet unset. 761 * 762 * Return: On success, an extant or newly created superblock is 763 * returned. On failure an error pointer is returned. 764 */ 765 struct super_block *sget_fc(struct fs_context *fc, 766 int (*test)(struct super_block *, struct fs_context *), 767 int (*set)(struct super_block *, struct fs_context *)) 768 { 769 struct super_block *s = NULL; 770 struct super_block *old; 771 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns; 772 int err; 773 774 retry: 775 spin_lock(&sb_lock); 776 if (test) { 777 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) { 778 if (test(old, fc)) 779 goto share_extant_sb; 780 } 781 } 782 if (!s) { 783 spin_unlock(&sb_lock); 784 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns); 785 if (!s) 786 return ERR_PTR(-ENOMEM); 787 goto retry; 788 } 789 790 s->s_fs_info = fc->s_fs_info; 791 err = set(s, fc); 792 if (err) { 793 s->s_fs_info = NULL; 794 spin_unlock(&sb_lock); 795 destroy_unused_super(s); 796 return ERR_PTR(err); 797 } 798 fc->s_fs_info = NULL; 799 s->s_type = fc->fs_type; 800 s->s_iflags |= fc->s_iflags; 801 strscpy(s->s_id, s->s_type->name, sizeof(s->s_id)); 802 /* 803 * Make the superblock visible on @super_blocks and @fs_supers. 804 * It's in a nascent state and users should wait on SB_BORN or 805 * SB_DYING to be set. 806 */ 807 list_add_tail(&s->s_list, &super_blocks); 808 hlist_add_head(&s->s_instances, &s->s_type->fs_supers); 809 spin_unlock(&sb_lock); 810 get_filesystem(s->s_type); 811 register_shrinker_prepared(&s->s_shrink); 812 return s; 813 814 share_extant_sb: 815 if (user_ns != old->s_user_ns || fc->exclusive) { 816 spin_unlock(&sb_lock); 817 destroy_unused_super(s); 818 if (fc->exclusive) 819 warnfc(fc, "reusing existing filesystem not allowed"); 820 else 821 warnfc(fc, "reusing existing filesystem in another namespace not allowed"); 822 return ERR_PTR(-EBUSY); 823 } 824 if (!grab_super_dead(old)) 825 goto retry; 826 destroy_unused_super(s); 827 return old; 828 } 829 EXPORT_SYMBOL(sget_fc); 830 831 /** 832 * sget - find or create a superblock 833 * @type: filesystem type superblock should belong to 834 * @test: comparison callback 835 * @set: setup callback 836 * @flags: mount flags 837 * @data: argument to each of them 838 */ 839 struct super_block *sget(struct file_system_type *type, 840 int (*test)(struct super_block *,void *), 841 int (*set)(struct super_block *,void *), 842 int flags, 843 void *data) 844 { 845 struct user_namespace *user_ns = current_user_ns(); 846 struct super_block *s = NULL; 847 struct super_block *old; 848 int err; 849 850 /* We don't yet pass the user namespace of the parent 851 * mount through to here so always use &init_user_ns 852 * until that changes. 853 */ 854 if (flags & SB_SUBMOUNT) 855 user_ns = &init_user_ns; 856 857 retry: 858 spin_lock(&sb_lock); 859 if (test) { 860 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 861 if (!test(old, data)) 862 continue; 863 if (user_ns != old->s_user_ns) { 864 spin_unlock(&sb_lock); 865 destroy_unused_super(s); 866 return ERR_PTR(-EBUSY); 867 } 868 if (!grab_super_dead(old)) 869 goto retry; 870 destroy_unused_super(s); 871 return old; 872 } 873 } 874 if (!s) { 875 spin_unlock(&sb_lock); 876 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns); 877 if (!s) 878 return ERR_PTR(-ENOMEM); 879 goto retry; 880 } 881 882 err = set(s, data); 883 if (err) { 884 spin_unlock(&sb_lock); 885 destroy_unused_super(s); 886 return ERR_PTR(err); 887 } 888 s->s_type = type; 889 strscpy(s->s_id, type->name, sizeof(s->s_id)); 890 list_add_tail(&s->s_list, &super_blocks); 891 hlist_add_head(&s->s_instances, &type->fs_supers); 892 spin_unlock(&sb_lock); 893 get_filesystem(type); 894 register_shrinker_prepared(&s->s_shrink); 895 return s; 896 } 897 EXPORT_SYMBOL(sget); 898 899 void drop_super(struct super_block *sb) 900 { 901 super_unlock_shared(sb); 902 put_super(sb); 903 } 904 905 EXPORT_SYMBOL(drop_super); 906 907 void drop_super_exclusive(struct super_block *sb) 908 { 909 super_unlock_excl(sb); 910 put_super(sb); 911 } 912 EXPORT_SYMBOL(drop_super_exclusive); 913 914 static void __iterate_supers(void (*f)(struct super_block *)) 915 { 916 struct super_block *sb, *p = NULL; 917 918 spin_lock(&sb_lock); 919 list_for_each_entry(sb, &super_blocks, s_list) { 920 /* Pairs with memory marrier in super_wake(). */ 921 if (smp_load_acquire(&sb->s_flags) & SB_DYING) 922 continue; 923 sb->s_count++; 924 spin_unlock(&sb_lock); 925 926 f(sb); 927 928 spin_lock(&sb_lock); 929 if (p) 930 __put_super(p); 931 p = sb; 932 } 933 if (p) 934 __put_super(p); 935 spin_unlock(&sb_lock); 936 } 937 /** 938 * iterate_supers - call function for all active superblocks 939 * @f: function to call 940 * @arg: argument to pass to it 941 * 942 * Scans the superblock list and calls given function, passing it 943 * locked superblock and given argument. 