xref: /openbmc/linux/fs/splice.c (revision f442ab50)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * "splice": joining two ropes together by interweaving their strands.
4  *
5  * This is the "extended pipe" functionality, where a pipe is used as
6  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
7  * buffer that you can use to transfer data from one end to the other.
8  *
9  * The traditional unix read/write is extended with a "splice()" operation
10  * that transfers data buffers to or from a pipe buffer.
11  *
12  * Named by Larry McVoy, original implementation from Linus, extended by
13  * Jens to support splicing to files, network, direct splicing, etc and
14  * fixing lots of bugs.
15  *
16  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
17  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
18  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
19  *
20  */
21 #include <linux/bvec.h>
22 #include <linux/fs.h>
23 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/splice.h>
26 #include <linux/memcontrol.h>
27 #include <linux/mm_inline.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/export.h>
31 #include <linux/syscalls.h>
32 #include <linux/uio.h>
33 #include <linux/fsnotify.h>
34 #include <linux/security.h>
35 #include <linux/gfp.h>
36 #include <linux/net.h>
37 #include <linux/socket.h>
38 #include <linux/sched/signal.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Splice doesn't support FMODE_NOWAIT. Since pipes may set this flag to
44  * indicate they support non-blocking reads or writes, we must clear it
45  * here if set to avoid blocking other users of this pipe if splice is
46  * being done on it.
47  */
48 static noinline void noinline pipe_clear_nowait(struct file *file)
49 {
50 	fmode_t fmode = READ_ONCE(file->f_mode);
51 
52 	do {
53 		if (!(fmode & FMODE_NOWAIT))
54 			break;
55 	} while (!try_cmpxchg(&file->f_mode, &fmode, fmode & ~FMODE_NOWAIT));
56 }
57 
58 /*
59  * Attempt to steal a page from a pipe buffer. This should perhaps go into
60  * a vm helper function, it's already simplified quite a bit by the
61  * addition of remove_mapping(). If success is returned, the caller may
62  * attempt to reuse this page for another destination.
63  */
64 static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe,
65 		struct pipe_buffer *buf)
66 {
67 	struct folio *folio = page_folio(buf->page);
68 	struct address_space *mapping;
69 
70 	folio_lock(folio);
71 
72 	mapping = folio_mapping(folio);
73 	if (mapping) {
74 		WARN_ON(!folio_test_uptodate(folio));
75 
76 		/*
77 		 * At least for ext2 with nobh option, we need to wait on
78 		 * writeback completing on this folio, since we'll remove it
79 		 * from the pagecache.  Otherwise truncate wont wait on the
80 		 * folio, allowing the disk blocks to be reused by someone else
81 		 * before we actually wrote our data to them. fs corruption
82 		 * ensues.
83 		 */
84 		folio_wait_writeback(folio);
85 
86 		if (!filemap_release_folio(folio, GFP_KERNEL))
87 			goto out_unlock;
88 
89 		/*
90 		 * If we succeeded in removing the mapping, set LRU flag
91 		 * and return good.
92 		 */
93 		if (remove_mapping(mapping, folio)) {
94 			buf->flags |= PIPE_BUF_FLAG_LRU;
95 			return true;
96 		}
97 	}
98 
99 	/*
100 	 * Raced with truncate or failed to remove folio from current
101 	 * address space, unlock and return failure.
102 	 */
103 out_unlock:
104 	folio_unlock(folio);
105 	return false;
106 }
107 
108 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
109 					struct pipe_buffer *buf)
110 {
111 	put_page(buf->page);
112 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
113 }
114 
115 /*
116  * Check whether the contents of buf is OK to access. Since the content
117  * is a page cache page, IO may be in flight.
118  */
119 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
120 				       struct pipe_buffer *buf)
121 {
122 	struct page *page = buf->page;
123 	int err;
124 
125 	if (!PageUptodate(page)) {
126 		lock_page(page);
127 
128 		/*
129 		 * Page got truncated/unhashed. This will cause a 0-byte
130 		 * splice, if this is the first page.
131 		 */
132 		if (!page->mapping) {
133 			err = -ENODATA;
134 			goto error;
135 		}
136 
137 		/*
138 		 * Uh oh, read-error from disk.
139 		 */
140 		if (!PageUptodate(page)) {
141 			err = -EIO;
142 			goto error;
143 		}
144 
145 		/*
146 		 * Page is ok afterall, we are done.
147 		 */
148 		unlock_page(page);
149 	}
150 
151 	return 0;
152 error:
153 	unlock_page(page);
154 	return err;
155 }
156 
157 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
158 	.confirm	= page_cache_pipe_buf_confirm,
159 	.release	= page_cache_pipe_buf_release,
160 	.try_steal	= page_cache_pipe_buf_try_steal,
161 	.get		= generic_pipe_buf_get,
162 };
163 
164 static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe,
165 		struct pipe_buffer *buf)
166 {
167 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
168 		return false;
169 
170 	buf->flags |= PIPE_BUF_FLAG_LRU;
171 	return generic_pipe_buf_try_steal(pipe, buf);
172 }
173 
174 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
175 	.release	= page_cache_pipe_buf_release,
176 	.try_steal	= user_page_pipe_buf_try_steal,
177 	.get		= generic_pipe_buf_get,
178 };
179 
180 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
181 {
182 	smp_mb();
183 	if (waitqueue_active(&pipe->rd_wait))
184 		wake_up_interruptible(&pipe->rd_wait);
185 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
186 }
187 
188 /**
189  * splice_to_pipe - fill passed data into a pipe
190  * @pipe:	pipe to fill
191  * @spd:	data to fill
192  *
193  * Description:
194  *    @spd contains a map of pages and len/offset tuples, along with
195  *    the struct pipe_buf_operations associated with these pages. This
196  *    function will link that data to the pipe.
197  *
198  */
199 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
200 		       struct splice_pipe_desc *spd)
201 {
202 	unsigned int spd_pages = spd->nr_pages;
203 	unsigned int tail = pipe->tail;
204 	unsigned int head = pipe->head;
205 	unsigned int mask = pipe->ring_size - 1;
206 	int ret = 0, page_nr = 0;
207 
208 	if (!spd_pages)
209 		return 0;
210 
211 	if (unlikely(!pipe->readers)) {
212 		send_sig(SIGPIPE, current, 0);
213 		ret = -EPIPE;
214 		goto out;
215 	}
216 
217 	while (!pipe_full(head, tail, pipe->max_usage)) {
218 		struct pipe_buffer *buf = &pipe->bufs[head & mask];
219 
220 		buf->page = spd->pages[page_nr];
221 		buf->offset = spd->partial[page_nr].offset;
222 		buf->len = spd->partial[page_nr].len;
223 		buf->private = spd->partial[page_nr].private;
224 		buf->ops = spd->ops;
225 		buf->flags = 0;
226 
227 		head++;
228 		pipe->head = head;
229 		page_nr++;
230 		ret += buf->len;
231 
232 		if (!--spd->nr_pages)
233 			break;
234 	}
235 
236 	if (!ret)
237 		ret = -EAGAIN;
238 
239 out:
240 	while (page_nr < spd_pages)
241 		spd->spd_release(spd, page_nr++);
242 
243 	return ret;
244 }
245 EXPORT_SYMBOL_GPL(splice_to_pipe);
246 
247 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
248 {
249 	unsigned int head = pipe->head;
250 	unsigned int tail = pipe->tail;
251 	unsigned int mask = pipe->ring_size - 1;
252 	int ret;
253 
254 	if (unlikely(!pipe->readers)) {
255 		send_sig(SIGPIPE, current, 0);
256 		ret = -EPIPE;
257 	} else if (pipe_full(head, tail, pipe->max_usage)) {
258 		ret = -EAGAIN;
259 	} else {
260 		pipe->bufs[head & mask] = *buf;
261 		pipe->head = head + 1;
262 		return buf->len;
263 	}
264 	pipe_buf_release(pipe, buf);
265 	return ret;
266 }
267 EXPORT_SYMBOL(add_to_pipe);
268 
269 /*
270  * Check if we need to grow the arrays holding pages and partial page
271  * descriptions.
