xref: /openbmc/linux/fs/super.c (revision 0d456bad)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include "internal.h"
38 
39 
40 LIST_HEAD(super_blocks);
41 DEFINE_SPINLOCK(sb_lock);
42 
43 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
44 	"sb_writers",
45 	"sb_pagefaults",
46 	"sb_internal",
47 };
48 
49 /*
50  * One thing we have to be careful of with a per-sb shrinker is that we don't
51  * drop the last active reference to the superblock from within the shrinker.
52  * If that happens we could trigger unregistering the shrinker from within the
53  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
54  * take a passive reference to the superblock to avoid this from occurring.
55  */
56 static int prune_super(struct shrinker *shrink, struct shrink_control *sc)
57 {
58 	struct super_block *sb;
59 	int	fs_objects = 0;
60 	int	total_objects;
61 
62 	sb = container_of(shrink, struct super_block, s_shrink);
63 
64 	/*
65 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
66 	 * to recurse into the FS that called us in clear_inode() and friends..
67 	 */
68 	if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS))
69 		return -1;
70 
71 	if (!grab_super_passive(sb))
72 		return -1;
73 
74 	if (sb->s_op && sb->s_op->nr_cached_objects)
75 		fs_objects = sb->s_op->nr_cached_objects(sb);
76 
77 	total_objects = sb->s_nr_dentry_unused +
78 			sb->s_nr_inodes_unused + fs_objects + 1;
79 
80 	if (sc->nr_to_scan) {
81 		int	dentries;
82 		int	inodes;
83 
84 		/* proportion the scan between the caches */
85 		dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) /
86 							total_objects;
87 		inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) /
88 							total_objects;
89 		if (fs_objects)
90 			fs_objects = (sc->nr_to_scan * fs_objects) /
91 							total_objects;
92 		/*
93 		 * prune the dcache first as the icache is pinned by it, then
94 		 * prune the icache, followed by the filesystem specific caches
95 		 */
96 		prune_dcache_sb(sb, dentries);
97 		prune_icache_sb(sb, inodes);
98 
99 		if (fs_objects && sb->s_op->free_cached_objects) {
100 			sb->s_op->free_cached_objects(sb, fs_objects);
101 			fs_objects = sb->s_op->nr_cached_objects(sb);
102 		}
103 		total_objects = sb->s_nr_dentry_unused +
104 				sb->s_nr_inodes_unused + fs_objects;
105 	}
106 
107 	total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure;
108 	drop_super(sb);
109 	return total_objects;
110 }
111 
112 static int init_sb_writers(struct super_block *s, struct file_system_type *type)
113 {
114 	int err;
115 	int i;
116 
117 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
118 		err = percpu_counter_init(&s->s_writers.counter[i], 0);
119 		if (err < 0)
120 			goto err_out;
121 		lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i],
122 				 &type->s_writers_key[i], 0);
123 	}
124 	init_waitqueue_head(&s->s_writers.wait);
125 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
126 	return 0;
127 err_out:
128 	while (--i >= 0)
129 		percpu_counter_destroy(&s->s_writers.counter[i]);
130 	return err;
131 }
132 
133 static void destroy_sb_writers(struct super_block *s)
134 {
135 	int i;
136 
137 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
138 		percpu_counter_destroy(&s->s_writers.counter[i]);
139 }
140 
141 /**
142  *	alloc_super	-	create new superblock
143  *	@type:	filesystem type superblock should belong to
144  *	@flags: the mount flags
145  *
146  *	Allocates and initializes a new &struct super_block.  alloc_super()
147  *	returns a pointer new superblock or %NULL if allocation had failed.
148  */
149 static struct super_block *alloc_super(struct file_system_type *type, int flags)
150 {
151 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
152 	static const struct super_operations default_op;
153 
154 	if (s) {
155 		if (security_sb_alloc(s)) {
156 			/*
157 			 * We cannot call security_sb_free() without
158 			 * security_sb_alloc() succeeding. So bail out manually
159 			 */
160 			kfree(s);
161 			s = NULL;
162 			goto out;
163 		}
164 #ifdef CONFIG_SMP
165 		s->s_files = alloc_percpu(struct list_head);
166 		if (!s->s_files)
167 			goto err_out;
168 		else {
169 			int i;
170 
171 			for_each_possible_cpu(i)
172 				INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
173 		}
174 #else
175 		INIT_LIST_HEAD(&s->s_files);
176 #endif
177 		if (init_sb_writers(s, type))
178 			goto err_out;
179 		s->s_flags = flags;
180 		s->s_bdi = &default_backing_dev_info;
181 		INIT_HLIST_NODE(&s->s_instances);
182 		INIT_HLIST_BL_HEAD(&s->s_anon);
183 		INIT_LIST_HEAD(&s->s_inodes);
184 		INIT_LIST_HEAD(&s->s_dentry_lru);
185 		INIT_LIST_HEAD(&s->s_inode_lru);
186 		spin_lock_init(&s->s_inode_lru_lock);
187 		INIT_LIST_HEAD(&s->s_mounts);
188 		init_rwsem(&s->s_umount);
189 		lockdep_set_class(&s->s_umount, &type->s_umount_key);
190 		/*
191 		 * sget() can have s_umount recursion.
192 		 *
193 		 * When it cannot find a suitable sb, it allocates a new
194 		 * one (this one), and tries again to find a suitable old
195 		 * one.
196 		 *
197 		 * In case that succeeds, it will acquire the s_umount
198 		 * lock of the old one. Since these are clearly distrinct
199 		 * locks, and this object isn't exposed yet, there's no
200 		 * risk of deadlocks.