944 */ 945 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 946 { 947 struct super_block *sb, *p = NULL; 948 949 spin_lock(&sb_lock); 950 list_for_each_entry(sb, &super_blocks, s_list) { 951 bool born; 952 953 sb->s_count++; 954 spin_unlock(&sb_lock); 955 956 born = super_lock_shared(sb); 957 if (born && sb->s_root) 958 f(sb, arg); 959 super_unlock_shared(sb); 960 961 spin_lock(&sb_lock); 962 if (p) 963 __put_super(p); 964 p = sb; 965 } 966 if (p) 967 __put_super(p); 968 spin_unlock(&sb_lock); 969 } 970 971 /** 972 * iterate_supers_type - call function for superblocks of given type 973 * @type: fs type 974 * @f: function to call 975 * @arg: argument to pass to it 976 * 977 * Scans the superblock list and calls given function, passing it 978 * locked superblock and given argument. 979 */ 980 void iterate_supers_type(struct file_system_type *type, 981 void (*f)(struct super_block *, void *), void *arg) 982 { 983 struct super_block *sb, *p = NULL; 984 985 spin_lock(&sb_lock); 986 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 987 bool born; 988 989 sb->s_count++; 990 spin_unlock(&sb_lock); 991 992 born = super_lock_shared(sb); 993 if (born && sb->s_root) 994 f(sb, arg); 995 super_unlock_shared(sb); 996 997 spin_lock(&sb_lock); 998 if (p) 999 __put_super(p); 1000 p = sb; 1001 } 1002 if (p) 1003 __put_super(p); 1004 spin_unlock(&sb_lock); 1005 } 1006 1007 EXPORT_SYMBOL(iterate_supers_type); 1008 1009 /** 1010 * get_active_super - get an active reference to the superblock of a device 1011 * @bdev: device to get the superblock for 1012 * 1013 * Scans the superblock list and finds the superblock of the file system 1014 * mounted on the device given. Returns the superblock with an active 1015 * reference or %NULL if none was found. 1016 */ 1017 struct super_block *get_active_super(struct block_device *bdev) 1018 { 1019 struct super_block *sb; 1020 1021 if (!bdev) 1022 return NULL; 1023 1024 spin_lock(&sb_lock); 1025 list_for_each_entry(sb, &super_blocks, s_list) { 1026 if (sb->s_bdev == bdev) { 1027 if (!grab_super(sb)) 1028 return NULL; 1029 super_unlock_excl(sb); 1030 return sb; 1031 } 1032 } 1033 spin_unlock(&sb_lock); 1034 return NULL; 1035 } 1036 1037 struct super_block *user_get_super(dev_t dev, bool excl) 1038 { 1039 struct super_block *sb; 1040 1041 spin_lock(&sb_lock); 1042 list_for_each_entry(sb, &super_blocks, s_list) { 1043 if (sb->s_dev == dev) { 1044 bool born; 1045 1046 sb->s_count++; 1047 spin_unlock(&sb_lock); 1048 /* still alive? */ 1049 born = super_lock(sb, excl); 1050 if (born && sb->s_root) 1051 return sb; 1052 super_unlock(sb, excl); 1053 /* nope, got unmounted */ 1054 spin_lock(&sb_lock); 1055 __put_super(sb); 1056 break; 1057 } 1058 } 1059 spin_unlock(&sb_lock); 1060 return NULL; 1061 } 1062 1063 /** 1064 * reconfigure_super - asks filesystem to change superblock parameters 1065 * @fc: The superblock and configuration 1066 * 1067 * Alters the configuration parameters of a live superblock. 1068 */ 1069 int reconfigure_super(struct fs_context *fc) 1070 { 1071 struct super_block *sb = fc->root->d_sb; 1072 int retval; 1073 bool remount_ro = false; 1074 bool remount_rw = false; 1075 bool force = fc->sb_flags & SB_FORCE; 1076 1077 if (fc->sb_flags_mask & ~MS_RMT_MASK) 1078 return -EINVAL; 1079 if (sb->s_writers.frozen != SB_UNFROZEN) 1080 return -EBUSY; 1081 1082 retval = security_sb_remount(sb, fc->security); 1083 if (retval) 1084 return retval; 1085 1086 if (fc->sb_flags_mask & SB_RDONLY) { 1087 #ifdef CONFIG_BLOCK 1088 if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev && 1089 bdev_read_only(sb->s_bdev)) 1090 return -EACCES; 1091 #endif 1092 remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb); 1093 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb); 1094 } 1095 1096 if (remount_ro) { 1097 if (!hlist_empty(&sb->s_pins)) { 1098 super_unlock_excl(sb); 1099 group_pin_kill(&sb->s_pins); 1100 __super_lock_excl(sb); 1101 if (!sb->s_root) 1102 return 0; 1103 if (sb->s_writers.frozen != SB_UNFROZEN) 1104 return -EBUSY; 1105 remount_ro = !sb_rdonly(sb); 1106 } 1107 } 1108 shrink_dcache_sb(sb); 1109 1110 /* If we are reconfiguring to RDONLY and current sb is read/write, 1111 * make sure there are no files open for writing. 1112 */ 1113 if (remount_ro) { 1114 if (force) { 1115 sb_start_ro_state_change(sb); 1116 } else { 1117 retval = sb_prepare_remount_readonly(sb); 1118 if (retval) 1119 return retval; 1120 } 1121 } else if (remount_rw) { 1122 /* 1123 * Protect filesystem's reconfigure code from writes from 1124 * userspace until reconfigure finishes. 