xref: /openbmc/linux/fs/super.c (revision 089a49b6)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include "internal.h"
38 
39 
40 LIST_HEAD(super_blocks);
41 DEFINE_SPINLOCK(sb_lock);
42 
43 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
44 	"sb_writers",
45 	"sb_pagefaults",
46 	"sb_internal",
47 };
48 
49 /*
50  * One thing we have to be careful of with a per-sb shrinker is that we don't
51  * drop the last active reference to the superblock from within the shrinker.
52  * If that happens we could trigger unregistering the shrinker from within the
53  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
54  * take a passive reference to the superblock to avoid this from occurring.
55  */
56 static unsigned long super_cache_scan(struct shrinker *shrink,
57 				      struct shrink_control *sc)
58 {
59 	struct super_block *sb;
60 	long	fs_objects = 0;
61 	long	total_objects;
62 	long	freed = 0;
63 	long	dentries;
64 	long	inodes;
65 
66 	sb = container_of(shrink, struct super_block, s_shrink);
67 
68 	/*
69 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
70 	 * to recurse into the FS that called us in clear_inode() and friends..
71 	 */
72 	if (!(sc->gfp_mask & __GFP_FS))
73 		return SHRINK_STOP;
74 
75 	if (!grab_super_passive(sb))
76 		return SHRINK_STOP;
77 
78 	if (sb->s_op->nr_cached_objects)
79 		fs_objects = sb->s_op->nr_cached_objects(sb, sc->nid);
80 
81 	inodes = list_lru_count_node(&sb->s_inode_lru, sc->nid);
82 	dentries = list_lru_count_node(&sb->s_dentry_lru, sc->nid);
83 	total_objects = dentries + inodes + fs_objects + 1;
84 
85 	/* proportion the scan between the caches */
86 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
87 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
88 
89 	/*
90 	 * prune the dcache first as the icache is pinned by it, then
91 	 * prune the icache, followed by the filesystem specific caches
92 	 */
93 	freed = prune_dcache_sb(sb, dentries, sc->nid);
94 	freed += prune_icache_sb(sb, inodes, sc->nid);
95 
96 	if (fs_objects) {
97 		fs_objects = mult_frac(sc->nr_to_scan, fs_objects,
98 								total_objects);
99 		freed += sb->s_op->free_cached_objects(sb, fs_objects,
100 						       sc->nid);
101 	}
102 
103 	drop_super(sb);
104 	return freed;
105 }
106 
107 static unsigned long super_cache_count(struct shrinker *shrink,
108 				       struct shrink_control *sc)
109 {
110 	struct super_block *sb;
111 	long	total_objects = 0;
112 
113 	sb = container_of(shrink, struct super_block, s_shrink);
114 
115 	if (!grab_super_passive(sb))
116 		return 0;
117 
118 	if (sb->s_op && sb->s_op->nr_cached_objects)
119 		total_objects = sb->s_op->nr_cached_objects(sb,
120 						 sc->nid);
121 
122 	total_objects += list_lru_count_node(&sb->s_dentry_lru,
123 						 sc->nid);
124 	total_objects += list_lru_count_node(&sb->s_inode_lru,
125 						 sc->nid);
126 
127 	total_objects = vfs_pressure_ratio(total_objects);
128 	drop_super(sb);
129 	return total_objects;
130 }
131 
132 static int init_sb_writers(struct super_block *s, struct file_system_type *type)
133 {
134 	int err;
135 	int i;
136 
137 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
138 		err = percpu_counter_init(&s->s_writers.counter[i], 0);
139 		if (err < 0)
140 			goto err_out;
141 		lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i],
142 				 &type->s_writers_key[i], 0);
143 	}
144 	init_waitqueue_head(&s->s_writers.wait);
145 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
146 	return 0;
147 err_out:
148 	while (--i >= 0)
149 		percpu_counter_destroy(&s->s_writers.counter[i]);
150 	return err;
151 }
152 
153 static void destroy_sb_writers(struct super_block *s)
154 {
155 	int i;
156 
157 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
158 		percpu_counter_destroy(&s->s_writers.counter[i]);
159 }
160 
161 /**
162  *	alloc_super	-	create new superblock
163  *	@type:	filesystem type superblock should belong to
164  *	@flags: the mount flags
165  *
166  *	Allocates and initializes a new &struct super_block.  alloc_super()
167  *	returns a pointer new superblock or %NULL if allocation had failed.
168  */
169 static struct super_block *alloc_super(struct file_system_type *type, int flags)
170 {
171 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
172 	static const struct super_operations default_op;
173 
174 	if (s) {
175 		if (security_sb_alloc(s))
176 			goto out_free_sb;
177 
178 #ifdef CONFIG_SMP
179 		s->s_files = alloc_percpu(struct list_head);
180 		if (!s->s_files)
181 			goto err_out;
182 		else {
183 			int i;
184 
185 			for_each_possible_cpu(i)
186 				INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
187 		}
188 #else
189 		INIT_LIST_HEAD(&s->s_files);
190 #endif
191 		if (init_sb_writers(s, type))
192 			goto err_out;
193 		s->s_flags = flags;
194 		s->s_bdi = &default_backing_dev_info;
195 		INIT_HLIST_NODE(&s->s_instances);
196 		INIT_HLIST_BL_HEAD(&s->s_anon);
197 		INIT_LIST_HEAD(&s->s_inodes);
198 
199 		if (list_lru_init(&s->s_dentry_lru))
200 			goto err_out;
201 		if (list_lru_init(&s->s_inode_lru))
202 			goto err_out_dentry_lru;
203 
204 		INIT_LIST_HEAD(&s->s_mounts);
205 		init_rwsem(&s->s_umount);
206 		lockdep_set_class(&s->s_umount, &type->s_umount_key);
207 		/*
208 		 * sget() can have s_umount recursion.