201 		 *
202 		 * Annotate this by putting this lock in a different
203 		 * subclass.
204 		 */
205 		down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
206 		s->s_count = 1;
207 		atomic_set(&s->s_active, 1);
208 		mutex_init(&s->s_vfs_rename_mutex);
209 		lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
210 		mutex_init(&s->s_dquot.dqio_mutex);
211 		mutex_init(&s->s_dquot.dqonoff_mutex);
212 		init_rwsem(&s->s_dquot.dqptr_sem);
213 		s->s_maxbytes = MAX_NON_LFS;
214 		s->s_op = &default_op;
215 		s->s_time_gran = 1000000000;
216 		s->cleancache_poolid = -1;
217 
218 		s->s_shrink.seeks = DEFAULT_SEEKS;
219 		s->s_shrink.shrink = prune_super;
220 		s->s_shrink.batch = 1024;
221 	}
222 out:
223 	return s;
224 err_out:
225 	security_sb_free(s);
226 #ifdef CONFIG_SMP
227 	if (s->s_files)
228 		free_percpu(s->s_files);
229 #endif
230 	destroy_sb_writers(s);
231 	kfree(s);
232 	s = NULL;
233 	goto out;
234 }
235 
236 /**
237  *	destroy_super	-	frees a superblock
238  *	@s: superblock to free
239  *
240  *	Frees a superblock.
241  */
242 static inline void destroy_super(struct super_block *s)
243 {
244 #ifdef CONFIG_SMP
245 	free_percpu(s->s_files);
246 #endif
247 	destroy_sb_writers(s);
248 	security_sb_free(s);
249 	WARN_ON(!list_empty(&s->s_mounts));
250 	kfree(s->s_subtype);
251 	kfree(s->s_options);
252 	kfree(s);
253 }
254 
255 /* Superblock refcounting  */
256 
257 /*
258  * Drop a superblock's refcount.  The caller must hold sb_lock.
259  */
260 static void __put_super(struct super_block *sb)
261 {
262 	if (!--sb->s_count) {
263 		list_del_init(&sb->s_list);
264 		destroy_super(sb);
265 	}
266 }
267 
268 /**
269  *	put_super	-	drop a temporary reference to superblock
270  *	@sb: superblock in question
271  *
272  *	Drops a temporary reference, frees superblock if there's no
273  *	references left.
274  */
275 static void put_super(struct super_block *sb)
276 {
277 	spin_lock(&sb_lock);
278 	__put_super(sb);
279 	spin_unlock(&sb_lock);
280 }
281 
282 
283 /**
284  *	deactivate_locked_super	-	drop an active reference to superblock
285  *	@s: superblock to deactivate
286  *
287  *	Drops an active reference to superblock, converting it into a temprory
288  *	one if there is no other active references left.  In that case we
289  *	tell fs driver to shut it down and drop the temporary reference we
290  *	had just acquired.
291  *
292  *	Caller holds exclusive lock on superblock; that lock is released.
293  */
294 void deactivate_locked_super(struct super_block *s)
295 {
296 	struct file_system_type *fs = s->s_type;
297 	if (atomic_dec_and_test(&s->s_active)) {
298 		cleancache_invalidate_fs(s);
299 		fs->kill_sb(s);
300 
301 		/* caches are now gone, we can safely kill the shrinker now */
302 		unregister_shrinker(&s->s_shrink);
303 		put_filesystem(fs);
304 		put_super(s);
305 	} else {
306 		up_write(&s->s_umount);
307 	}
308 }
309 
310 EXPORT_SYMBOL(deactivate_locked_super);
311 
312 /**
313  *	deactivate_super	-	drop an active reference to superblock
314  *	@s: superblock to deactivate
315  *
316  *	Variant of deactivate_locked_super(), except that superblock is *not*
317  *	locked by caller.  If we are going to drop the final active reference,
318  *	lock will be acquired prior to that.
319  */
320 void deactivate_super(struct super_block *s)
321 {
322         if (!atomic_add_unless(&s->s_active, -1, 1)) {
323 		down_write(&s->s_umount);
324 		deactivate_locked_super(s);
325 	}
326 }
327 
328 EXPORT_SYMBOL(deactivate_super);
329 
330 /**
331  *	grab_super - acquire an active reference
332  *	@s: reference we are trying to make active
333  *
334  *	Tries to acquire an active reference.  grab_super() is used when we
335  * 	had just found a superblock in super_blocks or fs_type->fs_supers
336  *	and want to turn it into a full-blown active reference.  grab_super()
337  *	is called with sb_lock held and drops it.  Returns 1 in case of
338  *	success, 0 if we had failed (superblock contents was already dead or
339  *	dying when grab_super() had been called).
340  */
341 static int grab_super(struct super_block *s) __releases(sb_lock)
342 {
343 	if (atomic_inc_not_zero(&s->s_active)) {
344 		spin_unlock(&sb_lock);
345 		return 1;
346 	}
347 	/* it's going away */
348 	s->s_count++;
349 	spin_unlock(&sb_lock);
350 	/* wait for it to die */
351 	down_write(&s->s_umount);
352 	up_write(&s->s_umount);
353 	put_super(s);
354 	return 0;
355 }
356 
357 /*
358  *	grab_super_passive - acquire a passive reference
359  *	@sb: reference we are trying to grab
360  *
361  *	Tries to acquire a passive reference. This is used in places where we
362  *	cannot take an active reference but we need to ensure that the
363  *	superblock does not go away while we are working on it. It returns
364  *	false if a reference was not gained, and returns true with the s_umount
365  *	lock held in read mode if a reference is gained. On successful return,
366  *	the caller must drop the s_umount lock and the passive reference when
367  *	done.