1125 */ 1126 sb_start_ro_state_change(sb); 1127 } 1128 1129 if (fc->ops->reconfigure) { 1130 retval = fc->ops->reconfigure(fc); 1131 if (retval) { 1132 if (!force) 1133 goto cancel_readonly; 1134 /* If forced remount, go ahead despite any errors */ 1135 WARN(1, "forced remount of a %s fs returned %i\n", 1136 sb->s_type->name, retval); 1137 } 1138 } 1139 1140 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) | 1141 (fc->sb_flags & fc->sb_flags_mask))); 1142 sb_end_ro_state_change(sb); 1143 1144 /* 1145 * Some filesystems modify their metadata via some other path than the 1146 * bdev buffer cache (eg. use a private mapping, or directories in 1147 * pagecache, etc). Also file data modifications go via their own 1148 * mappings. So If we try to mount readonly then copy the filesystem 1149 * from bdev, we could get stale data, so invalidate it to give a best 1150 * effort at coherency. 1151 */ 1152 if (remount_ro && sb->s_bdev) 1153 invalidate_bdev(sb->s_bdev); 1154 return 0; 1155 1156 cancel_readonly: 1157 sb_end_ro_state_change(sb); 1158 return retval; 1159 } 1160 1161 static void do_emergency_remount_callback(struct super_block *sb) 1162 { 1163 bool born = super_lock_excl(sb); 1164 1165 if (born && sb->s_root && sb->s_bdev && !sb_rdonly(sb)) { 1166 struct fs_context *fc; 1167 1168 fc = fs_context_for_reconfigure(sb->s_root, 1169 SB_RDONLY | SB_FORCE, SB_RDONLY); 1170 if (!IS_ERR(fc)) { 1171 if (parse_monolithic_mount_data(fc, NULL) == 0) 1172 (void)reconfigure_super(fc); 1173 put_fs_context(fc); 1174 } 1175 } 1176 super_unlock_excl(sb); 1177 } 1178 1179 static void do_emergency_remount(struct work_struct *work) 1180 { 1181 __iterate_supers(do_emergency_remount_callback); 1182 kfree(work); 1183 printk("Emergency Remount complete\n"); 1184 } 1185 1186 void emergency_remount(void) 1187 { 1188 struct work_struct *work; 1189 1190 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1191 if (work) { 1192 INIT_WORK(work, do_emergency_remount); 1193 schedule_work(work); 1194 } 1195 } 1196 1197 static void do_thaw_all_callback(struct super_block *sb) 1198 { 1199 bool born = super_lock_excl(sb); 1200 1201 if (born && sb->s_root) { 1202 emergency_thaw_bdev(sb); 1203 thaw_super_locked(sb, FREEZE_HOLDER_USERSPACE); 1204 } else { 1205 super_unlock_excl(sb); 1206 } 1207 } 1208 1209 static void do_thaw_all(struct work_struct *work) 1210 { 1211 __iterate_supers(do_thaw_all_callback); 1212 kfree(work); 1213 printk(KERN_WARNING "Emergency Thaw complete\n"); 1214 } 1215 1216 /** 1217 * emergency_thaw_all -- forcibly thaw every frozen filesystem 1218 * 1219 * Used for emergency unfreeze of all filesystems via SysRq 1220 */ 1221 void emergency_thaw_all(void) 1222 { 1223 struct work_struct *work; 1224 1225 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1226 if (work) { 1227 INIT_WORK(work, do_thaw_all); 1228 schedule_work(work); 1229 } 1230 } 1231 1232 static DEFINE_IDA(unnamed_dev_ida); 1233 1234 /** 1235 * get_anon_bdev - Allocate a block device for filesystems which don't have one. 1236 * @p: Pointer to a dev_t. 1237 * 1238 * Filesystems which don't use real block devices can call this function 1239 * to allocate a virtual block device. 1240 * 1241 * Context: Any context. Frequently called while holding sb_lock. 1242 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left 1243 * or -ENOMEM if memory allocation failed. 1244 */ 1245 int get_anon_bdev(dev_t *p) 1246 { 1247 int dev; 1248 1249 /* 1250 * Many userspace utilities consider an FSID of 0 invalid. 1251 * Always return at least 1 from get_anon_bdev. 1252 */ 1253 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1, 1254 GFP_ATOMIC); 1255 if (dev == -ENOSPC) 1256 dev = -EMFILE; 1257 if (dev < 0) 1258 return dev; 1259 1260 *p = MKDEV(0, dev); 1261 return 0; 1262 } 1263 EXPORT_SYMBOL(get_anon_bdev); 1264 1265 void free_anon_bdev(dev_t dev) 1266 { 1267 ida_free(&unnamed_dev_ida, MINOR(dev)); 1268 } 1269 EXPORT_SYMBOL(free_anon_bdev); 1270 1271 int set_anon_super(struct super_block *s, void *data) 1272 { 1273 return get_anon_bdev(&s->s_dev); 1274 } 1275 EXPORT_SYMBOL(set_anon_super); 1276 1277 void kill_anon_super(struct super_block *sb) 1278 { 1279 dev_t dev = sb->s_dev; 1280 generic_shutdown_super(sb); 1281 free_anon_bdev(dev); 1282 } 1283 EXPORT_SYMBOL(kill_anon_super); 1284 1285 void kill_litter_super(struct super_block *sb) 1286 { 1287 if (sb->s_root) 1288 d_genocide(sb->s_root); 1289 kill_anon_super(sb); 1290 } 1291 EXPORT_SYMBOL(kill_litter_super); 1292 1293 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc) 1294 { 1295 return set_anon_super(sb, NULL); 1296 } 1297 EXPORT_SYMBOL(set_anon_super_fc); 1298 1299 static int test_keyed_super(struct super_block *sb, struct fs_context *fc) 1300 { 1301 return sb->s_fs_info == fc->s_fs_info; 1302 } 1303 1304 static int test_single_super(struct super_block *s, struct fs_context *fc) 1305 { 1306 