1 /* 2 * "splice": joining two ropes together by interweaving their strands. 3 * 4 * This is the "extended pipe" functionality, where a pipe is used as 5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 6 * buffer that you can use to transfer data from one end to the other. 7 * 8 * The traditional unix read/write is extended with a "splice()" operation 9 * that transfers data buffers to or from a pipe buffer. 10 * 11 * Named by Larry McVoy, original implementation from Linus, extended by 12 * Jens to support splicing to files, network, direct splicing, etc and 13 * fixing lots of bugs. 14 * 15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 18 * 19 */ 20 #include <linux/bvec.h> 21 #include <linux/fs.h> 22 #include <linux/file.h> 23 #include <linux/pagemap.h> 24 #include <linux/splice.h> 25 #include <linux/memcontrol.h> 26 #include <linux/mm_inline.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/export.h> 30 #include <linux/syscalls.h> 31 #include <linux/uio.h> 32 #include <linux/security.h> 33 #include <linux/gfp.h> 34 #include <linux/socket.h> 35 #include <linux/compat.h> 36 #include <linux/sched/signal.h> 37 38 #include "internal.h" 39 40 /* 41 * Attempt to steal a page from a pipe buffer. This should perhaps go into 42 * a vm helper function, it's already simplified quite a bit by the 43 * addition of remove_mapping(). If success is returned, the caller may 44 * attempt to reuse this page for another destination. 45 */ 46 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe, 47 struct pipe_buffer *buf) 48 { 49 struct page *page = buf->page; 50 struct address_space *mapping; 51 52 lock_page(page); 53 54 mapping = page_mapping(page); 55 if (mapping) { 56 WARN_ON(!PageUptodate(page)); 57 58 /* 59 * At least for ext2 with nobh option, we need to wait on 60 * writeback completing on this page, since we'll remove it 61 * from the pagecache. Otherwise truncate wont wait on the 62 * page, allowing the disk blocks to be reused by someone else 63 * before we actually wrote our data to them. fs corruption 64 * ensues. 65 */ 66 wait_on_page_writeback(page); 67 68 if (page_has_private(page) && 69 !try_to_release_page(page, GFP_KERNEL)) 70 goto out_unlock; 71 72 /* 73 * If we succeeded in removing the mapping, set LRU flag 74 * and return good. 75 */ 76 if (remove_mapping(mapping, page)) { 77 buf->flags |= PIPE_BUF_FLAG_LRU; 78 return 0; 79 } 80 } 81 82 /* 83 * Raced with truncate or failed to remove page from current 84 * address space, unlock and return failure. 85 */ 86 out_unlock: 87 unlock_page(page); 88 return 1; 89 } 90 91 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 92 struct pipe_buffer *buf) 93 { 94 put_page(buf->page); 95 buf->flags &= ~PIPE_BUF_FLAG_LRU; 96 } 97 98 /* 99 * Check whether the contents of buf is OK to access. Since the content 100 * is a page cache page, IO may be in flight. 101 */ 102 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 103 struct pipe_buffer *buf) 104 { 105 struct page *page = buf->page; 106 int err; 107 108 if (!PageUptodate(page)) { 109 lock_page(page); 110 111 /* 112 * Page got truncated/unhashed. This will cause a 0-byte 113 * splice, if this is the first page. 114 */ 115 if (!page->mapping) { 116 err = -ENODATA; 117 goto error; 118 } 119 120 /* 121 * Uh oh, read-error from disk. 122 */ 123 if (!PageUptodate(page)) { 124 err = -EIO; 125 goto error; 126 } 127 128 /* 129 * Page is ok afterall, we are done. 130 */ 131 unlock_page(page); 132 } 133 134 return 0; 135 error: 136 unlock_page(page); 137 return err; 138 } 139 140 const struct pipe_buf_operations page_cache_pipe_buf_ops = { 141 .can_merge = 0, 142 .confirm = page_cache_pipe_buf_confirm, 143 .release = page_cache_pipe_buf_release, 144 .steal = page_cache_pipe_buf_steal, 145 .get = generic_pipe_buf_get, 146 }; 147 148 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe, 149 struct pipe_buffer *buf) 150 { 151 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 152 return 1; 153 154 buf->flags |= PIPE_BUF_FLAG_LRU; 155 return generic_pipe_buf_steal(pipe, buf); 156 } 157 158 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 159 .can_merge = 0, 160 .confirm = generic_pipe_buf_confirm, 161 .release = page_cache_pipe_buf_release, 162 .steal = user_page_pipe_buf_steal, 163 .get = generic_pipe_buf_get, 164 }; 165 166 static void wakeup_pipe_readers(struct pipe_inode_info *pipe) 167 { 168 smp_mb(); 169 if (waitqueue_active(&pipe->wait)) 170 wake_up_interruptible(&pipe->wait); 171 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 172 } 173 174 /** 175 * splice_to_pipe - fill passed data into a pipe 176 * @pipe: pipe to fill 177 * @spd: data to fill 178 * 179 * Description: 180 * @spd contains a map of pages and len/offset tuples, along with 181 * the struct pipe_buf_operations associated with these pages. This 182 * function will link that data to the pipe. 183 * 184 */ 185 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 186 struct splice_pipe_desc *spd) 187 { 188 unsigned int spd_pages = spd->nr_pages; 189 int ret = 0, page_nr = 0; 190 191 if (!spd_pages) 192 return 0; 193 194 if (unlikely(!pipe->readers)) { 195 send_sig(SIGPIPE, current, 0); 196 ret = -EPIPE; 197 goto out; 198 } 199 200 while (pipe->nrbufs < pipe->buffers) { 201 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1); 202 struct pipe_buffer *buf = pipe->bufs + newbuf; 203 204 buf->page = spd->pages[page_nr]; 205 buf->offset = spd->partial[page_nr].offset; 206 buf->len = spd->partial[page_nr].len; 207 buf->private = spd->partial[page_nr].private; 208 buf->ops = spd->ops; 209 buf->flags = 0; 210 211 pipe->nrbufs++; 212 page_nr++; 213 ret += buf->len; 214 215 if (!