209 		 *
210 		 * When it cannot find a suitable sb, it allocates a new
211 		 * one (this one), and tries again to find a suitable old
212 		 * one.
213 		 *
214 		 * In case that succeeds, it will acquire the s_umount
215 		 * lock of the old one. Since these are clearly distrinct
216 		 * locks, and this object isn't exposed yet, there's no
217 		 * risk of deadlocks.
218 		 *
219 		 * Annotate this by putting this lock in a different
220 		 * subclass.
221 		 */
222 		down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
223 		s->s_count = 1;
224 		atomic_set(&s->s_active, 1);
225 		mutex_init(&s->s_vfs_rename_mutex);
226 		lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
227 		mutex_init(&s->s_dquot.dqio_mutex);
228 		mutex_init(&s->s_dquot.dqonoff_mutex);
229 		init_rwsem(&s->s_dquot.dqptr_sem);
230 		s->s_maxbytes = MAX_NON_LFS;
231 		s->s_op = &default_op;
232 		s->s_time_gran = 1000000000;
233 		s->cleancache_poolid = -1;
234 
235 		s->s_shrink.seeks = DEFAULT_SEEKS;
236 		s->s_shrink.scan_objects = super_cache_scan;
237 		s->s_shrink.count_objects = super_cache_count;
238 		s->s_shrink.batch = 1024;
239 		s->s_shrink.flags = SHRINKER_NUMA_AWARE;
240 	}
241 out:
242 	return s;
243 
244 err_out_dentry_lru:
245 	list_lru_destroy(&s->s_dentry_lru);
246 err_out:
247 	security_sb_free(s);
248 #ifdef CONFIG_SMP
249 	if (s->s_files)
250 		free_percpu(s->s_files);
251 #endif
252 	destroy_sb_writers(s);
253 out_free_sb:
254 	kfree(s);
255 	s = NULL;
256 	goto out;
257 }
258 
259 /**
260  *	destroy_super	-	frees a superblock
261  *	@s: superblock to free
262  *
263  *	Frees a superblock.
264  */
265 static inline void destroy_super(struct super_block *s)
266 {
267 #ifdef CONFIG_SMP
268 	free_percpu(s->s_files);
269 #endif
270 	destroy_sb_writers(s);
271 	security_sb_free(s);
272 	WARN_ON(!list_empty(&s->s_mounts));
273 	kfree(s->s_subtype);
274 	kfree(s->s_options);
275 	kfree(s);
276 }
277 
278 /* Superblock refcounting  */
279 
280 /*
281  * Drop a superblock's refcount.  The caller must hold sb_lock.
282  */
283 static void __put_super(struct super_block *sb)
284 {
285 	if (!--sb->s_count) {
286 		list_del_init(&sb->s_list);
287 		destroy_super(sb);
288 	}
289 }
290 
291 /**
292  *	put_super	-	drop a temporary reference to superblock
293  *	@sb: superblock in question
294  *
295  *	Drops a temporary reference, frees superblock if there's no
296  *	references left.
297  */
298 static void put_super(struct super_block *sb)
299 {
300 	spin_lock(&sb_lock);
301 	__put_super(sb);
302 	spin_unlock(&sb_lock);
303 }
304 
305 
306 /**
307  *	deactivate_locked_super	-	drop an active reference to superblock
308  *	@s: superblock to deactivate
309  *
310  *	Drops an active reference to superblock, converting it into a temprory
311  *	one if there is no other active references left.  In that case we
312  *	tell fs driver to shut it down and drop the temporary reference we
313  *	had just acquired.
314  *
315  *	Caller holds exclusive lock on superblock; that lock is released.
316  */
317 void deactivate_locked_super(struct super_block *s)
318 {
319 	struct file_system_type *fs = s->s_type;
320 	if (atomic_dec_and_test(&s->s_active)) {
321 		cleancache_invalidate_fs(s);
322 		fs->kill_sb(s);
323 
324 		/* caches are now gone, we can safely kill the shrinker now */
325 		unregister_shrinker(&s->s_shrink);
326 		list_lru_destroy(&s->s_dentry_lru);
327 		list_lru_destroy(&s->s_inode_lru);
328 
329 		put_filesystem(fs);
330 		put_super(s);
331 	} else {
332 		up_write(&s->s_umount);
333 	}
334 }
335 
336 EXPORT_SYMBOL(deactivate_locked_super);
337 
338 /**
339  *	deactivate_super	-	drop an active reference to superblock
340  *	@s: superblock to deactivate
341  *
342  *	Variant of deactivate_locked_super(), except that superblock is *not*
343  *	locked by caller.  If we are going to drop the final active reference,
344  *	lock will be acquired prior to that.
345  */
346 void deactivate_super(struct super_block *s)
347 {
348         if (!atomic_add_unless(&s->s_active, -1, 1)) {
349 		down_write(&s->s_umount);
350 		deactivate_locked_super(s);
351 	}
352 }
353 
354 EXPORT_SYMBOL(deactivate_super);
355 
356 /**
357  *	grab_super - acquire an active reference
358  *	@s: reference we are trying to make active
359  *
360  *	Tries to acquire an active reference.  grab_super() is used when we
361  * 	had just found a superblock in super_blocks or fs_type->fs_supers
362  *	and want to turn it into a full-blown active reference.  grab_super()
363  *	is called with sb_lock held and drops it.  Returns 1 in case of
364  *	success, 0 if we had failed (superblock contents was already dead or
365  *	dying when grab_super() had been called).  Note that this is only
366  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
367  *	of their type), so increment of ->s_count is OK here.