return 1; 1307 } 1308 1309 static int vfs_get_super(struct fs_context *fc, 1310 int (*test)(struct super_block *, struct fs_context *), 1311 int (*fill_super)(struct super_block *sb, 1312 struct fs_context *fc)) 1313 { 1314 struct super_block *sb; 1315 int err; 1316 1317 sb = sget_fc(fc, test, set_anon_super_fc); 1318 if (IS_ERR(sb)) 1319 return PTR_ERR(sb); 1320 1321 if (!sb->s_root) { 1322 err = fill_super(sb, fc); 1323 if (err) 1324 goto error; 1325 1326 sb->s_flags |= SB_ACTIVE; 1327 } 1328 1329 fc->root = dget(sb->s_root); 1330 return 0; 1331 1332 error: 1333 deactivate_locked_super(sb); 1334 return err; 1335 } 1336 1337 int get_tree_nodev(struct fs_context *fc, 1338 int (*fill_super)(struct super_block *sb, 1339 struct fs_context *fc)) 1340 { 1341 return vfs_get_super(fc, NULL, fill_super); 1342 } 1343 EXPORT_SYMBOL(get_tree_nodev); 1344 1345 int get_tree_single(struct fs_context *fc, 1346 int (*fill_super)(struct super_block *sb, 1347 struct fs_context *fc)) 1348 { 1349 return vfs_get_super(fc, test_single_super, fill_super); 1350 } 1351 EXPORT_SYMBOL(get_tree_single); 1352 1353 int get_tree_keyed(struct fs_context *fc, 1354 int (*fill_super)(struct super_block *sb, 1355 struct fs_context *fc), 1356 void *key) 1357 { 1358 fc->s_fs_info = key; 1359 return vfs_get_super(fc, test_keyed_super, fill_super); 1360 } 1361 EXPORT_SYMBOL(get_tree_keyed); 1362 1363 #ifdef CONFIG_BLOCK 1364 /* 1365 * Lock a super block that the callers holds a reference to. 1366 * 1367 * The caller needs to ensure that the super_block isn't being freed while 1368 * calling this function, e.g. by holding a lock over the call to this function 1369 * and the place that clears the pointer to the superblock used by this function 1370 * before freeing the superblock. 1371 */ 1372 static bool super_lock_shared_active(struct super_block *sb) 1373 { 1374 bool born = super_lock_shared(sb); 1375 1376 if (!born || !sb->s_root || !(sb->s_flags & SB_ACTIVE)) { 1377 super_unlock_shared(sb); 1378 return false; 1379 } 1380 return true; 1381 } 1382 1383 static void fs_bdev_mark_dead(struct block_device *bdev, bool surprise) 1384 { 1385 struct super_block *sb = bdev->bd_holder; 1386 1387 /* bd_holder_lock ensures that the sb isn't freed */ 1388 lockdep_assert_held(&bdev->bd_holder_lock); 1389 1390 if (!super_lock_shared_active(sb)) 1391 return; 1392 1393 if (!surprise) 1394 sync_filesystem(sb); 1395 shrink_dcache_sb(sb); 1396 invalidate_inodes(sb); 1397 if (sb->s_op->shutdown) 1398 sb->s_op->shutdown(sb); 1399 1400 super_unlock_shared(sb); 1401 } 1402 1403 static void fs_bdev_sync(struct block_device *bdev) 1404 { 1405 struct super_block *sb = bdev->bd_holder; 1406 1407 lockdep_assert_held(&bdev->bd_holder_lock); 1408 1409 if (!super_lock_shared_active(sb)) 1410 return; 1411 sync_filesystem(sb); 1412 super_unlock_shared(sb); 1413 } 1414 1415 const struct blk_holder_ops fs_holder_ops = { 1416 .mark_dead = fs_bdev_mark_dead, 1417 .sync = fs_bdev_sync, 1418 }; 1419 EXPORT_SYMBOL_GPL(fs_holder_ops); 1420 1421 static int set_bdev_super(struct super_block *s, void *data) 1422 { 1423 s->s_dev = *(dev_t *)data; 1424 return 0; 1425 } 1426 1427 static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc) 1428 { 1429 return set_bdev_super(s, fc->sget_key); 1430 } 1431 1432 static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc) 1433 { 1434 return !(s->s_iflags & SB_I_RETIRED) && 1435 s->s_dev == *(dev_t *)fc->sget_key; 1436 } 1437 1438 int setup_bdev_super(struct super_block *sb, int sb_flags, 1439 struct fs_context *fc) 1440 { 1441 blk_mode_t mode = sb_open_mode(sb_flags); 1442 struct block_device *bdev; 1443 1444 bdev = blkdev_get_by_dev(sb->s_dev, mode, sb, &fs_holder_ops); 1445 if (IS_ERR(bdev)) { 1446 if (fc) 1447 errorf(fc, "%s: Can't open blockdev", fc->source); 1448 return PTR_ERR(bdev); 1449 } 1450 1451 /* 1452 * This really should be in blkdev_get_by_dev, but right now can't due 1453 * to legacy issues that require us to allow opening a block device node 1454 * writable from userspace even for a read-only block device. 1455 */ 1456 if ((mode & BLK_OPEN_WRITE) && bdev_read_only(bdev)) { 1457 blkdev_put(bdev, sb); 1458 return -EACCES; 1459 } 1460 1461 /* 1462 * Until SB_BORN flag is set, there can be no active superblock 1463 * references and thus no filesystem freezing. get_active_super() will 1464 * just loop waiting for SB_BORN so even freeze_bdev() cannot proceed. 