1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/super.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * super.c contains code to handle: - mount structures 8 * - super-block tables 9 * - filesystem drivers list 10 * - mount system call 11 * - umount system call 12 * - ustat system call 13 * 14 * GK 2/5/95 - Changed to support mounting the root fs via NFS 15 * 16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 18 * Added options to /proc/mounts: 19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 22 */ 23 24 #include <linux/export.h> 25 #include <linux/slab.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/fscrypt.h> 35 #include <linux/fsnotify.h> 36 #include <linux/lockdep.h> 37 #include <linux/user_namespace.h> 38 #include <linux/fs_context.h> 39 #include <uapi/linux/mount.h> 40 #include "internal.h" 41 42 static int thaw_super_locked(struct super_block *sb); 43 44 static LIST_HEAD(super_blocks); 45 static DEFINE_SPINLOCK(sb_lock); 46 47 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 48 "sb_writers", 49 "sb_pagefaults", 50 "sb_internal", 51 }; 52 53 /* 54 * One thing we have to be careful of with a per-sb shrinker is that we don't 55 * drop the last active reference to the superblock from within the shrinker. 56 * If that happens we could trigger unregistering the shrinker from within the 57 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 58 * take a passive reference to the superblock to avoid this from occurring. 59 */ 60 static unsigned long super_cache_scan(struct shrinker *shrink, 61 struct shrink_control *sc) 62 { 63 struct super_block *sb; 64 long fs_objects = 0; 65 long total_objects; 66 long freed = 0; 67 long dentries; 68 long inodes; 69 70 sb = container_of(shrink, struct super_block, s_shrink); 71 72 /* 73 * Deadlock avoidance. We may hold various FS locks, and we don't want 74 * to recurse into the FS that called us in clear_inode() and friends.. 75 */ 76 if (!(sc->gfp_mask & __GFP_FS)) 77 return SHRINK_STOP; 78 79 if (!trylock_super(sb)) 80 return SHRINK_STOP; 81 82 if (sb->s_op->nr_cached_objects) 83 fs_objects = sb->s_op->nr_cached_objects(sb, sc); 84 85 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc); 86 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc); 87 total_objects = dentries + inodes + fs_objects + 1; 88 if (!total_objects) 89 total_objects = 1; 90 91 /* proportion the scan between the caches */ 92 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 93 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 94 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects); 95 96 /* 97 * prune the dcache first as the icache is pinned by it, then 98 * prune the icache, followed by the filesystem specific caches 99 * 100 * Ensure that we always scan at least one object - memcg kmem 101 * accounting uses this to fully empty the caches. 102 */ 103 sc->nr_to_scan = dentries + 1; 104 freed = prune_dcache_sb(sb, sc); 105 sc->nr_to_scan = inodes + 1; 106 freed += prune_icache_sb(sb, sc); 107 108 if (fs_objects) { 109 sc->nr_to_scan = fs_objects + 1; 110 freed += sb->s_op->free_cached_objects(sb, sc); 111 } 112 113 up_read(&sb->s_umount); 114 return freed; 115 } 116 117 static unsigned long super_cache_count(struct shrinker *shrink, 118 struct shrink_control *sc) 119 { 120 struct super_block *sb; 121 long total_objects = 0; 122 123 sb = container_of(shrink, struct super_block, s_shrink); 124 125 /* 126 * We don't call trylock_super() here as it is a scalability bottleneck, 127 * so we're exposed to partial setup state. The shrinker rwsem does not 128 * protect filesystem operations backing list_lru_shrink_count() or 129 * s_op->nr_cached_objects(). Counts can change between 130 * super_cache_count and super_cache_scan, so we really don't need locks 131 * here. 132 * 133 * However, if we are currently mounting the superblock, the underlying 134 * filesystem might be in a state of partial construction and hence it 135 * is dangerous to access it. trylock_super() uses a SB_BORN check to 136 * avoid this situation, so do the same here. The memory barrier is 137 * matched with the one in mount_fs() as we don't hold locks here. 138 */ 139 if (!(sb->s_flags & SB_BORN)) 140 return 0; 141 smp_rmb(); 142 143 if (sb->s_op && sb->s_op->nr_cached_objects) 144 total_objects = sb->s_op->nr_cached_objects(sb, sc); 145 146 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc); 147 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc); 148 149 if (!total_objects) 150 return SHRINK_EMPTY; 151 152 total_objects = vfs_pressure_ratio(total_objects); 153 return total_objects; 154 } 155 156 static void destroy_super_work(struct work_struct *work) 157 { 158 struct super_block *s = container_of(work, struct super_block, 159 destroy_work); 160 int i; 161 162 for (i = 0; i < SB_FREEZE_LEVELS; i++) 163 percpu_free_rwsem(&s->s_writers.rw_sem[i]); 164 kfree(s); 165 } 166 167 static void destroy_super_rcu(struct rcu_head *head) 168 { 169 struct super_block *s = container_of(head, struct super_block, rcu); 170 INIT_WORK(&s->destroy_work, destroy_super_work); 171 schedule_work(&s->destroy_work); 172 } 173 174 /* Free a superblock that has never been seen by anyone */ 175 static void destroy_unused_super(struct super_block *s) 176 { 177 if (!s) 178 return; 179 up_write(&s->s_umount); 180 list_lru_destroy(&s->s_dentry_lru); 181 list_lru_destroy(&s->s_inode_lru); 182 security_sb_free(s); 183 put_user_ns(s->s_user_ns); 184 kfree(s->s_subtype); 185 free_prealloced_shrinker(&s->s_shrink); 186 /* no delays needed */ 187 destroy_super_work(&s->destroy_work); 188 } 189 190 /** 191 * alloc_super - create new superblock 192 * @type: filesystem type superblock should belong to 193 * @flags: the mount flags 194 * @user_ns: User namespace for the super_block 195 * 196 * Allocates and initializes a new &struct super_block. alloc_super() 197 * returns a pointer new superblock or %NULL if allocation had failed. 198 */ 199 static struct super_block *alloc_super(struct file_system_type *type, int flags, 200 struct user_namespace *user_ns) 201 { 202 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 203 static const struct super_operations default_op; 204 int i; 205 206 if (!s) 207 return NULL; 208 209 INIT_LIST_HEAD(&s->s_mounts); 210 s->s_user_ns = get_user_ns(user_ns); 211 init_rwsem(&s->s_umount); 212 lockdep_set_class(&s->s_umount, &type->s_umount_key); 213 /* 214 * sget() can have s_umount recursion. 