xref: /openbmc/linux/fs/splice.c (revision f7d84fa7)
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/bvec.h>
21 #include <linux/fs.h>
22 #include <linux/file.h>
23 #include <linux/pagemap.h>
24 #include <linux/splice.h>
25 #include <linux/memcontrol.h>
26 #include <linux/mm_inline.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/export.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33 #include <linux/gfp.h>
34 #include <linux/socket.h>
35 #include <linux/compat.h>
36 #include <linux/sched/signal.h>
37 
38 #include "internal.h"
39 
40 /*
41  * Attempt to steal a page from a pipe buffer. This should perhaps go into
42  * a vm helper function, it's already simplified quite a bit by the
43  * addition of remove_mapping(). If success is returned, the caller may
44  * attempt to reuse this page for another destination.
45  */
46 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
47 				     struct pipe_buffer *buf)
48 {
49 	struct page *page = buf->page;
50 	struct address_space *mapping;
51 
52 	lock_page(page);
53 
54 	mapping = page_mapping(page);
55 	if (mapping) {
56 		WARN_ON(!PageUptodate(page));
57 
58 		/*
59 		 * At least for ext2 with nobh option, we need to wait on
60 		 * writeback completing on this page, since we'll remove it
61 		 * from the pagecache.  Otherwise truncate wont wait on the
62 		 * page, allowing the disk blocks to be reused by someone else
63 		 * before we actually wrote our data to them. fs corruption
64 		 * ensues.
65 		 */
66 		wait_on_page_writeback(page);
67 
68 		if (page_has_private(page) &&
69 		    !try_to_release_page(page, GFP_KERNEL))
70 			goto out_unlock;
71 
72 		/*
73 		 * If we succeeded in removing the mapping, set LRU flag
74 		 * and return good.
75 		 */
76 		if (remove_mapping(mapping, page)) {
77 			buf->flags |= PIPE_BUF_FLAG_LRU;
78 			return 0;
79 		}
80 	}
81 
82 	/*
83 	 * Raced with truncate or failed to remove page from current
84 	 * address space, unlock and return failure.
85 	 */
86 out_unlock:
87 	unlock_page(page);
88 	return 1;
89 }
90 
91 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
92 					struct pipe_buffer *buf)
93 {
94 	put_page(buf->page);
95 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
96 }
97 
98 /*
99  * Check whether the contents of buf is OK to access. Since the content
100  * is a page cache page, IO may be in flight.
101  */
102 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
103 				       struct pipe_buffer *buf)
104 {
105 	struct page *page = buf->page;
106 	int err;
107 
108 	if (!PageUptodate(page)) {
109 		lock_page(page);
110 
111 		/*
112 		 * Page got truncated/unhashed. This will cause a 0-byte
113 		 * splice, if this is the first page.
114 		 */
115 		if (!page->mapping) {
116 			err = -ENODATA;
117 			goto error;
118 		}
119 
120 		/*
121 		 * Uh oh, read-error from disk.
122 		 */
123 		if (!PageUptodate(page)) {
124 			err = -EIO;
125 			goto error;
126 		}
127 
128 		/*
129 		 * Page is ok afterall, we are done.
130 		 */
131 		unlock_page(page);
132 	}
133 
134 	return 0;
135 error:
136 	unlock_page(page);
137 	return err;
138 }
139 
140 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
141 	.can_merge = 0,
142 	.confirm = page_cache_pipe_buf_confirm,
143 	.release = page_cache_pipe_buf_release,
144 	.steal = page_cache_pipe_buf_steal,
145 	.get = generic_pipe_buf_get,
146 };
147 
148 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
149 				    struct pipe_buffer *buf)
150 {
151 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
152 		return 1;
153 
154 	buf->flags |= PIPE_BUF_FLAG_LRU;
155 	return generic_pipe_buf_steal(pipe, buf);
156 }
157 
158 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
159 	.can_merge = 0,
160 	.confirm = generic_pipe_buf_confirm,
161 	.release = page_cache_pipe_buf_release,
162 	.steal = user_page_pipe_buf_steal,
163 	.get = generic_pipe_buf_get,
164 };
165 
166 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
167 {
168 	smp_mb();
169 	if (waitqueue_active(&pipe->wait))
170 		wake_up_interruptible(&pipe->wait);
171 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
172 }
173 
174 /**
175  * splice_to_pipe - fill passed data into a pipe
176  * @pipe:	pipe to fill
177  * @spd:	data to fill
178  *
179  * Description:
180  *    @spd contains a map of pages and len/offset tuples, along with
181  *    the struct pipe_buf_operations associated with these pages. This
182  *    function will link that data to the pipe.
183  *
184  */
185 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
186 		       struct splice_pipe_desc *spd)
187 {
188 	unsigned int spd_pages = spd->nr_pages;
189 	int ret = 0, page_nr = 0;
190 
191 	if (!spd_pages)
192 		return 0;
193 
194 	if (unlikely(!pipe->readers)) {
195 		send_sig(SIGPIPE, current, 0);
196 		ret = -EPIPE;
197 		goto out;
198 	}
199 
200 	while (pipe->nrbufs < pipe->buffers) {
201 		int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
202 		struct pipe_buffer *buf = pipe->bufs + newbuf;
203 
204 		buf->page = spd->pages[page_nr];
205 		buf->offset = spd->partial[page_nr].offset;
206 		buf->len = spd->partial[page_nr].len;
207 		buf->private = spd->partial[page_nr].private;
208 		buf->ops = spd->ops;
209 		buf->flags = 0;
210 
211 		pipe->nrbufs++;
212 		page_nr++;
213 		ret += buf->len;
214 
215 		if (!--spd->nr_pages)
216 			break;
217 	}
218 
219 	if (!ret)
220 		ret = -EAGAIN;
221 
222 out:
223 	while (page_nr < spd_pages)
224 		spd->spd_release(spd, page_nr++);
225 
226 	return ret;
227 }
228 EXPORT_SYMBOL_GPL(splice_to_pipe);
229 
230 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
231 {
232 	int ret;
233 
234 	if (unlikely(!pipe->readers)) {
235 		send_sig(SIGPIPE, current, 0);
236 		ret = -EPIPE;
237 	} else if (pipe->nrbufs == pipe->buffers) {
238 		ret = -EAGAIN;
239 	} else {
240 		int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
241 		pipe->bufs[newbuf] = *buf;
242 		pipe->nrbufs++;
243 		return buf->len;
244 	}
245 	pipe_buf_release(pipe, buf);
246 	return ret;
247 }
248 EXPORT_SYMBOL(add_to_pipe);
249 
250 /*
251  * Check if we need to grow the arrays holding pages and partial page
252  * descriptions.
