xref: /openbmc/linux/fs/squashfs/block.c (revision e994f5b6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Squashfs - a compressed read only filesystem for Linux
4  *
5  * Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, 2008
6  * Phillip Lougher <phillip@squashfs.org.uk>
7  *
8  * block.c
9  */
10 
11 /*
12  * This file implements the low-level routines to read and decompress
13  * datablocks and metadata blocks.
14  */
15 
16 #include <linux/blkdev.h>
17 #include <linux/fs.h>
18 #include <linux/vfs.h>
19 #include <linux/slab.h>
20 #include <linux/pagemap.h>
21 #include <linux/string.h>
22 #include <linux/bio.h>
23 
24 #include "squashfs_fs.h"
25 #include "squashfs_fs_sb.h"
26 #include "squashfs.h"
27 #include "decompressor.h"
28 #include "page_actor.h"
29 
30 /*
31  * Returns the amount of bytes copied to the page actor.
32  */
33 static int copy_bio_to_actor(struct bio *bio,
34 			     struct squashfs_page_actor *actor,
35 			     int offset, int req_length)
36 {
37 	void *actor_addr;
38 	struct bvec_iter_all iter_all = {};
39 	struct bio_vec *bvec = bvec_init_iter_all(&iter_all);
40 	int copied_bytes = 0;
41 	int actor_offset = 0;
42 
43 	squashfs_actor_nobuff(actor);
44 	actor_addr = squashfs_first_page(actor);
45 
46 	if (WARN_ON_ONCE(!bio_next_segment(bio, &iter_all)))
47 		return 0;
48 
49 	while (copied_bytes < req_length) {
50 		int bytes_to_copy = min_t(int, bvec->bv_len - offset,
51 					  PAGE_SIZE - actor_offset);
52 
53 		bytes_to_copy = min_t(int, bytes_to_copy,
54 				      req_length - copied_bytes);
55 		if (!IS_ERR(actor_addr))
56 			memcpy(actor_addr + actor_offset, bvec_virt(bvec) +
57 					offset, bytes_to_copy);
58 
59 		actor_offset += bytes_to_copy;
60 		copied_bytes += bytes_to_copy;
61 		offset += bytes_to_copy;
62 
63 		if (actor_offset >= PAGE_SIZE) {
64 			actor_addr = squashfs_next_page(actor);
65 			if (!actor_addr)
66 				break;
67 			actor_offset = 0;
68 		}
69 		if (offset >= bvec->bv_len) {
70 			if (!bio_next_segment(bio, &iter_all))
71 				break;
72 			offset = 0;
73 		}
74 	}
75 	squashfs_finish_page(actor);
76 	return copied_bytes;
77 }
78 
79 static int squashfs_bio_read_cached(struct bio *fullbio,
80 		struct address_space *cache_mapping, u64 index, int length,
81 		u64 read_start, u64 read_end, int page_count)
82 {
83 	struct page *head_to_cache = NULL, *tail_to_cache = NULL;
84 	struct block_device *bdev = fullbio->bi_bdev;
85 	int start_idx = 0, end_idx = 0;
86 	struct bvec_iter_all iter_all;
87 	struct bio *bio = NULL;
88 	struct bio_vec *bv;
89 	int idx = 0;
90 	int err = 0;
91 
92 	bio_for_each_segment_all(bv, fullbio, iter_all) {
93 		struct page *page = bv->bv_page;
94 
95 		if (page->mapping == cache_mapping) {
96 			idx++;
97 			continue;
98 		}
99 
100 		/*
101 		 * We only use this when the device block size is the same as
102 		 * the page size, so read_start and read_end cover full pages.
103 		 *
104 		 * Compare these to the original required index and length to
105 		 * only cache pages which were requested partially, since these
106 		 * are the ones which are likely to be needed when reading
107 		 * adjacent blocks.