--spd->nr_pages) 216 break; 217 } 218 219 if (!ret) 220 ret = -EAGAIN; 221 222 out: 223 while (page_nr < spd_pages) 224 spd->spd_release(spd, page_nr++); 225 226 return ret; 227 } 228 EXPORT_SYMBOL_GPL(splice_to_pipe); 229 230 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 231 { 232 int ret; 233 234 if (unlikely(!pipe->readers)) { 235 send_sig(SIGPIPE, current, 0); 236 ret = -EPIPE; 237 } else if (pipe->nrbufs == pipe->buffers) { 238 ret = -EAGAIN; 239 } else { 240 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1); 241 pipe->bufs[newbuf] = *buf; 242 pipe->nrbufs++; 243 return buf->len; 244 } 245 pipe_buf_release(pipe, buf); 246 return ret; 247 } 248 EXPORT_SYMBOL(add_to_pipe); 249 250 /* 251 * Check if we need to grow the arrays holding pages and partial page 252 * descriptions. 253 */ 254 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd) 255 { 256 unsigned int buffers = ACCESS_ONCE(pipe->buffers); 257 258 spd->nr_pages_max = buffers; 259 if (buffers <= PIPE_DEF_BUFFERS) 260 return 0; 261 262 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL); 263 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL); 264 265 if (spd->pages && spd->partial) 266 return 0; 267 268 kfree(spd->pages); 269 kfree(spd->partial); 270 return -ENOMEM; 271 } 272 273 void splice_shrink_spd(struct splice_pipe_desc *spd) 274 { 275 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS) 276 return; 277 278 kfree(spd->pages); 279 kfree(spd->partial); 280 } 281 282 /** 283 * generic_file_splice_read - splice data from file to a pipe 284 * @in: file to splice from 285 * @ppos: position in @in 286 * @pipe: pipe to splice to 287 * @len: number of bytes to splice 288 * @flags: splice modifier flags 289 * 290 * Description: 291 * Will read pages from given file and fill them into a pipe. Can be 292 * used as long as it has more or less sane ->read_iter(). 293 * 294 */ 295 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos, 296 struct pipe_inode_info *pipe, size_t len, 297 unsigned int flags) 298 { 299 struct iov_iter to; 300 struct kiocb kiocb; 301 int idx, ret; 302 303 iov_iter_pipe(&to, ITER_PIPE | READ, pipe, len); 304 idx = to.idx; 305 init_sync_kiocb(&kiocb, in); 306 kiocb.ki_pos = *ppos; 307 ret = call_read_iter(in, &kiocb, &to); 308 if (ret > 0) { 309 *ppos = kiocb.ki_pos; 310 file_accessed(in); 311 } else if (ret < 0) { 312 to.idx = idx; 313 to.iov_offset = 0; 314 iov_iter_advance(&to, 0); /* to free what was emitted */ 315 /* 316 * callers of ->splice_read() expect -EAGAIN on 317 * "can't put anything in there", rather than -EFAULT. 318 */ 319 if (ret == -EFAULT) 320 ret = -EAGAIN; 321 } 322 323 return ret; 324 } 325 EXPORT_SYMBOL(generic_file_splice_read); 326 327 const struct pipe_buf_operations default_pipe_buf_ops = { 328 .can_merge = 0, 329 .confirm = generic_pipe_buf_confirm, 330 .release = generic_pipe_buf_release, 331 .steal = generic_pipe_buf_steal, 332 .get = generic_pipe_buf_get, 333 }; 334 335 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe, 336 struct pipe_buffer *buf) 337 { 338 return 1; 339 } 340 341 /* Pipe buffer operations for a socket and similar. */ 342 const struct pipe_buf_operations nosteal_pipe_buf_ops = { 343 .can_merge = 0, 344 .confirm = generic_pipe_buf_confirm, 345 .release = generic_pipe_buf_release, 346 .steal = generic_pipe_buf_nosteal, 347 .get = generic_pipe_buf_get, 348 }; 349 EXPORT_SYMBOL(nosteal_pipe_buf_ops); 350 351 static ssize_t kernel_readv(struct file *file, const struct kvec *vec, 352 unsigned long vlen, loff_t offset) 353 { 354 mm_segment_t old_fs; 355 loff_t pos = offset; 356 ssize_t res; 357 358 old_fs = get_fs(); 359 set_fs(get_ds()); 360 /* The cast to a user pointer is valid due to the set_fs() */ 361 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos, 0); 362 set_fs(old_fs); 363 364 return res; 365 } 366 367 ssize_t kernel_write(struct file *file, const char *buf, size_t count, 368 loff_t pos) 369 { 370 mm_segment_t old_fs; 371 ssize_t res; 372 373 old_fs = get_fs(); 374 set_fs(get_ds()); 375 /* The cast to a user pointer is valid due to the set_fs() */ 376 res = vfs_write(file, (__force const char __user *)buf, count, &pos); 377 set_fs(old_fs); 378 379 return res; 380 } 381 EXPORT_SYMBOL(kernel_write); 382 383 static ssize_t default_file_splice_read(struct file *in, loff_t *ppos, 384 struct pipe_inode_info *pipe, size_t len, 385 unsigned int flags) 386 { 387 struct kvec *vec, __vec[PIPE_DEF_BUFFERS]; 388 struct iov_iter to; 389 struct page **pages; 390 unsigned int nr_pages; 391 size_t offset, base, copied = 0; 392 ssize_t res; 393 int i; 394 395 if (pipe->nrbufs == pipe->buffers) 396 return -EAGAIN; 397 398 /* 399 * Try to keep page boundaries matching to source pagecache ones - 400 * it probably won't be much help, but... 401 */ 402 offset = *ppos & ~PAGE_MASK; 403 404 iov_iter_pipe(&to, ITER_PIPE | READ, pipe, len + offset); 405 406 res = iov_iter_get_pages_alloc(&to, &pages, len + offset, &base); 407 if (res <= 0) 408 return -ENOMEM; 409 410 nr_pages = DIV_ROUND_UP(res + base, PAGE_SIZE); 411 412 vec = __vec; 413 if (nr_pages > PIPE_DEF_BUFFERS) { 414 vec = kmalloc(nr_pages * sizeof(struct kvec), GFP_KERNEL); 415 if (unlikely(!vec)) { 416 res = -ENOMEM; 417 goto out; 418 } 419 } 420 421 pipe->bufs[to.idx].offset = offset; 422 pipe->bufs[to.idx].len -= offset; 423 424 for (i = 0; i < nr_pages; i++) { 425 size_t this_len = min_t(size_t, len, PAGE_SIZE - offset); 426 vec[i].iov_base = page_address(pages[i]) + offset; 427 vec[i].iov_len = this_len; 428 len -= this_len; 429 offset = 0; 430 } 431 432 res = kernel_readv(in, vec, nr_pages, *ppos); 433 if (res > 0) { 434 copied = res; 435 *ppos += res; 436 } 437 438 if (vec != __vec) 439 kfree(vec); 440 out: 441 for (i = 0; i < nr_pages; i++) 442 put_page(pages[i]); 443 kvfree(pages); 444 iov_iter_advance(&to, copied); /* truncates and discards */ 445 return res; 446 } 447 448 /* 449 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos' 450 * using sendpage(). Return the number of bytes sent. 451 */ 452 static int pipe_to_sendpage(struct pipe_inode_info *pipe, 453 struct pipe_buffer *buf, struct splice_desc *sd) 454 { 455 struct file *file = sd->u.file; 456 loff_t pos = sd->pos; 457 int more; 458 459 if (!likely(file->f_op->sendpage)) 460 return -EINVAL; 461 462 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0; 463 464 if (sd->len < sd->total_len && pipe->nrbufs > 1) 465 more |= MSG_SENDPAGE_NOTLAST; 466 467 return file->f_op->sendpage(file, buf->page, buf->offset, 468 sd->len, &pos, more); 469 } 470 471 static void wakeup_pipe_writers(struct pipe_inode_info *pipe) 472 { 473 smp_mb(); 474 if (waitqueue_active(&pipe->wait)) 475 wake_up_interruptible(&pipe->wait); 476 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 477 } 478 479 /** 480 * splice_from_pipe_feed - feed available data from a pipe to a file 481 * @pipe: pipe to splice from 482 * @sd: information to @actor 483 * @actor: handler that splices the data 484 * 485 * Description: 486 * This function loops over the pipe and calls @actor to do the 487 * actual moving of a single struct pipe_buffer to the desired 488 * destination. It returns when there's no more buffers left in 489 * the pipe or if the requested number of bytes (@sd->total_len) 490 * have been copied. It returns a positive number (one) if the 491 * pipe needs to be filled with more data, zero if the required 492 * number of bytes have been copied and -errno on error. 493 * 494 * This, together with splice_from_pipe_{begin,end,next}, may be 495 * used to implement the functionality of __splice_from_pipe() when 496 * locking is required around copying the pipe buffers to the 497 * destination. 498 */ 499 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd, 500 splice_actor *actor) 501 { 502 int ret; 503 504 while (pipe->nrbufs) { 505 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 506 507 sd->len = buf->len; 508 if (sd->len > sd->total_len) 509 sd->len = sd->total_len; 510 511 ret = pipe_buf_confirm(pipe, buf); 512 if (unlikely(ret)) { 513 if (ret == -ENODATA) 514 ret = 0; 515 return ret; 516 } 517 518 ret = actor(pipe, buf, sd); 519 if (ret <= 0) 520 return ret; 521 522 buf->offset += ret; 523 buf->len -= ret; 524 525 sd->num_spliced += ret; 526 sd->len -= ret; 527 sd->pos += ret; 528 sd->total_len -= ret; 529 530 if (!buf->len) { 531 pipe_buf_release(pipe, buf); 532 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1); 533 pipe->nrbufs--; 534 if (pipe->files) 535 sd->need_wakeup = true; 536 } 537 538 if (!sd->total_len) 539 return 0; 540 } 541 542 return 1; 543 } 544 545 /** 546 * splice_from_pipe_next - wait for some data to splice from 547 * @pipe: pipe to splice from 548 * @sd: information about the splice operation 549 * 550 * Description: 551 * This function will wait for some data and return a positive 552 * value (one) if pipe buffers are available. It will return zero 553 * or -errno if no more data needs to be spliced. 554 */ 555 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd) 556 { 557 /* 558 * Check for signal early to make process killable when there are 559 * always buffers available 560 */ 561 if (signal_pending(current)) 562 return -ERESTARTSYS; 563 564 while (!pipe->nrbufs) { 565 if (!pipe->writers) 566 return 0; 567 568 if (!pipe->waiting_writers && sd->num_spliced) 569 return 0; 570 571 if (sd->flags & SPLICE_F_NONBLOCK) 572 return -EAGAIN; 573 574 if (signal_pending(current)) 575 return -ERESTARTSYS; 576 577 if (sd->need_wakeup) { 578 wakeup_pipe_writers(pipe); 579 sd->need_wakeup = false; 580 } 581 582 pipe_wait(pipe); 583 } 584 585 return 1; 586 } 587 588 /** 589 * splice_from_pipe_begin - start splicing from pipe 590 * @sd: information about the splice operation 591 * 592 * Description: 593 * This function should be called before a loop containing 594 * splice_from_pipe_next() and splice_from_pipe_feed() to 595 * initialize the necessary fields of @sd. 596 */ 597 static void splice_from_pipe_begin(struct splice_desc *sd) 598 { 599 sd->num_spliced = 0; 600 sd->need_wakeup = false; 601 } 602 603 /** 604 * splice_from_pipe_end - finish splicing from pipe 605 * @pipe: pipe to splice from 606 * @sd: information about the splice operation 607 * 608 * Description: 609 * This function will wake up pipe writers if necessary. It should 610 * be called after a loop containing splice_from_pipe_next() and 611 * splice_from_pipe_feed(). 