253  */
254 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
255 {
256 	unsigned int buffers = ACCESS_ONCE(pipe->buffers);
257 
258 	spd->nr_pages_max = buffers;
259 	if (buffers <= PIPE_DEF_BUFFERS)
260 		return 0;
261 
262 	spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
263 	spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
264 
265 	if (spd->pages && spd->partial)
266 		return 0;
267 
268 	kfree(spd->pages);
269 	kfree(spd->partial);
270 	return -ENOMEM;
271 }
272 
273 void splice_shrink_spd(struct splice_pipe_desc *spd)
274 {
275 	if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
276 		return;
277 
278 	kfree(spd->pages);
279 	kfree(spd->partial);
280 }
281 
282 /**
283  * generic_file_splice_read - splice data from file to a pipe
284  * @in:		file to splice from
285  * @ppos:	position in @in
286  * @pipe:	pipe to splice to
287  * @len:	number of bytes to splice
288  * @flags:	splice modifier flags
289  *
290  * Description:
291  *    Will read pages from given file and fill them into a pipe. Can be
292  *    used as long as it has more or less sane ->read_iter().
293  *
294  */
295 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
296 				 struct pipe_inode_info *pipe, size_t len,
297 				 unsigned int flags)
298 {
299 	struct iov_iter to;
300 	struct kiocb kiocb;
301 	int idx, ret;
302 
303 	iov_iter_pipe(&to, ITER_PIPE | READ, pipe, len);
304 	idx = to.idx;
305 	init_sync_kiocb(&kiocb, in);
306 	kiocb.ki_pos = *ppos;
307 	ret = call_read_iter(in, &kiocb, &to);
308 	if (ret > 0) {
309 		*ppos = kiocb.ki_pos;
310 		file_accessed(in);
311 	} else if (ret < 0) {
312 		to.idx = idx;
313 		to.iov_offset = 0;
314 		iov_iter_advance(&to, 0); /* to free what was emitted */
315 		/*
316 		 * callers of ->splice_read() expect -EAGAIN on
317 		 * "can't put anything in there", rather than -EFAULT.
318 		 */
319 		if (ret == -EFAULT)
320 			ret = -EAGAIN;
321 	}
322 
323 	return ret;
324 }
325 EXPORT_SYMBOL(generic_file_splice_read);
326 
327 const struct pipe_buf_operations default_pipe_buf_ops = {
328 	.can_merge = 0,
329 	.confirm = generic_pipe_buf_confirm,
330 	.release = generic_pipe_buf_release,
331 	.steal = generic_pipe_buf_steal,
332 	.get = generic_pipe_buf_get,
333 };
334 
335 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
336 				    struct pipe_buffer *buf)
337 {
338 	return 1;
339 }
340 
341 /* Pipe buffer operations for a socket and similar. */
342 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
343 	.can_merge = 0,
344 	.confirm = generic_pipe_buf_confirm,
345 	.release = generic_pipe_buf_release,
346 	.steal = generic_pipe_buf_nosteal,
347 	.get = generic_pipe_buf_get,
348 };
349 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
350 
351 static ssize_t kernel_readv(struct file *file, const struct kvec *vec,
352 			    unsigned long vlen, loff_t offset)
353 {
354 	mm_segment_t old_fs;
355 	loff_t pos = offset;
356 	ssize_t res;
357 
358 	old_fs = get_fs();
359 	set_fs(get_ds());
360 	/* The cast to a user pointer is valid due to the set_fs() */
361 	res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos, 0);
362 	set_fs(old_fs);
363 
364 	return res;
365 }
366 
367 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
368 			    loff_t pos)
369 {
370 	mm_segment_t old_fs;
371 	ssize_t res;
372 
373 	old_fs = get_fs();
374 	set_fs(get_ds());
375 	/* The cast to a user pointer is valid due to the set_fs() */
376 	res = vfs_write(file, (__force const char __user *)buf, count, &pos);
377 	set_fs(old_fs);
378 
379 	return res;
380 }
381 EXPORT_SYMBOL(kernel_write);
382 
383 static ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
384 				 struct pipe_inode_info *pipe, size_t len,
385 				 unsigned int flags)
386 {
387 	struct kvec *vec, __vec[PIPE_DEF_BUFFERS];
388 	struct iov_iter to;
389 	struct page **pages;
390 	unsigned int nr_pages;
391 	size_t offset, base, copied = 0;
392 	ssize_t res;
393 	int i;
394 
395 	if (pipe->nrbufs == pipe->buffers)
396 		return -EAGAIN;
397 
398 	/*
399 	 * Try to keep page boundaries matching to source pagecache ones -
400 	 * it probably won't be much help, but...
401 	 */
402 	offset = *ppos & ~PAGE_MASK;
403 
404 	iov_iter_pipe(&to, ITER_PIPE | READ, pipe, len + offset);
405 
406 	res = iov_iter_get_pages_alloc(&to, &pages, len + offset, &base);
407 	if (res <= 0)
408 		return -ENOMEM;
409 
410 	nr_pages = DIV_ROUND_UP(res + base, PAGE_SIZE);
411 
412 	vec = __vec;
413 	if (nr_pages > PIPE_DEF_BUFFERS) {
414 		vec = kmalloc(nr_pages * sizeof(struct kvec), GFP_KERNEL);
415 		if (unlikely(!vec)) {
416 			res = -ENOMEM;
417 			goto out;
418 		}
419 	}
420 
421 	pipe->bufs[to.idx].offset = offset;
422 	pipe->bufs[to.idx].len -= offset;
423 
424 	for (i = 0; i < nr_pages; i++) {
425 		size_t this_len = min_t(size_t, len, PAGE_SIZE - offset);
426 		vec[i].iov_base = page_address(pages[i]) + offset;
427 		vec[i].iov_len = this_len;
428 		len -= this_len;
429 		offset = 0;
430 	}
431 
432 	res = kernel_readv(in, vec, nr_pages, *ppos);
433 	if (res > 0) {
434 		copied = res;
435 		*ppos += res;
436 	}
437 
438 	if (vec != __vec)
439 		kfree(vec);
440 out:
441 	for (i = 0; i < nr_pages; i++)
442 		put_page(pages[i]);
443 	kvfree(pages);
444 	iov_iter_advance(&to, copied);	/* truncates and discards */
445 	return res;
446 }
447 
448 /*
449  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
450  * using sendpage(). Return the number of bytes sent.