1465 * 1466 * It is enough to check bdev was not frozen before we set s_bdev. 1467 */ 1468 mutex_lock(&bdev->bd_fsfreeze_mutex); 1469 if (bdev->bd_fsfreeze_count > 0) { 1470 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1471 if (fc) 1472 warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev); 1473 blkdev_put(bdev, sb); 1474 return -EBUSY; 1475 } 1476 spin_lock(&sb_lock); 1477 sb->s_bdev = bdev; 1478 sb->s_bdi = bdi_get(bdev->bd_disk->bdi); 1479 if (bdev_stable_writes(bdev)) 1480 sb->s_iflags |= SB_I_STABLE_WRITES; 1481 spin_unlock(&sb_lock); 1482 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1483 1484 snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev); 1485 shrinker_debugfs_rename(&sb->s_shrink, "sb-%s:%s", sb->s_type->name, 1486 sb->s_id); 1487 sb_set_blocksize(sb, block_size(bdev)); 1488 return 0; 1489 } 1490 EXPORT_SYMBOL_GPL(setup_bdev_super); 1491 1492 /** 1493 * get_tree_bdev - Get a superblock based on a single block device 1494 * @fc: The filesystem context holding the parameters 1495 * @fill_super: Helper to initialise a new superblock 1496 */ 1497 int get_tree_bdev(struct fs_context *fc, 1498 int (*fill_super)(struct super_block *, 1499 struct fs_context *)) 1500 { 1501 struct super_block *s; 1502 int error = 0; 1503 dev_t dev; 1504 1505 if (!fc->source) 1506 return invalf(fc, "No source specified"); 1507 1508 error = lookup_bdev(fc->source, &dev); 1509 if (error) { 1510 errorf(fc, "%s: Can't lookup blockdev", fc->source); 1511 return error; 1512 } 1513 1514 fc->sb_flags |= SB_NOSEC; 1515 fc->sget_key = &dev; 1516 s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc); 1517 if (IS_ERR(s)) 1518 return PTR_ERR(s); 1519 1520 if (s->s_root) { 1521 /* Don't summarily change the RO/RW state. */ 1522 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) { 1523 warnf(fc, "%pg: Can't mount, would change RO state", s->s_bdev); 1524 deactivate_locked_super(s); 1525 return -EBUSY; 1526 } 1527 } else { 1528 /* 1529 * We drop s_umount here because we need to open the bdev and 1530 * bdev->open_mutex ranks above s_umount (blkdev_put() -> 1531 * bdev_mark_dead()). It is safe because we have active sb 1532 * reference and SB_BORN is not set yet. 1533 */ 1534 super_unlock_excl(s); 1535 error = setup_bdev_super(s, fc->sb_flags, fc); 1536 __super_lock_excl(s); 1537 if (!error) 1538 error = fill_super(s, fc); 1539 if (error) { 1540 deactivate_locked_super(s); 1541 return error; 1542 } 1543 s->s_flags |= SB_ACTIVE; 1544 } 1545 1546 BUG_ON(fc->root); 1547 fc->root = dget(s->s_root); 1548 return 0; 1549 } 1550 EXPORT_SYMBOL(get_tree_bdev); 1551 1552 static int test_bdev_super(struct super_block *s, void *data) 1553 { 1554 return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data; 1555 } 1556 1557 struct dentry *mount_bdev(struct file_system_type *fs_type, 1558 int flags, const char *dev_name, void *data, 1559 int (*fill_super)(struct super_block *, void *, int)) 1560 { 1561 struct super_block *s; 1562 int error; 1563 dev_t dev; 1564 1565 error = lookup_bdev(dev_name, &dev); 1566 if (error) 1567 return ERR_PTR(error); 1568 1569 flags |= SB_NOSEC; 1570 s = sget(fs_type, test_bdev_super, set_bdev_super, flags, &dev); 1571 if (IS_ERR(s)) 1572 return ERR_CAST(s); 1573 1574 if (s->s_root) { 1575 if ((flags ^ s->s_flags) & SB_RDONLY) { 1576 deactivate_locked_super(s); 1577 return ERR_PTR(-EBUSY); 1578 } 1579 } else { 1580 /* 1581 * We drop s_umount here because we need to open the bdev and 1582 * bdev->open_mutex ranks above s_umount (blkdev_put() -> 1583 * bdev_mark_dead()). It is safe because we have active sb 1584 * reference and SB_BORN is not set yet. 1585 */ 1586 super_unlock_excl(s); 1587 error = setup_bdev_super(s, flags, NULL); 1588 __super_lock_excl(s); 1589 if (!error) 1590 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1591 if (error) { 1592 deactivate_locked_super(s); 1593 return ERR_PTR(error); 1594 } 1595 1596 s->s_flags |= SB_ACTIVE; 1597 } 1598 1599 return dget(s->s_root); 1600 } 1601 EXPORT_SYMBOL(mount_bdev); 1602 1603 void kill_block_super(struct super_block *sb) 1604 { 1605 struct block_device *bdev = sb->s_bdev; 1606 1607 generic_shutdown_super(sb); 1608 if (bdev) { 1609 sync_blockdev(bdev); 1610 blkdev_put(bdev, sb); 1611 } 1612 } 1613 1614 EXPORT_SYMBOL(kill_block_super); 1615 #endif 1616 1617 struct dentry *mount_nodev(struct file_system_type *fs_type, 1618 int flags, void *data, 1619 int (*fill_super)(struct super_block *, void *, int)) 1620 { 1621 int error; 1622 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1623 1624 if (IS_ERR(s)) 1625 return ERR_CAST(s); 1626 1627 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1628 if (error) { 1629 deactivate_locked_super(s); 1630 return ERR_PTR(error); 1631 } 1632 s->s_flags |= SB_ACTIVE; 1633 return dget(s->s_root); 1634 } 1635 EXPORT_SYMBOL(mount_nodev); 1636 1637 int reconfigure_single(struct super_block *s, 1638 int flags, void *data) 1639 { 1640 struct fs_context *fc; 1641 int ret; 1642 1643 /* The caller really need to be passing fc down into mount_single(), 1644 * then a chunk of this can be removed. [Bollocks -- AV] 1645 * Better yet, reconfiguration shouldn't happen, but rather the second 1646 * mount should be rejected if the parameters are not compatible. 