368  */
369 bool grab_super_passive(struct super_block *sb)
370 {
371 	spin_lock(&sb_lock);
372 	if (hlist_unhashed(&sb->s_instances)) {
373 		spin_unlock(&sb_lock);
374 		return false;
375 	}
376 
377 	sb->s_count++;
378 	spin_unlock(&sb_lock);
379 
380 	if (down_read_trylock(&sb->s_umount)) {
381 		if (sb->s_root && (sb->s_flags & MS_BORN))
382 			return true;
383 		up_read(&sb->s_umount);
384 	}
385 
386 	put_super(sb);
387 	return false;
388 }
389 
390 /**
391  *	generic_shutdown_super	-	common helper for ->kill_sb()
392  *	@sb: superblock to kill
393  *
394  *	generic_shutdown_super() does all fs-independent work on superblock
395  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
396  *	that need destruction out of superblock, call generic_shutdown_super()
397  *	and release aforementioned objects.  Note: dentries and inodes _are_
398  *	taken care of and do not need specific handling.
399  *
400  *	Upon calling this function, the filesystem may no longer alter or
401  *	rearrange the set of dentries belonging to this super_block, nor may it
402  *	change the attachments of dentries to inodes.
403  */
404 void generic_shutdown_super(struct super_block *sb)
405 {
406 	const struct super_operations *sop = sb->s_op;
407 
408 	if (sb->s_root) {
409 		shrink_dcache_for_umount(sb);
410 		sync_filesystem(sb);
411 		sb->s_flags &= ~MS_ACTIVE;
412 
413 		fsnotify_unmount_inodes(&sb->s_inodes);
414 
415 		evict_inodes(sb);
416 
417 		if (sop->put_super)
418 			sop->put_super(sb);
419 
420 		if (!list_empty(&sb->s_inodes)) {
421 			printk("VFS: Busy inodes after unmount of %s. "
422 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
423 			   sb->s_id);
424 		}
425 	}
426 	spin_lock(&sb_lock);
427 	/* should be initialized for __put_super_and_need_restart() */
428 	hlist_del_init(&sb->s_instances);
429 	spin_unlock(&sb_lock);
430 	up_write(&sb->s_umount);
431 }
432 
433 EXPORT_SYMBOL(generic_shutdown_super);
434 
435 /**
436  *	sget	-	find or create a superblock
437  *	@type:	filesystem type superblock should belong to
438  *	@test:	comparison callback
439  *	@set:	setup callback
440  *	@flags:	mount flags
441  *	@data:	argument to each of them
442  */
443 struct super_block *sget(struct file_system_type *type,
444 			int (*test)(struct super_block *,void *),
445 			int (*set)(struct super_block *,void *),
446 			int flags,
447 			void *data)
448 {
449 	struct super_block *s = NULL;
450 	struct hlist_node *node;
451 	struct super_block *old;
452 	int err;
453 
454 retry:
455 	spin_lock(&sb_lock);
456 	if (test) {
457 		hlist_for_each_entry(old, node, &type->fs_supers, s_instances) {
458 			if (!test(old, data))
459 				continue;
460 			if (!grab_super(old))
461 				goto retry;
462 			if (s) {
463 				up_write(&s->s_umount);
464 				destroy_super(s);
465 				s = NULL;
466 			}
467 			down_write(&old->s_umount);
468 			if (unlikely(!(old->s_flags & MS_BORN))) {
469 				deactivate_locked_super(old);
470 				goto retry;
471 			}
472 			return old;
473 		}
474 	}
475 	if (!s) {
476 		spin_unlock(&sb_lock);
477 		s = alloc_super(type, flags);
478 		if (!s)
479 			return ERR_PTR(-ENOMEM);
480 		goto retry;
481 	}
482 
483 	err = set(s, data);
484 	if (err) {
485 		spin_unlock(&sb_lock);
486 		up_write(&s->s_umount);
487 		destroy_super(s);
488 		return ERR_PTR(err);
489 	}
490 	s->s_type = type;
491 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
492 	list_add_tail(&s->s_list, &super_blocks);
493 	hlist_add_head(&s->s_instances, &type->fs_supers);
494 	spin_unlock(&sb_lock);
495 	get_filesystem(type);
496 	register_shrinker(&s->s_shrink);
497 	return s;
498 }
499 
500 EXPORT_SYMBOL(sget);
501 
502 void drop_super(struct super_block *sb)
503 {
504 	up_read(&sb->s_umount);
505 	put_super(sb);
506 }
507 
508 EXPORT_SYMBOL(drop_super);
509 
510 /**
511  *	iterate_supers - call function for all active superblocks
512  *	@f: function to call
513  *	@arg: argument to pass to it
514  *
515  *	Scans the superblock list and calls given function, passing it
516  *	locked superblock and given argument.
517  */
518 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
519 {
520 	struct super_block *sb, *p = NULL;
521 
522 	spin_lock(&sb_lock);
523 	list_for_each_entry(sb, &super_blocks, s_list) {
524 		if (hlist_unhashed(&sb->s_instances))
525 			continue;
526 		sb->s_count++;
527 		spin_unlock(&sb_lock);
528 
529 		down_read(&sb->s_umount);
530 		if (sb->s_root && (sb->s_flags & MS_BORN))
531 			f(sb, arg);
532 		up_read(&sb->s_umount);
533 
534 		spin_lock(&sb_lock);
535 		if (p)
536 			__put_super(p);
537 		p = sb;
538 	}
539 	if (p)
540 		__put_super(p);
541 	spin_unlock(&sb_lock);
542 }
543 
544 /**
545  *	iterate_supers_type - call function for superblocks of given type
546  *	@type: fs type
547  *	@f: function to call
548  *	@arg: argument to pass to it
549  *
550  *	Scans the superblock list and calls given function, passing it
551  *	locked superblock and given argument.