451  */
452 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
453 			    struct pipe_buffer *buf, struct splice_desc *sd)
454 {
455 	struct file *file = sd->u.file;
456 	loff_t pos = sd->pos;
457 	int more;
458 
459 	if (!likely(file->f_op->sendpage))
460 		return -EINVAL;
461 
462 	more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
463 
464 	if (sd->len < sd->total_len && pipe->nrbufs > 1)
465 		more |= MSG_SENDPAGE_NOTLAST;
466 
467 	return file->f_op->sendpage(file, buf->page, buf->offset,
468 				    sd->len, &pos, more);
469 }
470 
471 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
472 {
473 	smp_mb();
474 	if (waitqueue_active(&pipe->wait))
475 		wake_up_interruptible(&pipe->wait);
476 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
477 }
478 
479 /**
480  * splice_from_pipe_feed - feed available data from a pipe to a file
481  * @pipe:	pipe to splice from
482  * @sd:		information to @actor
483  * @actor:	handler that splices the data
484  *
485  * Description:
486  *    This function loops over the pipe and calls @actor to do the
487  *    actual moving of a single struct pipe_buffer to the desired
488  *    destination.  It returns when there's no more buffers left in
489  *    the pipe or if the requested number of bytes (@sd->total_len)
490  *    have been copied.  It returns a positive number (one) if the
491  *    pipe needs to be filled with more data, zero if the required
492  *    number of bytes have been copied and -errno on error.
493  *
494  *    This, together with splice_from_pipe_{begin,end,next}, may be
495  *    used to implement the functionality of __splice_from_pipe() when
496  *    locking is required around copying the pipe buffers to the
497  *    destination.
498  */
499 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
500 			  splice_actor *actor)
501 {
502 	int ret;
503 
504 	while (pipe->nrbufs) {
505 		struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
506 
507 		sd->len = buf->len;
508 		if (sd->len > sd->total_len)
509 			sd->len = sd->total_len;
510 
511 		ret = pipe_buf_confirm(pipe, buf);
512 		if (unlikely(ret)) {
513 			if (ret == -ENODATA)
514 				ret = 0;
515 			return ret;
516 		}
517 
518 		ret = actor(pipe, buf, sd);
519 		if (ret <= 0)
520 			return ret;
521 
522 		buf->offset += ret;
523 		buf->len -= ret;
524 
525 		sd->num_spliced += ret;
526 		sd->len -= ret;
527 		sd->pos += ret;
528 		sd->total_len -= ret;
529 
530 		if (!buf->len) {
531 			pipe_buf_release(pipe, buf);
532 			pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
533 			pipe->nrbufs--;
534 			if (pipe->files)
535 				sd->need_wakeup = true;
536 		}
537 
538 		if (!sd->total_len)
539 			return 0;
540 	}
541 
542 	return 1;
543 }
544 
545 /**
546  * splice_from_pipe_next - wait for some data to splice from
547  * @pipe:	pipe to splice from
548  * @sd:		information about the splice operation
549  *
550  * Description:
551  *    This function will wait for some data and return a positive
552  *    value (one) if pipe buffers are available.  It will return zero
553  *    or -errno if no more data needs to be spliced.
554  */
555 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
556 {
557 	/*
558 	 * Check for signal early to make process killable when there are
559 	 * always buffers available
560 	 */
561 	if (signal_pending(current))
562 		return -ERESTARTSYS;
563 
564 	while (!pipe->nrbufs) {
565 		if (!pipe->writers)
566 			return 0;
567 
568 		if (!pipe->waiting_writers && sd->num_spliced)
569 			return 0;
570 
571 		if (sd->flags & SPLICE_F_NONBLOCK)
572 			return -EAGAIN;
573 
574 		if (signal_pending(current))
575 			return -ERESTARTSYS;
576 
577 		if (sd->need_wakeup) {
578 			wakeup_pipe_writers(pipe);
579 			sd->need_wakeup = false;
580 		}
581 
582 		pipe_wait(pipe);
583 	}
584 
585 	return 1;
586 }
587 
588 /**
589  * splice_from_pipe_begin - start splicing from pipe
590  * @sd:		information about the splice operation
591  *
592  * Description:
593  *    This function should be called before a loop containing
594  *    splice_from_pipe_next() and splice_from_pipe_feed() to
595  *    initialize the necessary fields of @sd.
596  */
597 static void splice_from_pipe_begin(struct splice_desc *sd)
598 {
599 	sd->num_spliced = 0;
600 	sd->need_wakeup = false;
601 }
602 
603 /**
604  * splice_from_pipe_end - finish splicing from pipe
605  * @pipe:	pipe to splice from
606  * @sd:		information about the splice operation
607  *
608  * Description:
609  *    This function will wake up pipe writers if necessary.  It should
610  *    be called after a loop containing splice_from_pipe_next() and
611  *    splice_from_pipe_feed().
612  */
613 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
614 {
615 	if (sd->need_wakeup)
616 		wakeup_pipe_writers(pipe);
617 }
618 
619 /**
620  * __splice_from_pipe - splice data from a pipe to given actor
621  * @pipe:	pipe to splice from
622  * @sd:		information to @actor
623  * @actor:	handler that splices the data
624  *
625  * Description:
626  *    This function does little more than loop over the pipe and call
627  *    @actor to do the actual moving of a single struct pipe_buffer to
628  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
629  *    pipe_to_user.
630  *
631  */
632 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
633 			   splice_actor *actor)
634 {
635 	int ret;
636 
637 	splice_from_pipe_begin(sd);
638 	do {
639 		cond_resched();
640 		ret = splice_from_pipe_next(pipe, sd);
641 		if (ret > 0)
642 			ret = splice_from_pipe_feed(pipe, sd, actor);
643 	} while (ret > 0);
644 	splice_from_pipe_end(pipe, sd);
645 
646 	return sd->num_spliced ? sd->num_spliced : ret;
647 }
648 EXPORT_SYMBOL(__splice_from_pipe);
649 
650 /**
651  * splice_from_pipe - splice data from a pipe to a file
652  * @pipe:	pipe to splice from
653  * @out:	file to splice to
654  * @ppos:	position in @out
655  * @len:	how many bytes to splice
656  * @flags:	splice modifier flags
657  * @actor:	handler that splices the data
658  *
659  * Description:
660  *    See __splice_from_pipe. This function locks the pipe inode,
661  *    otherwise it's identical to __splice_from_pipe().
662  *
663  */
664 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
665 			 loff_t *ppos, size_t len, unsigned int flags,
666 			 splice_actor *actor)
667 {
668 	ssize_t ret;
669 	struct splice_desc sd = {
670 		.total_len = len,
671 		.flags = flags,
672 		.pos = *ppos,
673 		.u.file = out,
674 	};
675 
676 	pipe_lock(pipe);
677 	ret = __splice_from_pipe(pipe, &sd, actor);
678 	pipe_unlock(pipe);
679 
680 	return ret;
681 }
682 
683 /**
684  * iter_file_splice_write - splice data from a pipe to a file
685  * @pipe:	pipe info
686  * @out:	file to write to
687  * @ppos:	position in @out
688  * @len:	number of bytes to splice
689  * @flags:	splice modifier flags
690  *
691  * Description:
692  *    Will either move or copy pages (determined by @flags options) from
693  *    the given pipe inode to the given file.
