1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * "splice": joining two ropes together by interweaving their strands. 4 * 5 * This is the "extended pipe" functionality, where a pipe is used as 6 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 7 * buffer that you can use to transfer data from one end to the other. 8 * 9 * The traditional unix read/write is extended with a "splice()" operation 10 * that transfers data buffers to or from a pipe buffer. 11 * 12 * Named by Larry McVoy, original implementation from Linus, extended by 13 * Jens to support splicing to files, network, direct splicing, etc and 14 * fixing lots of bugs. 15 * 16 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 17 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 18 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 19 * 20 */ 21 #include <linux/bvec.h> 22 #include <linux/fs.h> 23 #include <linux/file.h> 24 #include <linux/pagemap.h> 25 #include <linux/splice.h> 26 #include <linux/memcontrol.h> 27 #include <linux/mm_inline.h> 28 #include <linux/swap.h> 29 #include <linux/writeback.h> 30 #include <linux/export.h> 31 #include <linux/syscalls.h> 32 #include <linux/uio.h> 33 #include <linux/fsnotify.h> 34 #include <linux/security.h> 35 #include <linux/gfp.h> 36 #include <linux/net.h> 37 #include <linux/socket.h> 38 #include <linux/sched/signal.h> 39 40 #include "internal.h" 41 42 /* 43 * Splice doesn't support FMODE_NOWAIT. Since pipes may set this flag to 44 * indicate they support non-blocking reads or writes, we must clear it 45 * here if set to avoid blocking other users of this pipe if splice is 46 * being done on it. 47 */ 48 static noinline void noinline pipe_clear_nowait(struct file *file) 49 { 50 fmode_t fmode = READ_ONCE(file->f_mode); 51 52 do { 53 if (!(fmode & FMODE_NOWAIT)) 54 break; 55 } while (!try_cmpxchg(&file->f_mode, &fmode, fmode & ~FMODE_NOWAIT)); 56 } 57 58 /* 59 * Attempt to steal a page from a pipe buffer. This should perhaps go into 60 * a vm helper function, it's already simplified quite a bit by the 61 * addition of remove_mapping(). If success is returned, the caller may 62 * attempt to reuse this page for another destination. 63 */ 64 static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe, 65 struct pipe_buffer *buf) 66 { 67 struct folio *folio = page_folio(buf->page); 68 struct address_space *mapping; 69 70 folio_lock(folio); 71 72 mapping = folio_mapping(folio); 73 if (mapping) { 74 WARN_ON(!folio_test_uptodate(folio)); 75 76 /* 77 * At least for ext2 with nobh option, we need to wait on 78 * writeback completing on this folio, since we'll remove it 79 * from the pagecache. Otherwise truncate wont wait on the 80 * folio, allowing the disk blocks to be reused by someone else 81 * before we actually wrote our data to them. fs corruption 82 * ensues. 83 */ 84 folio_wait_writeback(folio); 85 86 if (!filemap_release_folio(folio, GFP_KERNEL)) 87 goto out_unlock; 88 89 /* 90 * If we succeeded in removing the mapping, set LRU flag 91 * and return good. 92 */ 93 if (remove_mapping(mapping, folio)) { 94 buf->flags |= PIPE_BUF_FLAG_LRU; 95 return true; 96 } 97 } 98 99 /* 100 * Raced with truncate or failed to remove folio from current 101 * address space, unlock and return failure. 102 */ 103 out_unlock: 104 folio_unlock(folio); 105 return false; 106 } 107 108 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 109 struct pipe_buffer *buf) 110 { 111 put_page(buf->page); 112 buf->flags &= ~PIPE_BUF_FLAG_LRU; 113 } 114 115 /* 116 * Check whether the contents of buf is OK to access. Since the content 117 * is a page cache page, IO may be in flight. 118 */ 119 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 120 struct pipe_buffer *buf) 121 { 122 struct page *page = buf->page; 123 int err; 124 125 if (!PageUptodate(page)) { 126 lock_page(page); 127 128 /* 129 * Page got truncated/unhashed. This will cause a 0-byte 130 * splice, if this is the first page. 131 */ 132 if (!page->mapping) { 133 err = -ENODATA; 134 goto error; 135 } 136 137 /* 138 * Uh oh, read-error from disk. 139 */ 140 if (!PageUptodate(page)) { 141 err = -EIO; 142 goto error; 143 } 144 145 /* 146 * Page is ok afterall, we are done. 147 */ 148 unlock_page(page); 149 } 150 151 return 0; 152 error: 153 unlock_page(page); 