612 */ 613 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd) 614 { 615 if (sd->need_wakeup) 616 wakeup_pipe_writers(pipe); 617 } 618 619 /** 620 * __splice_from_pipe - splice data from a pipe to given actor 621 * @pipe: pipe to splice from 622 * @sd: information to @actor 623 * @actor: handler that splices the data 624 * 625 * Description: 626 * This function does little more than loop over the pipe and call 627 * @actor to do the actual moving of a single struct pipe_buffer to 628 * the desired destination. See pipe_to_file, pipe_to_sendpage, or 629 * pipe_to_user. 630 * 631 */ 632 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 633 splice_actor *actor) 634 { 635 int ret; 636 637 splice_from_pipe_begin(sd); 638 do { 639 cond_resched(); 640 ret = splice_from_pipe_next(pipe, sd); 641 if (ret > 0) 642 ret = splice_from_pipe_feed(pipe, sd, actor); 643 } while (ret > 0); 644 splice_from_pipe_end(pipe, sd); 645 646 return sd->num_spliced ? sd->num_spliced : ret; 647 } 648 EXPORT_SYMBOL(__splice_from_pipe); 649 650 /** 651 * splice_from_pipe - splice data from a pipe to a file 652 * @pipe: pipe to splice from 653 * @out: file to splice to 654 * @ppos: position in @out 655 * @len: how many bytes to splice 656 * @flags: splice modifier flags 657 * @actor: handler that splices the data 658 * 659 * Description: 660 * See __splice_from_pipe. This function locks the pipe inode, 661 * otherwise it's identical to __splice_from_pipe(). 662 * 663 */ 664 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 665 loff_t *ppos, size_t len, unsigned int flags, 666 splice_actor *actor) 667 { 668 ssize_t ret; 669 struct splice_desc sd = { 670 .total_len = len, 671 .flags = flags, 672 .pos = *ppos, 673 .u.file = out, 674 }; 675 676 pipe_lock(pipe); 677 ret = __splice_from_pipe(pipe, &sd, actor); 678 pipe_unlock(pipe); 679 680 return ret; 681 } 682 683 /** 684 * iter_file_splice_write - splice data from a pipe to a file 685 * @pipe: pipe info 686 * @out: file to write to 687 * @ppos: position in @out 688 * @len: number of bytes to splice 689 * @flags: splice modifier flags 690 * 691 * Description: 692 * Will either move or copy pages (determined by @flags options) from 693 * the given pipe inode to the given file. 694 * This one is ->write_iter-based. 695 * 696 */ 697 ssize_t 698 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 699 loff_t *ppos, size_t len, unsigned int flags) 700 { 701 struct splice_desc sd = { 702 .total_len = len, 703 .flags = flags, 704 .pos = *ppos, 705 .u.file = out, 706 }; 707 int nbufs = pipe->buffers; 708 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec), 709 GFP_KERNEL); 710 ssize_t ret; 711 712 if (unlikely(!array)) 713 return -ENOMEM; 714 715 pipe_lock(pipe); 716 717 splice_from_pipe_begin(&sd); 718 while (sd.total_len) { 719 struct iov_iter from; 720 size_t left; 721 int n, idx; 722 723 ret = splice_from_pipe_next(pipe, &sd); 724 if (ret <= 0) 725 break; 726 727 if (unlikely(nbufs < pipe->buffers)) { 728 kfree(array); 729 nbufs = pipe->buffers; 730 array = kcalloc(nbufs, sizeof(struct bio_vec), 731 GFP_KERNEL); 732 if (!array) { 733 ret = -ENOMEM; 734 break; 735 } 736 } 737 738 /* build the vector */ 739 left = sd.total_len; 740 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) { 741 struct pipe_buffer *buf = pipe->bufs + idx; 742 size_t this_len = buf->len; 743 744 if (this_len > left) 745 this_len = left; 746 747 if (idx == pipe->buffers - 1) 748 idx = -1; 749 750 ret = pipe_buf_confirm(pipe, buf); 751 if (unlikely(ret)) { 752 if (ret == -ENODATA) 753 ret = 0; 754 goto done; 755 } 756 757 array[n].bv_page = buf->page; 758 array[n].bv_len = this_len; 759 array[n].bv_offset = buf->offset; 760 left -= this_len; 761 } 762 763 iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n, 764 sd.total_len - left); 765 ret = vfs_iter_write(out, &from, &sd.pos); 766 if (ret <= 0) 767 break; 768 769 sd.num_spliced += ret; 770 sd.total_len -= ret; 771 *ppos = sd.pos; 772 773 /* dismiss the fully eaten buffers, adjust the partial one */ 774 while (ret) { 775 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 776 if (ret >= buf->len) { 777 ret -= buf->len; 778 buf->len = 0; 779 pipe_buf_release(pipe, buf); 780 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1); 781 pipe->nrbufs--; 782 if (pipe->files) 783 sd.need_wakeup = true; 784 } else { 785 buf->offset += ret; 786 buf->len -= ret; 787 ret = 0; 788 } 789 } 790 } 791 done: 792 kfree(array); 793 splice_from_pipe_end(pipe, &sd); 794 795 pipe_unlock(pipe); 796 797 if (sd.num_spliced) 798 ret = sd.num_spliced; 799 800 return ret; 801 } 802 803 EXPORT_SYMBOL(iter_file_splice_write); 804 805 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 806 struct splice_desc *sd) 807 { 808 int ret; 809 void *data; 810 loff_t tmp = sd->pos; 811 812 data = kmap(buf->page); 813 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp); 814 kunmap(buf->page); 815 816 return ret; 817 } 818 819 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe, 820 struct file *out, loff_t *ppos, 821 size_t len, unsigned int flags) 822 { 823 ssize_t ret; 824 825 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf); 826 if (ret > 0) 827 *ppos += ret; 828 829 return ret; 830 } 831 832 /** 833 * generic_splice_sendpage - splice data from a pipe to a socket 834 * @pipe: pipe to splice from 835 * @out: socket to write to 836 * @ppos: position in @out 837 * @len: number of bytes to splice 838 * @flags: splice modifier flags 839 * 840 * Description: 841 * Will send @len bytes from the pipe to a network socket. No data copying 842 * is involved. 843 * 844 */ 845 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, 846 loff_t *ppos, size_t len, unsigned int flags) 847 { 848 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage); 849 } 850 851 EXPORT_SYMBOL(generic_splice_sendpage); 852 853 /* 854 * Attempt to initiate a splice from pipe to file. 855 */ 856 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 857 loff_t *ppos, size_t len, unsigned int flags) 858 { 859 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, 860 loff_t *, size_t, unsigned int); 861 862 if (out->f_op->splice_write) 863 splice_write = out->f_op->splice_write; 864 else 865 splice_write = default_file_splice_write; 866 867 return splice_write(pipe, out, ppos, len, flags); 868 } 869 870 /* 871 * Attempt to initiate a splice from a file to a pipe. 872 */ 873 static long do_splice_to(struct file *in, loff_t *ppos, 874 struct pipe_inode_info *pipe, size_t len, 875 unsigned int flags) 876 { 877 ssize_t (*splice_read)(struct file *, loff_t *, 878 struct pipe_inode_info *, size_t, unsigned int); 879 int ret; 880 881 if (unlikely(!