272  */
273 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
274 {
275 	unsigned int max_usage = READ_ONCE(pipe->max_usage);
276 
277 	spd->nr_pages_max = max_usage;
278 	if (max_usage <= PIPE_DEF_BUFFERS)
279 		return 0;
280 
281 	spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL);
282 	spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page),
283 				     GFP_KERNEL);
284 
285 	if (spd->pages && spd->partial)
286 		return 0;
287 
288 	kfree(spd->pages);
289 	kfree(spd->partial);
290 	return -ENOMEM;
291 }
292 
293 void splice_shrink_spd(struct splice_pipe_desc *spd)
294 {
295 	if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
296 		return;
297 
298 	kfree(spd->pages);
299 	kfree(spd->partial);
300 }
301 
302 /**
303  * copy_splice_read -  Copy data from a file and splice the copy into a pipe
304  * @in: The file to read from
305  * @ppos: Pointer to the file position to read from
306  * @pipe: The pipe to splice into
307  * @len: The amount to splice
308  * @flags: The SPLICE_F_* flags
309  *
310  * This function allocates a bunch of pages sufficient to hold the requested
311  * amount of data (but limited by the remaining pipe capacity), passes it to
312  * the file's ->read_iter() to read into and then splices the used pages into
313  * the pipe.
314  *
315  * Return: On success, the number of bytes read will be returned and *@ppos
316  * will be updated if appropriate; 0 will be returned if there is no more data
317  * to be read; -EAGAIN will be returned if the pipe had no space, and some
318  * other negative error code will be returned on error.  A short read may occur
319  * if the pipe has insufficient space, we reach the end of the data or we hit a
320  * hole.
321  */
322 ssize_t copy_splice_read(struct file *in, loff_t *ppos,
323 			 struct pipe_inode_info *pipe,
324 			 size_t len, unsigned int flags)
325 {
326 	struct iov_iter to;
327 	struct bio_vec *bv;
328 	struct kiocb kiocb;
329 	struct page **pages;
330 	ssize_t ret;
331 	size_t used, npages, chunk, remain, keep = 0;
332 	int i;
333 
334 	/* Work out how much data we can actually add into the pipe */
335 	used = pipe_occupancy(pipe->head, pipe->tail);
336 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
337 	len = min_t(size_t, len, npages * PAGE_SIZE);
338 	npages = DIV_ROUND_UP(len, PAGE_SIZE);
339 
340 	bv = kzalloc(array_size(npages, sizeof(bv[0])) +
341 		     array_size(npages, sizeof(struct page *)), GFP_KERNEL);
342 	if (!bv)
343 		return -ENOMEM;
344 
345 	pages = (struct page **)(bv + npages);
346 	npages = alloc_pages_bulk_array(GFP_USER, npages, pages);
347 	if (!npages) {
348 		kfree(bv);
349 		return -ENOMEM;
350 	}
351 
352 	remain = len = min_t(size_t, len, npages * PAGE_SIZE);
353 
354 	for (i = 0; i < npages; i++) {
355 		chunk = min_t(size_t, PAGE_SIZE, remain);
356 		bv[i].bv_page = pages[i];
357 		bv[i].bv_offset = 0;
358 		bv[i].bv_len = chunk;
359 		remain -= chunk;
360 	}
361 
362 	/* Do the I/O */
363 	iov_iter_bvec(&to, ITER_DEST, bv, npages, len);
364 	init_sync_kiocb(&kiocb, in);
365 	kiocb.ki_pos = *ppos;
366 	ret = call_read_iter(in, &kiocb, &to);
367 
368 	if (ret > 0) {
369 		keep = DIV_ROUND_UP(ret, PAGE_SIZE);
370 		*ppos = kiocb.ki_pos;
371 	}
372 
373 	/*
374 	 * Callers of ->splice_read() expect -EAGAIN on "can't put anything in
375 	 * there", rather than -EFAULT.
376 	 */
377 	if (ret == -EFAULT)
378 		ret = -EAGAIN;
379 
380 	/* Free any pages that didn't get touched at all. */
381 	if (keep < npages)
382 		release_pages(pages + keep, npages - keep);
383 
384 	/* Push the remaining pages into the pipe. */
385 	remain = ret;
386 	for (i = 0; i < keep; i++) {
387 		struct pipe_buffer *buf = pipe_head_buf(pipe);
388 
389 		chunk = min_t(size_t, remain, PAGE_SIZE);
390 		*buf = (struct pipe_buffer) {
391 			.ops	= &default_pipe_buf_ops,
392 			.page	= bv[i].bv_page,
393 			.offset	= 0,
394 			.len	= chunk,
395 		};
396 		pipe->head++;
397 		remain -= chunk;
398 	}
399 
400 	kfree(bv);
401 	return ret;
402 }
403 EXPORT_SYMBOL(copy_splice_read);
404 
405 const struct pipe_buf_operations default_pipe_buf_ops = {
406 	.release	= generic_pipe_buf_release,
407 	.try_steal	= generic_pipe_buf_try_steal,
408 	.get		= generic_pipe_buf_get,
409 };
410 
411 /* Pipe buffer operations for a socket and similar. */
412 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
413 	.release	= generic_pipe_buf_release,
414 	.get		= generic_pipe_buf_get,
415 };
416 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
417 
418 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
419 {
420 	smp_mb();
421 	if (waitqueue_active(&pipe->wr_wait))
422 		wake_up_interruptible(&pipe->wr_wait);
423 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
424 }
425 
426 /**
427  * splice_from_pipe_feed - feed available data from a pipe to a file
428  * @pipe:	pipe to splice from
429  * @sd:		information to @actor
430  * @actor:	handler that splices the data
431  *
432  * Description:
433  *    This function loops over the pipe and calls @actor to do the
434  *    actual moving of a single struct pipe_buffer to the desired
435  *    destination.  It returns when there's no more buffers left in
436  *    the pipe or if the requested number of bytes (@sd->total_len)
437  *    have been copied.  It returns a positive number (one) if the
438  *    pipe needs to be filled with more data, zero if the required
439  *    number of bytes have been copied and -errno on error.
440  *
441  *    This, together with splice_from_pipe_{begin,end,next}, may be
442  *    used to implement the functionality of __splice_from_pipe() when
443  *    locking is required around copying the pipe buffers to the
444  *    destination.
445  */
446 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
447 			  splice_actor *actor)
448 {
449 	unsigned int head = pipe->head;
450 	unsigned int tail = pipe->tail;
451 	unsigned int mask = pipe->ring_size - 1;
452 	int ret;
453 
454 	while (!pipe_empty(head, tail)) {
455 		struct pipe_buffer *buf = &pipe->bufs[tail & mask];
456 
457 		sd->len = buf->len;
458 		if (sd->len > sd->total_len)
459 			sd->len = sd->total_len;
460 
461 		ret = pipe_buf_confirm(pipe, buf);
462 		if (unlikely(ret)) {
463 			if (ret == -ENODATA)
464 				ret = 0;
465 			return ret;
466 		}
467 
468 		ret = actor(pipe, buf, sd);
469 		if (ret <= 0)
470 			return ret;
471 
472 		buf->offset += ret;
473 		buf->len -= ret;
474 
475 		sd->num_spliced += ret;
476 		sd->len -= ret;
477 		sd->pos += ret;
478 		sd->total_len -= ret;
479 
480 		if (!buf->len) {
481 			pipe_buf_release(pipe, buf);
482 			tail++;
483 			pipe->tail = tail;
484 			if (pipe->files)
485 				sd->need_wakeup = true;
486 		}
487 
488 		if (!sd->total_len)
489 			return 0;
490 	}
491 
492 	return 1;
493 }
494 
495 /* We know we have a pipe buffer, but maybe it's empty? */
496 static inline bool eat_empty_buffer(struct pipe_inode_info *pipe)
497 {
498 	unsigned int tail = pipe->tail;
499 	unsigned int mask = pipe->ring_size - 1;
500 	struct pipe_buffer *buf = &pipe->bufs[tail & mask];
501 
502 	if (unlikely(!buf->len)) {
503 		pipe_buf_release(pipe, buf);
504 		pipe->tail = tail+1;
505 		return true;
506 	}
507 
508 	return false;
509 }
510 
511 /**
512  * splice_from_pipe_next - wait for some data to splice from
513  * @pipe:	pipe to splice from
514  * @sd:		information about the splice operation
515  *
516  * Description:
517  *    This function will wait for some data and return a positive
518  *    value (one) if pipe buffers are available.  It will return zero
519  *    or -errno if no more data needs to be spliced.