154 return err; 155 } 156 157 const struct pipe_buf_operations page_cache_pipe_buf_ops = { 158 .confirm = page_cache_pipe_buf_confirm, 159 .release = page_cache_pipe_buf_release, 160 .try_steal = page_cache_pipe_buf_try_steal, 161 .get = generic_pipe_buf_get, 162 }; 163 164 static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe, 165 struct pipe_buffer *buf) 166 { 167 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 168 return false; 169 170 buf->flags |= PIPE_BUF_FLAG_LRU; 171 return generic_pipe_buf_try_steal(pipe, buf); 172 } 173 174 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 175 .release = page_cache_pipe_buf_release, 176 .try_steal = user_page_pipe_buf_try_steal, 177 .get = generic_pipe_buf_get, 178 }; 179 180 static void wakeup_pipe_readers(struct pipe_inode_info *pipe) 181 { 182 smp_mb(); 183 if (waitqueue_active(&pipe->rd_wait)) 184 wake_up_interruptible(&pipe->rd_wait); 185 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 186 } 187 188 /** 189 * splice_to_pipe - fill passed data into a pipe 190 * @pipe: pipe to fill 191 * @spd: data to fill 192 * 193 * Description: 194 * @spd contains a map of pages and len/offset tuples, along with 195 * the struct pipe_buf_operations associated with these pages. This 196 * function will link that data to the pipe. 197 * 198 */ 199 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 200 struct splice_pipe_desc *spd) 201 { 202 unsigned int spd_pages = spd->nr_pages; 203 unsigned int tail = pipe->tail; 204 unsigned int head = pipe->head; 205 unsigned int mask = pipe->ring_size - 1; 206 int ret = 0, page_nr = 0; 207 208 if (!spd_pages) 209 return 0; 210 211 if (unlikely(!pipe->readers)) { 212 send_sig(SIGPIPE, current, 0); 213 ret = -EPIPE; 214 goto out; 215 } 216 217 while (!pipe_full(head, tail, pipe->max_usage)) { 218 struct pipe_buffer *buf = &pipe->bufs[head & mask]; 219 220 buf->page = spd->pages[page_nr]; 221 buf->offset = spd->partial[page_nr].offset; 222 buf->len = spd->partial[page_nr].len; 223 buf->private = spd->partial[page_nr].private; 224 buf->ops = spd->ops; 225 buf->flags = 0; 226 227 head++; 228 pipe->head = head; 229 page_nr++; 230 ret += buf->len; 231 232 if (!--spd->nr_pages) 233 break; 234 } 235 236 if (!ret) 237 ret = -EAGAIN; 238 239 out: 240 while (page_nr < spd_pages) 241 spd->spd_release(spd, page_nr++); 242 243 return ret; 244 } 245 EXPORT_SYMBOL_GPL(splice_to_pipe); 246 247 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 248 { 249 unsigned int head = pipe->head; 250 unsigned int tail = pipe->tail; 251 unsigned int mask = pipe->ring_size - 1; 252 int ret; 253 254 if (unlikely(!pipe->readers)) { 255 send_sig(SIGPIPE, current, 0); 256 ret = -EPIPE; 257 } else if (pipe_full(head, tail, pipe->max_usage)) { 258 ret = -EAGAIN; 259 } else { 260 pipe->bufs[head & mask] = *buf; 261 pipe->head = head + 1; 262 return buf->len; 263 } 264 pipe_buf_release(pipe, buf); 265 return ret; 266 } 267 EXPORT_SYMBOL(add_to_pipe); 268 269 /* 270 * Check if we need to grow the arrays holding pages and partial page 271 * descriptions. 272 */ 273 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd) 274 { 275 unsigned int max_usage = READ_ONCE(pipe->max_usage); 276 277 spd->nr_pages_max = max_usage; 278 if (max_usage <= PIPE_DEF_BUFFERS) 279 return 0; 280 281 spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL); 282 spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page), 283 GFP_KERNEL); 284 285 if (spd->pages && spd->partial) 286 return 0; 287 288 kfree(spd->pages); 289 kfree(spd->partial); 290 return -ENOMEM; 291 } 292 293 void splice_shrink_spd(struct splice_pipe_desc *spd) 294 { 295 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS) 296 return; 297 298 kfree(spd->pages); 299 kfree(spd->partial); 300 } 301 302 /** 303 * copy_splice_read - Copy data from a file and splice the copy into a pipe 304 * @in: The file to read from 305 * @ppos: Pointer to the file position to read from 306 * @pipe: The pipe to splice into 307 * @len: The amount to splice 308 * @flags: The SPLICE_F_* flags 309 * 310 * This function allocates a bunch of pages sufficient to hold the requested 311 * amount of data (but limited by the remaining pipe capacity), passes it to 312 * the file's ->read_iter() to read into and then