552  */
553 void iterate_supers_type(struct file_system_type *type,
554 	void (*f)(struct super_block *, void *), void *arg)
555 {
556 	struct super_block *sb, *p = NULL;
557 	struct hlist_node *node;
558 
559 	spin_lock(&sb_lock);
560 	hlist_for_each_entry(sb, node, &type->fs_supers, s_instances) {
561 		sb->s_count++;
562 		spin_unlock(&sb_lock);
563 
564 		down_read(&sb->s_umount);
565 		if (sb->s_root && (sb->s_flags & MS_BORN))
566 			f(sb, arg);
567 		up_read(&sb->s_umount);
568 
569 		spin_lock(&sb_lock);
570 		if (p)
571 			__put_super(p);
572 		p = sb;
573 	}
574 	if (p)
575 		__put_super(p);
576 	spin_unlock(&sb_lock);
577 }
578 
579 EXPORT_SYMBOL(iterate_supers_type);
580 
581 /**
582  *	get_super - get the superblock of a device
583  *	@bdev: device to get the superblock for
584  *
585  *	Scans the superblock list and finds the superblock of the file system
586  *	mounted on the device given. %NULL is returned if no match is found.
587  */
588 
589 struct super_block *get_super(struct block_device *bdev)
590 {
591 	struct super_block *sb;
592 
593 	if (!bdev)
594 		return NULL;
595 
596 	spin_lock(&sb_lock);
597 rescan:
598 	list_for_each_entry(sb, &super_blocks, s_list) {
599 		if (hlist_unhashed(&sb->s_instances))
600 			continue;
601 		if (sb->s_bdev == bdev) {
602 			sb->s_count++;
603 			spin_unlock(&sb_lock);
604 			down_read(&sb->s_umount);
605 			/* still alive? */
606 			if (sb->s_root && (sb->s_flags & MS_BORN))
607 				return sb;
608 			up_read(&sb->s_umount);
609 			/* nope, got unmounted */
610 			spin_lock(&sb_lock);
611 			__put_super(sb);
612 			goto rescan;
613 		}
614 	}
615 	spin_unlock(&sb_lock);
616 	return NULL;
617 }
618 
619 EXPORT_SYMBOL(get_super);
620 
621 /**
622  *	get_super_thawed - get thawed superblock of a device
623  *	@bdev: device to get the superblock for
624  *
625  *	Scans the superblock list and finds the superblock of the file system
626  *	mounted on the device. The superblock is returned once it is thawed
627  *	(or immediately if it was not frozen). %NULL is returned if no match
628  *	is found.
629  */
630 struct super_block *get_super_thawed(struct block_device *bdev)
631 {
632 	while (1) {
633 		struct super_block *s = get_super(bdev);
634 		if (!s || s->s_writers.frozen == SB_UNFROZEN)
635 			return s;
636 		up_read(&s->s_umount);
637 		wait_event(s->s_writers.wait_unfrozen,
638 			   s->s_writers.frozen == SB_UNFROZEN);
639 		put_super(s);
640 	}
641 }
642 EXPORT_SYMBOL(get_super_thawed);
643 
644 /**
645  * get_active_super - get an active reference to the superblock of a device
646  * @bdev: device to get the superblock for
647  *
648  * Scans the superblock list and finds the superblock of the file system
649  * mounted on the device given.  Returns the superblock with an active
650  * reference or %NULL if none was found.
651  */
652 struct super_block *get_active_super(struct block_device *bdev)
653 {
654 	struct super_block *sb;
655 
656 	if (!bdev)
657 		return NULL;
658 
659 restart:
660 	spin_lock(&sb_lock);
661 	list_for_each_entry(sb, &super_blocks, s_list) {
662 		if (hlist_unhashed(&sb->s_instances))
663 			continue;
664 		if (sb->s_bdev == bdev) {
665 			if (grab_super(sb)) /* drops sb_lock */
666 				return sb;
667 			else
668 				goto restart;
669 		}
670 	}
671 	spin_unlock(&sb_lock);
672 	return NULL;
673 }
674 
675 struct super_block *user_get_super(dev_t dev)
676 {
677 	struct super_block *sb;
678 
679 	spin_lock(&sb_lock);
680 rescan:
681 	list_for_each_entry(sb, &super_blocks, s_list) {
682 		if (hlist_unhashed(&sb->s_instances))
683 			continue;
684 		if (sb->s_dev ==  dev) {
685 			sb->s_count++;
686 			spin_unlock(&sb_lock);
687 			down_read(&sb->s_umount);
688 			/* still alive? */
689 			if (sb->s_root && (sb->s_flags & MS_BORN))
690 				return sb;
691 			up_read(&sb->s_umount);
692 			/* nope, got unmounted */
693 			spin_lock(&sb_lock);
694 			__put_super(sb);
695 			goto rescan;
696 		}
697 	}
698 	spin_unlock(&sb_lock);
699 	return NULL;
700 }
701 
702 /**
703  *	do_remount_sb - asks filesystem to change mount options.
704  *	@sb:	superblock in question
705  *	@flags:	numeric part of options
706  *	@data:	the rest of options
707  *      @force: whether or not to force the change
708  *
709  *	Alters the mount options of a mounted file system.