(in->f_mode & FMODE_READ))) 882 return -EBADF; 883 884 ret = rw_verify_area(READ, in, ppos, len); 885 if (unlikely(ret < 0)) 886 return ret; 887 888 if (unlikely(len > MAX_RW_COUNT)) 889 len = MAX_RW_COUNT; 890 891 if (in->f_op->splice_read) 892 splice_read = in->f_op->splice_read; 893 else 894 splice_read = default_file_splice_read; 895 896 return splice_read(in, ppos, pipe, len, flags); 897 } 898 899 /** 900 * splice_direct_to_actor - splices data directly between two non-pipes 901 * @in: file to splice from 902 * @sd: actor information on where to splice to 903 * @actor: handles the data splicing 904 * 905 * Description: 906 * This is a special case helper to splice directly between two 907 * points, without requiring an explicit pipe. Internally an allocated 908 * pipe is cached in the process, and reused during the lifetime of 909 * that process. 910 * 911 */ 912 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 913 splice_direct_actor *actor) 914 { 915 struct pipe_inode_info *pipe; 916 long ret, bytes; 917 umode_t i_mode; 918 size_t len; 919 int i, flags, more; 920 921 /* 922 * We require the input being a regular file, as we don't want to 923 * randomly drop data for eg socket -> socket splicing. Use the 924 * piped splicing for that! 925 */ 926 i_mode = file_inode(in)->i_mode; 927 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode))) 928 return -EINVAL; 929 930 /* 931 * neither in nor out is a pipe, setup an internal pipe attached to 932 * 'out' and transfer the wanted data from 'in' to 'out' through that 933 */ 934 pipe = current->splice_pipe; 935 if (unlikely(!pipe)) { 936 pipe = alloc_pipe_info(); 937 if (!pipe) 938 return -ENOMEM; 939 940 /* 941 * We don't have an immediate reader, but we'll read the stuff 942 * out of the pipe right after the splice_to_pipe(). So set 943 * PIPE_READERS appropriately. 944 */ 945 pipe->readers = 1; 946 947 current->splice_pipe = pipe; 948 } 949 950 /* 951 * Do the splice. 952 */ 953 ret = 0; 954 bytes = 0; 955 len = sd->total_len; 956 flags = sd->flags; 957 958 /* 959 * Don't block on output, we have to drain the direct pipe. 960 */ 961 sd->flags &= ~SPLICE_F_NONBLOCK; 962 more = sd->flags & SPLICE_F_MORE; 963 964 while (len) { 965 size_t read_len; 966 loff_t pos = sd->pos, prev_pos = pos; 967 968 ret = do_splice_to(in, &pos, pipe, len, flags); 969 if (unlikely(ret <= 0)) 970 goto out_release; 971 972 read_len = ret; 973 sd->total_len = read_len; 974 975 /* 976 * If more data is pending, set SPLICE_F_MORE 977 * If this is the last data and SPLICE_F_MORE was not set 978 * initially, clears it. 979 */ 980 if (read_len < len) 981 sd->flags |= SPLICE_F_MORE; 982 else if (!more) 983 sd->flags &= ~SPLICE_F_MORE; 984 /* 985 * NOTE: nonblocking mode only applies to the input. We 986 * must not do the output in nonblocking mode as then we 987 * could get stuck data in the internal pipe: 988 */ 989 ret = actor(pipe, sd); 990 if (unlikely(ret <= 0)) { 991 sd->pos = prev_pos; 992 goto out_release; 993 } 994 995 bytes += ret; 996 len -= ret; 997 sd->pos = pos; 998 999 if (ret < read_len) { 1000 sd->pos = prev_pos + ret; 1001 goto out_release; 1002 } 1003 } 1004 1005 done: 1006 pipe->nrbufs = pipe->curbuf = 0; 1007 file_accessed(in); 1008 return bytes; 1009 1010 out_release: 1011 /* 1012 * If we did an incomplete transfer we must release 1013 * the pipe buffers in question: 1014 */ 1015 for (i = 0; i < pipe->buffers; i++) { 1016 struct pipe_buffer *buf = pipe->bufs + i; 1017 1018 if (buf->ops) 1019 pipe_buf_release(pipe, buf); 1020 } 1021 1022 if (!bytes) 1023 bytes = ret; 1024 1025 goto done; 1026 } 1027 EXPORT_SYMBOL(splice_direct_to_actor); 1028 1029 static int direct_splice_actor(struct pipe_inode_info *pipe, 1030 struct splice_desc *sd) 1031 { 1032 struct file *file = sd->u.file; 1033 1034 return do_splice_from(pipe, file, sd->opos, sd->total_len, 1035 sd->flags); 1036 } 1037 1038 /** 1039 * do_splice_direct - splices data directly between two files 1040 * @in: file to splice from 1041 * @ppos: input file offset 1042 * @out: file to splice to 1043 * @opos: output file offset 1044 * @len: number of bytes to splice 1045 * @flags: splice modifier flags 1046 * 1047 * Description: 1048 * For use by do_sendfile(). splice can easily emulate sendfile, but 1049 * doing it in the application would incur an extra system call 1050 * (splice in + splice out, as compared to just sendfile()). So this helper 1051 * can splice directly through a process-private pipe. 1052 * 1053 */ 1054 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1055 loff_t *opos, size_t len, unsigned int flags) 1056 { 1057 struct splice_desc sd = { 1058 .len = len, 1059 .total_len = len, 1060 .flags = flags, 1061 .pos = *ppos, 1062 .u.file = out, 1063 .opos = opos, 1064 }; 1065 long ret; 1066 1067 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1068 return -EBADF; 1069 1070 if (unlikely(out->f_flags & O_APPEND)) 1071 return -EINVAL; 1072 1073 ret = rw_verify_area(WRITE, out, opos, len); 1074 if (unlikely(ret < 0)) 1075 return ret; 1076 1077 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 1078 if (ret > 0) 1079 *ppos = sd.pos; 1080 1081 return ret; 1082 } 1083 EXPORT_SYMBOL(do_splice_direct); 1084 1085 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags) 