splices the used pages into 313 * the pipe. 314 * 315 * Return: On success, the number of bytes read will be returned and *@ppos 316 * will be updated if appropriate; 0 will be returned if there is no more data 317 * to be read; -EAGAIN will be returned if the pipe had no space, and some 318 * other negative error code will be returned on error. A short read may occur 319 * if the pipe has insufficient space, we reach the end of the data or we hit a 320 * hole. 321 */ 322 ssize_t copy_splice_read(struct file *in, loff_t *ppos, 323 struct pipe_inode_info *pipe, 324 size_t len, unsigned int flags) 325 { 326 struct iov_iter to; 327 struct bio_vec *bv; 328 struct kiocb kiocb; 329 struct page **pages; 330 ssize_t ret; 331 size_t used, npages, chunk, remain, keep = 0; 332 int i; 333 334 /* Work out how much data we can actually add into the pipe */ 335 used = pipe_occupancy(pipe->head, pipe->tail); 336 npages = max_t(ssize_t, pipe->max_usage - used, 0); 337 len = min_t(size_t, len, npages * PAGE_SIZE); 338 npages = DIV_ROUND_UP(len, PAGE_SIZE); 339 340 bv = kzalloc(array_size(npages, sizeof(bv[0])) + 341 array_size(npages, sizeof(struct page *)), GFP_KERNEL); 342 if (!bv) 343 return -ENOMEM; 344 345 pages = (struct page **)(bv + npages); 346 npages = alloc_pages_bulk_array(GFP_USER, npages, pages); 347 if (!npages) { 348 kfree(bv); 349 return -ENOMEM; 350 } 351 352 remain = len = min_t(size_t, len, npages * PAGE_SIZE); 353 354 for (i = 0; i < npages; i++) { 355 chunk = min_t(size_t, PAGE_SIZE, remain); 356 bv[i].bv_page = pages[i]; 357 bv[i].bv_offset = 0; 358 bv[i].bv_len = chunk; 359 remain -= chunk; 360 } 361 362 /* Do the I/O */ 363 iov_iter_bvec(&to, ITER_DEST, bv, npages, len); 364 init_sync_kiocb(&kiocb, in); 365 kiocb.ki_pos = *ppos; 366 ret = call_read_iter(in, &kiocb, &to); 367 368 if (ret > 0) { 369 keep = DIV_ROUND_UP(ret, PAGE_SIZE); 370 *ppos = kiocb.ki_pos; 371 } 372 373 /* 374 * Callers of ->splice_read() expect -EAGAIN on "can't put anything in 375 * there", rather than -EFAULT. 376 */ 377 if (ret == -EFAULT) 378 ret = -EAGAIN; 379 380 /* Free any pages that didn't get touched at all. */ 381 if (keep < npages) 382 release_pages(pages + keep, npages - keep); 383 384 /* Push the remaining pages into the pipe. */ 385 remain = ret; 386 for (i = 0; i < keep; i++) { 387 struct pipe_buffer *buf = pipe_head_buf(pipe); 388 389 chunk = min_t(size_t, remain, PAGE_SIZE); 390 *buf = (struct pipe_buffer) { 391 .ops = &default_pipe_buf_ops, 392 .page = bv[i].bv_page, 393 .offset = 0, 394 .len = chunk, 395 }; 396 pipe->head++; 397 remain -= chunk; 398 } 399 400 kfree(bv); 401 return ret; 402 } 403 EXPORT_SYMBOL(copy_splice_read); 404 405 const struct pipe_buf_operations default_pipe_buf_ops = { 406 .release = generic_pipe_buf_release, 407 .try_steal = generic_pipe_buf_try_steal, 408 .get = generic_pipe_buf_get, 409 }; 410 411 /* Pipe buffer operations for a socket and similar. */ 412 const struct pipe_buf_operations nosteal_pipe_buf_ops = { 413 .release = generic_pipe_buf_release, 414 .get = generic_pipe_buf_get, 415 }; 416 EXPORT_SYMBOL(nosteal_pipe_buf_ops); 417 418 static void wakeup_pipe_writers(struct pipe_inode_info *pipe) 419 { 420 smp_mb(); 421 if (waitqueue_active(&pipe->wr_wait)) 422 wake_up_interruptible(&pipe->wr_wait); 423 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 424 } 425 426 /** 427 * splice_from_pipe_feed - feed available data from a pipe to a file 428 * @pipe: pipe to splice from 429 * @sd: information to @actor 430 * @actor: handler that splices the data 431 * 432 * Description: 433 * This function loops over the pipe and calls @actor to do the 434 * actual moving of a single struct pipe_buffer to the desired 435 * destination. It returns when there's no more buffers left in 436 * the pipe or if the requested number of bytes (@sd->total_len) 437 * have been copied. It returns a positive number (one) if the 438 * pipe needs to be filled with more data, zero if the required 439 * number of bytes have been copied and -errno on error. 440 * 441 * This, together with splice_from_pipe_{begin,end,next}, may be 442 * used to implement the functionality of __splice_from_pipe() when 443 * locking is required around copying the pipe buffers to the 444 * destination. 