694  *    This one is ->write_iter-based.
695  *
696  */
697 ssize_t
698 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
699 			  loff_t *ppos, size_t len, unsigned int flags)
700 {
701 	struct splice_desc sd = {
702 		.total_len = len,
703 		.flags = flags,
704 		.pos = *ppos,
705 		.u.file = out,
706 	};
707 	int nbufs = pipe->buffers;
708 	struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
709 					GFP_KERNEL);
710 	ssize_t ret;
711 
712 	if (unlikely(!array))
713 		return -ENOMEM;
714 
715 	pipe_lock(pipe);
716 
717 	splice_from_pipe_begin(&sd);
718 	while (sd.total_len) {
719 		struct iov_iter from;
720 		size_t left;
721 		int n, idx;
722 
723 		ret = splice_from_pipe_next(pipe, &sd);
724 		if (ret <= 0)
725 			break;
726 
727 		if (unlikely(nbufs < pipe->buffers)) {
728 			kfree(array);
729 			nbufs = pipe->buffers;
730 			array = kcalloc(nbufs, sizeof(struct bio_vec),
731 					GFP_KERNEL);
732 			if (!array) {
733 				ret = -ENOMEM;
734 				break;
735 			}
736 		}
737 
738 		/* build the vector */
739 		left = sd.total_len;
740 		for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
741 			struct pipe_buffer *buf = pipe->bufs + idx;
742 			size_t this_len = buf->len;
743 
744 			if (this_len > left)
745 				this_len = left;
746 
747 			if (idx == pipe->buffers - 1)
748 				idx = -1;
749 
750 			ret = pipe_buf_confirm(pipe, buf);
751 			if (unlikely(ret)) {
752 				if (ret == -ENODATA)
753 					ret = 0;
754 				goto done;
755 			}
756 
757 			array[n].bv_page = buf->page;
758 			array[n].bv_len = this_len;
759 			array[n].bv_offset = buf->offset;
760 			left -= this_len;
761 		}
762 
763 		iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n,
764 			      sd.total_len - left);
765 		ret = vfs_iter_write(out, &from, &sd.pos);
766 		if (ret <= 0)
767 			break;
768 
769 		sd.num_spliced += ret;
770 		sd.total_len -= ret;
771 		*ppos = sd.pos;
772 
773 		/* dismiss the fully eaten buffers, adjust the partial one */
774 		while (ret) {
775 			struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
776 			if (ret >= buf->len) {
777 				ret -= buf->len;
778 				buf->len = 0;
779 				pipe_buf_release(pipe, buf);
780 				pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
781 				pipe->nrbufs--;
782 				if (pipe->files)
783 					sd.need_wakeup = true;
784 			} else {
785 				buf->offset += ret;
786 				buf->len -= ret;
787 				ret = 0;
788 			}
789 		}
790 	}
791 done:
792 	kfree(array);
793 	splice_from_pipe_end(pipe, &sd);
794 
795 	pipe_unlock(pipe);
796 
797 	if (sd.num_spliced)
798 		ret = sd.num_spliced;
799 
800 	return ret;
801 }
802 
803 EXPORT_SYMBOL(iter_file_splice_write);
804 
805 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
806 			  struct splice_desc *sd)
807 {
808 	int ret;
809 	void *data;
810 	loff_t tmp = sd->pos;
811 
812 	data = kmap(buf->page);
813 	ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
814 	kunmap(buf->page);
815 
816 	return ret;
817 }
818 
819 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
820 					 struct file *out, loff_t *ppos,
821 					 size_t len, unsigned int flags)
822 {
823 	ssize_t ret;
824 
825 	ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
826 	if (ret > 0)
827 		*ppos += ret;
828 
829 	return ret;
830 }
831 
832 /**
833  * generic_splice_sendpage - splice data from a pipe to a socket
834  * @pipe:	pipe to splice from
835  * @out:	socket to write to
836  * @ppos:	position in @out
837  * @len:	number of bytes to splice
838  * @flags:	splice modifier flags
839  *
840  * Description:
841  *    Will send @len bytes from the pipe to a network socket. No data copying
842  *    is involved.
843  *
844  */
845 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
846 				loff_t *ppos, size_t len, unsigned int flags)
847 {
848 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
849 }
850 
851 EXPORT_SYMBOL(generic_splice_sendpage);
852 
853 /*
854  * Attempt to initiate a splice from pipe to file.
855  */
856 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
857 			   loff_t *ppos, size_t len, unsigned int flags)
858 {
859 	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
860 				loff_t *, size_t, unsigned int);
861 
862 	if (out->f_op->splice_write)
863 		splice_write = out->f_op->splice_write;
864 	else
865 		splice_write = default_file_splice_write;
866 
867 	return splice_write(pipe, out, ppos, len, flags);
868 }
869 
870 /*
871  * Attempt to initiate a splice from a file to a pipe.
872  */
873 static long do_splice_to(struct file *in, loff_t *ppos,
874 			 struct pipe_inode_info *pipe, size_t len,
875 			 unsigned int flags)
876 {
877 	ssize_t (*splice_read)(struct file *, loff_t *,
878 			       struct pipe_inode_info *, size_t, unsigned int);
879 	int ret;
880 
881 	if (unlikely(!(in->f_mode & FMODE_READ)))
882 		return -EBADF;
883 
884 	ret = rw_verify_area(READ, in, ppos, len);
885 	if (unlikely(ret < 0))
886 		return ret;
887 
888 	if (unlikely(len > MAX_RW_COUNT))
889 		len = MAX_RW_COUNT;
890 
891 	if (in->f_op->splice_read)
892 		splice_read = in->f_op->splice_read;
893 	else
894 		splice_read = default_file_splice_read;
895 
896 	return splice_read(in, ppos, pipe, len, flags);
897 }
898 
899 /**
900  * splice_direct_to_actor - splices data directly between two non-pipes
901  * @in:		file to splice from
902  * @sd:		actor information on where to splice to
903  * @actor:	handles the data splicing
904  *
905  * Description:
906  *    This is a special case helper to splice directly between two
907  *    points, without requiring an explicit pipe. Internally an allocated
908  *    pipe is cached in the process, and reused during the lifetime of
909  *    that process.