368  */
369 static int grab_super(struct super_block *s) __releases(sb_lock)
370 {
371 	s->s_count++;
372 	spin_unlock(&sb_lock);
373 	down_write(&s->s_umount);
374 	if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
375 		put_super(s);
376 		return 1;
377 	}
378 	up_write(&s->s_umount);
379 	put_super(s);
380 	return 0;
381 }
382 
383 /*
384  *	grab_super_passive - acquire a passive reference
385  *	@sb: reference we are trying to grab
386  *
387  *	Tries to acquire a passive reference. This is used in places where we
388  *	cannot take an active reference but we need to ensure that the
389  *	superblock does not go away while we are working on it. It returns
390  *	false if a reference was not gained, and returns true with the s_umount
391  *	lock held in read mode if a reference is gained. On successful return,
392  *	the caller must drop the s_umount lock and the passive reference when
393  *	done.
394  */
395 bool grab_super_passive(struct super_block *sb)
396 {
397 	spin_lock(&sb_lock);
398 	if (hlist_unhashed(&sb->s_instances)) {
399 		spin_unlock(&sb_lock);
400 		return false;
401 	}
402 
403 	sb->s_count++;
404 	spin_unlock(&sb_lock);
405 
406 	if (down_read_trylock(&sb->s_umount)) {
407 		if (sb->s_root && (sb->s_flags & MS_BORN))
408 			return true;
409 		up_read(&sb->s_umount);
410 	}
411 
412 	put_super(sb);
413 	return false;
414 }
415 
416 /**
417  *	generic_shutdown_super	-	common helper for ->kill_sb()
418  *	@sb: superblock to kill
419  *
420  *	generic_shutdown_super() does all fs-independent work on superblock
421  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
422  *	that need destruction out of superblock, call generic_shutdown_super()
423  *	and release aforementioned objects.  Note: dentries and inodes _are_
424  *	taken care of and do not need specific handling.
425  *
426  *	Upon calling this function, the filesystem may no longer alter or
427  *	rearrange the set of dentries belonging to this super_block, nor may it
428  *	change the attachments of dentries to inodes.
429  */
430 void generic_shutdown_super(struct super_block *sb)
431 {
432 	const struct super_operations *sop = sb->s_op;
433 
434 	if (sb->s_root) {
435 		shrink_dcache_for_umount(sb);
436 		sync_filesystem(sb);
437 		sb->s_flags &= ~MS_ACTIVE;
438 
439 		fsnotify_unmount_inodes(&sb->s_inodes);
440 
441 		evict_inodes(sb);
442 
443 		if (sb->s_dio_done_wq) {
444 			destroy_workqueue(sb->s_dio_done_wq);
445 			sb->s_dio_done_wq = NULL;
446 		}
447 
448 		if (sop->put_super)
449 			sop->put_super(sb);
450 
451 		if (!list_empty(&sb->s_inodes)) {
452 			printk("VFS: Busy inodes after unmount of %s. "
453 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
454 			   sb->s_id);
455 		}
456 	}
457 	spin_lock(&sb_lock);
458 	/* should be initialized for __put_super_and_need_restart() */
459 	hlist_del_init(&sb->s_instances);
460 	spin_unlock(&sb_lock);
461 	up_write(&sb->s_umount);
462 }
463 
464 EXPORT_SYMBOL(generic_shutdown_super);
465 
466 /**
467  *	sget	-	find or create a superblock
468  *	@type:	filesystem type superblock should belong to
469  *	@test:	comparison callback
470  *	@set:	setup callback
471  *	@flags:	mount flags
472  *	@data:	argument to each of them
473  */
474 struct super_block *sget(struct file_system_type *type,
475 			int (*test)(struct super_block *,void *),
476 			int (*set)(struct super_block *,void *),
477 			int flags,
478 			void *data)
479 {
480 	struct super_block *s = NULL;
481 	struct super_block *old;
482 	int err;
483 
484 retry:
485 	spin_lock(&sb_lock);
486 	if (test) {
487 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
488 			if (!test(old, data))
489 				continue;
490 			if (!grab_super(old))
491 				goto retry;
492 			if (s) {
493 				up_write(&s->s_umount);
494 				destroy_super(s);
495 				s = NULL;
496 			}
497 			return old;
498 		}
499 	}
500 	if (!s) {
501 		spin_unlock(&sb_lock);
502 		s = alloc_super(type, flags);
503 		if (!s)
504 			return ERR_PTR(-ENOMEM);
505 		goto retry;
506 	}
507 
508 	err = set(s, data);
509 	if (err) {
510 		spin_unlock(&sb_lock);
511 		up_write(&s->s_umount);
512 		destroy_super(s);
513 		return ERR_PTR(err);
514 	}
515 	s->s_type = type;
516 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
517 	list_add_tail(&s->s_list, &super_blocks);
518 	hlist_add_head(&s->s_instances, &type->fs_supers);
519 	spin_unlock(&sb_lock);
520 	get_filesystem(type);
521 	register_shrinker(&s->s_shrink);
522 	return s;
523 }
524 
525 EXPORT_SYMBOL(sget);
526 
527 void drop_super(struct super_block *sb)
528 {
529 	up_read(&sb->s_umount);
530 	put_super(sb);
531 }
532 
533 EXPORT_SYMBOL(drop_super);
534 
535 /**
536  *	iterate_supers - call function for all active superblocks
537  *	@f: function to call
538  *	@arg: argument to pass to it
539  *
540  *	Scans the superblock list and calls given function, passing it
541  *	locked superblock and given argument.