710  */
711 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
712 {
713 	int retval;
714 	int remount_ro;
715 
716 	if (sb->s_writers.frozen != SB_UNFROZEN)
717 		return -EBUSY;
718 
719 #ifdef CONFIG_BLOCK
720 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
721 		return -EACCES;
722 #endif
723 
724 	if (flags & MS_RDONLY)
725 		acct_auto_close(sb);
726 	shrink_dcache_sb(sb);
727 	sync_filesystem(sb);
728 
729 	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
730 
731 	/* If we are remounting RDONLY and current sb is read/write,
732 	   make sure there are no rw files opened */
733 	if (remount_ro) {
734 		if (force) {
735 			mark_files_ro(sb);
736 		} else {
737 			retval = sb_prepare_remount_readonly(sb);
738 			if (retval)
739 				return retval;
740 		}
741 	}
742 
743 	if (sb->s_op->remount_fs) {
744 		retval = sb->s_op->remount_fs(sb, &flags, data);
745 		if (retval) {
746 			if (!force)
747 				goto cancel_readonly;
748 			/* If forced remount, go ahead despite any errors */
749 			WARN(1, "forced remount of a %s fs returned %i\n",
750 			     sb->s_type->name, retval);
751 		}
752 	}
753 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
754 	/* Needs to be ordered wrt mnt_is_readonly() */
755 	smp_wmb();
756 	sb->s_readonly_remount = 0;
757 
758 	/*
759 	 * Some filesystems modify their metadata via some other path than the
760 	 * bdev buffer cache (eg. use a private mapping, or directories in
761 	 * pagecache, etc). Also file data modifications go via their own
762 	 * mappings. So If we try to mount readonly then copy the filesystem
763 	 * from bdev, we could get stale data, so invalidate it to give a best
764 	 * effort at coherency.
765 	 */
766 	if (remount_ro && sb->s_bdev)
767 		invalidate_bdev(sb->s_bdev);
768 	return 0;
769 
770 cancel_readonly:
771 	sb->s_readonly_remount = 0;
772 	return retval;
773 }
774 
775 static void do_emergency_remount(struct work_struct *work)
776 {
777 	struct super_block *sb, *p = NULL;
778 
779 	spin_lock(&sb_lock);
780 	list_for_each_entry(sb, &super_blocks, s_list) {
781 		if (hlist_unhashed(&sb->s_instances))
782 			continue;
783 		sb->s_count++;
784 		spin_unlock(&sb_lock);
785 		down_write(&sb->s_umount);
786 		if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
787 		    !(sb->s_flags & MS_RDONLY)) {
788 			/*
789 			 * What lock protects sb->s_flags??
790 			 */
791 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
792 		}
793 		up_write(&sb->s_umount);
794 		spin_lock(&sb_lock);
795 		if (p)
796 			__put_super(p);
797 		p = sb;
798 	}
799 	if (p)
800 		__put_super(p);
801 	spin_unlock(&sb_lock);
802 	kfree(work);
803 	printk("Emergency Remount complete\n");
804 }
805 
806 void emergency_remount(void)
807 {
808 	struct work_struct *work;
809 
810 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
811 	if (work) {
812 		INIT_WORK(work, do_emergency_remount);
813 		schedule_work(work);
814 	}
815 }
816 
817 /*
818  * Unnamed block devices are dummy devices used by virtual
819  * filesystems which don't use real block-devices.  -- jrs
820  */
821 
822 static DEFINE_IDA(unnamed_dev_ida);
823 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
824 static int unnamed_dev_start = 0; /* don't bother trying below it */
825 
826 int get_anon_bdev(dev_t *p)
827 {
828 	int dev;
829 	int error;
830 
831  retry:
832 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
833 		return -ENOMEM;
834 	spin_lock(&unnamed_dev_lock);
835 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
836 	if (!error)
837 		unnamed_dev_start = dev + 1;
838 	spin_unlock(&unnamed_dev_lock);
839 	if (error == -EAGAIN)
840 		/* We raced and lost with another CPU. */
841 		goto retry;
842 	else if (error)
843 		return -EAGAIN;
844 
845 	if ((dev & MAX_IDR_MASK) == (1 << MINORBITS)) {
846 		spin_lock(&unnamed_dev_lock);
847 		ida_remove(&unnamed_dev_ida, dev);
848 		if (unnamed_dev_start > dev)
849 			unnamed_dev_start = dev;
850 		spin_unlock(&unnamed_dev_lock);
851 		return -EMFILE;
852 	}
853 	*p = MKDEV(0, dev & MINORMASK);
854 	return 0;
855 }
856 EXPORT_SYMBOL(get_anon_bdev);
857 
858 void free_anon_bdev(dev_t dev)
859 {
860 	int slot = MINOR(dev);
861 	spin_lock(&unnamed_dev_lock);
862 	ida_remove(&unnamed_dev_ida, slot);
863 	if (slot < unnamed_dev_start)
864 		unnamed_dev_start = slot;
865 	spin_unlock(&unnamed_dev_lock);
866 }
867 EXPORT_SYMBOL(free_anon_bdev);
868 
869 int set_anon_super(struct super_block *s, void *data)
870 {
871 	int error = get_anon_bdev(&s->s_dev);
872 	if (!error)
873 		s->s_bdi = &noop_backing_dev_info;
874 	return error;
875 }
876 
877 EXPORT_SYMBOL(set_anon_super);
878 
879 void kill_anon_super(struct super_block *sb)
880 {
881 	dev_t dev = sb->s_dev;
882 	generic_shutdown_super(sb);
883 	free_anon_bdev(dev);
884 }
885 
886 EXPORT_SYMBOL(kill_anon_super);
887 
888 void kill_litter_super(struct super_block *sb)