215 * 216 * When it cannot find a suitable sb, it allocates a new 217 * one (this one), and tries again to find a suitable old 218 * one. 219 * 220 * In case that succeeds, it will acquire the s_umount 221 * lock of the old one. Since these are clearly distrinct 222 * locks, and this object isn't exposed yet, there's no 223 * risk of deadlocks. 224 * 225 * Annotate this by putting this lock in a different 226 * subclass. 227 */ 228 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 229 230 if (security_sb_alloc(s)) 231 goto fail; 232 233 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 234 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i], 235 sb_writers_name[i], 236 &type->s_writers_key[i])) 237 goto fail; 238 } 239 init_waitqueue_head(&s->s_writers.wait_unfrozen); 240 s->s_bdi = &noop_backing_dev_info; 241 s->s_flags = flags; 242 if (s->s_user_ns != &init_user_ns) 243 s->s_iflags |= SB_I_NODEV; 244 INIT_HLIST_NODE(&s->s_instances); 245 INIT_HLIST_BL_HEAD(&s->s_roots); 246 mutex_init(&s->s_sync_lock); 247 INIT_LIST_HEAD(&s->s_inodes); 248 spin_lock_init(&s->s_inode_list_lock); 249 INIT_LIST_HEAD(&s->s_inodes_wb); 250 spin_lock_init(&s->s_inode_wblist_lock); 251 252 s->s_count = 1; 253 atomic_set(&s->s_active, 1); 254 mutex_init(&s->s_vfs_rename_mutex); 255 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 256 init_rwsem(&s->s_dquot.dqio_sem); 257 s->s_maxbytes = MAX_NON_LFS; 258 s->s_op = &default_op; 259 s->s_time_gran = 1000000000; 260 s->s_time_min = TIME64_MIN; 261 s->s_time_max = TIME64_MAX; 262 263 s->s_shrink.seeks = DEFAULT_SEEKS; 264 s->s_shrink.scan_objects = super_cache_scan; 265 s->s_shrink.count_objects = super_cache_count; 266 s->s_shrink.batch = 1024; 267 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE; 268 if (prealloc_shrinker(&s->s_shrink)) 269 goto fail; 270 if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink)) 271 goto fail; 272 if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink)) 273 goto fail; 274 return s; 275 276 fail: 277 destroy_unused_super(s); 278 return NULL; 279 } 280 281 /* Superblock refcounting */ 282 283 /* 284 * Drop a superblock's refcount. The caller must hold sb_lock. 285 */ 286 static void __put_super(struct super_block *s) 287 { 288 if (!--s->s_count) { 289 list_del_init(&s->s_list); 290 WARN_ON(s->s_dentry_lru.node); 291 WARN_ON(s->s_inode_lru.node); 292 WARN_ON(!list_empty(&s->s_mounts)); 293 security_sb_free(s); 294 fscrypt_sb_free(s); 295 put_user_ns(s->s_user_ns); 296 kfree(s->s_subtype); 297 call_rcu(&s->rcu, destroy_super_rcu); 298 } 299 } 300 301 /** 302 * put_super - drop a temporary reference to superblock 303 * @sb: superblock in question 304 * 305 * Drops a temporary reference, frees superblock if there's no 306 * references left. 307 */ 308 void put_super(struct super_block *sb) 309 { 310 spin_lock(&sb_lock); 311 __put_super(sb); 312 spin_unlock(&sb_lock); 313 } 314 315 316 /** 317 * deactivate_locked_super - drop an active reference to superblock 318 * @s: superblock to deactivate 319 * 320 * Drops an active reference to superblock, converting it into a temporary 321 * one if there is no other active references left. In that case we 322 * tell fs driver to shut it down and drop the temporary reference we 323 * had just acquired. 324 * 325 * Caller holds exclusive lock on superblock; that lock is released. 326 */ 327 void deactivate_locked_super(struct super_block *s) 328 { 329 struct file_system_type *fs = s->s_type; 330 if (atomic_dec_and_test(&s->s_active)) { 331 unregister_shrinker(&s->s_shrink); 332 fs->kill_sb(s); 333 334 /* 335 * Since list_lru_destroy() may sleep, we cannot call it from 336 * put_super(), where we hold the sb_lock. Therefore we destroy 337 * the lru lists right now. 338 */ 339 list_lru_destroy(&s->s_dentry_lru); 340 list_lru_destroy(&s->s_inode_lru); 341 342 put_filesystem(fs); 343 put_super(s); 344 } else { 345 up_write(&s->s_umount); 346 } 347 } 348 349 EXPORT_SYMBOL(deactivate_locked_super); 350 351 /** 352 * deactivate_super - drop an active reference to superblock 353 * @s: superblock to deactivate 354 * 355 * Variant of deactivate_locked_super(), except that superblock is *not* 356 * locked by caller. If we are going to drop the final active reference, 357 * lock will be acquired prior to that. 358 */ 359 void deactivate_super(struct super_block *s) 360 { 361 if (!atomic_add_unless(&s->s_active, -1, 1)) { 362 down_write(&s->s_umount); 363 deactivate_locked_super(s); 364 } 365 } 366 367 EXPORT_SYMBOL(deactivate_super); 368 369 /** 370 * grab_super - acquire an active reference 371 * @s: reference we are trying to make active 372 * 373 * Tries to acquire an active reference. grab_super() is used when we 374 * had just found a superblock in super_blocks or fs_type->fs_supers 375 * and want to turn it into a full-blown active reference. grab_super() 376 * is called with sb_lock held and drops it. Returns 1 in case of 377 * success, 0 if we had failed (superblock contents was already dead or 378 * dying when grab_super() had been called). Note that this is only 379 * called for superblocks not in rundown mode (== ones still on ->fs_supers 380 * of their type), so increment of ->s_count is OK here. 381 */ 382 static int grab_super(struct super_block *s) __releases(sb_lock) 383 { 384 s->s_count++; 385 spin_unlock(&sb_lock); 386 down_write(&s->s_umount); 387 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) { 388 put_super(s); 389 return 1; 390 } 391 up_write(&s->s_umount); 392 put_super(s); 393 return 0; 394 } 395 396 /* 397 * trylock_super - try to grab ->s_umount shared 398 * @sb: reference we are trying to grab 399 * 400 * Try to prevent fs shutdown. This is used in places where we 401 * cannot take an active reference but we need to ensure that the 402 * filesystem is not shut down while we are working on it. It returns 403 * false if we cannot acquire s_umount or if we lose the race and 404 * filesystem already got into shutdown, and returns true with the s_umount 405 * lock held in read mode in case of success. On successful return, 406 * the caller must drop the s_umount lock when done. 407 * 408 * Note that unlike get_super() et.al. this one does *not* bump ->s_count. 