1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/super.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * super.c contains code to handle: - mount structures 8 * - super-block tables 9 * - filesystem drivers list 10 * - mount system call 11 * - umount system call 12 * - ustat system call 13 * 14 * GK 2/5/95 - Changed to support mounting the root fs via NFS 15 * 16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 18 * Added options to /proc/mounts: 19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 22 */ 23 24 #include <linux/export.h> 25 #include <linux/slab.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/cleancache.h> 35 #include <linux/fsnotify.h> 36 #include <linux/lockdep.h> 37 #include <linux/user_namespace.h> 38 #include "internal.h" 39 40 41 static LIST_HEAD(super_blocks); 42 static DEFINE_SPINLOCK(sb_lock); 43 44 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 45 "sb_writers", 46 "sb_pagefaults", 47 "sb_internal", 48 }; 49 50 /* 51 * One thing we have to be careful of with a per-sb shrinker is that we don't 52 * drop the last active reference to the superblock from within the shrinker. 53 * If that happens we could trigger unregistering the shrinker from within the 54 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 55 * take a passive reference to the superblock to avoid this from occurring. 56 */ 57 static unsigned long super_cache_scan(struct shrinker *shrink, 58 struct shrink_control *sc) 59 { 60 struct super_block *sb; 61 long fs_objects = 0; 62 long total_objects; 63 long freed = 0; 64 long dentries; 65 long inodes; 66 67 sb = container_of(shrink, struct super_block, s_shrink); 68 69 /* 70 * Deadlock avoidance. We may hold various FS locks, and we don't want 71 * to recurse into the FS that called us in clear_inode() and friends.. 72 */ 73 if (!(sc->gfp_mask & __GFP_FS)) 74 return SHRINK_STOP; 75 76 if (!trylock_super(sb)) 77 return SHRINK_STOP; 78 79 if (sb->s_op->nr_cached_objects) 80 fs_objects = sb->s_op->nr_cached_objects(sb, sc); 81 82 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc); 83 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc); 84 total_objects = dentries + inodes + fs_objects + 1; 85 if (!total_objects) 86 total_objects = 1; 87 88 /* proportion the scan between the caches */ 89 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 90 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 91 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects); 92 93 /* 94 * prune the dcache first as the icache is pinned by it, then 95 * prune the icache, followed by the filesystem specific caches 96 * 97 * Ensure that we always scan at least one object - memcg kmem 98 * accounting uses this to fully empty the caches. 99 */ 100 sc->nr_to_scan = dentries + 1; 101 freed = prune_dcache_sb(sb, sc); 102 sc->nr_to_scan = inodes + 1; 103 freed += prune_icache_sb(sb, sc); 104 105 if (fs_objects) { 106 sc->nr_to_scan = fs_objects + 1; 107 freed += sb->s_op->free_cached_objects(sb, sc); 108 } 109 110 up_read(&sb->s_umount); 111 return freed; 112 } 113 114 static unsigned long super_cache_count(struct shrinker *shrink, 115 struct shrink_control *sc) 116 { 117 struct super_block *sb; 118 long total_objects = 0; 119 120 sb = container_of(shrink, struct super_block, s_shrink); 121 122 /* 123 * Don't call trylock_super as it is a potential 124 * scalability bottleneck. The counts could get updated 125 * between super_cache_count and super_cache_scan anyway. 126 * Call to super_cache_count with shrinker_rwsem held 127 * ensures the safety of call to list_lru_shrink_count() and 128 * s_op->nr_cached_objects(). 129 */ 130 if (sb->s_op && sb->s_op->nr_cached_objects) 131 total_objects = sb->s_op->nr_cached_objects(sb, sc); 132 133 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc); 134 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc); 135 136 total_objects = vfs_pressure_ratio(total_objects); 137 return total_objects; 138 } 139 140 static void destroy_super_work(struct work_struct *work) 141 { 142 struct super_block *s = container_of(work, struct super_block, 143 destroy_work); 144 int i; 145 146 for (i = 0; i < SB_FREEZE_LEVELS; i++) 147 percpu_free_rwsem(&s->s_writers.rw_sem[i]); 148 kfree(s); 149 } 150 151 static void destroy_super_rcu(struct rcu_head *head) 152 { 153 struct super_block *s = container_of(head, struct super_block, rcu); 154 INIT_WORK(&s->destroy_work, destroy_super_work); 155 schedule_work(&s->destroy_work); 156 } 157 158 /* Free a superblock that has never been seen by anyone */ 159 static void destroy_unused_super(struct super_block *s) 160 { 161 if (!s) 162 return; 163 up_write(&s->s_umount); 164 list_lru_destroy(&s->s_dentry_lru); 165 list_lru_destroy(&s->s_inode_lru); 166 security_sb_free(s); 167 put_user_ns(s->s_user_ns); 168 kfree(s->s_subtype); 169 /* no delays needed */ 170 destroy_super_work(&s->destroy_work); 171 } 172 173 /** 174 * alloc_super - create new superblock 175 * @type: filesystem type superblock should belong to 176 * @flags: the mount flags 177 * @user_ns: User namespace for the super_block 178 * 179 * Allocates and initializes a new &struct super_block. alloc_super() 180 * returns a pointer new superblock or %NULL if allocation had failed. 