108 		 */
109 		if (idx == 0 && index != read_start)
110 			head_to_cache = page;
111 		else if (idx == page_count - 1 && index + length != read_end)
112 			tail_to_cache = page;
113 
114 		if (!bio || idx != end_idx) {
115 			struct bio *new = bio_alloc_clone(bdev, fullbio,
116 							  GFP_NOIO, &fs_bio_set);
117 
118 			if (bio) {
119 				bio_trim(bio, start_idx * PAGE_SECTORS,
120 					 (end_idx - start_idx) * PAGE_SECTORS);
121 				bio_chain(bio, new);
122 				submit_bio(bio);
123 			}
124 
125 			bio = new;
126 			start_idx = idx;
127 		}
128 
129 		idx++;
130 		end_idx = idx;
131 	}
132 
133 	if (bio) {
134 		bio_trim(bio, start_idx * PAGE_SECTORS,
135 			 (end_idx - start_idx) * PAGE_SECTORS);
136 		err = submit_bio_wait(bio);
137 		bio_put(bio);
138 	}
139 
140 	if (err)
141 		return err;
142 
143 	if (head_to_cache) {
144 		int ret = add_to_page_cache_lru(head_to_cache, cache_mapping,
145 						read_start >> PAGE_SHIFT,
146 						GFP_NOIO);
147 
148 		if (!ret) {
149 			SetPageUptodate(head_to_cache);
150 			unlock_page(head_to_cache);
151 		}
152 
153 	}
154 
155 	if (tail_to_cache) {
156 		int ret = add_to_page_cache_lru(tail_to_cache, cache_mapping,
157 						(read_end >> PAGE_SHIFT) - 1,
158 						GFP_NOIO);
159 
160 		if (!ret) {
161 			SetPageUptodate(tail_to_cache);
162 			unlock_page(tail_to_cache);
163 		}
164 	}
165 
166 	return 0;
167 }
168 
169 static int squashfs_bio_read(struct super_block *sb, u64 index, int length,
170 			     struct bio **biop, int *block_offset)
171 {
172 	struct squashfs_sb_info *msblk = sb->s_fs_info;
173 	struct address_space *cache_mapping = msblk->cache_mapping;
174 	const u64 read_start = round_down(index, msblk->devblksize);
175 	const sector_t block = read_start >> msblk->devblksize_log2;
176 	const u64 read_end = round_up(index + length, msblk->devblksize);
177 	const sector_t block_end = read_end >> msblk->devblksize_log2;
178 	int offset = read_start - round_down(index, PAGE_SIZE);
179 	int total_len = (block_end - block) << msblk->devblksize_log2;
180 	const int page_count = DIV_ROUND_UP(total_len + offset, PAGE_SIZE);
181 	int error, i;
182 	struct bio *bio;
183 
184 	bio = bio_kmalloc(page_count, GFP_NOIO);
185 	if (!bio)
186 		return -ENOMEM;
187 	bio_init(bio, sb->s_bdev, bio->bi_inline_vecs, page_count, REQ_OP_READ);
188 	bio->bi_iter.bi_sector = block * (msblk->devblksize >> SECTOR_SHIFT);
189 
190 	for (i = 0; i < page_count; ++i) {
191 		unsigned int len =
192 			min_t(unsigned int, PAGE_SIZE - offset, total_len);
193 		struct page *page = NULL;
194 
195 		if (cache_mapping)
196 			page = find_get_page(cache_mapping,
197 					     (read_start >> PAGE_SHIFT) + i);
198 		if (!page)
199 			page = alloc_page(GFP_NOIO);
200 
201 		if (!page) {
202 			error = -ENOMEM;
203 			goto out_free_bio;
204 		}
205 
206 		/*
207 		 * Use the __ version to avoid merging since we need each page
208 		 * to be separate when we check for and avoid cached pages.