520  */
521 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
522 {
523 	/*
524 	 * Check for signal early to make process killable when there are
525 	 * always buffers available
526 	 */
527 	if (signal_pending(current))
528 		return -ERESTARTSYS;
529 
530 repeat:
531 	while (pipe_empty(pipe->head, pipe->tail)) {
532 		if (!pipe->writers)
533 			return 0;
534 
535 		if (sd->num_spliced)
536 			return 0;
537 
538 		if (sd->flags & SPLICE_F_NONBLOCK)
539 			return -EAGAIN;
540 
541 		if (signal_pending(current))
542 			return -ERESTARTSYS;
543 
544 		if (sd->need_wakeup) {
545 			wakeup_pipe_writers(pipe);
546 			sd->need_wakeup = false;
547 		}
548 
549 		pipe_wait_readable(pipe);
550 	}
551 
552 	if (eat_empty_buffer(pipe))
553 		goto repeat;
554 
555 	return 1;
556 }
557 
558 /**
559  * splice_from_pipe_begin - start splicing from pipe
560  * @sd:		information about the splice operation
561  *
562  * Description:
563  *    This function should be called before a loop containing
564  *    splice_from_pipe_next() and splice_from_pipe_feed() to
565  *    initialize the necessary fields of @sd.
566  */
567 static void splice_from_pipe_begin(struct splice_desc *sd)
568 {
569 	sd->num_spliced = 0;
570 	sd->need_wakeup = false;
571 }
572 
573 /**
574  * splice_from_pipe_end - finish splicing from pipe
575  * @pipe:	pipe to splice from
576  * @sd:		information about the splice operation
577  *
578  * Description:
579  *    This function will wake up pipe writers if necessary.  It should
580  *    be called after a loop containing splice_from_pipe_next() and
581  *    splice_from_pipe_feed().
582  */
583 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
584 {
585 	if (sd->need_wakeup)
586 		wakeup_pipe_writers(pipe);
587 }
588 
589 /**
590  * __splice_from_pipe - splice data from a pipe to given actor
591  * @pipe:	pipe to splice from
592  * @sd:		information to @actor
593  * @actor:	handler that splices the data
594  *
595  * Description:
596  *    This function does little more than loop over the pipe and call
597  *    @actor to do the actual moving of a single struct pipe_buffer to
598  *    the desired destination. See pipe_to_file, pipe_to_sendmsg, or
599  *    pipe_to_user.
600  *
601  */
602 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
603 			   splice_actor *actor)
604 {
605 	int ret;
606 
607 	splice_from_pipe_begin(sd);
608 	do {
609 		cond_resched();
610 		ret = splice_from_pipe_next(pipe, sd);
611 		if (ret > 0)
612 			ret = splice_from_pipe_feed(pipe, sd, actor);
613 	} while (ret > 0);
614 	splice_from_pipe_end(pipe, sd);
615 
616 	return sd->num_spliced ? sd->num_spliced : ret;
617 }
618 EXPORT_SYMBOL(__splice_from_pipe);
619 
620 /**
621  * splice_from_pipe - splice data from a pipe to a file
622  * @pipe:	pipe to splice from
623  * @out:	file to splice to
624  * @ppos:	position in @out
625  * @len:	how many bytes to splice
626  * @flags:	splice modifier flags
627  * @actor:	handler that splices the data
628  *
629  * Description:
630  *    See __splice_from_pipe. This function locks the pipe inode,
631  *    otherwise it's identical to __splice_from_pipe().
632  *
633  */
634 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
635 			 loff_t *ppos, size_t len, unsigned int flags,
636 			 splice_actor *actor)
637 {
638 	ssize_t ret;
639 	struct splice_desc sd = {
640 		.total_len = len,
641 		.flags = flags,
642 		.pos = *ppos,
643 		.u.file = out,
644 	};
645 
646 	pipe_lock(pipe);
647 	ret = __splice_from_pipe(pipe, &sd, actor);
648 	pipe_unlock(pipe);
649 
650 	return ret;
651 }
652 
653 /**
654  * iter_file_splice_write - splice data from a pipe to a file
655  * @pipe:	pipe info
656  * @out:	file to write to
657  * @ppos:	position in @out
658  * @len:	number of bytes to splice
659  * @flags:	splice modifier flags
660  *
661  * Description:
662  *    Will either move or copy pages (determined by @flags options) from
663  *    the given pipe inode to the given file.
664  *    This one is ->write_iter-based.
665  *
666  */
667 ssize_t
668 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
669 			  loff_t *ppos, size_t len, unsigned int flags)
670 {
671 	struct splice_desc sd = {
672 		.total_len = len,
673 		.flags = flags,
674 		.pos = *ppos,
675 		.u.file = out,
676 	};
677 	int nbufs = pipe->max_usage;
678 	struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
679 					GFP_KERNEL);
680 	ssize_t ret;
681 
682 	if (unlikely(!array))
683 		return -ENOMEM;
684 
685 	pipe_lock(pipe);
686 
687 	splice_from_pipe_begin(&sd);
688 	while (sd.total_len) {
689 		struct iov_iter from;
690 		unsigned int head, tail, mask;
691 		size_t left;
692 		int n;
693 
694 		ret = splice_from_pipe_next(pipe, &sd);
695 		if (ret <= 0)
696 			break;
697 
698 		if (unlikely(nbufs < pipe->max_usage)) {
699 			kfree(array);
700 			nbufs = pipe->max_usage;
701 			array = kcalloc(nbufs, sizeof(struct bio_vec),
702 					GFP_KERNEL);
703 			if (!array) {
704 				ret = -ENOMEM;
705 				break;
706 			}
707 		}
708 
709 		head = pipe->head;
710 		tail = pipe->tail;
711 		mask = pipe->ring_size - 1;
712 
713 		/* build the vector */
714 		left = sd.total_len;
715 		for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) {
716 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
717 			size_t this_len = buf->len;
718 
719 			/* zero-length bvecs are not supported, skip them */
720 			if (!this_len)
721 				continue;
722 			this_len = min(this_len, left);
723 
724 			ret = pipe_buf_confirm(pipe, buf);
725 			if (unlikely(ret)) {
726 				if (ret == -ENODATA)
727 					ret = 0;
728 				goto done;
729 			}
730 
731 			bvec_set_page(&array[n], buf->page, this_len,
732 				      buf->offset);
733 			left -= this_len;
734 			n++;
735 		}
736 
737 		iov_iter_bvec(&from, ITER_SOURCE, array, n, sd.total_len - left);
738 		ret = vfs_iter_write(out, &from, &sd.pos, 0);
739 		if (ret <= 0)
740 			break;
741 
742 		sd.num_spliced += ret;
743 		sd.total_len -= ret;
744 		*ppos = sd.pos;
745 
746 		/* dismiss the fully eaten buffers, adjust the partial one */
747 		tail = pipe->tail;
748 		while (ret) {
749 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
750 			if (ret >= buf->len) {
751 				ret -= buf->len;
752 				buf->len = 0;
753 				pipe_buf_release(pipe, buf);
754 				tail++;
755 				pipe->tail = tail;
756 				if (pipe->files)
757 					sd.need_wakeup = true;
758 			} else {
759 				buf->offset += ret;
760 				buf->len -= ret;
761 				ret = 0;
762 			}
763 		}
764 	}
765 done:
766 	kfree(array);
767 	splice_from_pipe_end(pipe, &sd);
768 
769 	pipe_unlock(pipe);
770 
771 	if (sd.num_spliced)
772 		ret = sd.num_spliced;
773 
774 	return ret;
775 }
776 
777 EXPORT_SYMBOL(iter_file_splice_write);
778 
779 #ifdef CONFIG_NET
780 /**
781  * splice_to_socket - splice data from a pipe to a socket
782  * @pipe:	pipe to splice from
783  * @out:	socket to write to
784  * @ppos:	position in @out
785  * @len:	number of bytes to splice
786  * @flags:	splice modifier flags
787  *
788  * Description:
789  *    Will send @len bytes from the pipe to a network socket. No data copying
790  *    is involved.