181 */ 182 static struct super_block *alloc_super(struct file_system_type *type, int flags, 183 struct user_namespace *user_ns) 184 { 185 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 186 static const struct super_operations default_op; 187 int i; 188 189 if (!s) 190 return NULL; 191 192 INIT_LIST_HEAD(&s->s_mounts); 193 s->s_user_ns = get_user_ns(user_ns); 194 195 if (security_sb_alloc(s)) 196 goto fail; 197 198 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 199 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i], 200 sb_writers_name[i], 201 &type->s_writers_key[i])) 202 goto fail; 203 } 204 init_waitqueue_head(&s->s_writers.wait_unfrozen); 205 s->s_bdi = &noop_backing_dev_info; 206 s->s_flags = flags; 207 if (s->s_user_ns != &init_user_ns) 208 s->s_iflags |= SB_I_NODEV; 209 INIT_HLIST_NODE(&s->s_instances); 210 INIT_HLIST_BL_HEAD(&s->s_anon); 211 mutex_init(&s->s_sync_lock); 212 INIT_LIST_HEAD(&s->s_inodes); 213 spin_lock_init(&s->s_inode_list_lock); 214 INIT_LIST_HEAD(&s->s_inodes_wb); 215 spin_lock_init(&s->s_inode_wblist_lock); 216 217 if (list_lru_init_memcg(&s->s_dentry_lru)) 218 goto fail; 219 if (list_lru_init_memcg(&s->s_inode_lru)) 220 goto fail; 221 222 init_rwsem(&s->s_umount); 223 lockdep_set_class(&s->s_umount, &type->s_umount_key); 224 /* 225 * sget() can have s_umount recursion. 226 * 227 * When it cannot find a suitable sb, it allocates a new 228 * one (this one), and tries again to find a suitable old 229 * one. 230 * 231 * In case that succeeds, it will acquire the s_umount 232 * lock of the old one. Since these are clearly distrinct 233 * locks, and this object isn't exposed yet, there's no 234 * risk of deadlocks. 235 * 236 * Annotate this by putting this lock in a different 237 * subclass. 238 */ 239 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 240 s->s_count = 1; 241 atomic_set(&s->s_active, 1); 242 mutex_init(&s->s_vfs_rename_mutex); 243 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 244 init_rwsem(&s->s_dquot.dqio_sem); 245 s->s_maxbytes = MAX_NON_LFS; 246 s->s_op = &default_op; 247 s->s_time_gran = 1000000000; 248 s->cleancache_poolid = CLEANCACHE_NO_POOL; 249 250 s->s_shrink.seeks = DEFAULT_SEEKS; 251 s->s_shrink.scan_objects = super_cache_scan; 252 s->s_shrink.count_objects = super_cache_count; 253 s->s_shrink.batch = 1024; 254 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE; 255 return s; 256 257 fail: 258 destroy_unused_super(s); 259 return NULL; 260 } 261 262 /* Superblock refcounting */ 263 264 /* 265 * Drop a superblock's refcount. The caller must hold sb_lock. 266 */ 267 static void __put_super(struct super_block *s) 268 { 269 if (!--s->s_count) { 270 list_del_init(&s->s_list); 271 WARN_ON(s->s_dentry_lru.node); 272 WARN_ON(s->s_inode_lru.node); 273 WARN_ON(!list_empty(&s->s_mounts)); 274 security_sb_free(s); 275 put_user_ns(s->s_user_ns); 276 kfree(s->s_subtype); 277 call_rcu(&s->rcu, destroy_super_rcu); 278 } 279 } 280 281 /** 282 * put_super - drop a temporary reference to superblock 283 * @sb: superblock in question 284 * 285 * Drops a temporary reference, frees superblock if there's no 286 * references left. 287 */ 288 static void put_super(struct super_block *sb) 289 { 290 spin_lock(&sb_lock); 291 __put_super(sb); 292 spin_unlock(&sb_lock); 293 } 294 295 296 /** 297 * deactivate_locked_super - drop an active reference to superblock 298 * @s: superblock to deactivate 299 * 300 * Drops an active reference to superblock, converting it into a temporary 301 * one if there is no other active references left. In that case we 302 * tell fs driver to shut it down and drop the temporary reference we 303 * had just acquired. 304 * 305 * Caller holds exclusive lock on superblock; that lock is released. 306 */ 307 void deactivate_locked_super(struct super_block *s) 308 { 309 struct file_system_type *fs = s->s_type; 310 if (atomic_dec_and_test(&s->s_active)) { 311 cleancache_invalidate_fs(s); 312 unregister_shrinker(&s->s_shrink); 313 fs->kill_sb(s); 314 315 /* 316 * Since list_lru_destroy() may sleep, we cannot call it from 317 * put_super(), where we hold the sb_lock. Therefore we destroy 318 * the lru lists right now. 319 */ 320 list_lru_destroy(&s->s_dentry_lru); 321 list_lru_destroy(&s->s_inode_lru); 322 323 put_filesystem(fs); 324 put_super(s); 325 } else { 326 up_write(&s->s_umount); 327 } 328 } 329 330 EXPORT_SYMBOL(deactivate_locked_super); 331 332 /** 333 * deactivate_super - drop an active reference to superblock 334 * @s: superblock to deactivate 335 * 336 * Variant of deactivate_locked_super(), except that superblock is *not* 337 * locked by caller. If we are going to drop the final active reference, 338 * lock will be acquired prior to that. 339 */ 340 void deactivate_super(struct super_block *s) 341 { 342 if (!atomic_add_unless(&s->s_active, -1, 1)) { 343 down_write(&s->s_umount); 344 deactivate_locked_super(s); 345 } 346 } 347 348 EXPORT_SYMBOL(deactivate_super); 349 350 /** 351 * grab_super - acquire an active reference 352 * @s: reference we are trying to make active 353 * 354 * Tries to acquire an active reference. grab_super() is used when we 355 * had just found a superblock in super_blocks or fs_type->fs_supers 356 * and want to turn it into a full-blown active reference. grab_super() 357 * is called with sb_lock held and drops it. Returns 1 in case of 358 * success, 0 if we had failed (superblock contents was already dead or 359 * dying when grab_super() had been called). Note that this is only 360 * called for superblocks not in rundown mode (== ones still on ->fs_supers 361 * of their type), so increment of ->s_count is