889 {
890 	if (sb->s_root)
891 		d_genocide(sb->s_root);
892 	kill_anon_super(sb);
893 }
894 
895 EXPORT_SYMBOL(kill_litter_super);
896 
897 static int ns_test_super(struct super_block *sb, void *data)
898 {
899 	return sb->s_fs_info == data;
900 }
901 
902 static int ns_set_super(struct super_block *sb, void *data)
903 {
904 	sb->s_fs_info = data;
905 	return set_anon_super(sb, NULL);
906 }
907 
908 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
909 	void *data, int (*fill_super)(struct super_block *, void *, int))
910 {
911 	struct super_block *sb;
912 
913 	sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
914 	if (IS_ERR(sb))
915 		return ERR_CAST(sb);
916 
917 	if (!sb->s_root) {
918 		int err;
919 		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
920 		if (err) {
921 			deactivate_locked_super(sb);
922 			return ERR_PTR(err);
923 		}
924 
925 		sb->s_flags |= MS_ACTIVE;
926 	}
927 
928 	return dget(sb->s_root);
929 }
930 
931 EXPORT_SYMBOL(mount_ns);
932 
933 #ifdef CONFIG_BLOCK
934 static int set_bdev_super(struct super_block *s, void *data)
935 {
936 	s->s_bdev = data;
937 	s->s_dev = s->s_bdev->bd_dev;
938 
939 	/*
940 	 * We set the bdi here to the queue backing, file systems can
941 	 * overwrite this in ->fill_super()
942 	 */
943 	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
944 	return 0;
945 }
946 
947 static int test_bdev_super(struct super_block *s, void *data)
948 {
949 	return (void *)s->s_bdev == data;
950 }
951 
952 struct dentry *mount_bdev(struct file_system_type *fs_type,
953 	int flags, const char *dev_name, void *data,
954 	int (*fill_super)(struct super_block *, void *, int))
955 {
956 	struct block_device *bdev;
957 	struct super_block *s;
958 	fmode_t mode = FMODE_READ | FMODE_EXCL;
959 	int error = 0;
960 
961 	if (!(flags & MS_RDONLY))
962 		mode |= FMODE_WRITE;
963 
964 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
965 	if (IS_ERR(bdev))
966 		return ERR_CAST(bdev);
967 
968 	/*
969 	 * once the super is inserted into the list by sget, s_umount
970 	 * will protect the lockfs code from trying to start a snapshot
971 	 * while we are mounting
972 	 */
973 	mutex_lock(&bdev->bd_fsfreeze_mutex);
974 	if (bdev->bd_fsfreeze_count > 0) {
975 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
976 		error = -EBUSY;
977 		goto error_bdev;
978 	}
979 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
980 		 bdev);
981 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
982 	if (IS_ERR(s))
983 		goto error_s;
984 
985 	if (s->s_root) {
986 		if ((flags ^ s->s_flags) & MS_RDONLY) {
987 			deactivate_locked_super(s);
988 			error = -EBUSY;
989 			goto error_bdev;
990 		}
991 
992 		/*
993 		 * s_umount nests inside bd_mutex during
994 		 * __invalidate_device().  blkdev_put() acquires
995 		 * bd_mutex and can't be called under s_umount.  Drop
996 		 * s_umount temporarily.  This is safe as we're
997 		 * holding an active reference.
998 		 */
999 		up_write(&s->s_umount);
1000 		blkdev_put(bdev, mode);
1001 		down_write(&s->s_umount);
1002 	} else {
1003 		char b[BDEVNAME_SIZE];
1004 
1005 		s->s_mode = mode;
1006 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1007 		sb_set_blocksize(s, block_size(bdev));
1008 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1009 		if (error) {
1010 			deactivate_locked_super(s);
1011 			goto error;
1012 		}
1013 
1014 		s->s_flags |= MS_ACTIVE;
1015 		bdev->bd_super = s;
1016 	}
1017 
1018 	return dget(s->s_root);
1019 
1020 error_s:
1021 	error = PTR_ERR(s);
1022 error_bdev:
1023 	blkdev_put(bdev, mode);
1024 error:
1025 	return ERR_PTR(error);
1026 }
1027 EXPORT_SYMBOL(mount_bdev);
1028 
1029 void kill_block_super(struct super_block *sb)
1030 {
1031 	struct block_device *bdev = sb->s_bdev;
1032 	fmode_t mode = sb->s_mode;
1033 
1034 	bdev->bd_super = NULL;
1035 	generic_shutdown_super(sb);
1036 	sync_blockdev(bdev);
1037 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1038 	blkdev_put(bdev, mode | FMODE_EXCL);
1039 }
1040 
1041 EXPORT_SYMBOL(kill_block_super);
1042 #endif
1043 
1044 struct dentry *mount_nodev(struct file_system_type *fs_type,
1045 	int flags, void *data,
1046 	int (*fill_super)(struct super_block *, void *, int))
1047 {
1048 	int error;
1049 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1050 
1051 	if (IS_ERR(s))
1052 		return ERR_CAST(s);
1053 
1054 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1055 	if (error) {
1056 		deactivate_locked_super(s);
1057 		return ERR_PTR(error);
1058 	}
1059 	s->s_flags |= MS_ACTIVE;
1060 	return dget(s->s_root);
1061 }
1062 EXPORT_SYMBOL(mount_nodev);
1063 
1064 static int compare_single(struct super_block *s, void *p)
1065 {
1066 	return 1;
1067 }
1068 
1069 struct dentry *mount_single(struct file_system_type *fs_type,
1070 	int flags, void *data,
1071 	int (*fill_super)(struct super_block *, void *, int))