409 * The reason why it's safe is that we are OK with doing trylock instead 410 * of down_read(). There's a couple of places that are OK with that, but 411 * it's very much not a general-purpose interface. 412 */ 413 bool trylock_super(struct super_block *sb) 414 { 415 if (down_read_trylock(&sb->s_umount)) { 416 if (!hlist_unhashed(&sb->s_instances) && 417 sb->s_root && (sb->s_flags & SB_BORN)) 418 return true; 419 up_read(&sb->s_umount); 420 } 421 422 return false; 423 } 424 425 /** 426 * generic_shutdown_super - common helper for ->kill_sb() 427 * @sb: superblock to kill 428 * 429 * generic_shutdown_super() does all fs-independent work on superblock 430 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 431 * that need destruction out of superblock, call generic_shutdown_super() 432 * and release aforementioned objects. Note: dentries and inodes _are_ 433 * taken care of and do not need specific handling. 434 * 435 * Upon calling this function, the filesystem may no longer alter or 436 * rearrange the set of dentries belonging to this super_block, nor may it 437 * change the attachments of dentries to inodes. 438 */ 439 void generic_shutdown_super(struct super_block *sb) 440 { 441 const struct super_operations *sop = sb->s_op; 442 443 if (sb->s_root) { 444 shrink_dcache_for_umount(sb); 445 sync_filesystem(sb); 446 sb->s_flags &= ~SB_ACTIVE; 447 448 cgroup_writeback_umount(); 449 450 /* evict all inodes with zero refcount */ 451 evict_inodes(sb); 452 /* only nonzero refcount inodes can have marks */ 453 fsnotify_sb_delete(sb); 454 security_sb_delete(sb); 455 456 if (sb->s_dio_done_wq) { 457 destroy_workqueue(sb->s_dio_done_wq); 458 sb->s_dio_done_wq = NULL; 459 } 460 461 if (sop->put_super) 462 sop->put_super(sb); 463 464 if (!list_empty(&sb->s_inodes)) { 465 printk("VFS: Busy inodes after unmount of %s. " 466 "Self-destruct in 5 seconds. Have a nice day...\n", 467 sb->s_id); 468 } 469 } 470 spin_lock(&sb_lock); 471 /* should be initialized for __put_super_and_need_restart() */ 472 hlist_del_init(&sb->s_instances); 473 spin_unlock(&sb_lock); 474 up_write(&sb->s_umount); 475 if (sb->s_bdi != &noop_backing_dev_info) { 476 if (sb->s_iflags & SB_I_PERSB_BDI) 477 bdi_unregister(sb->s_bdi); 478 bdi_put(sb->s_bdi); 479 sb->s_bdi = &noop_backing_dev_info; 480 } 481 } 482 483 EXPORT_SYMBOL(generic_shutdown_super); 484 485 bool mount_capable(struct fs_context *fc) 486 { 487 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) 488 return capable(CAP_SYS_ADMIN); 489 else 490 return ns_capable(fc->user_ns, CAP_SYS_ADMIN); 491 } 492 493 /** 494 * sget_fc - Find or create a superblock 495 * @fc: Filesystem context. 496 * @test: Comparison callback 497 * @set: Setup callback 498 * 499 * Find or create a superblock using the parameters stored in the filesystem 500 * context and the two callback functions. 501 * 502 * If an extant superblock is matched, then that will be returned with an 503 * elevated reference count that the caller must transfer or discard. 504 * 505 * If no match is made, a new superblock will be allocated and basic 506 * initialisation will be performed (s_type, s_fs_info and s_id will be set and 507 * the set() callback will be invoked), the superblock will be published and it 508 * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE 509 * as yet unset. 510 */ 511 struct super_block *sget_fc(struct fs_context *fc, 512 int (*test)(struct super_block *, struct fs_context *), 513 int (*set)(struct super_block *, struct fs_context *)) 514 { 515 struct super_block *s = NULL; 516 struct super_block *old; 517 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns; 518 int err; 519 520 retry: 521 spin_lock(&sb_lock); 522 if (test) { 523 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) { 524 if (test(old, fc)) 525 goto share_extant_sb; 526 } 527 } 528 if (!s) { 529 spin_unlock(&sb_lock); 530 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns); 531 if (!s) 532 return ERR_PTR(-ENOMEM); 533 goto retry; 534 } 535 536 s->s_fs_info = fc->s_fs_info; 537 err = set(s, fc); 538 if (err) { 539 s->s_fs_info = NULL; 540 spin_unlock(&sb_lock); 541 destroy_unused_super(s); 542 return ERR_PTR(err); 543 } 544 fc->s_fs_info = NULL; 545 s->s_type = fc->fs_type; 546 s->s_iflags |= fc->s_iflags; 547 strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id)); 548 list_add_tail(&s->s_list, &super_blocks); 549 hlist_add_head(&s->s_instances, &s->s_type->fs_supers); 550 spin_unlock(&sb_lock); 551 get_filesystem(s->s_type); 552 register_shrinker_prepared(&s->s_shrink); 553 return s; 554 555 share_extant_sb: 556 if (user_ns != old->s_user_ns) { 557 spin_unlock(&sb_lock); 558 destroy_unused_super(s); 559 return ERR_PTR(-EBUSY); 560 } 561 if (!grab_super(old)) 562 goto retry; 563 destroy_unused_super(s); 564 return old; 565 } 566 EXPORT_SYMBOL(sget_fc); 567 568 /** 569 * sget - find or create a superblock 570 * @type: filesystem type superblock should belong to 571 * @test: comparison callback 572 * @set: setup callback 573 * @flags: mount flags 574 * @data: argument to each of them 575 */ 576 struct super_block *sget(struct file_system_type *type, 577 int (*test)(struct super_block *,void *), 578 int (*set)(struct super_block *,void *), 579 int flags, 580 void *data) 581 { 582 struct user_namespace *user_ns = current_user_ns(); 583 struct super_block *s = NULL; 584 struct super_block *old; 585 int err; 586 587 /* We don't yet pass the user namespace of the parent 588 * mount through to here so always use &init_user_ns 589 * until that changes. 