OK here. 362 */ 363 static int grab_super(struct super_block *s) __releases(sb_lock) 364 { 365 s->s_count++; 366 spin_unlock(&sb_lock); 367 down_write(&s->s_umount); 368 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) { 369 put_super(s); 370 return 1; 371 } 372 up_write(&s->s_umount); 373 put_super(s); 374 return 0; 375 } 376 377 /* 378 * trylock_super - try to grab ->s_umount shared 379 * @sb: reference we are trying to grab 380 * 381 * Try to prevent fs shutdown. This is used in places where we 382 * cannot take an active reference but we need to ensure that the 383 * filesystem is not shut down while we are working on it. It returns 384 * false if we cannot acquire s_umount or if we lose the race and 385 * filesystem already got into shutdown, and returns true with the s_umount 386 * lock held in read mode in case of success. On successful return, 387 * the caller must drop the s_umount lock when done. 388 * 389 * Note that unlike get_super() et.al. this one does *not* bump ->s_count. 390 * The reason why it's safe is that we are OK with doing trylock instead 391 * of down_read(). There's a couple of places that are OK with that, but 392 * it's very much not a general-purpose interface. 393 */ 394 bool trylock_super(struct super_block *sb) 395 { 396 if (down_read_trylock(&sb->s_umount)) { 397 if (!hlist_unhashed(&sb->s_instances) && 398 sb->s_root && (sb->s_flags & SB_BORN)) 399 return true; 400 up_read(&sb->s_umount); 401 } 402 403 return false; 404 } 405 406 /** 407 * generic_shutdown_super - common helper for ->kill_sb() 408 * @sb: superblock to kill 409 * 410 * generic_shutdown_super() does all fs-independent work on superblock 411 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 412 * that need destruction out of superblock, call generic_shutdown_super() 413 * and release aforementioned objects. Note: dentries and inodes _are_ 414 * taken care of and do not need specific handling. 415 * 416 * Upon calling this function, the filesystem may no longer alter or 417 * rearrange the set of dentries belonging to this super_block, nor may it 418 * change the attachments of dentries to inodes. 419 */ 420 void generic_shutdown_super(struct super_block *sb) 421 { 422 const struct super_operations *sop = sb->s_op; 423 424 if (sb->s_root) { 425 shrink_dcache_for_umount(sb); 426 sync_filesystem(sb); 427 sb->s_flags &= ~SB_ACTIVE; 428 429 fsnotify_unmount_inodes(sb); 430 cgroup_writeback_umount(); 431 432 evict_inodes(sb); 433 434 if (sb->s_dio_done_wq) { 435 destroy_workqueue(sb->s_dio_done_wq); 436 sb->s_dio_done_wq = NULL; 437 } 438 439 if (sop->put_super) 440 sop->put_super(sb); 441 442 if (!list_empty(&sb->s_inodes)) { 443 printk("VFS: Busy inodes after unmount of %s. " 444 "Self-destruct in 5 seconds. Have a nice day...\n", 445 sb->s_id); 446 } 447 } 448 spin_lock(&sb_lock); 449 /* should be initialized for __put_super_and_need_restart() */ 450 hlist_del_init(&sb->s_instances); 451 spin_unlock(&sb_lock); 452 up_write(&sb->s_umount); 453 if (sb->s_bdi != &noop_backing_dev_info) { 454 bdi_put(sb->s_bdi); 455 sb->s_bdi = &noop_backing_dev_info; 456 } 457 } 458 459 EXPORT_SYMBOL(generic_shutdown_super); 460 461 /** 462 * sget_userns - find or create a superblock 463 * @type: filesystem type superblock should belong to 464 * @test: comparison callback 465 * @set: setup callback 466 * @flags: mount flags 467 * @user_ns: User namespace for the super_block 468 * @data: argument to each of them 469 */ 470 struct super_block *sget_userns(struct file_system_type *type, 471 int (*test)(struct super_block *,void *), 472 int (*set)(struct super_block *,void *), 473 int flags, struct user_namespace *user_ns, 474 void *data) 475 { 476 struct super_block *s = NULL; 477 struct super_block *old; 478 int err; 479 480 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && 481 !(type->fs_flags & FS_USERNS_MOUNT) && 482 !capable(CAP_SYS_ADMIN)) 483 return ERR_PTR(-EPERM); 484 retry: 485 spin_lock(&sb_lock); 486 if (test) { 487 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 488 if (!test(old, data)) 489 continue; 490 if (user_ns != old->s_user_ns) { 491 spin_unlock(&sb_lock); 492 destroy_unused_super(s); 493 return ERR_PTR(-EBUSY); 494 } 495 if (!grab_super(old)) 496 goto retry; 497 destroy_unused_super(s); 498 return old; 499 } 500 } 501 if (!s) { 502 spin_unlock(&sb_lock); 503 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns); 504 if (!s) 505 return ERR_PTR(-ENOMEM); 506 goto retry; 507 } 508 509 err = set(s, data); 510 if (err) { 511 spin_unlock(&sb_lock); 512 destroy_unused_super(s); 513 return ERR_PTR(err); 514 } 515 s->s_type = type; 516 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 517 list_add_tail(&s->s_list, &super_blocks); 518 hlist_add_head(&s->s_instances, &type->fs_supers); 519 spin_unlock(&sb_lock); 520 get_filesystem(type); 521 register_shrinker(&s->s_shrink); 522 return s; 523 } 524 525 EXPORT_SYMBOL(sget_userns); 526 527 /** 528 * sget - find or create a superblock 529 * @type: filesystem type superblock should belong to 530 * @test: comparison callback 531 * @set: setup callback 532 * @flags: mount flags 533 * @data: argument to each of them 534 */ 535 struct super_block *sget(struct file_system_type *type, 536 int (*test)(struct super_block *,void *), 537 int (*set)(struct super_block *,void *), 538 int flags, 539 void *data) 540 { 541 struct user_namespace *user_ns = current_user_ns(); 542 543 /* We don't yet pass the user namespace of the parent 544 * mount through to here so always use &init_user_ns 545 * until that changes. 