542  */
543 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
544 {
545 	struct super_block *sb, *p = NULL;
546 
547 	spin_lock(&sb_lock);
548 	list_for_each_entry(sb, &super_blocks, s_list) {
549 		if (hlist_unhashed(&sb->s_instances))
550 			continue;
551 		sb->s_count++;
552 		spin_unlock(&sb_lock);
553 
554 		down_read(&sb->s_umount);
555 		if (sb->s_root && (sb->s_flags & MS_BORN))
556 			f(sb, arg);
557 		up_read(&sb->s_umount);
558 
559 		spin_lock(&sb_lock);
560 		if (p)
561 			__put_super(p);
562 		p = sb;
563 	}
564 	if (p)
565 		__put_super(p);
566 	spin_unlock(&sb_lock);
567 }
568 
569 /**
570  *	iterate_supers_type - call function for superblocks of given type
571  *	@type: fs type
572  *	@f: function to call
573  *	@arg: argument to pass to it
574  *
575  *	Scans the superblock list and calls given function, passing it
576  *	locked superblock and given argument.
577  */
578 void iterate_supers_type(struct file_system_type *type,
579 	void (*f)(struct super_block *, void *), void *arg)
580 {
581 	struct super_block *sb, *p = NULL;
582 
583 	spin_lock(&sb_lock);
584 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
585 		sb->s_count++;
586 		spin_unlock(&sb_lock);
587 
588 		down_read(&sb->s_umount);
589 		if (sb->s_root && (sb->s_flags & MS_BORN))
590 			f(sb, arg);
591 		up_read(&sb->s_umount);
592 
593 		spin_lock(&sb_lock);
594 		if (p)
595 			__put_super(p);
596 		p = sb;
597 	}
598 	if (p)
599 		__put_super(p);
600 	spin_unlock(&sb_lock);
601 }
602 
603 EXPORT_SYMBOL(iterate_supers_type);
604 
605 /**
606  *	get_super - get the superblock of a device
607  *	@bdev: device to get the superblock for
608  *
609  *	Scans the superblock list and finds the superblock of the file system
610  *	mounted on the device given. %NULL is returned if no match is found.
611  */
612 
613 struct super_block *get_super(struct block_device *bdev)
614 {
615 	struct super_block *sb;
616 
617 	if (!bdev)
618 		return NULL;
619 
620 	spin_lock(&sb_lock);
621 rescan:
622 	list_for_each_entry(sb, &super_blocks, s_list) {
623 		if (hlist_unhashed(&sb->s_instances))
624 			continue;
625 		if (sb->s_bdev == bdev) {
626 			sb->s_count++;
627 			spin_unlock(&sb_lock);
628 			down_read(&sb->s_umount);
629 			/* still alive? */
630 			if (sb->s_root && (sb->s_flags & MS_BORN))
631 				return sb;
632 			up_read(&sb->s_umount);
633 			/* nope, got unmounted */
634 			spin_lock(&sb_lock);
635 			__put_super(sb);
636 			goto rescan;
637 		}
638 	}
639 	spin_unlock(&sb_lock);
640 	return NULL;
641 }
642 
643 EXPORT_SYMBOL(get_super);
644 
645 /**
646  *	get_super_thawed - get thawed superblock of a device
647  *	@bdev: device to get the superblock for
648  *
649  *	Scans the superblock list and finds the superblock of the file system
650  *	mounted on the device. The superblock is returned once it is thawed
651  *	(or immediately if it was not frozen). %NULL is returned if no match
652  *	is found.
653  */
654 struct super_block *get_super_thawed(struct block_device *bdev)
655 {
656 	while (1) {
657 		struct super_block *s = get_super(bdev);
658 		if (!s || s->s_writers.frozen == SB_UNFROZEN)
659 			return s;
660 		up_read(&s->s_umount);
661 		wait_event(s->s_writers.wait_unfrozen,
662 			   s->s_writers.frozen == SB_UNFROZEN);
663 		put_super(s);
664 	}
665 }
666 EXPORT_SYMBOL(get_super_thawed);
667 
668 /**
669  * get_active_super - get an active reference to the superblock of a device
670  * @bdev: device to get the superblock for
671  *
672  * Scans the superblock list and finds the superblock of the file system
673  * mounted on the device given.  Returns the superblock with an active
674  * reference or %NULL if none was found.
675  */
676 struct super_block *get_active_super(struct block_device *bdev)
677 {
678 	struct super_block *sb;
679 
680 	if (!bdev)
681 		return NULL;
682 
683 restart:
684 	spin_lock(&sb_lock);
685 	list_for_each_entry(sb, &super_blocks, s_list) {
686 		if (hlist_unhashed(&sb->s_instances))
687 			continue;
688 		if (sb->s_bdev == bdev) {
689 			if (!grab_super(sb))
690 				goto restart;
691 			up_write(&sb->s_umount);
692 			return sb;
693 		}
694 	}
695 	spin_unlock(&sb_lock);
696 	return NULL;
697 }
698 
699 struct super_block *user_get_super(dev_t dev)
700 {
701 	struct super_block *sb;
702 
703 	spin_lock(&sb_lock);
704 rescan:
705 	list_for_each_entry(sb, &super_blocks, s_list) {
706 		if (hlist_unhashed(&sb->s_instances))
707 			continue;
708 		if (sb->s_dev ==  dev) {
709 			sb->s_count++;
710 			spin_unlock(&sb_lock);
711 			down_read(&sb->s_umount);
712 			/* still alive? */
713 			if (sb->s_root && (sb->s_flags & MS_BORN))
714 				return sb;
715 			up_read(&sb->s_umount);
716 			/* nope, got unmounted */
717 			spin_lock(&sb_lock);
718 			__put_super(sb);
719 			goto rescan;
720 		}
721 	}
722 	spin_unlock(&sb_lock);
723 	return NULL;
724 }
725 
726 /**
727  *	do_remount_sb - asks filesystem to change mount options.