590 */ 591 if (flags & SB_SUBMOUNT) 592 user_ns = &init_user_ns; 593 594 retry: 595 spin_lock(&sb_lock); 596 if (test) { 597 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 598 if (!test(old, data)) 599 continue; 600 if (user_ns != old->s_user_ns) { 601 spin_unlock(&sb_lock); 602 destroy_unused_super(s); 603 return ERR_PTR(-EBUSY); 604 } 605 if (!grab_super(old)) 606 goto retry; 607 destroy_unused_super(s); 608 return old; 609 } 610 } 611 if (!s) { 612 spin_unlock(&sb_lock); 613 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns); 614 if (!s) 615 return ERR_PTR(-ENOMEM); 616 goto retry; 617 } 618 619 err = set(s, data); 620 if (err) { 621 spin_unlock(&sb_lock); 622 destroy_unused_super(s); 623 return ERR_PTR(err); 624 } 625 s->s_type = type; 626 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 627 list_add_tail(&s->s_list, &super_blocks); 628 hlist_add_head(&s->s_instances, &type->fs_supers); 629 spin_unlock(&sb_lock); 630 get_filesystem(type); 631 register_shrinker_prepared(&s->s_shrink); 632 return s; 633 } 634 EXPORT_SYMBOL(sget); 635 636 void drop_super(struct super_block *sb) 637 { 638 up_read(&sb->s_umount); 639 put_super(sb); 640 } 641 642 EXPORT_SYMBOL(drop_super); 643 644 void drop_super_exclusive(struct super_block *sb) 645 { 646 up_write(&sb->s_umount); 647 put_super(sb); 648 } 649 EXPORT_SYMBOL(drop_super_exclusive); 650 651 static void __iterate_supers(void (*f)(struct super_block *)) 652 { 653 struct super_block *sb, *p = NULL; 654 655 spin_lock(&sb_lock); 656 list_for_each_entry(sb, &super_blocks, s_list) { 657 if (hlist_unhashed(&sb->s_instances)) 658 continue; 659 sb->s_count++; 660 spin_unlock(&sb_lock); 661 662 f(sb); 663 664 spin_lock(&sb_lock); 665 if (p) 666 __put_super(p); 667 p = sb; 668 } 669 if (p) 670 __put_super(p); 671 spin_unlock(&sb_lock); 672 } 673 /** 674 * iterate_supers - call function for all active superblocks 675 * @f: function to call 676 * @arg: argument to pass to it 677 * 678 * Scans the superblock list and calls given function, passing it 679 * locked superblock and given argument. 680 */ 681 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 682 { 683 struct super_block *sb, *p = NULL; 684 685 spin_lock(&sb_lock); 686 list_for_each_entry(sb, &super_blocks, s_list) { 687 if (hlist_unhashed(&sb->s_instances)) 688 continue; 689 sb->s_count++; 690 spin_unlock(&sb_lock); 691 692 down_read(&sb->s_umount); 693 if (sb->s_root && (sb->s_flags & SB_BORN)) 694 f(sb, arg); 695 up_read(&sb->s_umount); 696 697 spin_lock(&sb_lock); 698 if (p) 699 __put_super(p); 700 p = sb; 701 } 702 if (p) 703 __put_super(p); 704 spin_unlock(&sb_lock); 705 } 706 707 /** 708 * iterate_supers_type - call function for superblocks of given type 709 * @type: fs type 710 * @f: function to call 711 * @arg: argument to pass to it 712 * 713 * Scans the superblock list and calls given function, passing it 714 * locked superblock and given argument. 715 */ 716 void iterate_supers_type(struct file_system_type *type, 717 void (*f)(struct super_block *, void *), void *arg) 718 { 719 struct super_block *sb, *p = NULL; 720 721 spin_lock(&sb_lock); 722 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 723 sb->s_count++; 724 spin_unlock(&sb_lock); 725 726 down_read(&sb->s_umount); 727 if (sb->s_root && (sb->s_flags & SB_BORN)) 728 f(sb, arg); 729 up_read(&sb->s_umount); 730 731 spin_lock(&sb_lock); 732 if (p) 733 __put_super(p); 734 p = sb; 735 } 736 if (p) 737 __put_super(p); 738 spin_unlock(&sb_lock); 739 } 740 741 EXPORT_SYMBOL(iterate_supers_type); 742 743 /** 744 * get_super - get the superblock of a device 745 * @bdev: device to get the superblock for 746 * 747 * Scans the superblock list and finds the superblock of the file system 748 * mounted on the device given. %NULL is returned if no match is found. 749 */ 750 struct super_block *get_super(struct block_device *bdev) 751 { 752 struct super_block *sb; 753 754 if (!bdev) 755 return NULL; 756 757 spin_lock(&sb_lock); 758 rescan: 759 list_for_each_entry(sb, &super_blocks, s_list) { 760 if (hlist_unhashed(&sb->s_instances)) 761 continue; 762 if (sb->s_bdev == bdev) { 763 sb->s_count++; 764 spin_unlock(&sb_lock); 765 down_read(&sb->s_umount); 766 /* still alive? */ 767 if (sb->s_root && (sb->s_flags & SB_BORN)) 768 return sb; 769 up_read(&sb->s_umount); 770 /* nope, got unmounted */ 771 spin_lock(&sb_lock); 772 __put_super(sb); 773 goto rescan; 774 } 775 } 776 spin_unlock(&sb_lock); 777 return NULL; 778 } 779 780 /** 781 * get_active_super - get an active reference to the superblock of a device 782 * @bdev: device to get the superblock for 783 * 784 * Scans the superblock list and finds the superblock of the file system 785 * mounted on the device given. Returns the superblock with an active 786 * reference or %NULL if none was found. 787 */ 788 struct super_block *get_active_super(struct block_device *bdev) 789 { 790 struct super_block *sb; 791 792 if (!bdev) 793 return NULL; 794 795 restart: 796 spin_lock(&sb_lock); 797 list_for_each_entry(sb, &super_blocks, s_list) { 798 if (hlist_unhashed(&sb->s_instances)) 799 continue; 800 if (sb->s_bdev == bdev) { 801 if (!grab_super(sb)) 802 goto restart; 803 up_write(&sb->s_umount); 804 return sb; 805 } 806 } 807 spin_unlock(&sb_lock); 808 return NULL; 809 } 810 811 struct super_block *user_get_super(dev_t dev, bool excl) 812 { 813 struct super_block *sb; 814 815 spin_lock(&sb_lock); 816 rescan: 817 list_for_each_entry(sb, &super_blocks, s_list) { 818 if (hlist_unhashed(&sb->s_instances)) 819 continue; 820 if (sb->s_dev == dev) { 821 sb->s_count++; 822 spin_unlock(&sb_lock); 823 if (excl) 824 down_write(&sb->s_umount); 825 else 826 down_read(&sb->s_umount); 827 /* still alive? */ 828 if (sb->s_root && (sb->s_flags & SB_BORN)) 829 return sb; 830 if (excl) 831 up_write(&sb->s_umount); 832 else 833 up_read(&sb->s_umount); 834 /* nope, got unmounted */ 835 spin_lock(&sb_lock); 836 __put_super(sb); 837 goto rescan; 838 } 839 } 840 spin_unlock(&sb_lock); 841 return NULL; 842 } 843 844 /** 845 * reconfigure_super - asks filesystem to change superblock parameters 846 * @fc: The superblock and configuration 847 * 848 * Alters the configuration parameters of a live superblock. 849 */ 850 int reconfigure_super(struct fs_context *fc) 851 { 852 struct super_block *sb = fc->root->d_sb; 853 int retval; 854 bool remount_ro = false; 855 bool force = fc->sb_flags & SB_FORCE; 856 857 if (fc->sb_flags_mask & ~MS_RMT_MASK) 858 return -EINVAL; 859 if (sb->s_writers.frozen != SB_UNFROZEN) 860 return -EBUSY; 861 862 retval = security_sb_remount(sb, fc->security); 863 if (retval) 864 return retval; 865 866 if (fc->sb_flags_mask & SB_RDONLY) { 867 #ifdef CONFIG_BLOCK 868 if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev && 869 bdev_read_only(sb->s_bdev)) 870 return -EACCES; 871 #endif 872 873 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb); 874 } 875 876 if (remount_ro) { 877 if (!hlist_empty(&sb->s_pins)) { 878 up_write(&sb->s_umount); 879 group_pin_kill(&sb->s_pins); 880 down_write(&sb->s_umount); 881 if (!sb->s_root) 882 return 0; 883 if (sb->s_writers.frozen != SB_UNFROZEN) 884 return -EBUSY; 885 remount_ro = !sb_rdonly(sb); 886 } 887 } 888 shrink_dcache_sb(sb); 889 890 /* If we are reconfiguring to RDONLY and current sb is read/write, 891 * make sure there are no files open for writing. 