1086 { 1087 for (;;) { 1088 if (unlikely(!pipe->readers)) { 1089 send_sig(SIGPIPE, current, 0); 1090 return -EPIPE; 1091 } 1092 if (pipe->nrbufs != pipe->buffers) 1093 return 0; 1094 if (flags & SPLICE_F_NONBLOCK) 1095 return -EAGAIN; 1096 if (signal_pending(current)) 1097 return -ERESTARTSYS; 1098 pipe->waiting_writers++; 1099 pipe_wait(pipe); 1100 pipe->waiting_writers--; 1101 } 1102 } 1103 1104 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1105 struct pipe_inode_info *opipe, 1106 size_t len, unsigned int flags); 1107 1108 /* 1109 * Determine where to splice to/from. 1110 */ 1111 static long do_splice(struct file *in, loff_t __user *off_in, 1112 struct file *out, loff_t __user *off_out, 1113 size_t len, unsigned int flags) 1114 { 1115 struct pipe_inode_info *ipipe; 1116 struct pipe_inode_info *opipe; 1117 loff_t offset; 1118 long ret; 1119 1120 ipipe = get_pipe_info(in); 1121 opipe = get_pipe_info(out); 1122 1123 if (ipipe && opipe) { 1124 if (off_in || off_out) 1125 return -ESPIPE; 1126 1127 if (!(in->f_mode & FMODE_READ)) 1128 return -EBADF; 1129 1130 if (!(out->f_mode & FMODE_WRITE)) 1131 return -EBADF; 1132 1133 /* Splicing to self would be fun, but... */ 1134 if (ipipe == opipe) 1135 return -EINVAL; 1136 1137 return splice_pipe_to_pipe(ipipe, opipe, len, flags); 1138 } 1139 1140 if (ipipe) { 1141 if (off_in) 1142 return -ESPIPE; 1143 if (off_out) { 1144 if (!(out->f_mode & FMODE_PWRITE)) 1145 return -EINVAL; 1146 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1147 return -EFAULT; 1148 } else { 1149 offset = out->f_pos; 1150 } 1151 1152 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1153 return -EBADF; 1154 1155 if (unlikely(out->f_flags & O_APPEND)) 1156 return -EINVAL; 1157 1158 ret = rw_verify_area(WRITE, out, &offset, len); 1159 if (unlikely(ret < 0)) 1160 return ret; 1161 1162 file_start_write(out); 1163 ret = do_splice_from(ipipe, out, &offset, len, flags); 1164 file_end_write(out); 1165 1166 if (!off_out) 1167 out->f_pos = offset; 1168 else if (copy_to_user(off_out, &offset, sizeof(loff_t))) 1169 ret = -EFAULT; 1170 1171 return ret; 1172 } 1173 1174 if (opipe) { 1175 if (off_out) 1176 return -ESPIPE; 1177 if (off_in) { 1178 if (!(in->f_mode & FMODE_PREAD)) 1179 return -EINVAL; 1180 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1181 return -EFAULT; 1182 } else { 1183 offset = in->f_pos; 1184 } 1185 1186 pipe_lock(opipe); 1187 ret = wait_for_space(opipe, flags); 1188 if (!ret) 1189 ret = do_splice_to(in, &offset, opipe, len, flags); 1190 pipe_unlock(opipe); 1191 if (ret > 0) 1192 wakeup_pipe_readers(opipe); 1193 if (!off_in) 1194 in->f_pos = offset; 1195 else if (copy_to_user(off_in, &offset, sizeof(loff_t))) 1196 ret = -EFAULT; 1197 1198 return ret; 1199 } 1200 1201 return -EINVAL; 1202 } 1203 1204 static int iter_to_pipe(struct iov_iter *from, 1205 struct pipe_inode_info *pipe, 1206 unsigned flags) 1207 { 1208 struct pipe_buffer buf = { 1209 .ops = &user_page_pipe_buf_ops, 1210 .flags = flags 1211 }; 1212 size_t total = 0; 1213 int ret = 0; 1214 bool failed = false; 1215 1216 while (iov_iter_count(from) && !failed) { 1217 struct page *pages[16]; 1218 ssize_t copied; 1219 size_t start; 1220 int n; 1221 1222 copied = iov_iter_get_pages(from, pages, ~0UL, 16, &start); 1223 if (copied <= 0) { 1224 ret = copied; 1225 break; 1226 } 1227 1228 for (n = 0; copied; n++, start = 0) { 1229 int size = min_t(int, copied, PAGE_SIZE - start); 1230 if (!failed) { 1231 buf.page = pages[n]; 1232 buf.offset = start; 1233 buf.len = size; 1234 ret = add_to_pipe(pipe, &buf); 1235 if (unlikely(ret < 0)) { 1236 failed = true; 1237 } else { 1238 iov_iter_advance(from, ret); 1239 total += ret; 1240 } 1241 } else { 1242 put_page(pages[n]); 1243 } 1244 copied -= size; 1245 } 1246 } 1247 return total ? total : ret; 1248 } 1249 1250 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1251 struct splice_desc *sd) 1252 { 1253 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data); 1254 return n == sd->len ? n : -EFAULT; 1255 } 1256 1257 /* 1258 * For lack of a better implementation, implement vmsplice() to userspace 1259 * as a simple copy of the pipes pages to the user iov. 1260 */ 1261 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov, 1262 unsigned long nr_segs, unsigned int flags) 1263 { 1264 struct pipe_inode_info *pipe; 1265 struct splice_desc sd; 1266 long ret; 1267 struct iovec iovstack[UIO_FASTIOV]; 1268 struct iovec *iov = iovstack; 1269 struct iov_iter iter; 1270 1271 pipe = get_pipe_info(file); 1272 if (!pipe) 1273 return -EBADF; 1274 1275 ret = import_iovec(READ, uiov, nr_segs, 1276 ARRAY_SIZE(iovstack), &iov, &iter); 1277 if (ret < 0) 1278 return ret; 1279 1280 sd.total_len = iov_iter_count(&iter); 1281 sd.len = 0; 1282 sd.flags = flags; 1283 sd.u.data = &iter; 1284 sd.pos = 0; 1285 1286 if (sd.total_len) { 1287 pipe_lock(pipe); 1288 ret = __splice_from_pipe(pipe, &sd, pipe_to_user); 1289 pipe_unlock(pipe); 1290 } 1291 1292 kfree(iov); 1293 return ret; 1294 } 1295 1296 /* 1297 * vmsplice splices a user address range into a pipe. It can be thought of 1298 * as splice-from-memory, where the regular splice is splice-from-file (or 1299 * to file). In both cases the output is a pipe, naturally. 