728  *	@sb:	superblock in question
729  *	@flags:	numeric part of options
730  *	@data:	the rest of options
731  *      @force: whether or not to force the change
732  *
733  *	Alters the mount options of a mounted file system.
734  */
735 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
736 {
737 	int retval;
738 	int remount_ro;
739 
740 	if (sb->s_writers.frozen != SB_UNFROZEN)
741 		return -EBUSY;
742 
743 #ifdef CONFIG_BLOCK
744 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
745 		return -EACCES;
746 #endif
747 
748 	if (flags & MS_RDONLY)
749 		acct_auto_close(sb);
750 	shrink_dcache_sb(sb);
751 	sync_filesystem(sb);
752 
753 	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
754 
755 	/* If we are remounting RDONLY and current sb is read/write,
756 	   make sure there are no rw files opened */
757 	if (remount_ro) {
758 		if (force) {
759 			mark_files_ro(sb);
760 		} else {
761 			retval = sb_prepare_remount_readonly(sb);
762 			if (retval)
763 				return retval;
764 		}
765 	}
766 
767 	if (sb->s_op->remount_fs) {
768 		retval = sb->s_op->remount_fs(sb, &flags, data);
769 		if (retval) {
770 			if (!force)
771 				goto cancel_readonly;
772 			/* If forced remount, go ahead despite any errors */
773 			WARN(1, "forced remount of a %s fs returned %i\n",
774 			     sb->s_type->name, retval);
775 		}
776 	}
777 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
778 	/* Needs to be ordered wrt mnt_is_readonly() */
779 	smp_wmb();
780 	sb->s_readonly_remount = 0;
781 
782 	/*
783 	 * Some filesystems modify their metadata via some other path than the
784 	 * bdev buffer cache (eg. use a private mapping, or directories in
785 	 * pagecache, etc). Also file data modifications go via their own
786 	 * mappings. So If we try to mount readonly then copy the filesystem
787 	 * from bdev, we could get stale data, so invalidate it to give a best
788 	 * effort at coherency.
789 	 */
790 	if (remount_ro && sb->s_bdev)
791 		invalidate_bdev(sb->s_bdev);
792 	return 0;
793 
794 cancel_readonly:
795 	sb->s_readonly_remount = 0;
796 	return retval;
797 }
798 
799 static void do_emergency_remount(struct work_struct *work)
800 {
801 	struct super_block *sb, *p = NULL;
802 
803 	spin_lock(&sb_lock);
804 	list_for_each_entry(sb, &super_blocks, s_list) {
805 		if (hlist_unhashed(&sb->s_instances))
806 			continue;
807 		sb->s_count++;
808 		spin_unlock(&sb_lock);
809 		down_write(&sb->s_umount);
810 		if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
811 		    !(sb->s_flags & MS_RDONLY)) {
812 			/*
813 			 * What lock protects sb->s_flags??
814 			 */
815 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
816 		}
817 		up_write(&sb->s_umount);
818 		spin_lock(&sb_lock);
819 		if (p)
820 			__put_super(p);
821 		p = sb;
822 	}
823 	if (p)
824 		__put_super(p);
825 	spin_unlock(&sb_lock);
826 	kfree(work);
827 	printk("Emergency Remount complete\n");
828 }
829 
830 void emergency_remount(void)
831 {
832 	struct work_struct *work;
833 
834 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
835 	if (work) {
836 		INIT_WORK(work, do_emergency_remount);
837 		schedule_work(work);
838 	}
839 }
840 
841 /*
842  * Unnamed block devices are dummy devices used by virtual
843  * filesystems which don't use real block-devices.  -- jrs
844  */
845 
846 static DEFINE_IDA(unnamed_dev_ida);
847 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
848 static int unnamed_dev_start = 0; /* don't bother trying below it */
849 
850 int get_anon_bdev(dev_t *p)
851 {
852 	int dev;
853 	int error;
854 
855  retry:
856 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
857 		return -ENOMEM;
858 	spin_lock(&unnamed_dev_lock);
859 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
860 	if (!error)
861 		unnamed_dev_start = dev + 1;
862 	spin_unlock(&unnamed_dev_lock);
863 	if (error == -EAGAIN)
864 		/* We raced and lost with another CPU. */
865 		goto retry;
866 	else if (error)
867 		return -EAGAIN;
868 
869 	if (dev == (1 << MINORBITS)) {
870 		spin_lock(&unnamed_dev_lock);
871 		ida_remove(&unnamed_dev_ida, dev);
872 		if (unnamed_dev_start > dev)
873 			unnamed_dev_start = dev;
874 		spin_unlock(&unnamed_dev_lock);
875 		return -EMFILE;
876 	}
877 	*p = MKDEV(0, dev & MINORMASK);
878 	return 0;
879 }
880 EXPORT_SYMBOL(get_anon_bdev);
881 
882 void free_anon_bdev(dev_t dev)
883 {
884 	int slot = MINOR(dev);
885 	spin_lock(&unnamed_dev_lock);
886 	ida_remove(&unnamed_dev_ida, slot);
887 	if (slot < unnamed_dev_start)
888 		unnamed_dev_start = slot;
889 	spin_unlock(&unnamed_dev_lock);
890 }
891 EXPORT_SYMBOL(free_anon_bdev);
892 
893 int set_anon_super(struct super_block *s, void *data)
894 {
895 	int error = get_anon_bdev(&s->s_dev);
896 	if (!error)
897 		s->s_bdi = &noop_backing_dev_info;
898 	return error;
899 }
900 
901 EXPORT_SYMBOL(set_anon_super);
902 
903 void kill_anon_super(struct super_block *sb)
904 {
905 	dev_t dev = sb->s_dev;
906 	generic_shutdown_super(sb);