1072 {
1073 	struct super_block *s;
1074 	int error;
1075 
1076 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1077 	if (IS_ERR(s))
1078 		return ERR_CAST(s);
1079 	if (!s->s_root) {
1080 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1081 		if (error) {
1082 			deactivate_locked_super(s);
1083 			return ERR_PTR(error);
1084 		}
1085 		s->s_flags |= MS_ACTIVE;
1086 	} else {
1087 		do_remount_sb(s, flags, data, 0);
1088 	}
1089 	return dget(s->s_root);
1090 }
1091 EXPORT_SYMBOL(mount_single);
1092 
1093 struct dentry *
1094 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1095 {
1096 	struct dentry *root;
1097 	struct super_block *sb;
1098 	char *secdata = NULL;
1099 	int error = -ENOMEM;
1100 
1101 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1102 		secdata = alloc_secdata();
1103 		if (!secdata)
1104 			goto out;
1105 
1106 		error = security_sb_copy_data(data, secdata);
1107 		if (error)
1108 			goto out_free_secdata;
1109 	}
1110 
1111 	root = type->mount(type, flags, name, data);
1112 	if (IS_ERR(root)) {
1113 		error = PTR_ERR(root);
1114 		goto out_free_secdata;
1115 	}
1116 	sb = root->d_sb;
1117 	BUG_ON(!sb);
1118 	WARN_ON(!sb->s_bdi);
1119 	WARN_ON(sb->s_bdi == &default_backing_dev_info);
1120 	sb->s_flags |= MS_BORN;
1121 
1122 	error = security_sb_kern_mount(sb, flags, secdata);
1123 	if (error)
1124 		goto out_sb;
1125 
1126 	/*
1127 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1128 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1129 	 * this warning for a little while to try and catch filesystems that
1130 	 * violate this rule.
1131 	 */
1132 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1133 		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1134 
1135 	up_write(&sb->s_umount);
1136 	free_secdata(secdata);
1137 	return root;
1138 out_sb:
1139 	dput(root);
1140 	deactivate_locked_super(sb);
1141 out_free_secdata:
1142 	free_secdata(secdata);
1143 out:
1144 	return ERR_PTR(error);
1145 }
1146 
1147 /*
1148  * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1149  * instead.
1150  */
1151 void __sb_end_write(struct super_block *sb, int level)
1152 {
1153 	percpu_counter_dec(&sb->s_writers.counter[level-1]);
1154 	/*
1155 	 * Make sure s_writers are updated before we wake up waiters in
1156 	 * freeze_super().
1157 	 */
1158 	smp_mb();
1159 	if (waitqueue_active(&sb->s_writers.wait))
1160 		wake_up(&sb->s_writers.wait);
1161 	rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_);
1162 }
1163 EXPORT_SYMBOL(__sb_end_write);
1164 
1165 #ifdef CONFIG_LOCKDEP
1166 /*
1167  * We want lockdep to tell us about possible deadlocks with freezing but
1168  * it's it bit tricky to properly instrument it. Getting a freeze protection
1169  * works as getting a read lock but there are subtle problems. XFS for example
1170  * gets freeze protection on internal level twice in some cases, which is OK
1171  * only because we already hold a freeze protection also on higher level. Due
1172  * to these cases we have to tell lockdep we are doing trylock when we
1173  * already hold a freeze protection for a higher freeze level.
1174  */
1175 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock,
1176 				unsigned long ip)
1177 {
1178 	int i;
1179 
1180 	if (!trylock) {
1181 		for (i = 0; i < level - 1; i++)
1182 			if (lock_is_held(&sb->s_writers.lock_map[i])) {
1183 				trylock = true;
1184 				break;
1185 			}
1186 	}
1187 	rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip);
1188 }
1189 #endif
1190 
1191 /*
1192  * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1193  * instead.
1194  */
1195 int __sb_start_write(struct super_block *sb, int level, bool wait)
1196 {
1197 retry:
1198 	if (unlikely(sb->s_writers.frozen >= level)) {
1199 		if (!wait)
1200 			return 0;
1201 		wait_event(sb->s_writers.wait_unfrozen,
1202 			   sb->s_writers.frozen < level);
1203 	}
1204 
1205 #ifdef CONFIG_LOCKDEP
1206 	acquire_freeze_lock(sb, level, !wait, _RET_IP_);
1207 #endif
1208 	percpu_counter_inc(&sb->s_writers.counter[level-1]);
1209 	/*
1210 	 * Make sure counter is updated before we check for frozen.
1211 	 * freeze_super() first sets frozen and then checks the counter.
1212 	 */
1213 	smp_mb();
1214 	if (unlikely(sb->s_writers.frozen >= level)) {
1215 		__sb_end_write(sb, level);
1216 		goto retry;
1217 	}
1218 	return 1;
1219 }
1220 EXPORT_SYMBOL(__sb_start_write);
1221 
1222 /**
1223  * sb_wait_write - wait until all writers to given file system finish
1224  * @sb: the super for which we wait
1225  * @level: type of writers we wait for (normal vs page fault)
1226  *
1227  * This function waits until there are no writers of given type to given file
1228  * system. Caller of this function should make sure there can be no new writers
1229  * of type @level before calling this function. Otherwise this function can
1230  * livelock.