910  *
911  */
912 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
913 			       splice_direct_actor *actor)
914 {
915 	struct pipe_inode_info *pipe;
916 	long ret, bytes;
917 	umode_t i_mode;
918 	size_t len;
919 	int i, flags, more;
920 
921 	/*
922 	 * We require the input being a regular file, as we don't want to
923 	 * randomly drop data for eg socket -> socket splicing. Use the
924 	 * piped splicing for that!
925 	 */
926 	i_mode = file_inode(in)->i_mode;
927 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
928 		return -EINVAL;
929 
930 	/*
931 	 * neither in nor out is a pipe, setup an internal pipe attached to
932 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
933 	 */
934 	pipe = current->splice_pipe;
935 	if (unlikely(!pipe)) {
936 		pipe = alloc_pipe_info();
937 		if (!pipe)
938 			return -ENOMEM;
939 
940 		/*
941 		 * We don't have an immediate reader, but we'll read the stuff
942 		 * out of the pipe right after the splice_to_pipe(). So set
943 		 * PIPE_READERS appropriately.
944 		 */
945 		pipe->readers = 1;
946 
947 		current->splice_pipe = pipe;
948 	}
949 
950 	/*
951 	 * Do the splice.
952 	 */
953 	ret = 0;
954 	bytes = 0;
955 	len = sd->total_len;
956 	flags = sd->flags;
957 
958 	/*
959 	 * Don't block on output, we have to drain the direct pipe.
960 	 */
961 	sd->flags &= ~SPLICE_F_NONBLOCK;
962 	more = sd->flags & SPLICE_F_MORE;
963 
964 	while (len) {
965 		size_t read_len;
966 		loff_t pos = sd->pos, prev_pos = pos;
967 
968 		ret = do_splice_to(in, &pos, pipe, len, flags);
969 		if (unlikely(ret <= 0))
970 			goto out_release;
971 
972 		read_len = ret;
973 		sd->total_len = read_len;
974 
975 		/*
976 		 * If more data is pending, set SPLICE_F_MORE
977 		 * If this is the last data and SPLICE_F_MORE was not set
978 		 * initially, clears it.
979 		 */
980 		if (read_len < len)
981 			sd->flags |= SPLICE_F_MORE;
982 		else if (!more)
983 			sd->flags &= ~SPLICE_F_MORE;
984 		/*
985 		 * NOTE: nonblocking mode only applies to the input. We
986 		 * must not do the output in nonblocking mode as then we
987 		 * could get stuck data in the internal pipe:
988 		 */
989 		ret = actor(pipe, sd);
990 		if (unlikely(ret <= 0)) {
991 			sd->pos = prev_pos;
992 			goto out_release;
993 		}
994 
995 		bytes += ret;
996 		len -= ret;
997 		sd->pos = pos;
998 
999 		if (ret < read_len) {
1000 			sd->pos = prev_pos + ret;
1001 			goto out_release;
1002 		}
1003 	}
1004 
1005 done:
1006 	pipe->nrbufs = pipe->curbuf = 0;
1007 	file_accessed(in);
1008 	return bytes;
1009 
1010 out_release:
1011 	/*
1012 	 * If we did an incomplete transfer we must release
1013 	 * the pipe buffers in question:
1014 	 */
1015 	for (i = 0; i < pipe->buffers; i++) {
1016 		struct pipe_buffer *buf = pipe->bufs + i;
1017 
1018 		if (buf->ops)
1019 			pipe_buf_release(pipe, buf);
1020 	}
1021 
1022 	if (!bytes)
1023 		bytes = ret;
1024 
1025 	goto done;
1026 }
1027 EXPORT_SYMBOL(splice_direct_to_actor);
1028 
1029 static int direct_splice_actor(struct pipe_inode_info *pipe,
1030 			       struct splice_desc *sd)
1031 {
1032 	struct file *file = sd->u.file;
1033 
1034 	return do_splice_from(pipe, file, sd->opos, sd->total_len,
1035 			      sd->flags);
1036 }
1037 
1038 /**
1039  * do_splice_direct - splices data directly between two files
1040  * @in:		file to splice from
1041  * @ppos:	input file offset
1042  * @out:	file to splice to
1043  * @opos:	output file offset
1044  * @len:	number of bytes to splice
1045  * @flags:	splice modifier flags
1046  *
1047  * Description:
1048  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1049  *    doing it in the application would incur an extra system call
1050  *    (splice in + splice out, as compared to just sendfile()). So this helper
1051  *    can splice directly through a process-private pipe.
1052  *
1053  */
1054 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1055 		      loff_t *opos, size_t len, unsigned int flags)
1056 {
1057 	struct splice_desc sd = {
1058 		.len		= len,
1059 		.total_len	= len,
1060 		.flags		= flags,
1061 		.pos		= *ppos,
1062 		.u.file		= out,
1063 		.opos		= opos,
1064 	};
1065 	long ret;
1066 
1067 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1068 		return -EBADF;
1069 
1070 	if (unlikely(out->f_flags & O_APPEND))
1071 		return -EINVAL;
1072 
1073 	ret = rw_verify_area(WRITE, out, opos, len);
1074 	if (unlikely(ret < 0))
1075 		return ret;
1076 
1077 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1078 	if (ret > 0)
1079 		*ppos = sd.pos;
1080 
1081 	return ret;
1082 }
1083 EXPORT_SYMBOL(do_splice_direct);
1084 
1085 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1086 {
1087 	for (;;) {
1088 		if (unlikely(!pipe->readers)) {
1089 			send_sig(SIGPIPE, current, 0);
1090 			return -EPIPE;
1091 		}
1092 		if (pipe->nrbufs != pipe->buffers)
1093 			return 0;
1094 		if (flags & SPLICE_F_NONBLOCK)
1095 			return -EAGAIN;
1096 		if (signal_pending(current))
1097 			return -ERESTARTSYS;
1098 		pipe->waiting_writers++;
1099 		pipe_wait(pipe);
1100 		pipe->waiting_writers--;
1101 	}
1102 }
1103 
1104 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1105 			       struct pipe_inode_info *opipe,
1106 			       size_t len, unsigned int flags);
1107 
1108 /*
1109  * Determine where to splice to/from.