892 */ 893 if (remount_ro) { 894 if (force) { 895 sb->s_readonly_remount = 1; 896 smp_wmb(); 897 } else { 898 retval = sb_prepare_remount_readonly(sb); 899 if (retval) 900 return retval; 901 } 902 } 903 904 if (fc->ops->reconfigure) { 905 retval = fc->ops->reconfigure(fc); 906 if (retval) { 907 if (!force) 908 goto cancel_readonly; 909 /* If forced remount, go ahead despite any errors */ 910 WARN(1, "forced remount of a %s fs returned %i\n", 911 sb->s_type->name, retval); 912 } 913 } 914 915 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) | 916 (fc->sb_flags & fc->sb_flags_mask))); 917 /* Needs to be ordered wrt mnt_is_readonly() */ 918 smp_wmb(); 919 sb->s_readonly_remount = 0; 920 921 /* 922 * Some filesystems modify their metadata via some other path than the 923 * bdev buffer cache (eg. use a private mapping, or directories in 924 * pagecache, etc). Also file data modifications go via their own 925 * mappings. So If we try to mount readonly then copy the filesystem 926 * from bdev, we could get stale data, so invalidate it to give a best 927 * effort at coherency. 928 */ 929 if (remount_ro && sb->s_bdev) 930 invalidate_bdev(sb->s_bdev); 931 return 0; 932 933 cancel_readonly: 934 sb->s_readonly_remount = 0; 935 return retval; 936 } 937 938 static void do_emergency_remount_callback(struct super_block *sb) 939 { 940 down_write(&sb->s_umount); 941 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) && 942 !sb_rdonly(sb)) { 943 struct fs_context *fc; 944 945 fc = fs_context_for_reconfigure(sb->s_root, 946 SB_RDONLY | SB_FORCE, SB_RDONLY); 947 if (!IS_ERR(fc)) { 948 if (parse_monolithic_mount_data(fc, NULL) == 0) 949 (void)reconfigure_super(fc); 950 put_fs_context(fc); 951 } 952 } 953 up_write(&sb->s_umount); 954 } 955 956 static void do_emergency_remount(struct work_struct *work) 957 { 958 __iterate_supers(do_emergency_remount_callback); 959 kfree(work); 960 printk("Emergency Remount complete\n"); 961 } 962 963 void emergency_remount(void) 964 { 965 struct work_struct *work; 966 967 work = kmalloc(sizeof(*work), GFP_ATOMIC); 968 if (work) { 969 INIT_WORK(work, do_emergency_remount); 970 schedule_work(work); 971 } 972 } 973 974 static void do_thaw_all_callback(struct super_block *sb) 975 { 976 down_write(&sb->s_umount); 977 if (sb->s_root && sb->s_flags & SB_BORN) { 978 emergency_thaw_bdev(sb); 979 thaw_super_locked(sb); 980 } else { 981 up_write(&sb->s_umount); 982 } 983 } 984 985 static void do_thaw_all(struct work_struct *work) 986 { 987 __iterate_supers(do_thaw_all_callback); 988 kfree(work); 989 printk(KERN_WARNING "Emergency Thaw complete\n"); 990 } 991 992 /** 993 * emergency_thaw_all -- forcibly thaw every frozen filesystem 994 * 995 * Used for emergency unfreeze of all filesystems via SysRq 996 */ 997 void emergency_thaw_all(void) 998 { 999 struct work_struct *work; 1000 1001 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1002 if (work) { 1003 INIT_WORK(work, do_thaw_all); 1004 schedule_work(work); 1005 } 1006 } 1007 1008 static DEFINE_IDA(unnamed_dev_ida); 1009 1010 /** 1011 * get_anon_bdev - Allocate a block device for filesystems which don't have one. 1012 * @p: Pointer to a dev_t. 1013 * 1014 * Filesystems which don't use real block devices can call this function 1015 * to allocate a virtual block device. 1016 * 1017 * Context: Any context. Frequently called while holding sb_lock. 1018 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left 1019 * or -ENOMEM if memory allocation failed. 1020 */ 1021 int get_anon_bdev(dev_t *p) 1022 { 1023 int dev; 1024 1025 /* 1026 * Many userspace utilities consider an FSID of 0 invalid. 1027 * Always return at least 1 from get_anon_bdev. 1028 */ 1029 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1, 1030 GFP_ATOMIC); 1031 if (dev == -ENOSPC) 1032 dev = -EMFILE; 1033 if (dev < 0) 1034 return dev; 1035 1036 *p = MKDEV(0, dev); 1037 return 0; 1038 } 1039 EXPORT_SYMBOL(get_anon_bdev); 1040 1041 void free_anon_bdev(dev_t dev) 1042 { 1043 ida_free(&unnamed_dev_ida, MINOR(dev)); 1044 } 1045 EXPORT_SYMBOL(free_anon_bdev); 1046 1047 int set_anon_super(struct super_block *s, void *data) 1048 { 1049 return get_anon_bdev(&s->s_dev); 1050 } 1051 EXPORT_SYMBOL(set_anon_super); 1052 1053 void kill_anon_super(struct super_block *sb) 1054 { 1055 dev_t dev = sb->s_dev; 1056 generic_shutdown_super(sb); 1057 free_anon_bdev(dev); 1058 } 1059 EXPORT_SYMBOL(kill_anon_super); 1060 1061 void kill_litter_super(struct super_block *sb) 1062 { 1063 if (sb->s_root) 1064 d_genocide(sb->s_root); 1065 kill_anon_super(sb); 1066 } 1067 EXPORT_SYMBOL(kill_litter_super); 1068 1069 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc) 1070 { 1071 return set_anon_super(sb, NULL); 1072 } 1073 EXPORT_SYMBOL(set_anon_super_fc); 1074 1075 static int test_keyed_super(struct super_block *sb, struct fs_context *fc) 1076 { 1077 return sb->s_fs_info == fc->s_fs_info; 1078 } 1079 1080 static int test_single_super(struct super_block *s, struct fs_context *fc) 1081 { 1082 return 1; 1083 } 1084 1085 /** 1086 * vfs_get_super - Get a superblock with a search key set in s_fs_info. 1087 * @fc: The filesystem context holding the parameters 1088 * @keying: How to distinguish superblocks 1089 * @fill_super: Helper to initialise a new superblock 1090 * 1091 * Search for a superblock and create a new one if not found. The search 1092 * criterion is controlled by @keying. If the search fails, a new superblock 1093 * is created and @fill_super() is called to initialise it. 1094 * 1095 * @keying can take one of a number of values: 1096 * 1097 * (1) vfs_get_single_super - Only one superblock of this type may exist on the 1098 * system. This is typically used for special system filesystems. 1099 * 1100 * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have 1101 * distinct keys (where the key is in s_fs_info). Searching for the same 1102 * key again will turn up the superblock for that key. 1103 * 1104 * (3) vfs_get_independent_super - Multiple superblocks may exist and are 1105 * unkeyed. Each call will get a new superblock. 1106 * 1107 * A permissions check is made by sget_fc() unless we're getting a superblock 1108 * for a kernel-internal mount or a submount. 