907 	free_anon_bdev(dev);
908 }
909 
910 EXPORT_SYMBOL(kill_anon_super);
911 
912 void kill_litter_super(struct super_block *sb)
913 {
914 	if (sb->s_root)
915 		d_genocide(sb->s_root);
916 	kill_anon_super(sb);
917 }
918 
919 EXPORT_SYMBOL(kill_litter_super);
920 
921 static int ns_test_super(struct super_block *sb, void *data)
922 {
923 	return sb->s_fs_info == data;
924 }
925 
926 static int ns_set_super(struct super_block *sb, void *data)
927 {
928 	sb->s_fs_info = data;
929 	return set_anon_super(sb, NULL);
930 }
931 
932 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
933 	void *data, int (*fill_super)(struct super_block *, void *, int))
934 {
935 	struct super_block *sb;
936 
937 	sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
938 	if (IS_ERR(sb))
939 		return ERR_CAST(sb);
940 
941 	if (!sb->s_root) {
942 		int err;
943 		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
944 		if (err) {
945 			deactivate_locked_super(sb);
946 			return ERR_PTR(err);
947 		}
948 
949 		sb->s_flags |= MS_ACTIVE;
950 	}
951 
952 	return dget(sb->s_root);
953 }
954 
955 EXPORT_SYMBOL(mount_ns);
956 
957 #ifdef CONFIG_BLOCK
958 static int set_bdev_super(struct super_block *s, void *data)
959 {
960 	s->s_bdev = data;
961 	s->s_dev = s->s_bdev->bd_dev;
962 
963 	/*
964 	 * We set the bdi here to the queue backing, file systems can
965 	 * overwrite this in ->fill_super()
966 	 */
967 	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
968 	return 0;
969 }
970 
971 static int test_bdev_super(struct super_block *s, void *data)
972 {
973 	return (void *)s->s_bdev == data;
974 }
975 
976 struct dentry *mount_bdev(struct file_system_type *fs_type,
977 	int flags, const char *dev_name, void *data,
978 	int (*fill_super)(struct super_block *, void *, int))
979 {
980 	struct block_device *bdev;
981 	struct super_block *s;
982 	fmode_t mode = FMODE_READ | FMODE_EXCL;
983 	int error = 0;
984 
985 	if (!(flags & MS_RDONLY))
986 		mode |= FMODE_WRITE;
987 
988 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
989 	if (IS_ERR(bdev))
990 		return ERR_CAST(bdev);
991 
992 	/*
993 	 * once the super is inserted into the list by sget, s_umount
994 	 * will protect the lockfs code from trying to start a snapshot
995 	 * while we are mounting
996 	 */
997 	mutex_lock(&bdev->bd_fsfreeze_mutex);
998 	if (bdev->bd_fsfreeze_count > 0) {
999 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1000 		error = -EBUSY;
1001 		goto error_bdev;
1002 	}
1003 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
1004 		 bdev);
1005 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1006 	if (IS_ERR(s))
1007 		goto error_s;
1008 
1009 	if (s->s_root) {
1010 		if ((flags ^ s->s_flags) & MS_RDONLY) {
1011 			deactivate_locked_super(s);
1012 			error = -EBUSY;
1013 			goto error_bdev;
1014 		}
1015 
1016 		/*
1017 		 * s_umount nests inside bd_mutex during
1018 		 * __invalidate_device().  blkdev_put() acquires
1019 		 * bd_mutex and can't be called under s_umount.  Drop
1020 		 * s_umount temporarily.  This is safe as we're
1021 		 * holding an active reference.
1022 		 */
1023 		up_write(&s->s_umount);
1024 		blkdev_put(bdev, mode);
1025 		down_write(&s->s_umount);
1026 	} else {
1027 		char b[BDEVNAME_SIZE];
1028 
1029 		s->s_mode = mode;
1030 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1031 		sb_set_blocksize(s, block_size(bdev));
1032 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1033 		if (error) {
1034 			deactivate_locked_super(s);
1035 			goto error;
1036 		}
1037 
1038 		s->s_flags |= MS_ACTIVE;
1039 		bdev->bd_super = s;
1040 	}
1041 
1042 	return dget(s->s_root);
1043 
1044 error_s:
1045 	error = PTR_ERR(s);
1046 error_bdev:
1047 	blkdev_put(bdev, mode);
1048 error:
1049 	return ERR_PTR(error);
1050 }
1051 EXPORT_SYMBOL(mount_bdev);
1052 
1053 void kill_block_super(struct super_block *sb)
1054 {
1055 	struct block_device *bdev = sb->s_bdev;
1056 	fmode_t mode = sb->s_mode;
1057 
1058 	bdev->bd_super = NULL;
1059 	generic_shutdown_super(sb);
1060 	sync_blockdev(bdev);
1061 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1062 	blkdev_put(bdev, mode | FMODE_EXCL);
1063 }
1064 
1065 EXPORT_SYMBOL(kill_block_super);
1066 #endif
1067 
1068 struct dentry *mount_nodev(struct file_system_type *fs_type,
1069 	int flags, void *data,
1070 	int (*fill_super)(struct super_block *, void *, int))
1071 {
1072 	int error;
1073 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1074 
1075 	if (IS_ERR(s))
1076 		return ERR_CAST(s);
1077 
1078 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1079 	if (error) {
1080 		deactivate_locked_super(s);
1081 		return ERR_PTR(error);
1082 	}
1083 	s->s_flags |= MS_ACTIVE;
1084 	return dget(s->s_root);
1085 }
1086 EXPORT_SYMBOL(mount_nodev);
1087 
1088 static int compare_single(struct super_block *s, void *p)
1089 {
1090 	return 1;
1091 }
1092 
1093 struct dentry *mount_single(struct file_system_type *fs_type,