546 */ 547 if (flags & SB_SUBMOUNT) 548 user_ns = &init_user_ns; 549 550 /* Ensure the requestor has permissions over the target filesystem */ 551 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN)) 552 return ERR_PTR(-EPERM); 553 554 return sget_userns(type, test, set, flags, user_ns, data); 555 } 556 557 EXPORT_SYMBOL(sget); 558 559 void drop_super(struct super_block *sb) 560 { 561 up_read(&sb->s_umount); 562 put_super(sb); 563 } 564 565 EXPORT_SYMBOL(drop_super); 566 567 void drop_super_exclusive(struct super_block *sb) 568 { 569 up_write(&sb->s_umount); 570 put_super(sb); 571 } 572 EXPORT_SYMBOL(drop_super_exclusive); 573 574 /** 575 * iterate_supers - call function for all active superblocks 576 * @f: function to call 577 * @arg: argument to pass to it 578 * 579 * Scans the superblock list and calls given function, passing it 580 * locked superblock and given argument. 581 */ 582 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 583 { 584 struct super_block *sb, *p = NULL; 585 586 spin_lock(&sb_lock); 587 list_for_each_entry(sb, &super_blocks, s_list) { 588 if (hlist_unhashed(&sb->s_instances)) 589 continue; 590 sb->s_count++; 591 spin_unlock(&sb_lock); 592 593 down_read(&sb->s_umount); 594 if (sb->s_root && (sb->s_flags & SB_BORN)) 595 f(sb, arg); 596 up_read(&sb->s_umount); 597 598 spin_lock(&sb_lock); 599 if (p) 600 __put_super(p); 601 p = sb; 602 } 603 if (p) 604 __put_super(p); 605 spin_unlock(&sb_lock); 606 } 607 608 /** 609 * iterate_supers_type - call function for superblocks of given type 610 * @type: fs type 611 * @f: function to call 612 * @arg: argument to pass to it 613 * 614 * Scans the superblock list and calls given function, passing it 615 * locked superblock and given argument. 616 */ 617 void iterate_supers_type(struct file_system_type *type, 618 void (*f)(struct super_block *, void *), void *arg) 619 { 620 struct super_block *sb, *p = NULL; 621 622 spin_lock(&sb_lock); 623 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 624 sb->s_count++; 625 spin_unlock(&sb_lock); 626 627 down_read(&sb->s_umount); 628 if (sb->s_root && (sb->s_flags & SB_BORN)) 629 f(sb, arg); 630 up_read(&sb->s_umount); 631 632 spin_lock(&sb_lock); 633 if (p) 634 __put_super(p); 635 p = sb; 636 } 637 if (p) 638 __put_super(p); 639 spin_unlock(&sb_lock); 640 } 641 642 EXPORT_SYMBOL(iterate_supers_type); 643 644 static struct super_block *__get_super(struct block_device *bdev, bool excl) 645 { 646 struct super_block *sb; 647 648 if (!bdev) 649 return NULL; 650 651 spin_lock(&sb_lock); 652 rescan: 653 list_for_each_entry(sb, &super_blocks, s_list) { 654 if (hlist_unhashed(&sb->s_instances)) 655 continue; 656 if (sb->s_bdev == bdev) { 657 sb->s_count++; 658 spin_unlock(&sb_lock); 659 if (!excl) 660 down_read(&sb->s_umount); 661 else 662 down_write(&sb->s_umount); 663 /* still alive? */ 664 if (sb->s_root && (sb->s_flags & SB_BORN)) 665 return sb; 666 if (!excl) 667 up_read(&sb->s_umount); 668 else 669 up_write(&sb->s_umount); 670 /* nope, got unmounted */ 671 spin_lock(&sb_lock); 672 __put_super(sb); 673 goto rescan; 674 } 675 } 676 spin_unlock(&sb_lock); 677 return NULL; 678 } 679 680 /** 681 * get_super - get the superblock of a device 682 * @bdev: device to get the superblock for 683 * 684 * Scans the superblock list and finds the superblock of the file system 685 * mounted on the device given. %NULL is returned if no match is found. 686 */ 687 struct super_block *get_super(struct block_device *bdev) 688 { 689 return __get_super(bdev, false); 690 } 691 EXPORT_SYMBOL(get_super); 692 693 static struct super_block *__get_super_thawed(struct block_device *bdev, 694 bool excl) 695 { 696 while (1) { 697 struct super_block *s = __get_super(bdev, excl); 698 if (!s || s->s_writers.frozen == SB_UNFROZEN) 699 return s; 700 if (!excl) 701 up_read(&s->s_umount); 702 else 703 up_write(&s->s_umount); 704 wait_event(s->s_writers.wait_unfrozen, 705 s->s_writers.frozen == SB_UNFROZEN); 706 put_super(s); 707 } 708 } 709 710 /** 711 * get_super_thawed - get thawed superblock of a device 712 * @bdev: device to get the superblock for 713 * 714 * Scans the superblock list and finds the superblock of the file system 715 * mounted on the device. The superblock is returned once it is thawed 716 * (or immediately if it was not frozen). %NULL is returned if no match 717 * is found. 718 */ 719 struct super_block *get_super_thawed(struct block_device *bdev) 720 { 721 return __get_super_thawed(bdev, false); 722 } 723 EXPORT_SYMBOL(get_super_thawed); 724 725 /** 726 * get_super_exclusive_thawed - get thawed superblock of a device 727 * @bdev: device to get the superblock for 728 * 729 * Scans the superblock list and finds the superblock of the file system 730 * mounted on the device. The superblock is returned once it is thawed 731 * (or immediately if it was not frozen) and s_umount semaphore is held 732 * in exclusive mode. %NULL is returned if no match is found. 733 */ 734 struct super_block *get_super_exclusive_thawed(struct block_device *bdev) 735 { 736 return __get_super_thawed(bdev, true); 737 } 738 EXPORT_SYMBOL(get_super_exclusive_thawed); 739 740 /** 741 * get_active_super - get an active reference to the superblock of a device 742 * @bdev: device to get the superblock for 743 * 744 * Scans the superblock list and finds the superblock of the file system 745 * mounted on the device given. Returns the superblock with an active 746 * reference or %NULL if none was found. 