1300 */ 1301 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *uiov, 1302 unsigned long nr_segs, unsigned int flags) 1303 { 1304 struct pipe_inode_info *pipe; 1305 struct iovec iovstack[UIO_FASTIOV]; 1306 struct iovec *iov = iovstack; 1307 struct iov_iter from; 1308 long ret; 1309 unsigned buf_flag = 0; 1310 1311 if (flags & SPLICE_F_GIFT) 1312 buf_flag = PIPE_BUF_FLAG_GIFT; 1313 1314 pipe = get_pipe_info(file); 1315 if (!pipe) 1316 return -EBADF; 1317 1318 ret = import_iovec(WRITE, uiov, nr_segs, 1319 ARRAY_SIZE(iovstack), &iov, &from); 1320 if (ret < 0) 1321 return ret; 1322 1323 pipe_lock(pipe); 1324 ret = wait_for_space(pipe, flags); 1325 if (!ret) 1326 ret = iter_to_pipe(&from, pipe, buf_flag); 1327 pipe_unlock(pipe); 1328 if (ret > 0) 1329 wakeup_pipe_readers(pipe); 1330 kfree(iov); 1331 return ret; 1332 } 1333 1334 /* 1335 * Note that vmsplice only really supports true splicing _from_ user memory 1336 * to a pipe, not the other way around. Splicing from user memory is a simple 1337 * operation that can be supported without any funky alignment restrictions 1338 * or nasty vm tricks. We simply map in the user memory and fill them into 1339 * a pipe. The reverse isn't quite as easy, though. There are two possible 1340 * solutions for that: 1341 * 1342 * - memcpy() the data internally, at which point we might as well just 1343 * do a regular read() on the buffer anyway. 1344 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1345 * has restriction limitations on both ends of the pipe). 1346 * 1347 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1348 * 1349 */ 1350 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov, 1351 unsigned long, nr_segs, unsigned int, flags) 1352 { 1353 struct fd f; 1354 long error; 1355 1356 if (unlikely(flags & ~SPLICE_F_ALL)) 1357 return -EINVAL; 1358 if (unlikely(nr_segs > UIO_MAXIOV)) 1359 return -EINVAL; 1360 else if (unlikely(!nr_segs)) 1361 return 0; 1362 1363 error = -EBADF; 1364 f = fdget(fd); 1365 if (f.file) { 1366 if (f.file->f_mode & FMODE_WRITE) 1367 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags); 1368 else if (f.file->f_mode & FMODE_READ) 1369 error = vmsplice_to_user(f.file, iov, nr_segs, flags); 1370 1371 fdput(f); 1372 } 1373 1374 return error; 1375 } 1376 1377 #ifdef CONFIG_COMPAT 1378 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32, 1379 unsigned int, nr_segs, unsigned int, flags) 1380 { 1381 unsigned i; 1382 struct iovec __user *iov; 1383 if (nr_segs > UIO_MAXIOV) 1384 return -EINVAL; 1385 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec)); 1386 for (i = 0; i < nr_segs; i++) { 1387 struct compat_iovec v; 1388 if (get_user(v.iov_base, &iov32[i].iov_base) || 1389 get_user(v.iov_len, &iov32[i].iov_len) || 1390 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) || 1391 put_user(v.iov_len, &iov[i].iov_len)) 1392 return -EFAULT; 1393 } 1394 return sys_vmsplice(fd, iov, nr_segs, flags); 1395 } 1396 #endif 1397 1398 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in, 1399 int, fd_out, loff_t __user *, off_out, 1400 size_t, len, unsigned int, flags) 1401 { 1402 struct fd in, out; 1403 long error; 1404 1405 if (unlikely(!len)) 1406 return 0; 1407 1408 if (unlikely(flags & ~SPLICE_F_ALL)) 1409 return -EINVAL; 1410 1411 error = -EBADF; 1412 in = fdget(fd_in); 1413 if (in.file) { 1414 if (in.file->f_mode & FMODE_READ) { 1415 out = fdget(fd_out); 1416 if (out.file) { 1417 if (out.file->f_mode & FMODE_WRITE) 1418 error = do_splice(in.file, off_in, 1419 out.file, off_out, 1420 len, flags); 1421 fdput(out); 1422 } 1423 } 1424 fdput(in); 1425 } 1426 return error; 1427 } 1428 1429 /* 1430 * Make sure there's data to read. Wait for input if we can, otherwise 1431 * return an appropriate error. 1432 */ 1433 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1434 { 1435 int ret; 1436 1437 /* 1438 * Check ->nrbufs without the inode lock first. This function 1439 * is speculative anyways, so missing one is ok. 1440 */ 1441 if (pipe->nrbufs) 1442 return 0; 1443 1444 ret = 0; 1445 pipe_lock(pipe); 1446 1447 while (!pipe->nrbufs) { 1448 if (signal_pending(current)) { 1449 ret = -ERESTARTSYS; 1450 break; 1451 } 1452 if (!pipe->writers) 1453 break; 1454 if (!pipe->waiting_writers) { 1455 if (flags & SPLICE_F_NONBLOCK) { 1456 ret = -EAGAIN; 1457 break; 1458 } 1459 } 1460 pipe_wait(pipe); 1461 } 1462 1463 pipe_unlock(pipe); 1464 return ret; 1465 } 1466 1467 /* 1468 * Make sure there's writeable room. Wait for room if we can, otherwise 1469 * return an appropriate error. 1470 */ 1471 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1472 { 1473 int ret; 1474 1475 /* 1476 * Check ->nrbufs without the inode lock first. This function 1477 * is speculative anyways, so missing one is ok. 1478 */ 1479 if (pipe->nrbufs < pipe->buffers) 1480 return 0; 1481 1482 ret = 0; 1483 pipe_lock(pipe); 1484 1485 while (pipe->nrbufs >= pipe->buffers) { 1486 if (!pipe->readers) { 1487 send_sig(SIGPIPE, current, 0); 1488 ret = -EPIPE; 1489 break; 1490 } 1491 if (flags & SPLICE_F_NONBLOCK) { 1492 ret = -EAGAIN; 1493 break; 1494 } 1495 if (signal_pending(current)) { 1496 ret = -ERESTARTSYS; 1497 break; 1498 } 1499 pipe->waiting_writers++; 1500 pipe_wait(pipe); 1501 pipe->waiting_writers--; 1502 } 1503 1504 pipe_unlock(pipe); 1505 return ret; 1506 } 1507 1508 /* 1509 * Splice contents of ipipe to opipe. 1510 */ 1511 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1512 struct pipe_inode_info *opipe, 1513 size_t len, unsigned int flags) 1514 { 1515 struct pipe_buffer *ibuf, *obuf; 1516 int ret = 0, nbuf; 1517 bool input_wakeup = false; 1518 1519 1520 retry: 1521 ret = ipipe_prep(ipipe, flags); 1522 if (ret) 1523 return ret; 1524 1525 ret = opipe_prep(opipe, flags); 1526 if (ret) 1527 return ret; 1528 1529 /* 1530 * Potential ABBA deadlock, work around it by ordering lock 1531 * grabbing by pipe info address. Otherwise two different processes 1532 * could deadlock (one doing tee from A -> B, the other from B -> A). 