1110  */
1111 static long do_splice(struct file *in, loff_t __user *off_in,
1112 		      struct file *out, loff_t __user *off_out,
1113 		      size_t len, unsigned int flags)
1114 {
1115 	struct pipe_inode_info *ipipe;
1116 	struct pipe_inode_info *opipe;
1117 	loff_t offset;
1118 	long ret;
1119 
1120 	ipipe = get_pipe_info(in);
1121 	opipe = get_pipe_info(out);
1122 
1123 	if (ipipe && opipe) {
1124 		if (off_in || off_out)
1125 			return -ESPIPE;
1126 
1127 		if (!(in->f_mode & FMODE_READ))
1128 			return -EBADF;
1129 
1130 		if (!(out->f_mode & FMODE_WRITE))
1131 			return -EBADF;
1132 
1133 		/* Splicing to self would be fun, but... */
1134 		if (ipipe == opipe)
1135 			return -EINVAL;
1136 
1137 		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1138 	}
1139 
1140 	if (ipipe) {
1141 		if (off_in)
1142 			return -ESPIPE;
1143 		if (off_out) {
1144 			if (!(out->f_mode & FMODE_PWRITE))
1145 				return -EINVAL;
1146 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1147 				return -EFAULT;
1148 		} else {
1149 			offset = out->f_pos;
1150 		}
1151 
1152 		if (unlikely(!(out->f_mode & FMODE_WRITE)))
1153 			return -EBADF;
1154 
1155 		if (unlikely(out->f_flags & O_APPEND))
1156 			return -EINVAL;
1157 
1158 		ret = rw_verify_area(WRITE, out, &offset, len);
1159 		if (unlikely(ret < 0))
1160 			return ret;
1161 
1162 		file_start_write(out);
1163 		ret = do_splice_from(ipipe, out, &offset, len, flags);
1164 		file_end_write(out);
1165 
1166 		if (!off_out)
1167 			out->f_pos = offset;
1168 		else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1169 			ret = -EFAULT;
1170 
1171 		return ret;
1172 	}
1173 
1174 	if (opipe) {
1175 		if (off_out)
1176 			return -ESPIPE;
1177 		if (off_in) {
1178 			if (!(in->f_mode & FMODE_PREAD))
1179 				return -EINVAL;
1180 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1181 				return -EFAULT;
1182 		} else {
1183 			offset = in->f_pos;
1184 		}
1185 
1186 		pipe_lock(opipe);
1187 		ret = wait_for_space(opipe, flags);
1188 		if (!ret)
1189 			ret = do_splice_to(in, &offset, opipe, len, flags);
1190 		pipe_unlock(opipe);
1191 		if (ret > 0)
1192 			wakeup_pipe_readers(opipe);
1193 		if (!off_in)
1194 			in->f_pos = offset;
1195 		else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1196 			ret = -EFAULT;
1197 
1198 		return ret;
1199 	}
1200 
1201 	return -EINVAL;
1202 }
1203 
1204 static int iter_to_pipe(struct iov_iter *from,
1205 			struct pipe_inode_info *pipe,
1206 			unsigned flags)
1207 {
1208 	struct pipe_buffer buf = {
1209 		.ops = &user_page_pipe_buf_ops,
1210 		.flags = flags
1211 	};
1212 	size_t total = 0;
1213 	int ret = 0;
1214 	bool failed = false;
1215 
1216 	while (iov_iter_count(from) && !failed) {
1217 		struct page *pages[16];
1218 		ssize_t copied;
1219 		size_t start;
1220 		int n;
1221 
1222 		copied = iov_iter_get_pages(from, pages, ~0UL, 16, &start);
1223 		if (copied <= 0) {
1224 			ret = copied;
1225 			break;
1226 		}
1227 
1228 		for (n = 0; copied; n++, start = 0) {
1229 			int size = min_t(int, copied, PAGE_SIZE - start);
1230 			if (!failed) {
1231 				buf.page = pages[n];
1232 				buf.offset = start;
1233 				buf.len = size;
1234 				ret = add_to_pipe(pipe, &buf);
1235 				if (unlikely(ret < 0)) {
1236 					failed = true;
1237 				} else {
1238 					iov_iter_advance(from, ret);
1239 					total += ret;
1240 				}
1241 			} else {
1242 				put_page(pages[n]);
1243 			}
1244 			copied -= size;
1245 		}
1246 	}
1247 	return total ? total : ret;
1248 }
1249 
1250 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1251 			struct splice_desc *sd)
1252 {
1253 	int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1254 	return n == sd->len ? n : -EFAULT;
1255 }
1256 
1257 /*
1258  * For lack of a better implementation, implement vmsplice() to userspace
1259  * as a simple copy of the pipes pages to the user iov.
1260  */
1261 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1262 			     unsigned long nr_segs, unsigned int flags)
1263 {
1264 	struct pipe_inode_info *pipe;
1265 	struct splice_desc sd;
1266 	long ret;
1267 	struct iovec iovstack[UIO_FASTIOV];
1268 	struct iovec *iov = iovstack;
1269 	struct iov_iter iter;
1270 
1271 	pipe = get_pipe_info(file);
1272 	if (!pipe)
1273 		return -EBADF;
1274 
1275 	ret = import_iovec(READ, uiov, nr_segs,
1276 			   ARRAY_SIZE(iovstack), &iov, &iter);
1277 	if (ret < 0)
1278 		return ret;
1279 
1280 	sd.total_len = iov_iter_count(&iter);
1281 	sd.len = 0;
1282 	sd.flags = flags;
1283 	sd.u.data = &iter;
1284 	sd.pos = 0;
1285 
1286 	if (sd.total_len) {
1287 		pipe_lock(pipe);
1288 		ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1289 		pipe_unlock(pipe);
1290 	}
1291 
1292 	kfree(iov);
1293 	return ret;
1294 }
1295 
1296 /*
1297  * vmsplice splices a user address range into a pipe. It can be thought of
1298  * as splice-from-memory, where the regular splice is splice-from-file (or
1299  * to file). In both cases the output is a pipe, naturally.
1300  */
1301 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *uiov,
1302 			     unsigned long nr_segs, unsigned int flags)
1303 {
1304 	struct pipe_inode_info *pipe;
1305 	struct iovec iovstack[UIO_FASTIOV];
1306 	struct iovec *iov = iovstack;
1307 	struct iov_iter from;
1308 	long ret;
1309 	unsigned buf_flag = 0;
1310 
1311 	if (flags & SPLICE_F_GIFT)
1312 		buf_flag = PIPE_BUF_FLAG_GIFT;
1313 
1314 	pipe = get_pipe_info(file);
1315 	if (!pipe)
1316 		return -EBADF;
1317 
1318 	ret = import_iovec(WRITE, uiov, nr_segs,
1319 			   ARRAY_SIZE(iovstack), &iov, &from);
1320 	if (ret < 0)
1321 		return ret;
1322 
1323 	pipe_lock(pipe);
1324 	ret = wait_for_space(pipe, flags);
1325 	if (!ret)
1326 		ret = iter_to_pipe(&from, pipe, buf_flag);
1327 	pipe_unlock(pipe);
1328 	if (ret > 0)
1329 		wakeup_pipe_readers(pipe);
1330 	kfree(iov);
1331 	return ret;
1332 }
1333 
1334 /*
1335  * Note that vmsplice only really supports true splicing _from_ user memory
1336  * to a pipe, not the other way around. Splicing from user memory is a simple
1337  * operation that can be supported without any funky alignment restrictions
1338  * or nasty vm tricks. We simply map in the user memory and fill them into
1339  * a pipe. The reverse isn't quite as easy, though. There are two possible
1340  * solutions for that:
1341  *
1342  *	- memcpy() the data internally, at which point we might as well just
1343  *	  do a regular read() on the buffer anyway.