747 */ 748 struct super_block *get_active_super(struct block_device *bdev) 749 { 750 struct super_block *sb; 751 752 if (!bdev) 753 return NULL; 754 755 restart: 756 spin_lock(&sb_lock); 757 list_for_each_entry(sb, &super_blocks, s_list) { 758 if (hlist_unhashed(&sb->s_instances)) 759 continue; 760 if (sb->s_bdev == bdev) { 761 if (!grab_super(sb)) 762 goto restart; 763 up_write(&sb->s_umount); 764 return sb; 765 } 766 } 767 spin_unlock(&sb_lock); 768 return NULL; 769 } 770 771 struct super_block *user_get_super(dev_t dev) 772 { 773 struct super_block *sb; 774 775 spin_lock(&sb_lock); 776 rescan: 777 list_for_each_entry(sb, &super_blocks, s_list) { 778 if (hlist_unhashed(&sb->s_instances)) 779 continue; 780 if (sb->s_dev == dev) { 781 sb->s_count++; 782 spin_unlock(&sb_lock); 783 down_read(&sb->s_umount); 784 /* still alive? */ 785 if (sb->s_root && (sb->s_flags & SB_BORN)) 786 return sb; 787 up_read(&sb->s_umount); 788 /* nope, got unmounted */ 789 spin_lock(&sb_lock); 790 __put_super(sb); 791 goto rescan; 792 } 793 } 794 spin_unlock(&sb_lock); 795 return NULL; 796 } 797 798 /** 799 * do_remount_sb - asks filesystem to change mount options. 800 * @sb: superblock in question 801 * @sb_flags: revised superblock flags 802 * @data: the rest of options 803 * @force: whether or not to force the change 804 * 805 * Alters the mount options of a mounted file system. 806 */ 807 int do_remount_sb(struct super_block *sb, int sb_flags, void *data, int force) 808 { 809 int retval; 810 int remount_ro; 811 812 if (sb->s_writers.frozen != SB_UNFROZEN) 813 return -EBUSY; 814 815 #ifdef CONFIG_BLOCK 816 if (!(sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev)) 817 return -EACCES; 818 #endif 819 820 remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb); 821 822 if (remount_ro) { 823 if (!hlist_empty(&sb->s_pins)) { 824 up_write(&sb->s_umount); 825 group_pin_kill(&sb->s_pins); 826 down_write(&sb->s_umount); 827 if (!sb->s_root) 828 return 0; 829 if (sb->s_writers.frozen != SB_UNFROZEN) 830 return -EBUSY; 831 remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb); 832 } 833 } 834 shrink_dcache_sb(sb); 835 836 /* If we are remounting RDONLY and current sb is read/write, 837 make sure there are no rw files opened */ 838 if (remount_ro) { 839 if (force) { 840 sb->s_readonly_remount = 1; 841 smp_wmb(); 842 } else { 843 retval = sb_prepare_remount_readonly(sb); 844 if (retval) 845 return retval; 846 } 847 } 848 849 if (sb->s_op->remount_fs) { 850 retval = sb->s_op->remount_fs(sb, &sb_flags, data); 851 if (retval) { 852 if (!force) 853 goto cancel_readonly; 854 /* If forced remount, go ahead despite any errors */ 855 WARN(1, "forced remount of a %s fs returned %i\n", 856 sb->s_type->name, retval); 857 } 858 } 859 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (sb_flags & MS_RMT_MASK); 860 /* Needs to be ordered wrt mnt_is_readonly() */ 861 smp_wmb(); 862 sb->s_readonly_remount = 0; 863 864 /* 865 * Some filesystems modify their metadata via some other path than the 866 * bdev buffer cache (eg. use a private mapping, or directories in 867 * pagecache, etc). Also file data modifications go via their own 868 * mappings. So If we try to mount readonly then copy the filesystem 869 * from bdev, we could get stale data, so invalidate it to give a best 870 * effort at coherency. 871 */ 872 if (remount_ro && sb->s_bdev) 873 invalidate_bdev(sb->s_bdev); 874 return 0; 875 876 cancel_readonly: 877 sb->s_readonly_remount = 0; 878 return retval; 879 } 880 881 static void do_emergency_remount(struct work_struct *work) 882 { 883 struct super_block *sb, *p = NULL; 884 885 spin_lock(&sb_lock); 886 list_for_each_entry(sb, &super_blocks, s_list) { 887 if (hlist_unhashed(&sb->s_instances)) 888 continue; 889 sb->s_count++; 890 spin_unlock(&sb_lock); 891 down_write(&sb->s_umount); 892 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) && 893 !sb_rdonly(sb)) { 894 /* 895 * What lock protects sb->s_flags?? 896 */ 897 do_remount_sb(sb, SB_RDONLY, NULL, 1); 898 } 899 up_write(&sb->s_umount); 900 spin_lock(&sb_lock); 901 if (p) 902 __put_super(p); 903 p = sb; 904 } 905 if (p) 906 __put_super(p); 907 spin_unlock(&sb_lock); 908 kfree(work); 909 printk("Emergency Remount complete\n"); 910 } 911 912 void emergency_remount(void) 913 { 914 struct work_struct *work; 915 916 work = kmalloc(sizeof(*work), GFP_ATOMIC); 917 if (work) { 918 INIT_WORK(work, do_emergency_remount); 919 schedule_work(work); 920 } 921 } 922 923 /* 924 * Unnamed block devices are dummy devices used by virtual 925 * filesystems which don't use real block-devices. -- jrs 926 */ 927 928 static DEFINE_IDA(unnamed_dev_ida); 929 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */ 930 /* Many userspace utilities consider an FSID of 0 invalid. 