791  *
792  */
793 ssize_t splice_to_socket(struct pipe_inode_info *pipe, struct file *out,
794 			 loff_t *ppos, size_t len, unsigned int flags)
795 {
796 	struct socket *sock = sock_from_file(out);
797 	struct bio_vec bvec[16];
798 	struct msghdr msg = {};
799 	ssize_t ret = 0;
800 	size_t spliced = 0;
801 	bool need_wakeup = false;
802 
803 	pipe_lock(pipe);
804 
805 	while (len > 0) {
806 		unsigned int head, tail, mask, bc = 0;
807 		size_t remain = len;
808 
809 		/*
810 		 * Check for signal early to make process killable when there
811 		 * are always buffers available
812 		 */
813 		ret = -ERESTARTSYS;
814 		if (signal_pending(current))
815 			break;
816 
817 		while (pipe_empty(pipe->head, pipe->tail)) {
818 			ret = 0;
819 			if (!pipe->writers)
820 				goto out;
821 
822 			if (spliced)
823 				goto out;
824 
825 			ret = -EAGAIN;
826 			if (flags & SPLICE_F_NONBLOCK)
827 				goto out;
828 
829 			ret = -ERESTARTSYS;
830 			if (signal_pending(current))
831 				goto out;
832 
833 			if (need_wakeup) {
834 				wakeup_pipe_writers(pipe);
835 				need_wakeup = false;
836 			}
837 
838 			pipe_wait_readable(pipe);
839 		}
840 
841 		head = pipe->head;
842 		tail = pipe->tail;
843 		mask = pipe->ring_size - 1;
844 
845 		while (!pipe_empty(head, tail)) {
846 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
847 			size_t seg;
848 
849 			if (!buf->len) {
850 				tail++;
851 				continue;
852 			}
853 
854 			seg = min_t(size_t, remain, buf->len);
855 
856 			ret = pipe_buf_confirm(pipe, buf);
857 			if (unlikely(ret)) {
858 				if (ret == -ENODATA)
859 					ret = 0;
860 				break;
861 			}
862 
863 			bvec_set_page(&bvec[bc++], buf->page, seg, buf->offset);
864 			remain -= seg;
865 			if (remain == 0 || bc >= ARRAY_SIZE(bvec))
866 				break;
867 			tail++;
868 		}
869 
870 		if (!bc)
871 			break;
872 
873 		msg.msg_flags = MSG_SPLICE_PAGES;
874 		if (flags & SPLICE_F_MORE)
875 			msg.msg_flags |= MSG_MORE;
876 		if (remain && pipe_occupancy(pipe->head, tail) > 0)
877 			msg.msg_flags |= MSG_MORE;
878 		if (out->f_flags & O_NONBLOCK)
879 			msg.msg_flags |= MSG_DONTWAIT;
880 
881 		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, bvec, bc,
882 			      len - remain);
883 		ret = sock_sendmsg(sock, &msg);
884 		if (ret <= 0)
885 			break;
886 
887 		spliced += ret;
888 		len -= ret;
889 		tail = pipe->tail;
890 		while (ret > 0) {
891 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
892 			size_t seg = min_t(size_t, ret, buf->len);
893 
894 			buf->offset += seg;
895 			buf->len -= seg;
896 			ret -= seg;
897 
898 			if (!buf->len) {
899 				pipe_buf_release(pipe, buf);
900 				tail++;
901 			}
902 		}
903 
904 		if (tail != pipe->tail) {
905 			pipe->tail = tail;
906 			if (pipe->files)
907 				need_wakeup = true;
908 		}
909 	}
910 
911 out:
912 	pipe_unlock(pipe);
913 	if (need_wakeup)
914 		wakeup_pipe_writers(pipe);
915 	return spliced ?: ret;
916 }
917 #endif
918 
919 static int warn_unsupported(struct file *file, const char *op)
920 {
921 	pr_debug_ratelimited(
922 		"splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n",
923 		op, file, current->pid, current->comm);
924 	return -EINVAL;
925 }
926 
927 /*
928  * Attempt to initiate a splice from pipe to file.
929  */
930 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
931 			   loff_t *ppos, size_t len, unsigned int flags)
932 {
933 	if (unlikely(!out->f_op->splice_write))
934 		return warn_unsupported(out, "write");
935 	return out->f_op->splice_write(pipe, out, ppos, len, flags);
936 }
937 
938 /*
939  * Indicate to the caller that there was a premature EOF when reading from the
940  * source and the caller didn't indicate they would be sending more data after
941  * this.
942  */
943 static void do_splice_eof(struct splice_desc *sd)
944 {
945 	if (sd->splice_eof)
946 		sd->splice_eof(sd);
947 }
948 
949 /**
950  * vfs_splice_read - Read data from a file and splice it into a pipe
951  * @in:		File to splice from
952  * @ppos:	Input file offset
953  * @pipe:	Pipe to splice to
954  * @len:	Number of bytes to splice
955  * @flags:	Splice modifier flags (SPLICE_F_*)
956  *
957  * Splice the requested amount of data from the input file to the pipe.  This
958  * is synchronous as the caller must hold the pipe lock across the entire
959  * operation.
960  *
961  * If successful, it returns the amount of data spliced, 0 if it hit the EOF or
962  * a hole and a negative error code otherwise.
963  */
964 long vfs_splice_read(struct file *in, loff_t *ppos,
965 		     struct pipe_inode_info *pipe, size_t len,
966 		     unsigned int flags)
967 {
968 	unsigned int p_space;
969 	int ret;
970 
971 	if (unlikely(!(in->f_mode & FMODE_READ)))
972 		return -EBADF;
973 	if (!len)
974 		return 0;
975 
976 	/* Don't try to read more the pipe has space for. */
977 	p_space = pipe->max_usage - pipe_occupancy(pipe->head, pipe->tail);
978 	len = min_t(size_t, len, p_space << PAGE_SHIFT);
979 
980 	ret = rw_verify_area(READ, in, ppos, len);
981 	if (unlikely(ret < 0))
982 		return ret;
983 
984 	if (unlikely(len > MAX_RW_COUNT))
985 		len = MAX_RW_COUNT;
986 
987 	if (unlikely(!in->f_op->splice_read))
988 		return warn_unsupported(in, "read");
989 	/*
990 	 * O_DIRECT and DAX don't deal with the pagecache, so we allocate a
991 	 * buffer, copy into it and splice that into the pipe.