1231  */
1232 static void sb_wait_write(struct super_block *sb, int level)
1233 {
1234 	s64 writers;
1235 
1236 	/*
1237 	 * We just cycle-through lockdep here so that it does not complain
1238 	 * about returning with lock to userspace
1239 	 */
1240 	rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_);
1241 	rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_);
1242 
1243 	do {
1244 		DEFINE_WAIT(wait);
1245 
1246 		/*
1247 		 * We use a barrier in prepare_to_wait() to separate setting
1248 		 * of frozen and checking of the counter
1249 		 */
1250 		prepare_to_wait(&sb->s_writers.wait, &wait,
1251 				TASK_UNINTERRUPTIBLE);
1252 
1253 		writers = percpu_counter_sum(&sb->s_writers.counter[level-1]);
1254 		if (writers)
1255 			schedule();
1256 
1257 		finish_wait(&sb->s_writers.wait, &wait);
1258 	} while (writers);
1259 }
1260 
1261 /**
1262  * freeze_super - lock the filesystem and force it into a consistent state
1263  * @sb: the super to lock
1264  *
1265  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1266  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1267  * -EBUSY.
1268  *
1269  * During this function, sb->s_writers.frozen goes through these values:
1270  *
1271  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1272  *
1273  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1274  * writes should be blocked, though page faults are still allowed. We wait for
1275  * all writes to complete and then proceed to the next stage.
1276  *
1277  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1278  * but internal fs threads can still modify the filesystem (although they
1279  * should not dirty new pages or inodes), writeback can run etc. After waiting
1280  * for all running page faults we sync the filesystem which will clean all
1281  * dirty pages and inodes (no new dirty pages or inodes can be created when
1282  * sync is running).
1283  *
1284  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1285  * modification are blocked (e.g. XFS preallocation truncation on inode
1286  * reclaim). This is usually implemented by blocking new transactions for
1287  * filesystems that have them and need this additional guard. After all
1288  * internal writers are finished we call ->freeze_fs() to finish filesystem
1289  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1290  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1291  *
1292  * sb->s_writers.frozen is protected by sb->s_umount.
1293  */
1294 int freeze_super(struct super_block *sb)
1295 {
1296 	int ret;
1297 
1298 	atomic_inc(&sb->s_active);
1299 	down_write(&sb->s_umount);
1300 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1301 		deactivate_locked_super(sb);
1302 		return -EBUSY;
1303 	}
1304 
1305 	if (!(sb->s_flags & MS_BORN)) {
1306 		up_write(&sb->s_umount);
1307 		return 0;	/* sic - it's "nothing to do" */
1308 	}
1309 
1310 	if (sb->s_flags & MS_RDONLY) {
1311 		/* Nothing to do really... */
1312 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1313 		up_write(&sb->s_umount);
1314 		return 0;
1315 	}
1316 
1317 	/* From now on, no new normal writers can start */
1318 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1319 	smp_wmb();
1320 
1321 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1322 	up_write(&sb->s_umount);
1323 
1324 	sb_wait_write(sb, SB_FREEZE_WRITE);
1325 
1326 	/* Now we go and block page faults... */
1327 	down_write(&sb->s_umount);
1328 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1329 	smp_wmb();
1330 
1331 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1332 
1333 	/* All writers are done so after syncing there won't be dirty data */
1334 	sync_filesystem(sb);
1335 
1336 	/* Now wait for internal filesystem counter */
1337 	sb->s_writers.frozen = SB_FREEZE_FS;
1338 	smp_wmb();
1339 	sb_wait_write(sb, SB_FREEZE_FS);
1340 
1341 	if (sb->s_op->freeze_fs) {
1342 		ret = sb->s_op->freeze_fs(sb);
1343 		if (ret) {
1344 			printk(KERN_ERR
1345 				"VFS:Filesystem freeze failed\n");
1346 			sb->s_writers.frozen = SB_UNFROZEN;
1347 			smp_wmb();
1348 			wake_up(&sb->s_writers.wait_unfrozen);
1349 			deactivate_locked_super(sb);
1350 			return ret;
1351 		}
1352 	}
1353 	/*
1354 	 * This is just for debugging purposes so that fs can warn if it
1355 	 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1356 	 */
1357 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1358 	up_write(&sb->s_umount);
1359 	return 0;
1360 }
1361 EXPORT_SYMBOL(freeze_super);
1362 
1363 /**
1364  * thaw_super -- unlock filesystem
1365  * @sb: the super to thaw
1366  *
1367  * Unlocks the filesystem and marks it writeable again after freeze_super().
1368  */
1369 int thaw_super(struct super_block *sb)
1370 {
1371 	int error;
1372 
1373 	down_write(&sb->s_umount);
1374 	if (sb->s_writers.frozen == SB_UNFROZEN) {
1375 		up_write(&sb->s_umount);
1376 		return -EINVAL;
1377 	}
1378 
1379 	if (sb->s_flags & MS_RDONLY)
1380 		goto out;
1381 
1382 	if (sb->s_op->unfreeze_fs) {
1383 		error = sb->s_op->unfreeze_fs(sb);
1384 		if (error) {
1385 			printk(KERN_ERR
1386 				"VFS:Filesystem thaw failed\n");
1387 			up_write(&sb->s_umount);
1388 			return error;
1389 		}
1390 	}
1391 
1392 out:
1393 	sb->s_writers.frozen = SB_UNFROZEN;
1394 	smp_wmb();
1395 	wake_up(&sb->s_writers.wait_unfrozen);
1396 	deactivate_locked_super(sb);
1397 
1398 	return 0;
1399 }
1400 EXPORT_SYMBOL(thaw_super);
1401