1647 */ 1648 fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK); 1649 if (IS_ERR(fc)) 1650 return PTR_ERR(fc); 1651 1652 ret = parse_monolithic_mount_data(fc, data); 1653 if (ret < 0) 1654 goto out; 1655 1656 ret = reconfigure_super(fc); 1657 out: 1658 put_fs_context(fc); 1659 return ret; 1660 } 1661 1662 static int compare_single(struct super_block *s, void *p) 1663 { 1664 return 1; 1665 } 1666 1667 struct dentry *mount_single(struct file_system_type *fs_type, 1668 int flags, void *data, 1669 int (*fill_super)(struct super_block *, void *, int)) 1670 { 1671 struct super_block *s; 1672 int error; 1673 1674 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1675 if (IS_ERR(s)) 1676 return ERR_CAST(s); 1677 if (!s->s_root) { 1678 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1679 if (!error) 1680 s->s_flags |= SB_ACTIVE; 1681 } else { 1682 error = reconfigure_single(s, flags, data); 1683 } 1684 if (unlikely(error)) { 1685 deactivate_locked_super(s); 1686 return ERR_PTR(error); 1687 } 1688 return dget(s->s_root); 1689 } 1690 EXPORT_SYMBOL(mount_single); 1691 1692 /** 1693 * vfs_get_tree - Get the mountable root 1694 * @fc: The superblock configuration context. 1695 * 1696 * The filesystem is invoked to get or create a superblock which can then later 1697 * be used for mounting. The filesystem places a pointer to the root to be 1698 * used for mounting in @fc->root. 1699 */ 1700 int vfs_get_tree(struct fs_context *fc) 1701 { 1702 struct super_block *sb; 1703 int error; 1704 1705 if (fc->root) 1706 return -EBUSY; 1707 1708 /* Get the mountable root in fc->root, with a ref on the root and a ref 1709 * on the superblock. 1710 */ 1711 error = fc->ops->get_tree(fc); 1712 if (error < 0) 1713 return error; 1714 1715 if (!fc->root) { 1716 pr_err("Filesystem %s get_tree() didn't set fc->root\n", 1717 fc->fs_type->name); 1718 /* We don't know what the locking state of the superblock is - 1719 * if there is a superblock. 1720 */ 1721 BUG(); 1722 } 1723 1724 sb = fc->root->d_sb; 1725 WARN_ON(!sb->s_bdi); 1726 1727 /* 1728 * super_wake() contains a memory barrier which also care of 1729 * ordering for super_cache_count(). We place it before setting 1730 * SB_BORN as the data dependency between the two functions is 1731 * the superblock structure contents that we just set up, not 1732 * the SB_BORN flag. 1733 */ 1734 super_wake(sb, SB_BORN); 1735 1736 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL); 1737 if (unlikely(error)) { 1738 fc_drop_locked(fc); 1739 return error; 1740 } 1741 1742 /* 1743 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1744 * but s_maxbytes was an unsigned long long for many releases. Throw 1745 * this warning for a little while to try and catch filesystems that 1746 * violate this rule. 1747 */ 1748 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1749 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes); 1750 1751 return 0; 1752 } 1753 EXPORT_SYMBOL(vfs_get_tree); 1754 1755 /* 1756 * Setup private BDI for given superblock. It gets automatically cleaned up 1757 * in generic_shutdown_super(). 1758 */ 1759 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...) 1760 { 1761 struct backing_dev_info *bdi; 1762 int err; 1763 va_list args; 1764 1765 bdi = bdi_alloc(NUMA_NO_NODE); 1766 if (!bdi) 1767 return -ENOMEM; 1768 1769 va_start(args, fmt); 1770 err = bdi_register_va(bdi, fmt, args); 1771 va_end(args); 1772 if (err) { 1773 bdi_put(bdi); 1774 return err; 1775 } 1776 WARN_ON(sb->s_bdi != &noop_backing_dev_info); 1777 sb->s_bdi = bdi; 1778 sb->s_iflags |= SB_I_PERSB_BDI; 1779 1780 return 0; 1781 } 1782 EXPORT_SYMBOL(super_setup_bdi_name); 1783 1784 /* 1785 * Setup private BDI for given superblock. I gets automatically cleaned up 1786 * in generic_shutdown_super(). 1787 */ 1788 int super_setup_bdi(struct super_block *sb) 1789 { 1790 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0); 1791 1792 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name, 1793 atomic_long_inc_return(&bdi_seq)); 1794 } 1795 EXPORT_SYMBOL(super_setup_bdi); 1796 1797 /** 1798 * sb_wait_write - wait until all writers to given file system finish 1799 * @sb: the super for which we wait 1800 * @level: type of writers we wait for (normal vs page fault) 1801 * 1802 * This function waits until there are no writers of given type to given file 1803 * system. 1804 */ 1805 static void sb_wait_write(struct super_block *sb, int level) 1806 { 1807 percpu_down_write(sb->s_writers.rw_sem + level-1); 1808 } 1809 1810 /* 1811 * We are going to return to userspace and forget about these locks, the 1812 * ownership goes to the caller of thaw_super() which does unlock(). 