1344  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1345  *	  has restriction limitations on both ends of the pipe).
1346  *
1347  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1348  *
1349  */
1350 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1351 		unsigned long, nr_segs, unsigned int, flags)
1352 {
1353 	struct fd f;
1354 	long error;
1355 
1356 	if (unlikely(flags & ~SPLICE_F_ALL))
1357 		return -EINVAL;
1358 	if (unlikely(nr_segs > UIO_MAXIOV))
1359 		return -EINVAL;
1360 	else if (unlikely(!nr_segs))
1361 		return 0;
1362 
1363 	error = -EBADF;
1364 	f = fdget(fd);
1365 	if (f.file) {
1366 		if (f.file->f_mode & FMODE_WRITE)
1367 			error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1368 		else if (f.file->f_mode & FMODE_READ)
1369 			error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1370 
1371 		fdput(f);
1372 	}
1373 
1374 	return error;
1375 }
1376 
1377 #ifdef CONFIG_COMPAT
1378 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1379 		    unsigned int, nr_segs, unsigned int, flags)
1380 {
1381 	unsigned i;
1382 	struct iovec __user *iov;
1383 	if (nr_segs > UIO_MAXIOV)
1384 		return -EINVAL;
1385 	iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1386 	for (i = 0; i < nr_segs; i++) {
1387 		struct compat_iovec v;
1388 		if (get_user(v.iov_base, &iov32[i].iov_base) ||
1389 		    get_user(v.iov_len, &iov32[i].iov_len) ||
1390 		    put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1391 		    put_user(v.iov_len, &iov[i].iov_len))
1392 			return -EFAULT;
1393 	}
1394 	return sys_vmsplice(fd, iov, nr_segs, flags);
1395 }
1396 #endif
1397 
1398 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1399 		int, fd_out, loff_t __user *, off_out,
1400 		size_t, len, unsigned int, flags)
1401 {
1402 	struct fd in, out;
1403 	long error;
1404 
1405 	if (unlikely(!len))
1406 		return 0;
1407 
1408 	if (unlikely(flags & ~SPLICE_F_ALL))
1409 		return -EINVAL;
1410 
1411 	error = -EBADF;
1412 	in = fdget(fd_in);
1413 	if (in.file) {
1414 		if (in.file->f_mode & FMODE_READ) {
1415 			out = fdget(fd_out);
1416 			if (out.file) {
1417 				if (out.file->f_mode & FMODE_WRITE)
1418 					error = do_splice(in.file, off_in,
1419 							  out.file, off_out,
1420 							  len, flags);
1421 				fdput(out);
1422 			}
1423 		}
1424 		fdput(in);
1425 	}
1426 	return error;
1427 }
1428 
1429 /*
1430  * Make sure there's data to read. Wait for input if we can, otherwise
1431  * return an appropriate error.
1432  */
1433 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1434 {
1435 	int ret;
1436 
1437 	/*
1438 	 * Check ->nrbufs without the inode lock first. This function
1439 	 * is speculative anyways, so missing one is ok.
1440 	 */
1441 	if (pipe->nrbufs)
1442 		return 0;
1443 
1444 	ret = 0;
1445 	pipe_lock(pipe);
1446 
1447 	while (!pipe->nrbufs) {
1448 		if (signal_pending(current)) {
1449 			ret = -ERESTARTSYS;
1450 			break;
1451 		}
1452 		if (!pipe->writers)
1453 			break;
1454 		if (!pipe->waiting_writers) {
1455 			if (flags & SPLICE_F_NONBLOCK) {
1456 				ret = -EAGAIN;
1457 				break;
1458 			}
1459 		}
1460 		pipe_wait(pipe);
1461 	}
1462 
1463 	pipe_unlock(pipe);
1464 	return ret;
1465 }
1466 
1467 /*
1468  * Make sure there's writeable room. Wait for room if we can, otherwise
1469  * return an appropriate error.
1470  */
1471 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1472 {
1473 	int ret;
1474 
1475 	/*
1476 	 * Check ->nrbufs without the inode lock first. This function
1477 	 * is speculative anyways, so missing one is ok.
1478 	 */
1479 	if (pipe->nrbufs < pipe->buffers)
1480 		return 0;
1481 
1482 	ret = 0;
1483 	pipe_lock(pipe);
1484 
1485 	while (pipe->nrbufs >= pipe->buffers) {
1486 		if (!pipe->readers) {
1487 			send_sig(SIGPIPE, current, 0);
1488 			ret = -EPIPE;
1489 			break;
1490 		}
1491 		if (flags & SPLICE_F_NONBLOCK) {
1492 			ret = -EAGAIN;
1493 			break;
1494 		}
1495 		if (signal_pending(current)) {
1496 			ret = -ERESTARTSYS;
1497 			break;
1498 		}
1499 		pipe->waiting_writers++;
1500 		pipe_wait(pipe);
1501 		pipe->waiting_writers--;
1502 	}
1503 
1504 	pipe_unlock(pipe);
1505 	return ret;
1506 }
1507 
1508 /*
1509  * Splice contents of ipipe to opipe.
1510  */
1511 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1512 			       struct pipe_inode_info *opipe,
1513 			       size_t len, unsigned int flags)
1514 {
1515 	struct pipe_buffer *ibuf, *obuf;
1516 	int ret = 0, nbuf;
1517 	bool input_wakeup = false;
1518 
1519 
1520 retry:
1521 	ret = ipipe_prep(ipipe, flags);
1522 	if (ret)
1523 		return ret;
1524 
1525 	ret = opipe_prep(opipe, flags);
1526 	if (ret)
1527 		return ret;
1528 
1529 	/*
1530 	 * Potential ABBA deadlock, work around it by ordering lock
1531 	 * grabbing by pipe info address. Otherwise two different processes
1532 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1533 	 */
1534 	pipe_double_lock(ipipe, opipe);
1535 
1536 	do {
1537 		if (!opipe->readers) {
1538 			send_sig(SIGPIPE, current, 0);
1539 			if (!ret)
1540 				ret = -EPIPE;
1541 			break;
1542 		}
1543 
1544 		if (!ipipe->nrbufs && !ipipe->writers)
1545 			break;
1546 
1547 		/*
1548 		 * Cannot make any progress, because either the input
1549 		 * pipe is empty or the output pipe is full.