992 	 */
993 	if ((in->f_flags & O_DIRECT) || IS_DAX(in->f_mapping->host))
994 		return copy_splice_read(in, ppos, pipe, len, flags);
995 	return in->f_op->splice_read(in, ppos, pipe, len, flags);
996 }
997 EXPORT_SYMBOL_GPL(vfs_splice_read);
998 
999 /**
1000  * splice_direct_to_actor - splices data directly between two non-pipes
1001  * @in:		file to splice from
1002  * @sd:		actor information on where to splice to
1003  * @actor:	handles the data splicing
1004  *
1005  * Description:
1006  *    This is a special case helper to splice directly between two
1007  *    points, without requiring an explicit pipe. Internally an allocated
1008  *    pipe is cached in the process, and reused during the lifetime of
1009  *    that process.
1010  *
1011  */
1012 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1013 			       splice_direct_actor *actor)
1014 {
1015 	struct pipe_inode_info *pipe;
1016 	long ret, bytes;
1017 	size_t len;
1018 	int i, flags, more;
1019 
1020 	/*
1021 	 * We require the input to be seekable, as we don't want to randomly
1022 	 * drop data for eg socket -> socket splicing. Use the piped splicing
1023 	 * for that!
1024 	 */
1025 	if (unlikely(!(in->f_mode & FMODE_LSEEK)))
1026 		return -EINVAL;
1027 
1028 	/*
1029 	 * neither in nor out is a pipe, setup an internal pipe attached to
1030 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
1031 	 */
1032 	pipe = current->splice_pipe;
1033 	if (unlikely(!pipe)) {
1034 		pipe = alloc_pipe_info();
1035 		if (!pipe)
1036 			return -ENOMEM;
1037 
1038 		/*
1039 		 * We don't have an immediate reader, but we'll read the stuff
1040 		 * out of the pipe right after the splice_to_pipe(). So set
1041 		 * PIPE_READERS appropriately.
1042 		 */
1043 		pipe->readers = 1;
1044 
1045 		current->splice_pipe = pipe;
1046 	}
1047 
1048 	/*
1049 	 * Do the splice.
1050 	 */
1051 	bytes = 0;
1052 	len = sd->total_len;
1053 
1054 	/* Don't block on output, we have to drain the direct pipe. */
1055 	flags = sd->flags;
1056 	sd->flags &= ~SPLICE_F_NONBLOCK;
1057 
1058 	/*
1059 	 * We signal MORE until we've read sufficient data to fulfill the
1060 	 * request and we keep signalling it if the caller set it.
1061 	 */
1062 	more = sd->flags & SPLICE_F_MORE;
1063 	sd->flags |= SPLICE_F_MORE;
1064 
1065 	WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail));
1066 
1067 	while (len) {
1068 		size_t read_len;
1069 		loff_t pos = sd->pos, prev_pos = pos;
1070 
1071 		ret = vfs_splice_read(in, &pos, pipe, len, flags);
1072 		if (unlikely(ret <= 0))
1073 			goto read_failure;
1074 
1075 		read_len = ret;
1076 		sd->total_len = read_len;
1077 
1078 		/*
1079 		 * If we now have sufficient data to fulfill the request then
1080 		 * we clear SPLICE_F_MORE if it was not set initially.
1081 		 */
1082 		if (read_len >= len && !more)
1083 			sd->flags &= ~SPLICE_F_MORE;
1084 
1085 		/*
1086 		 * NOTE: nonblocking mode only applies to the input. We
1087 		 * must not do the output in nonblocking mode as then we
1088 		 * could get stuck data in the internal pipe:
1089 		 */
1090 		ret = actor(pipe, sd);
1091 		if (unlikely(ret <= 0)) {
1092 			sd->pos = prev_pos;
1093 			goto out_release;
1094 		}
1095 
1096 		bytes += ret;
1097 		len -= ret;
1098 		sd->pos = pos;
1099 
1100 		if (ret < read_len) {
1101 			sd->pos = prev_pos + ret;
1102 			goto out_release;
1103 		}
1104 	}
1105 
1106 done:
1107 	pipe->tail = pipe->head = 0;
1108 	file_accessed(in);
1109 	return bytes;
1110 
1111 read_failure:
1112 	/*
1113 	 * If the user did *not* set SPLICE_F_MORE *and* we didn't hit that
1114 	 * "use all of len" case that cleared SPLICE_F_MORE, *and* we did a
1115 	 * "->splice_in()" that returned EOF (ie zero) *and* we have sent at
1116 	 * least 1 byte *then* we will also do the ->splice_eof() call.
1117 	 */
1118 	if (ret == 0 && !more && len > 0 && bytes)
1119 		do_splice_eof(sd);
1120 out_release:
1121 	/*
1122 	 * If we did an incomplete transfer we must release
1123 	 * the pipe buffers in question:
1124 	 */
1125 	for (i = 0; i < pipe->ring_size; i++) {
1126 		struct pipe_buffer *buf = &pipe->bufs[i];
1127 
1128 		if (buf->ops)
1129 			pipe_buf_release(pipe, buf);
1130 	}
1131 
1132 	if (!bytes)
1133 		bytes = ret;
1134 
1135 	goto done;
1136 }
1137 EXPORT_SYMBOL(splice_direct_to_actor);
1138 
1139 static int direct_splice_actor(struct pipe_inode_info *pipe,
1140 			       struct splice_desc *sd)
1141 {
1142 	struct file *file = sd->u.file;
1143 
1144 	return do_splice_from(pipe, file, sd->opos, sd->total_len,
1145 			      sd->flags);
1146 }
1147 
1148 static void direct_file_splice_eof(struct splice_desc *sd)
1149 {
1150 	struct file *file = sd->u.file;
1151 
1152 	if (file->f_op->splice_eof)
1153 		file->f_op->splice_eof(file);
1154 }
1155 
1156 /**
1157  * do_splice_direct - splices data directly between two files
1158  * @in:		file to splice from
1159  * @ppos:	input file offset
1160  * @out:	file to splice to
1161  * @opos:	output file offset
1162  * @len:	number of bytes to splice
1163  * @flags:	splice modifier flags
1164  *
1165  * Description:
1166  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1167  *    doing it in the application would incur an extra system call
1168  *    (splice in + splice out, as compared to just sendfile()). So this helper
1169  *    can splice directly through a process-private pipe.
1170  *
1171  */
1172 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1173 		      loff_t *opos, size_t len, unsigned int flags)
1174 {
1175 	struct splice_desc sd = {
1176 		.len		= len,
1177 		.total_len	= len,
1178 		.flags		= flags,
1179 		.pos		= *ppos,
1180 		.u.file		= out,
1181 		.splice_eof	= direct_file_splice_eof,
1182 		.opos		= opos,
1183 	};
1184 	long ret;
1185 
1186 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1187 		return -EBADF;
1188 
1189 	if (unlikely(out->f_flags & O_APPEND))
1190 		return -EINVAL;
1191 
1192 	ret = rw_verify_area(WRITE, out, opos, len);
1193 	if (unlikely(ret < 0))
1194 		return ret;
1195 
1196 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1197 	if (ret > 0)
1198 		*ppos = sd.pos;
1199 
1200 	return ret;
1201 }
1202 EXPORT_SYMBOL(do_splice_direct);
1203 
1204 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1205 {
1206 	for (;;) {
1207 		if (unlikely(!pipe->readers)) {
1208 			send_sig(SIGPIPE, current, 0);
1209 			return -EPIPE;
1210 		}
1211 		if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1212 			return 0;
1213 		if (flags & SPLICE_F_NONBLOCK)
1214 			return -EAGAIN;
1215 		if (signal_pending(current))
1216 			return -ERESTARTSYS;
1217 		pipe_wait_writable(pipe);
1218 	}
1219 }
1220 
1221 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1222 			       struct pipe_inode_info *opipe,
1223 			       size_t len, unsigned int flags);
1224 
1225 long splice_file_to_pipe(struct file *in,
1226 			 struct pipe_inode_info *opipe,
1227 			 loff_t *offset,
1228 			 size_t len, unsigned int flags)
1229 {
1230 	long ret;
1231 
1232 	pipe_lock(opipe);
1233 	ret = wait_for_space(opipe, flags);
1234 	if (!ret)
1235 		ret = vfs_splice_read(in, offset, opipe, len, flags);
1236 	pipe_unlock(opipe);
1237 	if (ret > 0)
1238 		wakeup_pipe_readers(opipe);
1239 	return ret;
1240 }
1241 
1242 /*
1243  * Determine where to splice to/from.