1094 	int flags, void *data,
1095 	int (*fill_super)(struct super_block *, void *, int))
1096 {
1097 	struct super_block *s;
1098 	int error;
1099 
1100 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1101 	if (IS_ERR(s))
1102 		return ERR_CAST(s);
1103 	if (!s->s_root) {
1104 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1105 		if (error) {
1106 			deactivate_locked_super(s);
1107 			return ERR_PTR(error);
1108 		}
1109 		s->s_flags |= MS_ACTIVE;
1110 	} else {
1111 		do_remount_sb(s, flags, data, 0);
1112 	}
1113 	return dget(s->s_root);
1114 }
1115 EXPORT_SYMBOL(mount_single);
1116 
1117 struct dentry *
1118 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1119 {
1120 	struct dentry *root;
1121 	struct super_block *sb;
1122 	char *secdata = NULL;
1123 	int error = -ENOMEM;
1124 
1125 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1126 		secdata = alloc_secdata();
1127 		if (!secdata)
1128 			goto out;
1129 
1130 		error = security_sb_copy_data(data, secdata);
1131 		if (error)
1132 			goto out_free_secdata;
1133 	}
1134 
1135 	root = type->mount(type, flags, name, data);
1136 	if (IS_ERR(root)) {
1137 		error = PTR_ERR(root);
1138 		goto out_free_secdata;
1139 	}
1140 	sb = root->d_sb;
1141 	BUG_ON(!sb);
1142 	WARN_ON(!sb->s_bdi);
1143 	WARN_ON(sb->s_bdi == &default_backing_dev_info);
1144 	sb->s_flags |= MS_BORN;
1145 
1146 	error = security_sb_kern_mount(sb, flags, secdata);
1147 	if (error)
1148 		goto out_sb;
1149 
1150 	/*
1151 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1152 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1153 	 * this warning for a little while to try and catch filesystems that
1154 	 * violate this rule.
1155 	 */
1156 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1157 		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1158 
1159 	up_write(&sb->s_umount);
1160 	free_secdata(secdata);
1161 	return root;
1162 out_sb:
1163 	dput(root);
1164 	deactivate_locked_super(sb);
1165 out_free_secdata:
1166 	free_secdata(secdata);
1167 out:
1168 	return ERR_PTR(error);
1169 }
1170 
1171 /*
1172  * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1173  * instead.
1174  */
1175 void __sb_end_write(struct super_block *sb, int level)
1176 {
1177 	percpu_counter_dec(&sb->s_writers.counter[level-1]);
1178 	/*
1179 	 * Make sure s_writers are updated before we wake up waiters in
1180 	 * freeze_super().
1181 	 */
1182 	smp_mb();
1183 	if (waitqueue_active(&sb->s_writers.wait))
1184 		wake_up(&sb->s_writers.wait);
1185 	rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_);
1186 }
1187 EXPORT_SYMBOL(__sb_end_write);
1188 
1189 #ifdef CONFIG_LOCKDEP
1190 /*
1191  * We want lockdep to tell us about possible deadlocks with freezing but
1192  * it's it bit tricky to properly instrument it. Getting a freeze protection
1193  * works as getting a read lock but there are subtle problems. XFS for example
1194  * gets freeze protection on internal level twice in some cases, which is OK
1195  * only because we already hold a freeze protection also on higher level. Due
1196  * to these cases we have to tell lockdep we are doing trylock when we
1197  * already hold a freeze protection for a higher freeze level.
1198  */
1199 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock,
1200 				unsigned long ip)
1201 {
1202 	int i;
1203 
1204 	if (!trylock) {
1205 		for (i = 0; i < level - 1; i++)
1206 			if (lock_is_held(&sb->s_writers.lock_map[i])) {
1207 				trylock = true;
1208 				break;
1209 			}
1210 	}
1211 	rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip);
1212 }
1213 #endif
1214 
1215 /*
1216  * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1217  * instead.
1218  */
1219 int __sb_start_write(struct super_block *sb, int level, bool wait)
1220 {
1221 retry:
1222 	if (unlikely(sb->s_writers.frozen >= level)) {
1223 		if (!wait)
1224 			return 0;
1225 		wait_event(sb->s_writers.wait_unfrozen,
1226 			   sb->s_writers.frozen < level);
1227 	}
1228 
1229 #ifdef CONFIG_LOCKDEP
1230 	acquire_freeze_lock(sb, level, !wait, _RET_IP_);
1231 #endif
1232 	percpu_counter_inc(&sb->s_writers.counter[level-1]);
1233 	/*
1234 	 * Make sure counter is updated before we check for frozen.
1235 	 * freeze_super() first sets frozen and then checks the counter.
1236 	 */
1237 	smp_mb();
1238 	if (unlikely(sb->s_writers.frozen >= level)) {
1239 		__sb_end_write(sb, level);
1240 		goto retry;
1241 	}
1242 	return 1;
1243 }
1244 EXPORT_SYMBOL(__sb_start_write);
1245 
1246 /**
1247  * sb_wait_write - wait until all writers to given file system finish
1248  * @sb: the super for which we wait
1249  * @level: type of writers we wait for (normal vs page fault)
1250  *
1251  * This function waits until there are no writers of given type to given file
1252  * system. Caller of this function should make sure there can be no new writers
1253  * of type @level before calling this function. Otherwise this function can
1254  * livelock.