931 * Always return at least 1 from get_anon_bdev. 932 */ 933 static int unnamed_dev_start = 1; 934 935 int get_anon_bdev(dev_t *p) 936 { 937 int dev; 938 int error; 939 940 retry: 941 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0) 942 return -ENOMEM; 943 spin_lock(&unnamed_dev_lock); 944 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev); 945 if (!error) 946 unnamed_dev_start = dev + 1; 947 spin_unlock(&unnamed_dev_lock); 948 if (error == -EAGAIN) 949 /* We raced and lost with another CPU. */ 950 goto retry; 951 else if (error) 952 return -EAGAIN; 953 954 if (dev >= (1 << MINORBITS)) { 955 spin_lock(&unnamed_dev_lock); 956 ida_remove(&unnamed_dev_ida, dev); 957 if (unnamed_dev_start > dev) 958 unnamed_dev_start = dev; 959 spin_unlock(&unnamed_dev_lock); 960 return -EMFILE; 961 } 962 *p = MKDEV(0, dev & MINORMASK); 963 return 0; 964 } 965 EXPORT_SYMBOL(get_anon_bdev); 966 967 void free_anon_bdev(dev_t dev) 968 { 969 int slot = MINOR(dev); 970 spin_lock(&unnamed_dev_lock); 971 ida_remove(&unnamed_dev_ida, slot); 972 if (slot < unnamed_dev_start) 973 unnamed_dev_start = slot; 974 spin_unlock(&unnamed_dev_lock); 975 } 976 EXPORT_SYMBOL(free_anon_bdev); 977 978 int set_anon_super(struct super_block *s, void *data) 979 { 980 return get_anon_bdev(&s->s_dev); 981 } 982 983 EXPORT_SYMBOL(set_anon_super); 984 985 void kill_anon_super(struct super_block *sb) 986 { 987 dev_t dev = sb->s_dev; 988 generic_shutdown_super(sb); 989 free_anon_bdev(dev); 990 } 991 992 EXPORT_SYMBOL(kill_anon_super); 993 994 void kill_litter_super(struct super_block *sb) 995 { 996 if (sb->s_root) 997 d_genocide(sb->s_root); 998 kill_anon_super(sb); 999 } 1000 1001 EXPORT_SYMBOL(kill_litter_super); 1002 1003 static int ns_test_super(struct super_block *sb, void *data) 1004 { 1005 return sb->s_fs_info == data; 1006 } 1007 1008 static int ns_set_super(struct super_block *sb, void *data) 1009 { 1010 sb->s_fs_info = data; 1011 return set_anon_super(sb, NULL); 1012 } 1013 1014 struct dentry *mount_ns(struct file_system_type *fs_type, 1015 int flags, void *data, void *ns, struct user_namespace *user_ns, 1016 int (*fill_super)(struct super_block *, void *, int)) 1017 { 1018 struct super_block *sb; 1019 1020 /* Don't allow mounting unless the caller has CAP_SYS_ADMIN 1021 * over the namespace. 1022 */ 1023 if (!(flags & SB_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN)) 1024 return ERR_PTR(-EPERM); 1025 1026 sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags, 1027 user_ns, ns); 1028 if (IS_ERR(sb)) 1029 return ERR_CAST(sb); 1030 1031 if (!sb->s_root) { 1032 int err; 1033 err = fill_super(sb, data, flags & SB_SILENT ? 1 : 0); 1034 if (err) { 1035 deactivate_locked_super(sb); 1036 return ERR_PTR(err); 1037 } 1038 1039 sb->s_flags |= SB_ACTIVE; 1040 } 1041 1042 return dget(sb->s_root); 1043 } 1044 1045 EXPORT_SYMBOL(mount_ns); 1046 1047 #ifdef CONFIG_BLOCK 1048 static int set_bdev_super(struct super_block *s, void *data) 1049 { 1050 s->s_bdev = data; 1051 s->s_dev = s->s_bdev->bd_dev; 1052 s->s_bdi = bdi_get(s->s_bdev->bd_bdi); 1053 1054 return 0; 1055 } 1056 1057 static int test_bdev_super(struct super_block *s, void *data) 1058 { 1059 return (void *)s->s_bdev == data; 1060 } 1061 1062 struct dentry *mount_bdev(struct file_system_type *fs_type, 1063 int flags, const char *dev_name, void *data, 1064 int (*fill_super)(struct super_block *, void *, int)) 1065 { 1066 struct block_device *bdev; 1067 struct super_block *s; 1068 fmode_t mode = FMODE_READ | FMODE_EXCL; 1069 int error = 0; 1070 1071 if (!(flags & SB_RDONLY)) 1072 mode |= FMODE_WRITE; 1073 1074 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 1075 if (IS_ERR(bdev)) 1076 return ERR_CAST(bdev); 1077 1078 /* 1079 * once the super is inserted into the list by sget, s_umount 1080 * will protect the lockfs code from trying to start a snapshot 1081 * while we are mounting 1082 */ 1083 mutex_lock(&bdev->bd_fsfreeze_mutex); 1084 if (bdev->bd_fsfreeze_count > 0) { 1085 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1086 error = -EBUSY; 1087 goto error_bdev; 1088 } 1089 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC, 1090 bdev); 1091 mutex_unlock(&bdev->bd_fsfreeze_mutex); 1092 if (IS_ERR(s)) 1093 goto error_s; 1094 1095 if (s->s_root) { 1096 if ((flags ^ s->s_flags) & SB_RDONLY) { 1097 deactivate_locked_super(s); 1098 error = -EBUSY; 1099 goto error_bdev; 1100 } 1101 1102 /* 1103 * s_umount nests inside bd_mutex during 1104 * __invalidate_device(). blkdev_put() acquires 1105 * bd_mutex and can't be called under s_umount. Drop 1106 * s_umount temporarily. This is safe as we're 1107 * holding an active reference. 1108 */ 1109 up_write(&s->s_umount); 1110 blkdev_put(bdev, mode); 1111 down_write(&s->s_umount); 1112 } else { 1113 s->s_mode = mode; 1114 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1115 sb_set_blocksize(s, block_size(bdev)); 1116 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1117 if (error) { 1118 deactivate_locked_super(s); 1119 goto error; 1120 } 1121 1122 s->s_flags |= SB_ACTIVE; 1123 bdev->bd_super = s; 1124 } 1125 1126 return dget(s->s_root); 1127 1128 error_s: 1129 error = PTR_ERR(s); 1130 error_bdev: 1131 blkdev_put(bdev, mode); 1132 error: 1133 return ERR_PTR(error); 1134 } 1135 EXPORT_SYMBOL(mount_bdev); 1136 1137 void kill_block_super(struct super_block *sb) 1138 { 1139 struct block_device *bdev = sb->s_bdev; 1140 fmode_t mode = sb->s_mode; 1141 1142 bdev->bd_super = NULL; 1143 generic_shutdown_super(sb); 1144 sync_blockdev(bdev); 1145 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 1146 blkdev_put(bdev, mode | FMODE_EXCL); 1147 } 1148 1149 EXPORT_SYMBOL(kill_block_super); 1150 #endif 1151 1152 struct dentry *mount_nodev(struct file_system_type *fs_type, 1153 int flags, void *data, 1154 int (*fill_super)(struct super_block *, void *, int)) 1155 { 1156 int error; 1157 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1158 1159 if (IS_ERR(s)) 1160 return ERR_CAST(s); 1161 1162 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1163 if (error) { 1164 deactivate_locked_super(s); 1165 return ERR_PTR(error); 1166 } 1167 s->s_flags |= SB_ACTIVE; 1168 return dget(s->s_root); 1169 } 1170 EXPORT_SYMBOL(mount_nodev); 1171 1172 static int compare_single(struct super_block *s, void *p) 1173 { 1174 return 1; 1175 } 1176 1177 struct dentry *mount_single(struct file_system_type *fs_type, 1178 int flags, void *data, 1179 int (*fill_super)(struct super_block *, void *, int)) 1180 { 1181 struct super_block *s; 1182 int error; 1183 1184 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1185 if (IS_ERR(s)) 1186 return ERR_CAST(s); 1187 if (!s->s_root) { 1188 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1189 if (error) { 1190 deactivate_locked_super(s); 1191 return ERR_PTR(error); 1192 } 1193 s->s_flags |= SB_ACTIVE; 1194 } else { 1195 do_remount_sb(s, flags, data, 0); 1196 } 1197 return dget(s->s_root); 1198 } 1199 EXPORT_SYMBOL(mount_single); 1200 1201 struct dentry * 1202 mount_fs(struct file_system_type *type, int flags, const char *name, void *data) 1203 { 1204 struct dentry *root; 1205 struct super_block *sb; 1206 char *secdata = NULL; 1207 int error = -ENOMEM; 1208 1209 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) { 1210 secdata = alloc_secdata(); 1211 if (!secdata) 1212 goto out; 1213 1214 error = security_sb_copy_data(data, secdata); 1215 if (error) 1216 goto out_free_secdata; 1217 } 1218 1219 root = type->mount(type, flags, name, data); 1220 if (IS_ERR(root)) { 1221 error = PTR_ERR(root); 1222 goto out_free_secdata; 1223 } 1224 sb = root->d_sb; 1225 BUG_ON(!sb); 1226 WARN_ON(!sb->s_bdi); 1227 sb->s_flags |= SB_BORN; 1228 1229 error = security_sb_kern_mount(sb, flags, secdata); 1230 if (error) 1231 goto out_sb; 1232 1233 /* 1234 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1235 * but s_maxbytes was an unsigned long long for many releases. Throw 1236 * this warning for a little while to try and catch filesystems that 1237 * violate this rule. 1238 */ 1239 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1240 "negative value (%lld)\n", type->name, sb->s_maxbytes); 1241 1242 up_write(&sb->s_umount); 1243 free_secdata(secdata); 1244 return root; 1245 out_sb: 1246 dput(root); 1247 deactivate_locked_super(sb); 1248 out_free_secdata: 1249 free_secdata(secdata); 1250 out: 1251 return ERR_PTR(error); 1252 } 1253 1254 /* 1255 * Setup private BDI for given superblock. It gets automatically cleaned up 1256 * in generic_shutdown_super(). 1257 */ 1258 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...) 1259 { 1260 struct backing_dev_info *bdi; 1261 int err; 1262 va_list args; 1263 1264 bdi = bdi_alloc(GFP_KERNEL); 1265 if (!bdi) 1266 return -ENOMEM; 1267 1268 bdi->name = sb->s_type->name; 1269 1270 va_start(args, fmt); 1271 err = bdi_register_va(bdi, fmt, args); 1272 va_end(args); 1273 if (err) { 1274 bdi_put(bdi); 1275 return err; 1276 } 1277 WARN_ON(sb->s_bdi != &noop_backing_dev_info); 1278 sb->s_bdi = bdi; 1279 1280 return 0; 1281 } 1282 EXPORT_SYMBOL(super_setup_bdi_name); 1283 1284 /* 1285 * Setup private BDI for given superblock. I gets automatically cleaned up 1286 * in generic_shutdown_super(). 1287 */ 1288 int super_setup_bdi(struct super_block *sb) 1289 { 1290 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0); 1291 1292 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name, 1293 atomic_long_inc_return(&bdi_seq)); 1294 } 1295 EXPORT_SYMBOL(super_setup_bdi); 1296 1297 /* 1298 * This is an internal function, please use sb_end_{write,pagefault,intwrite} 1299 * instead. 1300 */ 1301 void __sb_end_write(struct super_block *sb, int level) 1302 { 1303 percpu_up_read(sb->s_writers.rw_sem + level-1); 1304 } 1305 EXPORT_SYMBOL(__sb_end_write); 1306 1307 /* 1308 * This is an internal function, please use sb_start_{write,pagefault,intwrite} 1309 * instead. 1310 */ 1311 int __sb_start_write(struct super_block *sb, int level, bool wait) 1312 { 1313 bool force_trylock = false; 1314 int ret = 1; 1315 1316 #ifdef CONFIG_LOCKDEP 1317 /* 1318 * We want lockdep to tell us about possible deadlocks with freezing 1319 * but it's it bit tricky to properly instrument it. Getting a freeze 1320 * protection works as getting a read lock but there are subtle 1321 * problems. XFS for example gets freeze protection on internal level 1322 * twice in some cases, which is OK only because we already hold a 1323 * freeze protection also on higher level. Due to these cases we have 1324 * to use wait == F (trylock mode) which must not fail. 1325 */ 1326 if (wait) { 1327 int i; 1328 1329 for (i = 0; i < level - 1; i++) 1330 if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) { 1331 force_trylock = true; 1332 break; 1333 } 1334 } 1335 #endif 1336 if (wait && !force_trylock) 1337 percpu_down_read(sb->s_writers.rw_sem + level-1); 1338 else 1339 ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1); 1340 1341 WARN_ON(force_trylock && !ret); 1342 return ret; 1343 } 1344 EXPORT_SYMBOL(__sb_start_write); 1345 1346 /** 1347 * sb_wait_write - wait until all writers to given file system finish 1348 * @sb: the super for which we wait 1349 * @level: type of writers we wait for (normal vs page fault) 1350 * 1351 * This function waits until there are no writers of given type to given file 1352 * system. 