1244  */
1245 long do_splice(struct file *in, loff_t *off_in, struct file *out,
1246 	       loff_t *off_out, size_t len, unsigned int flags)
1247 {
1248 	struct pipe_inode_info *ipipe;
1249 	struct pipe_inode_info *opipe;
1250 	loff_t offset;
1251 	long ret;
1252 
1253 	if (unlikely(!(in->f_mode & FMODE_READ) ||
1254 		     !(out->f_mode & FMODE_WRITE)))
1255 		return -EBADF;
1256 
1257 	ipipe = get_pipe_info(in, true);
1258 	opipe = get_pipe_info(out, true);
1259 
1260 	if (ipipe && opipe) {
1261 		if (off_in || off_out)
1262 			return -ESPIPE;
1263 
1264 		/* Splicing to self would be fun, but... */
1265 		if (ipipe == opipe)
1266 			return -EINVAL;
1267 
1268 		if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1269 			flags |= SPLICE_F_NONBLOCK;
1270 
1271 		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1272 	}
1273 
1274 	if (ipipe) {
1275 		if (off_in)
1276 			return -ESPIPE;
1277 		if (off_out) {
1278 			if (!(out->f_mode & FMODE_PWRITE))
1279 				return -EINVAL;
1280 			offset = *off_out;
1281 		} else {
1282 			offset = out->f_pos;
1283 		}
1284 
1285 		if (unlikely(out->f_flags & O_APPEND))
1286 			return -EINVAL;
1287 
1288 		ret = rw_verify_area(WRITE, out, &offset, len);
1289 		if (unlikely(ret < 0))
1290 			return ret;
1291 
1292 		if (in->f_flags & O_NONBLOCK)
1293 			flags |= SPLICE_F_NONBLOCK;
1294 
1295 		file_start_write(out);
1296 		ret = do_splice_from(ipipe, out, &offset, len, flags);
1297 		file_end_write(out);
1298 
1299 		if (ret > 0)
1300 			fsnotify_modify(out);
1301 
1302 		if (!off_out)
1303 			out->f_pos = offset;
1304 		else
1305 			*off_out = offset;
1306 
1307 		return ret;
1308 	}
1309 
1310 	if (opipe) {
1311 		if (off_out)
1312 			return -ESPIPE;
1313 		if (off_in) {
1314 			if (!(in->f_mode & FMODE_PREAD))
1315 				return -EINVAL;
1316 			offset = *off_in;
1317 		} else {
1318 			offset = in->f_pos;
1319 		}
1320 
1321 		if (out->f_flags & O_NONBLOCK)
1322 			flags |= SPLICE_F_NONBLOCK;
1323 
1324 		ret = splice_file_to_pipe(in, opipe, &offset, len, flags);
1325 
1326 		if (ret > 0)
1327 			fsnotify_access(in);
1328 
1329 		if (!off_in)
1330 			in->f_pos = offset;
1331 		else
1332 			*off_in = offset;
1333 
1334 		return ret;
1335 	}
1336 
1337 	return -EINVAL;
1338 }
1339 
1340 static long __do_splice(struct file *in, loff_t __user *off_in,
1341 			struct file *out, loff_t __user *off_out,
1342 			size_t len, unsigned int flags)
1343 {
1344 	struct pipe_inode_info *ipipe;
1345 	struct pipe_inode_info *opipe;
1346 	loff_t offset, *__off_in = NULL, *__off_out = NULL;
1347 	long ret;
1348 
1349 	ipipe = get_pipe_info(in, true);
1350 	opipe = get_pipe_info(out, true);
1351 
1352 	if (ipipe) {
1353 		if (off_in)
1354 			return -ESPIPE;
1355 		pipe_clear_nowait(in);
1356 	}
1357 	if (opipe) {
1358 		if (off_out)
1359 			return -ESPIPE;
1360 		pipe_clear_nowait(out);
1361 	}
1362 
1363 	if (off_out) {
1364 		if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1365 			return -EFAULT;
1366 		__off_out = &offset;
1367 	}
1368 	if (off_in) {
1369 		if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1370 			return -EFAULT;
1371 		__off_in = &offset;
1372 	}
1373 
1374 	ret = do_splice(in, __off_in, out, __off_out, len, flags);
1375 	if (ret < 0)
1376 		return ret;
1377 
1378 	if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t)))
1379 		return -EFAULT;
1380 	if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t)))
1381 		return -EFAULT;
1382 
1383 	return ret;
1384 }
1385 
1386 static int iter_to_pipe(struct iov_iter *from,
1387 			struct pipe_inode_info *pipe,
1388 			unsigned flags)
1389 {
1390 	struct pipe_buffer buf = {
1391 		.ops = &user_page_pipe_buf_ops,
1392 		.flags = flags
1393 	};
1394 	size_t total = 0;
1395 	int ret = 0;
1396 
1397 	while (iov_iter_count(from)) {
1398 		struct page *pages[16];
1399 		ssize_t left;
1400 		size_t start;
1401 		int i, n;
1402 
1403 		left = iov_iter_get_pages2(from, pages, ~0UL, 16, &start);
1404 		if (left <= 0) {
1405 			ret = left;
1406 			break;
1407 		}
1408 
1409 		n = DIV_ROUND_UP(left + start, PAGE_SIZE);
1410 		for (i = 0; i < n; i++) {
1411 			int size = min_t(int, left, PAGE_SIZE - start);
1412 
1413 			buf.page = pages[i];
1414 			buf.offset = start;
1415 			buf.len = size;
1416 			ret = add_to_pipe(pipe, &buf);
1417 			if (unlikely(ret < 0)) {
1418 				iov_iter_revert(from, left);
1419 				// this one got dropped by add_to_pipe()
1420 				while (++i < n)
1421 					put_page(pages[i]);
1422 				goto out;
1423 			}
1424 			total += ret;
1425 			left -= size;
1426 			start = 0;
1427 		}
1428 	}
1429 out:
1430 	return total ? total : ret;
1431 }
1432 
1433 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1434 			struct splice_desc *sd)
1435 {
1436 	int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1437 	return n == sd->len ? n : -EFAULT;
1438 }
1439 
1440 /*
1441  * For lack of a better implementation, implement vmsplice() to userspace
1442  * as a simple copy of the pipes pages to the user iov.
1443  */
1444 static long vmsplice_to_user(struct file *file, struct iov_iter *iter,
1445 			     unsigned int flags)
1446 {
1447 	struct pipe_inode_info *pipe = get_pipe_info(file, true);
1448 	struct splice_desc sd = {
1449 		.total_len = iov_iter_count(iter),
1450 		.flags = flags,
1451 		.u.data = iter
1452 	};
1453 	long ret = 0;
1454 
1455 	if (!pipe)
1456 		return -EBADF;
1457 
1458 	pipe_clear_nowait(file);
1459 
1460 	if (sd.total_len) {
1461 		pipe_lock(pipe);
1462 		ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1463 		pipe_unlock(pipe);
1464 	}
1465 
1466 	return ret;
1467 }
1468 
1469 /*
1470  * vmsplice splices a user address range into a pipe. It can be thought of
1471  * as splice-from-memory, where the regular splice is splice-from-file (or
1472  * to file). In both cases the output is a pipe, naturally.