1533 */ 1534 pipe_double_lock(ipipe, opipe); 1535 1536 do { 1537 if (!opipe->readers) { 1538 send_sig(SIGPIPE, current, 0); 1539 if (!ret) 1540 ret = -EPIPE; 1541 break; 1542 } 1543 1544 if (!ipipe->nrbufs && !ipipe->writers) 1545 break; 1546 1547 /* 1548 * Cannot make any progress, because either the input 1549 * pipe is empty or the output pipe is full. 1550 */ 1551 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) { 1552 /* Already processed some buffers, break */ 1553 if (ret) 1554 break; 1555 1556 if (flags & SPLICE_F_NONBLOCK) { 1557 ret = -EAGAIN; 1558 break; 1559 } 1560 1561 /* 1562 * We raced with another reader/writer and haven't 1563 * managed to process any buffers. A zero return 1564 * value means EOF, so retry instead. 1565 */ 1566 pipe_unlock(ipipe); 1567 pipe_unlock(opipe); 1568 goto retry; 1569 } 1570 1571 ibuf = ipipe->bufs + ipipe->curbuf; 1572 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1); 1573 obuf = opipe->bufs + nbuf; 1574 1575 if (len >= ibuf->len) { 1576 /* 1577 * Simply move the whole buffer from ipipe to opipe 1578 */ 1579 *obuf = *ibuf; 1580 ibuf->ops = NULL; 1581 opipe->nrbufs++; 1582 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1); 1583 ipipe->nrbufs--; 1584 input_wakeup = true; 1585 } else { 1586 /* 1587 * Get a reference to this pipe buffer, 1588 * so we can copy the contents over. 1589 */ 1590 pipe_buf_get(ipipe, ibuf); 1591 *obuf = *ibuf; 1592 1593 /* 1594 * Don't inherit the gift flag, we need to 1595 * prevent multiple steals of this page. 1596 */ 1597 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1598 1599 obuf->len = len; 1600 opipe->nrbufs++; 1601 ibuf->offset += obuf->len; 1602 ibuf->len -= obuf->len; 1603 } 1604 ret += obuf->len; 1605 len -= obuf->len; 1606 } while (len); 1607 1608 pipe_unlock(ipipe); 1609 pipe_unlock(opipe); 1610 1611 /* 1612 * If we put data in the output pipe, wakeup any potential readers. 1613 */ 1614 if (ret > 0) 1615 wakeup_pipe_readers(opipe); 1616 1617 if (input_wakeup) 1618 wakeup_pipe_writers(ipipe); 1619 1620 return ret; 1621 } 1622 1623 /* 1624 * Link contents of ipipe to opipe. 1625 */ 1626 static int link_pipe(struct pipe_inode_info *ipipe, 1627 struct pipe_inode_info *opipe, 1628 size_t len, unsigned int flags) 1629 { 1630 struct pipe_buffer *ibuf, *obuf; 1631 int ret = 0, i = 0, nbuf; 1632 1633 /* 1634 * Potential ABBA deadlock, work around it by ordering lock 1635 * grabbing by pipe info address. Otherwise two different processes 1636 * could deadlock (one doing tee from A -> B, the other from B -> A). 1637 */ 1638 pipe_double_lock(ipipe, opipe); 1639 1640 do { 1641 if (!opipe->readers) { 1642 send_sig(SIGPIPE, current, 0); 1643 if (!ret) 1644 ret = -EPIPE; 1645 break; 1646 } 1647 1648 /* 1649 * If we have iterated all input buffers or ran out of 1650 * output room, break. 1651 */ 1652 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) 1653 break; 1654 1655 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1)); 1656 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1); 1657 1658 /* 1659 * Get a reference to this pipe buffer, 1660 * so we can copy the contents over. 1661 */ 1662 pipe_buf_get(ipipe, ibuf); 1663 1664 obuf = opipe->bufs + nbuf; 1665 *obuf = *ibuf; 1666 1667 /* 1668 * Don't inherit the gift flag, we need to 1669 * prevent multiple steals of this page. 1670 */ 1671 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1672 1673 if (obuf->len > len) 1674 obuf->len = len; 1675 1676 opipe->nrbufs++; 1677 ret += obuf->len; 1678 len -= obuf->len; 1679 i++; 1680 } while (len); 1681 1682 /* 1683 * return EAGAIN if we have the potential of some data in the 1684 * future, otherwise just return 0 1685 */ 1686 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK)) 1687 ret = -EAGAIN; 1688 1689 pipe_unlock(ipipe); 1690 pipe_unlock(opipe); 1691 1692 /* 1693 * If we put data in the output pipe, wakeup any potential readers. 1694 */ 1695 if (ret > 0) 1696 wakeup_pipe_readers(opipe); 1697 1698 return ret; 1699 } 1700 1701 /* 1702 * This is a tee(1) implementation that works on pipes. It doesn't copy 1703 * any data, it simply references the 'in' pages on the 'out' pipe. 1704 * The 'flags' used are the SPLICE_F_* variants, currently the only 1705 * applicable one is SPLICE_F_NONBLOCK. 1706 */ 1707 static long do_tee(struct file *in, struct file *out, size_t len, 1708 unsigned int flags) 1709 { 1710 struct pipe_inode_info *ipipe = get_pipe_info(in); 1711 struct pipe_inode_info *opipe = get_pipe_info(out); 1712 int ret = -EINVAL; 1713 1714 /* 1715 * Duplicate the contents of ipipe to opipe without actually 1716 * copying the data. 1717 */ 1718 if (ipipe && opipe && ipipe != opipe) { 1719 /* 1720 * Keep going, unless we encounter an error. The ipipe/opipe 1721 * ordering doesn't really matter. 1722 */ 1723 ret = ipipe_prep(ipipe, flags); 1724 if (!ret) { 1725 ret = opipe_prep(opipe, flags); 1726 if (!ret) 1727 ret = link_pipe(ipipe, opipe, len, flags); 1728 } 1729 } 1730 1731 return ret; 1732 } 1733 1734 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags) 1735 { 1736 struct fd in; 1737 int error; 1738 1739 if (unlikely(flags & ~SPLICE_F_ALL)) 1740 return -EINVAL; 1741 1742 if (unlikely(!len)) 1743 return 0; 1744 1745 error = -EBADF; 1746 in = fdget(fdin); 1747 if (in.file) { 1748 if (in.file->f_mode & FMODE_READ) { 1749 struct fd out = fdget(fdout); 1750 if (out.file) { 1751 if (out.file->f_mode & FMODE_WRITE) 1752 error = do_tee(in.file, out.file, 1753 len, flags); 1754 fdput(out); 1755 } 1756 } 1757 fdput(in); 1758 } 1759 1760 return error; 1761 } 1762