1109 */ 1110 int vfs_get_super(struct fs_context *fc, 1111 enum vfs_get_super_keying keying, 1112 int (*fill_super)(struct super_block *sb, 1113 struct fs_context *fc)) 1114 { 1115 int (*test)(struct super_block *, struct fs_context *); 1116 struct super_block *sb; 1117 int err; 1118 1119 switch (keying) { 1120 case vfs_get_single_super: 1121 case vfs_get_single_reconf_super: 1122 test = test_single_super; 1123 break; 1124 case vfs_get_keyed_super: 1125 test = test_keyed_super; 1126 break; 1127 case vfs_get_independent_super: 1128 test = NULL; 1129 break; 1130 default: 1131 BUG(); 1132 } 1133 1134 sb = sget_fc(fc, test, set_anon_super_fc); 1135 if (IS_ERR(sb)) 1136 return PTR_ERR(sb); 1137 1138 if (!sb->s_root) { 1139 err = fill_super(sb, fc); 1140 if (err) 1141 goto error; 1142 1143 sb->s_flags |= SB_ACTIVE; 1144 fc->root = dget(sb->s_root); 1145 } else { 1146 fc->root = dget(sb->s_root); 1147 if (keying == vfs_get_single_reconf_super) { 1148 err = reconfigure_super(fc); 1149 if (err < 0) { 1150 dput(fc->root); 1151 fc->root = NULL; 1152 goto error; 1153 } 1154 } 1155 } 1156 1157 return 0; 1158 1159 error: 1160 deactivate_locked_super(sb); 1161 return err; 1162 } 1163 EXPORT_SYMBOL(vfs_get_super); 1164 1165 int get_tree_nodev(struct fs_context *fc, 1166 int (*fill_super)(struct super_block *sb, 1167 struct fs_context *fc)) 1168 { 1169 return vfs_get_super(fc, vfs_get_independent_super, fill_super); 1170 } 1171 EXPORT_SYMBOL(get_tree_nodev); 1172 1173 int get_tree_single(struct fs_context *fc, 1174 int (*fill_super)(struct super_block *sb, 1175 struct fs_context *fc)) 1176 { 1177 return vfs_get_super(fc, vfs_get_single_super, fill_super); 1178 } 1179 EXPORT_SYMBOL(get_tree_single); 1180 1181 int get_tree_single_reconf(struct fs_context *fc, 1182 int (*fill_super)(struct super_block *sb, 1183 struct fs_context *fc)) 1184 { 1185 return vfs_get_super(fc, vfs_get_single_reconf_super, fill_super); 1186 } 1187 EXPORT_SYMBOL(get_tree_single_reconf); 1188 1189 int get_tree_keyed(struct fs_context *fc, 1190 int (*fill_super)(struct super_block *sb, 1191 struct fs_context *fc), 1192 void *key) 1193 { 1194 fc->s_fs_info = key; 1195 return vfs_get_super(fc, vfs_get_keyed_super, fill_super); 1196 } 1197 EXPORT_SYMBOL(get_tree_keyed); 1198 1199 #ifdef CONFIG_BLOCK 1200 1201 static int set_bdev_super(struct super_block *s, void *data) 1202 { 1203 s->s_bdev = data; 1204 s->s_dev = s->s_bdev->bd_dev; 1205 s->s_bdi = bdi_get(s->s_bdev->bd_disk->bdi); 1206 1207 if (bdev_stable_writes(s->s_bdev)) 1208 s->s_iflags |= SB_I_STABLE_WRITES; 1209 return 0; 1210 } 1211 1212 static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc) 1213 { 1214 return set_bdev_super(s, fc->sget_key); 1215 } 1216 1217 static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc) 1218 { 1219 return s->s_bdev == fc->sget_key; 1220 } 1221 1222 /** 1223 * get_tree_bdev - Get a superblock based on a single block device 1224 * @fc: The filesystem context holding the parameters 1225 * @fill_super: Helper to initialise a new superblock 1226 */ 1227 int get_tree_bdev(struct fs_context *fc, 1228 int (*fill_super)(struct super_block *, 1229 struct fs_context *)) 1230 { 1231 struct block_device *bdev; 1232 struct super_block *s; 1233 fmode_t mode = FMODE_READ | FMODE_EXCL; 1234 int error = 0; 1235 1236 if (!(fc->sb_flags & SB_RDONLY)) 1237 mode |= FMODE_WRITE; 1238 1239 if (!fc->source) 1240 return invalf(fc, "No source specified"); 1241 1242 bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type); 1243 if (IS_ERR(bdev)) { 1244 errorf(fc, "%s: Can't open blockdev", fc->source); 1245 return PTR_ERR(bdev); 1246 } 1247 1248 /* Once the superblock is inserted into the list by sget_fc(), s_umount 1249 * will protect the lockfs code from trying to start a snapshot while 1250 * we are mounting 1251 */ 1252 mutex_lock(&bdev->bd_fsfreeze_mutex); 1253 if (bdev->bd_fsfreeze_count > 0) { 1254 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1255 warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev); 1256 blkdev_put(bdev, mode); 1257 return -EBUSY; 1258 } 1259 1260 fc->sb_flags |= SB_NOSEC; 1261 fc->sget_key = bdev; 1262 s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc); 1263 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1264 if (IS_ERR(s)) { 1265 blkdev_put(bdev, mode); 1266 return PTR_ERR(s); 1267 } 1268 1269 if (s->s_root) { 1270 /* Don't summarily change the RO/RW state. */ 1271 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) { 1272 warnf(fc, "%pg: Can't mount, would change RO state", bdev); 1273 deactivate_locked_super(s); 1274 blkdev_put(bdev, mode); 1275 return -EBUSY; 1276 } 1277 1278 /* 1279 * s_umount nests inside open_mutex during 1280 * __invalidate_device(). blkdev_put() acquires 1281 * open_mutex and can't be called under s_umount. Drop 1282 * s_umount temporarily. This is safe as we're 1283 * holding an active reference. 1284 */ 1285 up_write(&s->s_umount); 1286 blkdev_put(bdev, mode); 1287 down_write(&s->s_umount); 1288 } else { 1289 s->s_mode = mode; 1290 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1291 sb_set_blocksize(s, block_size(bdev)); 1292 error = fill_super(s, fc); 1293 if (error) { 1294 deactivate_locked_super(s); 1295 return error; 1296 } 1297 1298 s->s_flags |= SB_ACTIVE; 1299 bdev->bd_super = s; 1300 } 1301 1302 BUG_ON(fc->root); 1303 fc->root = dget(s->s_root); 1304 return 0; 1305 } 1306 EXPORT_SYMBOL(get_tree_bdev); 1307 1308 static int test_bdev_super(struct super_block *s, void *data) 1309 { 1310 return (void *)s->s_bdev == data; 1311 } 1312 1313 struct dentry *mount_bdev(struct file_system_type *fs_type, 1314 int flags, const char *dev_name, void *data, 1315 int (*fill_super)(struct super_block *, void *, int)) 1316 { 1317 struct block_device *bdev; 1318 struct super_block *s; 1319 fmode_t mode = FMODE_READ | FMODE_EXCL; 1320 int error = 0; 1321 1322 if (!