1353 */ 1354 static void sb_wait_write(struct super_block *sb, int level) 1355 { 1356 percpu_down_write(sb->s_writers.rw_sem + level-1); 1357 } 1358 1359 /* 1360 * We are going to return to userspace and forget about these locks, the 1361 * ownership goes to the caller of thaw_super() which does unlock(). 1362 */ 1363 static void lockdep_sb_freeze_release(struct super_block *sb) 1364 { 1365 int level; 1366 1367 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1368 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1369 } 1370 1371 /* 1372 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb). 1373 */ 1374 static void lockdep_sb_freeze_acquire(struct super_block *sb) 1375 { 1376 int level; 1377 1378 for (level = 0; level < SB_FREEZE_LEVELS; ++level) 1379 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_); 1380 } 1381 1382 static void sb_freeze_unlock(struct super_block *sb) 1383 { 1384 int level; 1385 1386 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) 1387 percpu_up_write(sb->s_writers.rw_sem + level); 1388 } 1389 1390 /** 1391 * freeze_super - lock the filesystem and force it into a consistent state 1392 * @sb: the super to lock 1393 * 1394 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1395 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1396 * -EBUSY. 1397 * 1398 * During this function, sb->s_writers.frozen goes through these values: 1399 * 1400 * SB_UNFROZEN: File system is normal, all writes progress as usual. 1401 * 1402 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 1403 * writes should be blocked, though page faults are still allowed. We wait for 1404 * all writes to complete and then proceed to the next stage. 1405 * 1406 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 1407 * but internal fs threads can still modify the filesystem (although they 1408 * should not dirty new pages or inodes), writeback can run etc. After waiting 1409 * for all running page faults we sync the filesystem which will clean all 1410 * dirty pages and inodes (no new dirty pages or inodes can be created when 1411 * sync is running). 1412 * 1413 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 1414 * modification are blocked (e.g. XFS preallocation truncation on inode 1415 * reclaim). This is usually implemented by blocking new transactions for 1416 * filesystems that have them and need this additional guard. After all 1417 * internal writers are finished we call ->freeze_fs() to finish filesystem 1418 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 1419 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 1420 * 1421 * sb->s_writers.frozen is protected by sb->s_umount. 1422 */ 1423 int freeze_super(struct super_block *sb) 1424 { 1425 int ret; 1426 1427 atomic_inc(&sb->s_active); 1428 down_write(&sb->s_umount); 1429 if (sb->s_writers.frozen != SB_UNFROZEN) { 1430 deactivate_locked_super(sb); 1431 return -EBUSY; 1432 } 1433 1434 if (!(sb->s_flags & SB_BORN)) { 1435 up_write(&sb->s_umount); 1436 return 0; /* sic - it's "nothing to do" */ 1437 } 1438 1439 if (sb_rdonly(sb)) { 1440 /* Nothing to do really... */ 1441 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1442 up_write(&sb->s_umount); 1443 return 0; 1444 } 1445 1446 sb->s_writers.frozen = SB_FREEZE_WRITE; 1447 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 1448 up_write(&sb->s_umount); 1449 sb_wait_write(sb, SB_FREEZE_WRITE); 1450 down_write(&sb->s_umount); 1451 1452 /* Now we go and block page faults... */ 1453 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 1454 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 1455 1456 /* All writers are done so after syncing there won't be dirty data */ 1457 sync_filesystem(sb); 1458 1459 /* Now wait for internal filesystem counter */ 1460 sb->s_writers.frozen = SB_FREEZE_FS; 1461 sb_wait_write(sb, SB_FREEZE_FS); 1462 1463 if (sb->s_op->freeze_fs) { 1464 ret = sb->s_op->freeze_fs(sb); 1465 if (ret) { 1466 printk(KERN_ERR 1467 "VFS:Filesystem freeze failed\n"); 1468 sb->s_writers.frozen = SB_UNFROZEN; 1469 sb_freeze_unlock(sb); 1470 wake_up(&sb->s_writers.wait_unfrozen); 1471 deactivate_locked_super(sb); 1472 return ret; 1473 } 1474 } 1475 /* 1476 * For debugging purposes so that fs can warn if it sees write activity 1477 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super(). 1478 */ 1479 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1480 lockdep_sb_freeze_release(sb); 1481 up_write(&sb->s_umount); 1482 return 0; 1483 } 1484 EXPORT_SYMBOL(freeze_super); 1485 1486 /** 1487 * thaw_super -- unlock filesystem 1488 * @sb: the super to thaw 1489 * 1490 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1491 */ 1492 int thaw_super(struct super_block *sb) 1493 { 1494 int error; 1495 1496 down_write(&sb->s_umount); 1497 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) { 1498 up_write(&sb->s_umount); 1499 return -EINVAL; 1500 } 1501 1502 if (sb_rdonly(sb)) { 1503 sb->s_writers.frozen = SB_UNFROZEN; 1504 goto out; 1505 } 1506 1507 lockdep_sb_freeze_acquire(sb); 1508 1509 if (sb->s_op->unfreeze_fs) { 1510 error = sb->s_op->unfreeze_fs(sb); 1511 if (error) { 1512 printk(KERN_ERR 1513 "VFS:Filesystem thaw failed\n"); 1514 lockdep_sb_freeze_release(sb); 1515 up_write(&sb->s_umount); 1516 return error; 1517 } 1518 } 1519 1520 sb->s_writers.frozen = SB_UNFROZEN; 1521 sb_freeze_unlock(sb); 1522 out: 1523 wake_up(&sb->s_writers.wait_unfrozen); 1524 deactivate_locked_super(sb); 1525 return 0; 1526 } 1527 EXPORT_SYMBOL(thaw_super); 1528