1473  */
1474 static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter,
1475 			     unsigned int flags)
1476 {
1477 	struct pipe_inode_info *pipe;
1478 	long ret = 0;
1479 	unsigned buf_flag = 0;
1480 
1481 	if (flags & SPLICE_F_GIFT)
1482 		buf_flag = PIPE_BUF_FLAG_GIFT;
1483 
1484 	pipe = get_pipe_info(file, true);
1485 	if (!pipe)
1486 		return -EBADF;
1487 
1488 	pipe_clear_nowait(file);
1489 
1490 	pipe_lock(pipe);
1491 	ret = wait_for_space(pipe, flags);
1492 	if (!ret)
1493 		ret = iter_to_pipe(iter, pipe, buf_flag);
1494 	pipe_unlock(pipe);
1495 	if (ret > 0)
1496 		wakeup_pipe_readers(pipe);
1497 	return ret;
1498 }
1499 
1500 static int vmsplice_type(struct fd f, int *type)
1501 {
1502 	if (!f.file)
1503 		return -EBADF;
1504 	if (f.file->f_mode & FMODE_WRITE) {
1505 		*type = ITER_SOURCE;
1506 	} else if (f.file->f_mode & FMODE_READ) {
1507 		*type = ITER_DEST;
1508 	} else {
1509 		fdput(f);
1510 		return -EBADF;
1511 	}
1512 	return 0;
1513 }
1514 
1515 /*
1516  * Note that vmsplice only really supports true splicing _from_ user memory
1517  * to a pipe, not the other way around. Splicing from user memory is a simple
1518  * operation that can be supported without any funky alignment restrictions
1519  * or nasty vm tricks. We simply map in the user memory and fill them into
1520  * a pipe. The reverse isn't quite as easy, though. There are two possible
1521  * solutions for that:
1522  *
1523  *	- memcpy() the data internally, at which point we might as well just
1524  *	  do a regular read() on the buffer anyway.
1525  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1526  *	  has restriction limitations on both ends of the pipe).
1527  *
1528  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1529  *
1530  */
1531 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov,
1532 		unsigned long, nr_segs, unsigned int, flags)
1533 {
1534 	struct iovec iovstack[UIO_FASTIOV];
1535 	struct iovec *iov = iovstack;
1536 	struct iov_iter iter;
1537 	ssize_t error;
1538 	struct fd f;
1539 	int type;
1540 
1541 	if (unlikely(flags & ~SPLICE_F_ALL))
1542 		return -EINVAL;
1543 
1544 	f = fdget(fd);
1545 	error = vmsplice_type(f, &type);
1546 	if (error)
1547 		return error;
1548 
1549 	error = import_iovec(type, uiov, nr_segs,
1550 			     ARRAY_SIZE(iovstack), &iov, &iter);
1551 	if (error < 0)
1552 		goto out_fdput;
1553 
1554 	if (!iov_iter_count(&iter))
1555 		error = 0;
1556 	else if (type == ITER_SOURCE)
1557 		error = vmsplice_to_pipe(f.file, &iter, flags);
1558 	else
1559 		error = vmsplice_to_user(f.file, &iter, flags);
1560 
1561 	kfree(iov);
1562 out_fdput:
1563 	fdput(f);
1564 	return error;
1565 }
1566 
1567 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1568 		int, fd_out, loff_t __user *, off_out,
1569 		size_t, len, unsigned int, flags)
1570 {
1571 	struct fd in, out;
1572 	long error;
1573 
1574 	if (unlikely(!len))
1575 		return 0;
1576 
1577 	if (unlikely(flags & ~SPLICE_F_ALL))
1578 		return -EINVAL;
1579 
1580 	error = -EBADF;
1581 	in = fdget(fd_in);
1582 	if (in.file) {
1583 		out = fdget(fd_out);
1584 		if (out.file) {
1585 			error = __do_splice(in.file, off_in, out.file, off_out,
1586 						len, flags);
1587 			fdput(out);
1588 		}
1589 		fdput(in);
1590 	}
1591 	return error;
1592 }
1593 
1594 /*
1595  * Make sure there's data to read. Wait for input if we can, otherwise
1596  * return an appropriate error.
1597  */
1598 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1599 {
1600 	int ret;
1601 
1602 	/*
1603 	 * Check the pipe occupancy without the inode lock first. This function
1604 	 * is speculative anyways, so missing one is ok.
1605 	 */
1606 	if (!pipe_empty(pipe->head, pipe->tail))
1607 		return 0;
1608 
1609 	ret = 0;
1610 	pipe_lock(pipe);
1611 
1612 	while (pipe_empty(pipe->head, pipe->tail)) {
1613 		if (signal_pending(current)) {
1614 			ret = -ERESTARTSYS;
1615 			break;
1616 		}
1617 		if (!pipe->writers)
1618 			break;
1619 		if (flags & SPLICE_F_NONBLOCK) {
1620 			ret = -EAGAIN;
1621 			break;
1622 		}
1623 		pipe_wait_readable(pipe);
1624 	}
1625 
1626 	pipe_unlock(pipe);
1627 	return ret;
1628 }
1629 
1630 /*
1631  * Make sure there's writeable room. Wait for room if we can, otherwise
1632  * return an appropriate error.
1633  */
1634 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1635 {
1636 	int ret;
1637 
1638 	/*
1639 	 * Check pipe occupancy without the inode lock first. This function
1640 	 * is speculative anyways, so missing one is ok.
1641 	 */
1642 	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1643 		return 0;
1644 
1645 	ret = 0;
1646 	pipe_lock(pipe);
1647 
1648 	while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
1649 		if (!pipe->readers) {
1650 			send_sig(SIGPIPE, current, 0);
1651 			ret = -EPIPE;
1652 			break;
1653 		}
1654 		if (flags & SPLICE_F_NONBLOCK) {
1655 			ret = -EAGAIN;
1656 			break;
1657 		}
1658 		if (signal_pending(current)) {
1659 			ret = -ERESTARTSYS;
1660 			break;
1661 		}
1662 		pipe_wait_writable(pipe);
1663 	}
1664 
1665 	pipe_unlock(pipe);
1666 	return ret;
1667 }
1668 
1669 /*
1670  * Splice contents of ipipe to opipe.
1671  */
1672 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1673 			       struct pipe_inode_info *opipe,
1674 			       size_t len, unsigned int flags)
1675 {
1676 	struct pipe_buffer *ibuf, *obuf;
1677 	unsigned int i_head, o_head;
1678 	unsigned int i_tail, o_tail;
1679 	unsigned int i_mask, o_mask;
1680 	int ret = 0;
1681 	bool input_wakeup = false;
1682 
1683 
1684 retry:
1685 	ret = ipipe_prep(ipipe, flags);
1686 	if (ret)
1687 		return ret;
1688 
1689 	ret = opipe_prep(opipe, flags);
1690 	if (ret)
1691 		return ret;
1692 
1693 	/*
1694 	 * Potential ABBA deadlock, work around it by ordering lock
1695 	 * grabbing by pipe info address. Otherwise two different processes
1696 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1697 	 */
1698 	pipe_double_lock(ipipe, opipe);
1699 
1700 	i_tail = ipipe->tail;
1701 	i_mask = ipipe->ring_size - 1;
1702 	o_head = opipe->head;
1703 	o_mask = opipe->ring_size - 1;
1704 
1705 	do {
1706 		size_t o_len;
1707 
1708 		if (!opipe->readers) {
1709 			send_sig(SIGPIPE, current, 0);
1710 			if (!ret)
1711 				ret = -EPIPE;
1712 			break;
1713 		}
1714 
1715 		i_head = ipipe->head;
1716 		o_tail = opipe->tail;
1717 
1718 		if (pipe_empty(i_head, i_tail) && !ipipe->writers)
1719 			break;
1720 
1721 		/*
1722 		 * Cannot make any progress, because either the input
1723 		 * pipe is empty or the output pipe is full.