(flags & SB_RDONLY)) 1323 mode |= FMODE_WRITE; 1324 1325 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 1326 if (IS_ERR(bdev)) 1327 return ERR_CAST(bdev); 1328 1329 /* 1330 * once the super is inserted into the list by sget, s_umount 1331 * will protect the lockfs code from trying to start a snapshot 1332 * while we are mounting 1333 */ 1334 mutex_lock(&bdev->bd_fsfreeze_mutex); 1335 if (bdev->bd_fsfreeze_count > 0) { 1336 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1337 error = -EBUSY; 1338 goto error_bdev; 1339 } 1340 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC, 1341 bdev); 1342 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1343 if (IS_ERR(s)) 1344 goto error_s; 1345 1346 if (s->s_root) { 1347 if ((flags ^ s->s_flags) & SB_RDONLY) { 1348 deactivate_locked_super(s); 1349 error = -EBUSY; 1350 goto error_bdev; 1351 } 1352 1353 /* 1354 * s_umount nests inside open_mutex during 1355 * __invalidate_device(). blkdev_put() acquires 1356 * open_mutex and can't be called under s_umount. Drop 1357 * s_umount temporarily. This is safe as we're 1358 * holding an active reference. 1359 */ 1360 up_write(&s->s_umount); 1361 blkdev_put(bdev, mode); 1362 down_write(&s->s_umount); 1363 } else { 1364 s->s_mode = mode; 1365 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1366 sb_set_blocksize(s, block_size(bdev)); 1367 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1368 if (error) { 1369 deactivate_locked_super(s); 1370 goto error; 1371 } 1372 1373 s->s_flags |= SB_ACTIVE; 1374 bdev->bd_super = s; 1375 } 1376 1377 return dget(s->s_root); 1378 1379 error_s: 1380 error = PTR_ERR(s); 1381 error_bdev: 1382 blkdev_put(bdev, mode); 1383 error: 1384 return ERR_PTR(error); 1385 } 1386 EXPORT_SYMBOL(mount_bdev); 1387 1388 void kill_block_super(struct super_block *sb) 1389 { 1390 struct block_device *bdev = sb->s_bdev; 1391 fmode_t mode = sb->s_mode; 1392 1393 bdev->bd_super = NULL; 1394 generic_shutdown_super(sb); 1395 sync_blockdev(bdev); 1396 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 1397 blkdev_put(bdev, mode | FMODE_EXCL); 1398 } 1399 1400 EXPORT_SYMBOL(kill_block_super); 1401 #endif 1402 1403 struct dentry *mount_nodev(struct file_system_type *fs_type, 1404 int flags, void *data, 1405 int (*fill_super)(struct super_block *, void *, int)) 1406 { 1407 int error; 1408 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1409 1410 if (IS_ERR(s)) 1411 return ERR_CAST(s); 1412 1413 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1414 if (error) { 1415 deactivate_locked_super(s); 1416 return ERR_PTR(error); 1417 } 1418 s->s_flags |= SB_ACTIVE; 1419 return dget(s->s_root); 1420 } 1421 EXPORT_SYMBOL(mount_nodev); 1422 1423 int reconfigure_single(struct super_block *s, 1424 int flags, void *data) 1425 { 1426 struct fs_context *fc; 1427 int ret; 1428 1429 /* The caller really need to be passing fc down into mount_single(), 1430 * then a chunk of this can be removed. [Bollocks -- AV] 1431 * Better yet, reconfiguration shouldn't happen, but rather the second 1432 * mount should be rejected if the parameters are not compatible. 1433 */ 1434 fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK); 1435 if (IS_ERR(fc)) 1436 return PTR_ERR(fc); 1437 1438 ret = parse_monolithic_mount_data(fc, data); 1439 if (ret < 0) 1440 goto out; 1441 1442 ret = reconfigure_super(fc); 1443 out: 1444 put_fs_context(fc); 1445 return ret; 1446 } 1447 1448 static int compare_single(struct super_block *s, void *p) 1449 { 1450 return 1; 1451 } 1452 1453 struct dentry *mount_single(struct file_system_type *fs_type, 1454 int flags, void *data, 1455 int (*fill_super)(struct super_block *, void *, int)) 1456 { 1457 struct super_block *s; 1458 int error; 1459 1460 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1461 if (IS_ERR(s)) 1462 return ERR_CAST(s); 1463 if (!s->s_root) { 1464 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1465 if (!error) 1466 s->s_flags |= SB_ACTIVE; 1467 } else { 1468 error = reconfigure_single(s, flags, data); 1469 } 1470 if (unlikely(error)) { 1471 deactivate_locked_super(s); 1472 return ERR_PTR(error); 1473 } 1474 return dget(s->s_root); 1475 } 1476 EXPORT_SYMBOL(mount_single); 1477 1478 /** 1479 * vfs_get_tree - Get the mountable root 1480 * @fc: The superblock configuration context. 1481 * 1482 * The filesystem is invoked to get or create a superblock which can then later 1483 * be used for mounting. The filesystem places a pointer to the root to be 1484 * used for mounting in @fc->root. 1485 */ 1486 int vfs_get_tree(struct fs_context *fc) 1487 { 1488 struct super_block *sb; 1489 int error; 1490 1491 if (fc->root) 1492 return -EBUSY; 1493 1494 /* Get the mountable root in fc->root, with a ref on the root and a ref 1495 * on the superblock. 1496 */ 1497 error = fc->ops->get_tree(fc); 1498 if (error < 0) 1499 return error; 1500 1501 if (!fc->root) { 1502 pr_err("Filesystem %s get_tree() didn't set fc->root\n", 1503 fc->fs_type->name); 1504 /* We don't know what the locking state of the superblock is - 1505 * if there is a superblock. 1506 */ 1507 BUG(); 1508 } 1509 1510 sb = fc->root->d_sb; 1511 WARN_ON(!sb->s_bdi); 1512 1513 /* 1514 * Write barrier is for super_cache_count(). We place it before setting 1515 * SB_BORN as the data dependency between the two functions is the 1516 * superblock structure contents that we just set up, not the SB_BORN 1517 * flag. 1518 */ 1519 smp_wmb(); 1520 sb->s_flags |= SB_BORN; 1521 1522 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL); 1523 if (unlikely(error)) { 1524 fc_drop_locked(fc); 1525 return error; 1526 } 1527 1528 /* 1529 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1530 * but s_maxbytes was an unsigned long long for many releases. Throw 1531 * this warning for a little while to try and catch filesystems that 1532 * violate this rule. 1533 */ 1534 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1535 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes); 1536 1537 return 0; 1538 } 1539 EXPORT_SYMBOL(vfs_get_tree); 1540 1541 /* 1542 * Setup private BDI for given superblock. It gets automatically cleaned up 1543 * in generic_shutdown_super(). 1544 */ 1545 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...) 1546 { 1547 struct backing_dev_info *bdi; 1548 int err; 1549 va_list args; 1550 1551 bdi = bdi_alloc(NUMA_NO_NODE); 1552 if (!bdi) 1553 return -ENOMEM; 1554 1555 va_start(args, fmt); 1556 err = bdi_register_va(bdi, fmt, args); 1557 va_end(args); 1558 if (err) { 1559 bdi_put(bdi); 1560 return err; 1561 } 1562 WARN_ON(sb->s_bdi != &noop_backing_dev_info); 1563 sb->s_bdi = bdi; 1564 sb->s_iflags |= SB_I_PERSB_BDI; 1565 1566 return 0; 1567 } 1568 EXPORT_SYMBOL(super_setup_bdi_name); 1569 1570 /* 1571 * Setup private BDI for given superblock. I gets automatically cleaned up 1572 * in generic_shutdown_super(). 