1550 		 */
1551 		if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1552 			/* Already processed some buffers, break */
1553 			if (ret)
1554 				break;
1555 
1556 			if (flags & SPLICE_F_NONBLOCK) {
1557 				ret = -EAGAIN;
1558 				break;
1559 			}
1560 
1561 			/*
1562 			 * We raced with another reader/writer and haven't
1563 			 * managed to process any buffers.  A zero return
1564 			 * value means EOF, so retry instead.
1565 			 */
1566 			pipe_unlock(ipipe);
1567 			pipe_unlock(opipe);
1568 			goto retry;
1569 		}
1570 
1571 		ibuf = ipipe->bufs + ipipe->curbuf;
1572 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1573 		obuf = opipe->bufs + nbuf;
1574 
1575 		if (len >= ibuf->len) {
1576 			/*
1577 			 * Simply move the whole buffer from ipipe to opipe
1578 			 */
1579 			*obuf = *ibuf;
1580 			ibuf->ops = NULL;
1581 			opipe->nrbufs++;
1582 			ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1583 			ipipe->nrbufs--;
1584 			input_wakeup = true;
1585 		} else {
1586 			/*
1587 			 * Get a reference to this pipe buffer,
1588 			 * so we can copy the contents over.
1589 			 */
1590 			pipe_buf_get(ipipe, ibuf);
1591 			*obuf = *ibuf;
1592 
1593 			/*
1594 			 * Don't inherit the gift flag, we need to
1595 			 * prevent multiple steals of this page.
1596 			 */
1597 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1598 
1599 			obuf->len = len;
1600 			opipe->nrbufs++;
1601 			ibuf->offset += obuf->len;
1602 			ibuf->len -= obuf->len;
1603 		}
1604 		ret += obuf->len;
1605 		len -= obuf->len;
1606 	} while (len);
1607 
1608 	pipe_unlock(ipipe);
1609 	pipe_unlock(opipe);
1610 
1611 	/*
1612 	 * If we put data in the output pipe, wakeup any potential readers.
1613 	 */
1614 	if (ret > 0)
1615 		wakeup_pipe_readers(opipe);
1616 
1617 	if (input_wakeup)
1618 		wakeup_pipe_writers(ipipe);
1619 
1620 	return ret;
1621 }
1622 
1623 /*
1624  * Link contents of ipipe to opipe.
1625  */
1626 static int link_pipe(struct pipe_inode_info *ipipe,
1627 		     struct pipe_inode_info *opipe,
1628 		     size_t len, unsigned int flags)
1629 {
1630 	struct pipe_buffer *ibuf, *obuf;
1631 	int ret = 0, i = 0, nbuf;
1632 
1633 	/*
1634 	 * Potential ABBA deadlock, work around it by ordering lock
1635 	 * grabbing by pipe info address. Otherwise two different processes
1636 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1637 	 */
1638 	pipe_double_lock(ipipe, opipe);
1639 
1640 	do {
1641 		if (!opipe->readers) {
1642 			send_sig(SIGPIPE, current, 0);
1643 			if (!ret)
1644 				ret = -EPIPE;
1645 			break;
1646 		}
1647 
1648 		/*
1649 		 * If we have iterated all input buffers or ran out of
1650 		 * output room, break.
1651 		 */
1652 		if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1653 			break;
1654 
1655 		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1656 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1657 
1658 		/*
1659 		 * Get a reference to this pipe buffer,
1660 		 * so we can copy the contents over.
1661 		 */
1662 		pipe_buf_get(ipipe, ibuf);
1663 
1664 		obuf = opipe->bufs + nbuf;
1665 		*obuf = *ibuf;
1666 
1667 		/*
1668 		 * Don't inherit the gift flag, we need to
1669 		 * prevent multiple steals of this page.
1670 		 */
1671 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1672 
1673 		if (obuf->len > len)
1674 			obuf->len = len;
1675 
1676 		opipe->nrbufs++;
1677 		ret += obuf->len;
1678 		len -= obuf->len;
1679 		i++;
1680 	} while (len);
1681 
1682 	/*
1683 	 * return EAGAIN if we have the potential of some data in the
1684 	 * future, otherwise just return 0
1685 	 */
1686 	if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1687 		ret = -EAGAIN;
1688 
1689 	pipe_unlock(ipipe);
1690 	pipe_unlock(opipe);
1691 
1692 	/*
1693 	 * If we put data in the output pipe, wakeup any potential readers.
1694 	 */
1695 	if (ret > 0)
1696 		wakeup_pipe_readers(opipe);
1697 
1698 	return ret;
1699 }
1700 
1701 /*
1702  * This is a tee(1) implementation that works on pipes. It doesn't copy
1703  * any data, it simply references the 'in' pages on the 'out' pipe.
1704  * The 'flags' used are the SPLICE_F_* variants, currently the only
1705  * applicable one is SPLICE_F_NONBLOCK.
1706  */
1707 static long do_tee(struct file *in, struct file *out, size_t len,
1708 		   unsigned int flags)
1709 {
1710 	struct pipe_inode_info *ipipe = get_pipe_info(in);
1711 	struct pipe_inode_info *opipe = get_pipe_info(out);
1712 	int ret = -EINVAL;
1713 
1714 	/*
1715 	 * Duplicate the contents of ipipe to opipe without actually
1716 	 * copying the data.
1717 	 */
1718 	if (ipipe && opipe && ipipe != opipe) {
1719 		/*
1720 		 * Keep going, unless we encounter an error. The ipipe/opipe
1721 		 * ordering doesn't really matter.
1722 		 */
1723 		ret = ipipe_prep(ipipe, flags);
1724 		if (!ret) {
1725 			ret = opipe_prep(opipe, flags);
1726 			if (!ret)
1727 				ret = link_pipe(ipipe, opipe, len, flags);
1728 		}
1729 	}
1730 
1731 	return ret;
1732 }
1733 
1734 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1735 {
1736 	struct fd in;
1737 	int error;
1738 
1739 	if (unlikely(flags & ~SPLICE_F_ALL))
1740 		return -EINVAL;
1741 
1742 	if (unlikely(!len))
1743 		return 0;
1744 
1745 	error = -EBADF;
1746 	in = fdget(fdin);
1747 	if (in.file) {
1748 		if (in.file->f_mode & FMODE_READ) {
1749 			struct fd out = fdget(fdout);
1750 			if (out.file) {
1751 				if (out.file->f_mode & FMODE_WRITE)
1752 					error = do_tee(in.file, out.file,
1753 							len, flags);
1754 				fdput(out);
1755 			}
1756 		}
1757  		fdput(in);
1758  	}
1759 
1760 	return error;
1761 }
1762