1255  */
1256 static void sb_wait_write(struct super_block *sb, int level)
1257 {
1258 	s64 writers;
1259 
1260 	/*
1261 	 * We just cycle-through lockdep here so that it does not complain
1262 	 * about returning with lock to userspace
1263 	 */
1264 	rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_);
1265 	rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_);
1266 
1267 	do {
1268 		DEFINE_WAIT(wait);
1269 
1270 		/*
1271 		 * We use a barrier in prepare_to_wait() to separate setting
1272 		 * of frozen and checking of the counter
1273 		 */
1274 		prepare_to_wait(&sb->s_writers.wait, &wait,
1275 				TASK_UNINTERRUPTIBLE);
1276 
1277 		writers = percpu_counter_sum(&sb->s_writers.counter[level-1]);
1278 		if (writers)
1279 			schedule();
1280 
1281 		finish_wait(&sb->s_writers.wait, &wait);
1282 	} while (writers);
1283 }
1284 
1285 /**
1286  * freeze_super - lock the filesystem and force it into a consistent state
1287  * @sb: the super to lock
1288  *
1289  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1290  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1291  * -EBUSY.
1292  *
1293  * During this function, sb->s_writers.frozen goes through these values:
1294  *
1295  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1296  *
1297  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1298  * writes should be blocked, though page faults are still allowed. We wait for
1299  * all writes to complete and then proceed to the next stage.
1300  *
1301  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1302  * but internal fs threads can still modify the filesystem (although they
1303  * should not dirty new pages or inodes), writeback can run etc. After waiting
1304  * for all running page faults we sync the filesystem which will clean all
1305  * dirty pages and inodes (no new dirty pages or inodes can be created when
1306  * sync is running).
1307  *
1308  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1309  * modification are blocked (e.g. XFS preallocation truncation on inode
1310  * reclaim). This is usually implemented by blocking new transactions for
1311  * filesystems that have them and need this additional guard. After all
1312  * internal writers are finished we call ->freeze_fs() to finish filesystem
1313  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1314  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1315  *
1316  * sb->s_writers.frozen is protected by sb->s_umount.
1317  */
1318 int freeze_super(struct super_block *sb)
1319 {
1320 	int ret;
1321 
1322 	atomic_inc(&sb->s_active);
1323 	down_write(&sb->s_umount);
1324 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1325 		deactivate_locked_super(sb);
1326 		return -EBUSY;
1327 	}
1328 
1329 	if (!(sb->s_flags & MS_BORN)) {
1330 		up_write(&sb->s_umount);
1331 		return 0;	/* sic - it's "nothing to do" */
1332 	}
1333 
1334 	if (sb->s_flags & MS_RDONLY) {
1335 		/* Nothing to do really... */
1336 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1337 		up_write(&sb->s_umount);
1338 		return 0;
1339 	}
1340 
1341 	/* From now on, no new normal writers can start */
1342 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1343 	smp_wmb();
1344 
1345 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1346 	up_write(&sb->s_umount);
1347 
1348 	sb_wait_write(sb, SB_FREEZE_WRITE);
1349 
1350 	/* Now we go and block page faults... */
1351 	down_write(&sb->s_umount);
1352 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1353 	smp_wmb();
1354 
1355 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1356 
1357 	/* All writers are done so after syncing there won't be dirty data */
1358 	sync_filesystem(sb);
1359 
1360 	/* Now wait for internal filesystem counter */
1361 	sb->s_writers.frozen = SB_FREEZE_FS;
1362 	smp_wmb();
1363 	sb_wait_write(sb, SB_FREEZE_FS);
1364 
1365 	if (sb->s_op->freeze_fs) {
1366 		ret = sb->s_op->freeze_fs(sb);
1367 		if (ret) {
1368 			printk(KERN_ERR
1369 				"VFS:Filesystem freeze failed\n");
1370 			sb->s_writers.frozen = SB_UNFROZEN;
1371 			smp_wmb();
1372 			wake_up(&sb->s_writers.wait_unfrozen);
1373 			deactivate_locked_super(sb);
1374 			return ret;
1375 		}
1376 	}
1377 	/*
1378 	 * This is just for debugging purposes so that fs can warn if it
1379 	 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1380 	 */
1381 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1382 	up_write(&sb->s_umount);
1383 	return 0;
1384 }
1385 EXPORT_SYMBOL(freeze_super);
1386 
1387 /**
1388  * thaw_super -- unlock filesystem
1389  * @sb: the super to thaw
1390  *
1391  * Unlocks the filesystem and marks it writeable again after freeze_super().
1392  */
1393 int thaw_super(struct super_block *sb)
1394 {
1395 	int error;
1396 
1397 	down_write(&sb->s_umount);
1398 	if (sb->s_writers.frozen == SB_UNFROZEN) {
1399 		up_write(&sb->s_umount);
1400 		return -EINVAL;
1401 	}
1402 
1403 	if (sb->s_flags & MS_RDONLY)
1404 		goto out;
1405 
1406 	if (sb->s_op->unfreeze_fs) {
1407 		error = sb->s_op->unfreeze_fs(sb);
1408 		if (error) {
1409 			printk(KERN_ERR
1410 				"VFS:Filesystem thaw failed\n");
1411 			up_write(&sb->s_umount);
1412 			return error;
1413 		}
1414 	}
1415 
1416 out:
1417 	sb->s_writers.frozen = SB_UNFROZEN;
1418 	smp_wmb();
1419 	wake_up(&sb->s_writers.wait_unfrozen);
1420 	deactivate_locked_super(sb);
1421 
1422 	return 0;
1423 }
1424 EXPORT_SYMBOL(thaw_super);
1425