1813 */ 1814 static void lockdep_sb_freeze_release(struct super_block *sb) 1815 { 1816 int level; 1817 1818 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1819 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1820 } 1821 1822 /* 1823 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb). 1824 */ 1825 static void lockdep_sb_freeze_acquire(struct super_block *sb) 1826 { 1827 int level; 1828 1829 for (level = 0; level < SB_FREEZE_LEVELS; ++level) 1830 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1831 } 1832 1833 static void sb_freeze_unlock(struct super_block *sb, int level) 1834 { 1835 for (level--; level >= 0; level--) 1836 percpu_up_write(sb->s_writers.rw_sem + level); 1837 } 1838 1839 static int wait_for_partially_frozen(struct super_block *sb) 1840 { 1841 int ret = 0; 1842 1843 do { 1844 unsigned short old = sb->s_writers.frozen; 1845 1846 up_write(&sb->s_umount); 1847 ret = wait_var_event_killable(&sb->s_writers.frozen, 1848 sb->s_writers.frozen != old); 1849 down_write(&sb->s_umount); 1850 } while (ret == 0 && 1851 sb->s_writers.frozen != SB_UNFROZEN && 1852 sb->s_writers.frozen != SB_FREEZE_COMPLETE); 1853 1854 return ret; 1855 } 1856 1857 /** 1858 * freeze_super - lock the filesystem and force it into a consistent state 1859 * @sb: the super to lock 1860 * @who: context that wants to freeze 1861 * 1862 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1863 * freeze_fs. Subsequent calls to this without first thawing the fs may return 1864 * -EBUSY. 1865 * 1866 * @who should be: 1867 * * %FREEZE_HOLDER_USERSPACE if userspace wants to freeze the fs; 1868 * * %FREEZE_HOLDER_KERNEL if the kernel wants to freeze the fs. 1869 * 1870 * The @who argument distinguishes between the kernel and userspace trying to 1871 * freeze the filesystem. Although there cannot be multiple kernel freezes or 1872 * multiple userspace freezes in effect at any given time, the kernel and 1873 * userspace can both hold a filesystem frozen. The filesystem remains frozen 1874 * until there are no kernel or userspace freezes in effect. 1875 * 1876 * During this function, sb->s_writers.frozen goes through these values: 1877 * 1878 * SB_UNFROZEN: File system is normal, all writes progress as usual. 1879 * 1880 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 1881 * writes should be blocked, though page faults are still allowed. We wait for 1882 * all writes to complete and then proceed to the next stage. 1883 * 1884 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 1885 * but internal fs threads can still modify the filesystem (although they 1886 * should not dirty new pages or inodes), writeback can run etc. After waiting 1887 * for all running page faults we sync the filesystem which will clean all 1888 * dirty pages and inodes (no new dirty pages or inodes can be created when 1889 * sync is running). 1890 * 1891 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 1892 * modification are blocked (e.g. XFS preallocation truncation on inode 1893 * reclaim). This is usually implemented by blocking new transactions for 1894 * filesystems that have them and need this additional guard. After all 1895 * internal writers are finished we call ->freeze_fs() to finish filesystem 1896 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 1897 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 1898 * 1899 * sb->s_writers.frozen is protected by sb->s_umount. 1900 */ 1901 int freeze_super(struct super_block *sb, enum freeze_holder who) 1902 { 1903 int ret; 1904 1905 atomic_inc(&sb->s_active); 1906 if (!super_lock_excl(sb)) 1907 WARN(1, "Dying superblock while freezing!"); 1908 1909 retry: 1910 if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) { 1911 if (sb->s_writers.freeze_holders & who) { 1912 deactivate_locked_super(sb); 1913 return -EBUSY; 1914 } 1915 1916 WARN_ON(sb->s_writers.freeze_holders == 0); 1917 1918 /* 1919 * Someone else already holds this type of freeze; share the 1920 * freeze and assign the active ref to the freeze. 1921 */ 1922 sb->s_writers.freeze_holders |= who; 1923 super_unlock_excl(sb); 1924 return 0; 1925 } 1926 1927 if (sb->s_writers.frozen != SB_UNFROZEN) { 1928 ret = wait_for_partially_frozen(sb); 1929 if (ret) { 1930 deactivate_locked_super(sb); 1931 return ret; 1932 } 1933 1934 goto retry; 1935 } 1936 1937 if (!