209 		 */
210 		__bio_add_page(bio, page, len, offset);
211 		offset = 0;
212 		total_len -= len;
213 	}
214 
215 	if (cache_mapping)
216 		error = squashfs_bio_read_cached(bio, cache_mapping, index,
217 						 length, read_start, read_end,
218 						 page_count);
219 	else
220 		error = submit_bio_wait(bio);
221 	if (error)
222 		goto out_free_bio;
223 
224 	*biop = bio;
225 	*block_offset = index & ((1 << msblk->devblksize_log2) - 1);
226 	return 0;
227 
228 out_free_bio:
229 	bio_free_pages(bio);
230 	bio_uninit(bio);
231 	kfree(bio);
232 	return error;
233 }
234 
235 /*
236  * Read and decompress a metadata block or datablock.  Length is non-zero
237  * if a datablock is being read (the size is stored elsewhere in the
238  * filesystem), otherwise the length is obtained from the first two bytes of
239  * the metadata block.  A bit in the length field indicates if the block
240  * is stored uncompressed in the filesystem (usually because compression
241  * generated a larger block - this does occasionally happen with compression
242  * algorithms).
243  */
244 int squashfs_read_data(struct super_block *sb, u64 index, int length,
245 		       u64 *next_index, struct squashfs_page_actor *output)
246 {
247 	struct squashfs_sb_info *msblk = sb->s_fs_info;
248 	struct bio *bio = NULL;
249 	int compressed;
250 	int res;
251 	int offset;
252 
253 	if (length) {
254 		/*
255 		 * Datablock.
256 		 */
257 		compressed = SQUASHFS_COMPRESSED_BLOCK(length);
258 		length = SQUASHFS_COMPRESSED_SIZE_BLOCK(length);
259 		TRACE("Block @ 0x%llx, %scompressed size %d, src size %d\n",
260 			index, compressed ? "" : "un", length, output->length);
261 	} else {
262 		/*
263 		 * Metadata block.
264 		 */
265 		const u8 *data;
266 		struct bvec_iter_all iter_all = {};
267 		struct bio_vec *bvec = bvec_init_iter_all(&iter_all);
268 
269 		if (index + 2 > msblk->bytes_used) {
270 			res = -EIO;
271 			goto out;
272 		}
273 		res = squashfs_bio_read(sb, index, 2, &bio, &offset);
274 		if (res)
275 			goto out;
276 
277 		if (WARN_ON_ONCE(!bio_next_segment(bio, &iter_all))) {
278 			res = -EIO;
279 			goto out_free_bio;
280 		}
281 		/* Extract the length of the metadata block */
282 		data = bvec_virt(bvec);
283 		length = data[offset];
284 		if (offset < bvec->bv_len - 1) {
285 			length |= data[offset + 1] << 8;
286 		} else {
287 			if (WARN_ON_ONCE(!bio_next_segment(bio, &iter_all))) {
288 				res = -EIO;
289 				goto out_free_bio;
290 			}
291 			data = bvec_virt(bvec);
292 			length |= data[0] << 8;
293 		}
294 		bio_free_pages(bio);
295 		bio_uninit(bio);
296 		kfree(bio);
297 
298 		compressed = SQUASHFS_COMPRESSED(length);
299 		length = SQUASHFS_COMPRESSED_SIZE(length);
300 		index += 2;
301 
302 		TRACE("Block @ 0x%llx, %scompressed size %d\n", index - 2,
303 		      compressed ? "" : "un", length);
304 	}
305 	if (length < 0 || length > output->length ||
306 			(index + length) > msblk->bytes_used) {
307 		res = -EIO;
308 		goto out;
309 	}
310 
311 	if (next_index)
312 		*next_index = index + length;
313 
314 	res = squashfs_bio_read(sb, index, length, &bio, &offset);
315 	if (res)
316 		goto out;
317 
318 	if (compressed) {
319 		if (!msblk->stream) {
320 			res = -EIO;
321 			goto out_free_bio;
322 		}
323 		res = msblk->thread_ops->decompress(msblk, bio, offset, length, output);
324 	} else {
325 		res = copy_bio_to_actor(bio, output, offset, length);
326 	}
327 
328 out_free_bio:
329 	bio_free_pages(bio);
330 	bio_uninit(bio);
331 	kfree(bio);
332 out:
333 	if (res < 0) {
334 		ERROR("Failed to read block 0x%llx: %d\n", index, res);
335 		if (msblk->panic_on_errors)
336 			panic("squashfs read failed");
337 	}
338 
339 	return res;
340 }
341