1573 */ 1574 int super_setup_bdi(struct super_block *sb) 1575 { 1576 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0); 1577 1578 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name, 1579 atomic_long_inc_return(&bdi_seq)); 1580 } 1581 EXPORT_SYMBOL(super_setup_bdi); 1582 1583 /** 1584 * sb_wait_write - wait until all writers to given file system finish 1585 * @sb: the super for which we wait 1586 * @level: type of writers we wait for (normal vs page fault) 1587 * 1588 * This function waits until there are no writers of given type to given file 1589 * system. 1590 */ 1591 static void sb_wait_write(struct super_block *sb, int level) 1592 { 1593 percpu_down_write(sb->s_writers.rw_sem + level-1); 1594 } 1595 1596 /* 1597 * We are going to return to userspace and forget about these locks, the 1598 * ownership goes to the caller of thaw_super() which does unlock(). 1599 */ 1600 static void lockdep_sb_freeze_release(struct super_block *sb) 1601 { 1602 int level; 1603 1604 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1605 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1606 } 1607 1608 /* 1609 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb). 1610 */ 1611 static void lockdep_sb_freeze_acquire(struct super_block *sb) 1612 { 1613 int level; 1614 1615 for (level = 0; level < SB_FREEZE_LEVELS; ++level) 1616 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1617 } 1618 1619 static void sb_freeze_unlock(struct super_block *sb, int level) 1620 { 1621 for (level--; level >= 0; level--) 1622 percpu_up_write(sb->s_writers.rw_sem + level); 1623 } 1624 1625 /** 1626 * freeze_super - lock the filesystem and force it into a consistent state 1627 * @sb: the super to lock 1628 * 1629 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1630 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1631 * -EBUSY. 1632 * 1633 * During this function, sb->s_writers.frozen goes through these values: 1634 * 1635 * SB_UNFROZEN: File system is normal, all writes progress as usual. 1636 * 1637 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 1638 * writes should be blocked, though page faults are still allowed. We wait for 1639 * all writes to complete and then proceed to the next stage. 1640 * 1641 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 1642 * but internal fs threads can still modify the filesystem (although they 1643 * should not dirty new pages or inodes), writeback can run etc. After waiting 1644 * for all running page faults we sync the filesystem which will clean all 1645 * dirty pages and inodes (no new dirty pages or inodes can be created when 1646 * sync is running). 1647 * 1648 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 1649 * modification are blocked (e.g. XFS preallocation truncation on inode 1650 * reclaim). This is usually implemented by blocking new transactions for 1651 * filesystems that have them and need this additional guard. After all 1652 * internal writers are finished we call ->freeze_fs() to finish filesystem 1653 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 1654 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 1655 * 1656 * sb->s_writers.frozen is protected by sb->s_umount. 1657 */ 1658 int freeze_super(struct super_block *sb) 1659 { 1660 int ret; 1661 1662 atomic_inc(&sb->s_active); 1663 down_write(&sb->s_umount); 1664 if (sb->s_writers.frozen != SB_UNFROZEN) { 1665 deactivate_locked_super(sb); 1666 return -EBUSY; 1667 } 1668 1669 if (!(sb->s_flags & SB_BORN)) { 1670 up_write(&sb->s_umount); 1671 return 0; /* sic - it's "nothing to do" */ 1672 } 1673 1674 if (sb_rdonly(sb)) { 1675 /* Nothing to do really... */ 1676 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1677 up_write(&sb->s_umount); 1678 return 0; 1679 } 1680 1681 sb->s_writers.frozen = SB_FREEZE_WRITE; 1682 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 1683 up_write(&sb->s_umount); 1684 sb_wait_write(sb, SB_FREEZE_WRITE); 1685 down_write(&sb->s_umount); 1686 1687 /* Now we go and block page faults... */ 1688 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 1689 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 1690 1691 /* All writers are done so after syncing there won't be dirty data */ 1692 ret = sync_filesystem(sb); 1693 if (ret) { 1694 sb->s_writers.frozen = SB_UNFROZEN; 1695 sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT); 1696 wake_up(&sb->s_writers.wait_unfrozen); 1697 deactivate_locked_super(sb); 1698 return ret; 1699 } 1700 1701 /* Now wait for internal filesystem counter */ 1702 sb->s_writers.frozen = SB_FREEZE_FS; 1703 sb_wait_write(sb, SB_FREEZE_FS); 1704 1705 if (sb->s_op->freeze_fs) { 1706 ret = sb->s_op->freeze_fs(sb); 1707 if (ret) { 1708 printk(KERN_ERR 1709 "VFS:Filesystem freeze failed\n"); 1710 sb->s_writers.frozen = SB_UNFROZEN; 1711 sb_freeze_unlock(sb, SB_FREEZE_FS); 1712 wake_up(&sb->s_writers.wait_unfrozen); 1713 deactivate_locked_super(sb); 1714 return ret; 1715 } 1716 } 1717 /* 1718 * For debugging purposes so that fs can warn if it sees write activity 1719 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super(). 1720 */ 1721 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1722 lockdep_sb_freeze_release(sb); 1723 up_write(&sb->s_umount); 1724 return 0; 1725 } 1726 EXPORT_SYMBOL(freeze_super); 1727 1728 static int thaw_super_locked(struct super_block *sb) 1729 { 1730 int error; 1731 1732 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) { 1733 up_write(&sb->s_umount); 1734 return -EINVAL; 1735 } 1736 1737 if (sb_rdonly(sb)) { 1738 sb->s_writers.frozen = SB_UNFROZEN; 1739 goto out; 1740 } 1741 1742 lockdep_sb_freeze_acquire(sb); 1743 1744 if (sb->s_op->unfreeze_fs) { 1745 error = sb->s_op->unfreeze_fs(sb); 1746 if (error) { 1747 printk(KERN_ERR 1748 "VFS:Filesystem thaw failed\n"); 1749 lockdep_sb_freeze_release(sb); 1750 up_write(&sb->s_umount); 1751 return error; 1752 } 1753 } 1754 1755 sb->s_writers.frozen = SB_UNFROZEN; 1756 sb_freeze_unlock(sb, SB_FREEZE_FS); 1757 out: 1758 wake_up(&sb->s_writers.wait_unfrozen); 1759 deactivate_locked_super(sb); 1760 return 0; 1761 } 1762 1763 /** 1764 * thaw_super -- unlock filesystem 1765 * @sb: the super to thaw 1766 * 1767 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1768 */ 1769 int thaw_super(struct super_block *sb) 1770 { 1771 down_write(&sb->s_umount); 1772 return thaw_super_locked(sb); 1773 } 1774 EXPORT_SYMBOL(thaw_super); 1775