(sb->s_flags & SB_BORN)) { 1938 super_unlock_excl(sb); 1939 return 0; /* sic - it's "nothing to do" */ 1940 } 1941 1942 if (sb_rdonly(sb)) { 1943 /* Nothing to do really... */ 1944 sb->s_writers.freeze_holders |= who; 1945 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1946 wake_up_var(&sb->s_writers.frozen); 1947 super_unlock_excl(sb); 1948 return 0; 1949 } 1950 1951 sb->s_writers.frozen = SB_FREEZE_WRITE; 1952 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 1953 super_unlock_excl(sb); 1954 sb_wait_write(sb, SB_FREEZE_WRITE); 1955 if (!super_lock_excl(sb)) 1956 WARN(1, "Dying superblock while freezing!"); 1957 1958 /* Now we go and block page faults... */ 1959 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 1960 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 1961 1962 /* All writers are done so after syncing there won't be dirty data */ 1963 ret = sync_filesystem(sb); 1964 if (ret) { 1965 sb->s_writers.frozen = SB_UNFROZEN; 1966 sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT); 1967 wake_up_var(&sb->s_writers.frozen); 1968 deactivate_locked_super(sb); 1969 return ret; 1970 } 1971 1972 /* Now wait for internal filesystem counter */ 1973 sb->s_writers.frozen = SB_FREEZE_FS; 1974 sb_wait_write(sb, SB_FREEZE_FS); 1975 1976 if (sb->s_op->freeze_fs) { 1977 ret = sb->s_op->freeze_fs(sb); 1978 if (ret) { 1979 printk(KERN_ERR 1980 "VFS:Filesystem freeze failed\n"); 1981 sb->s_writers.frozen = SB_UNFROZEN; 1982 sb_freeze_unlock(sb, SB_FREEZE_FS); 1983 wake_up_var(&sb->s_writers.frozen); 1984 deactivate_locked_super(sb); 1985 return ret; 1986 } 1987 } 1988 /* 1989 * For debugging purposes so that fs can warn if it sees write activity 1990 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super(). 1991 */ 1992 sb->s_writers.freeze_holders |= who; 1993 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1994 wake_up_var(&sb->s_writers.frozen); 1995 lockdep_sb_freeze_release(sb); 1996 super_unlock_excl(sb); 1997 return 0; 1998 } 1999 EXPORT_SYMBOL(freeze_super); 2000 2001 /* 2002 * Undoes the effect of a freeze_super_locked call. If the filesystem is 2003 * frozen both by userspace and the kernel, a thaw call from either source 2004 * removes that state without releasing the other state or unlocking the 2005 * filesystem. 2006 */ 2007 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who) 2008 { 2009 int error; 2010 2011 if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) { 2012 if (!(sb->s_writers.freeze_holders & who)) { 2013 super_unlock_excl(sb); 2014 return -EINVAL; 2015 } 2016 2017 /* 2018 * Freeze is shared with someone else. Release our hold and 2019 * drop the active ref that freeze_super assigned to the 2020 * freezer. 2021 */ 2022 if (sb->s_writers.freeze_holders & ~who) { 2023 sb->s_writers.freeze_holders &= ~who; 2024 deactivate_locked_super(sb); 2025 return 0; 2026 } 2027 } else { 2028 super_unlock_excl(sb); 2029 return -EINVAL; 2030 } 2031 2032 if (sb_rdonly(sb)) { 2033 sb->s_writers.freeze_holders &= ~who; 2034 sb->s_writers.frozen = SB_UNFROZEN; 2035 wake_up_var(&sb->s_writers.frozen); 2036 goto out; 2037 } 2038 2039 lockdep_sb_freeze_acquire(sb); 2040 2041 if (sb->s_op->unfreeze_fs) { 2042 error = sb->s_op->unfreeze_fs(sb); 2043 if (error) { 2044 printk(KERN_ERR "VFS:Filesystem thaw failed\n"); 2045 lockdep_sb_freeze_release(sb); 2046 super_unlock_excl(sb); 2047 return error; 2048 } 2049 } 2050 2051 sb->s_writers.freeze_holders &= ~who; 2052 sb->s_writers.frozen = SB_UNFROZEN; 2053 wake_up_var(&sb->s_writers.frozen); 2054 sb_freeze_unlock(sb, SB_FREEZE_FS); 2055 out: 2056 deactivate_locked_super(sb); 2057 return 0; 2058 } 2059 2060 /** 2061 * thaw_super -- unlock filesystem 2062 * @sb: the super to thaw 2063 * @who: context that wants to freeze 2064 * 2065 * Unlocks the filesystem and marks it writeable again after freeze_super() 2066 * if there are no remaining freezes on the filesystem. 2067 * 2068 * @who should be: 2069 * * %FREEZE_HOLDER_USERSPACE if userspace wants to thaw the fs; 2070 * * %FREEZE_HOLDER_KERNEL if the kernel wants to thaw the fs. 2071 */ 2072 int thaw_super(struct super_block *sb, enum freeze_holder who) 2073 { 2074 if (!super_lock_excl(sb)) 2075 WARN(1, "Dying superblock while thawing!"); 2076 return thaw_super_locked(sb, who); 2077 } 2078 EXPORT_SYMBOL(thaw_super); 2079 2080 /* 2081 * Create workqueue for deferred direct IO completions. We allocate the 2082 * workqueue when it's first needed. This avoids creating workqueue for 2083 * filesystems that don't need it and also allows us to create the workqueue 2084 * late enough so the we can include s_id in the name of the workqueue. 2085 */ 2086 int sb_init_dio_done_wq(struct super_block *sb) 2087 { 2088 struct workqueue_struct *old; 2089 struct workqueue_struct *wq = alloc_workqueue("dio/%s", 2090 WQ_MEM_RECLAIM, 0, 2091 sb->s_id); 2092 if (!wq) 2093 return -ENOMEM; 2094 /* 2095 * This has to be atomic as more DIOs can race to create the workqueue 2096 */ 2097 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); 2098 /* Someone created workqueue before us? Free ours... */ 2099 if (old) 2100 destroy_workqueue(wq); 2101 return 0; 2102 } 2103