1724 		 */
1725 		if (pipe_empty(i_head, i_tail) ||
1726 		    pipe_full(o_head, o_tail, opipe->max_usage)) {
1727 			/* Already processed some buffers, break */
1728 			if (ret)
1729 				break;
1730 
1731 			if (flags & SPLICE_F_NONBLOCK) {
1732 				ret = -EAGAIN;
1733 				break;
1734 			}
1735 
1736 			/*
1737 			 * We raced with another reader/writer and haven't
1738 			 * managed to process any buffers.  A zero return
1739 			 * value means EOF, so retry instead.
1740 			 */
1741 			pipe_unlock(ipipe);
1742 			pipe_unlock(opipe);
1743 			goto retry;
1744 		}
1745 
1746 		ibuf = &ipipe->bufs[i_tail & i_mask];
1747 		obuf = &opipe->bufs[o_head & o_mask];
1748 
1749 		if (len >= ibuf->len) {
1750 			/*
1751 			 * Simply move the whole buffer from ipipe to opipe
1752 			 */
1753 			*obuf = *ibuf;
1754 			ibuf->ops = NULL;
1755 			i_tail++;
1756 			ipipe->tail = i_tail;
1757 			input_wakeup = true;
1758 			o_len = obuf->len;
1759 			o_head++;
1760 			opipe->head = o_head;
1761 		} else {
1762 			/*
1763 			 * Get a reference to this pipe buffer,
1764 			 * so we can copy the contents over.
1765 			 */
1766 			if (!pipe_buf_get(ipipe, ibuf)) {
1767 				if (ret == 0)
1768 					ret = -EFAULT;
1769 				break;
1770 			}
1771 			*obuf = *ibuf;
1772 
1773 			/*
1774 			 * Don't inherit the gift and merge flags, we need to
1775 			 * prevent multiple steals of this page.
1776 			 */
1777 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1778 			obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1779 
1780 			obuf->len = len;
1781 			ibuf->offset += len;
1782 			ibuf->len -= len;
1783 			o_len = len;
1784 			o_head++;
1785 			opipe->head = o_head;
1786 		}
1787 		ret += o_len;
1788 		len -= o_len;
1789 	} while (len);
1790 
1791 	pipe_unlock(ipipe);
1792 	pipe_unlock(opipe);
1793 
1794 	/*
1795 	 * If we put data in the output pipe, wakeup any potential readers.
1796 	 */
1797 	if (ret > 0)
1798 		wakeup_pipe_readers(opipe);
1799 
1800 	if (input_wakeup)
1801 		wakeup_pipe_writers(ipipe);
1802 
1803 	return ret;
1804 }
1805 
1806 /*
1807  * Link contents of ipipe to opipe.
1808  */
1809 static int link_pipe(struct pipe_inode_info *ipipe,
1810 		     struct pipe_inode_info *opipe,
1811 		     size_t len, unsigned int flags)
1812 {
1813 	struct pipe_buffer *ibuf, *obuf;
1814 	unsigned int i_head, o_head;
1815 	unsigned int i_tail, o_tail;
1816 	unsigned int i_mask, o_mask;
1817 	int ret = 0;
1818 
1819 	/*
1820 	 * Potential ABBA deadlock, work around it by ordering lock
1821 	 * grabbing by pipe info address. Otherwise two different processes
1822 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1823 	 */
1824 	pipe_double_lock(ipipe, opipe);
1825 
1826 	i_tail = ipipe->tail;
1827 	i_mask = ipipe->ring_size - 1;
1828 	o_head = opipe->head;
1829 	o_mask = opipe->ring_size - 1;
1830 
1831 	do {
1832 		if (!opipe->readers) {
1833 			send_sig(SIGPIPE, current, 0);
1834 			if (!ret)
1835 				ret = -EPIPE;
1836 			break;
1837 		}
1838 
1839 		i_head = ipipe->head;
1840 		o_tail = opipe->tail;
1841 
1842 		/*
1843 		 * If we have iterated all input buffers or run out of
1844 		 * output room, break.
1845 		 */
1846 		if (pipe_empty(i_head, i_tail) ||
1847 		    pipe_full(o_head, o_tail, opipe->max_usage))
1848 			break;
1849 
1850 		ibuf = &ipipe->bufs[i_tail & i_mask];
1851 		obuf = &opipe->bufs[o_head & o_mask];
1852 
1853 		/*
1854 		 * Get a reference to this pipe buffer,
1855 		 * so we can copy the contents over.
1856 		 */
1857 		if (!pipe_buf_get(ipipe, ibuf)) {
1858 			if (ret == 0)
1859 				ret = -EFAULT;
1860 			break;
1861 		}
1862 
1863 		*obuf = *ibuf;
1864 
1865 		/*
1866 		 * Don't inherit the gift and merge flag, we need to prevent
1867 		 * multiple steals of this page.
1868 		 */
1869 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1870 		obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1871 
1872 		if (obuf->len > len)
1873 			obuf->len = len;
1874 		ret += obuf->len;
1875 		len -= obuf->len;
1876 
1877 		o_head++;
1878 		opipe->head = o_head;
1879 		i_tail++;
1880 	} while (len);
1881 
1882 	pipe_unlock(ipipe);
1883 	pipe_unlock(opipe);
1884 
1885 	/*
1886 	 * If we put data in the output pipe, wakeup any potential readers.
1887 	 */
1888 	if (ret > 0)
1889 		wakeup_pipe_readers(opipe);
1890 
1891 	return ret;
1892 }
1893 
1894 /*
1895  * This is a tee(1) implementation that works on pipes. It doesn't copy
1896  * any data, it simply references the 'in' pages on the 'out' pipe.
1897  * The 'flags' used are the SPLICE_F_* variants, currently the only
1898  * applicable one is SPLICE_F_NONBLOCK.
1899  */
1900 long do_tee(struct file *in, struct file *out, size_t len, unsigned int flags)
1901 {
1902 	struct pipe_inode_info *ipipe = get_pipe_info(in, true);
1903 	struct pipe_inode_info *opipe = get_pipe_info(out, true);
1904 	int ret = -EINVAL;
1905 
1906 	if (unlikely(!(in->f_mode & FMODE_READ) ||
1907 		     !(out->f_mode & FMODE_WRITE)))
1908 		return -EBADF;
1909 
1910 	/*
1911 	 * Duplicate the contents of ipipe to opipe without actually
1912 	 * copying the data.
1913 	 */
1914 	if (ipipe && opipe && ipipe != opipe) {
1915 		if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1916 			flags |= SPLICE_F_NONBLOCK;
1917 
1918 		/*
1919 		 * Keep going, unless we encounter an error. The ipipe/opipe
1920 		 * ordering doesn't really matter.
1921 		 */
1922 		ret = ipipe_prep(ipipe, flags);
1923 		if (!ret) {
1924 			ret = opipe_prep(opipe, flags);
1925 			if (!ret)
1926 				ret = link_pipe(ipipe, opipe, len, flags);
1927 		}
1928 	}
1929 
1930 	return ret;
1931 }
1932 
1933 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1934 {
1935 	struct fd in, out;
1936 	int error;
1937 
1938 	if (unlikely(flags & ~SPLICE_F_ALL))
1939 		return -EINVAL;
1940 
1941 	if (unlikely(!len))
1942 		return 0;
1943 
1944 	error = -EBADF;
1945 	in = fdget(fdin);
1946 	if (in.file) {
1947 		out = fdget(fdout);
1948 		if (out.file) {
1949 			error = do_tee(in.file, out.file, len, flags);
1950 			fdput(out);
1951 		}
1952  		fdput(in);
1953  	}
1954 
1955 	return error;
1956 }
1957