445 */ 446 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd, 447 splice_actor *actor) 448 { 449 unsigned int head = pipe->head; 450 unsigned int tail = pipe->tail; 451 unsigned int mask = pipe->ring_size - 1; 452 int ret; 453 454 while (!pipe_empty(head, tail)) { 455 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 456 457 sd->len = buf->len; 458 if (sd->len > sd->total_len) 459 sd->len = sd->total_len; 460 461 ret = pipe_buf_confirm(pipe, buf); 462 if (unlikely(ret)) { 463 if (ret == -ENODATA) 464 ret = 0; 465 return ret; 466 } 467 468 ret = actor(pipe, buf, sd); 469 if (ret <= 0) 470 return ret; 471 472 buf->offset += ret; 473 buf->len -= ret; 474 475 sd->num_spliced += ret; 476 sd->len -= ret; 477 sd->pos += ret; 478 sd->total_len -= ret; 479 480 if (!buf->len) { 481 pipe_buf_release(pipe, buf); 482 tail++; 483 pipe->tail = tail; 484 if (pipe->files) 485 sd->need_wakeup = true; 486 } 487 488 if (!sd->total_len) 489 return 0; 490 } 491 492 return 1; 493 } 494 495 /* We know we have a pipe buffer, but maybe it's empty? */ 496 static inline bool eat_empty_buffer(struct pipe_inode_info *pipe) 497 { 498 unsigned int tail = pipe->tail; 499 unsigned int mask = pipe->ring_size - 1; 500 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 501 502 if (unlikely(!buf->len)) { 503 pipe_buf_release(pipe, buf); 504 pipe->tail = tail+1; 505 return true; 506 } 507 508 return false; 509 } 510 511 /** 512 * splice_from_pipe_next - wait for some data to splice from 513 * @pipe: pipe to splice from 514 * @sd: information about the splice operation 515 * 516 * Description: 517 * This function will wait for some data and return a positive 518 * value (one) if pipe buffers are available. It will return zero 519 * or -errno if no more data needs to be spliced. 520 */ 521 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd) 522 { 523 /* 524 * Check for signal early to make process killable when there are 525 * always buffers available 526 */ 527 if (signal_pending(current)) 528 return -ERESTARTSYS; 529 530 repeat: 531 while (pipe_empty(pipe->head, pipe->tail)) { 532 if (!pipe->writers) 533 return 0; 534 535 if (sd->num_spliced) 536 return 0; 537 538 if (sd->flags & SPLICE_F_NONBLOCK) 539 return -EAGAIN; 540 541 if (signal_pending(current)) 542 return -ERESTARTSYS; 543 544 if (sd->need_wakeup) { 545 wakeup_pipe_writers(pipe); 546 sd->need_wakeup = false; 547 } 548 549 pipe_wait_readable(pipe); 550 } 551 552 if (eat_empty_buffer(pipe)) 553 goto repeat; 554 555 return 1; 556 } 557 558 /** 559 * splice_from_pipe_begin - start splicing from pipe 560 * @sd: information about the splice operation 561 * 562 * Description: 563 * This function should be called before a loop containing 564 * splice_from_pipe_next() and splice_from_pipe_feed() to 565 * initialize the necessary fields of @sd. 566 */ 567 static void splice_from_pipe_begin(struct splice_desc *sd) 568 { 569 sd->num_spliced = 0; 570 sd->need_wakeup = false; 571 } 572 573 /** 574 * splice_from_pipe_end - finish splicing from pipe 575 * @pipe: pipe to splice from 576 * @sd: information about the splice operation 577 * 578 * Description: 579 * This function will wake up pipe writers if necessary. It should 580 * be called after a loop containing splice_from_pipe_next() and 581 * splice_from_pipe_feed(). 582 */ 583 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd) 584 { 585 if (sd->need_wakeup) 586 wakeup_pipe_writers(pipe); 587 } 588 589 /** 590 * __splice_from_pipe - splice data from a pipe to given actor 591 * @pipe: pipe to splice from 592 * @sd: information to @actor 593 * @actor: handler that splices the data 594 * 595 * Description: 596 * This function does little more than loop over the pipe and call 597 * @actor to do the actual moving of a single struct pipe_buffer to 598 * the desired destination. See pipe_to_file, pipe_to_sendmsg, or 599 * pipe_to_user. 600 * 601 */ 602 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 603 splice_actor *actor) 604 { 605 int ret; 606 607 splice_from_pipe_begin(sd); 608 do { 609 cond_resched(); 610 ret = splice_from_pipe_next(pipe, sd); 611 if (ret > 0) 612 ret = splice_from_pipe_feed(pipe, sd, actor); 613 } while (ret > 0); 614 splice_from_pipe_end(pipe, sd); 615 616 return sd->num_spliced ? sd->num_spliced : ret; 617 } 618 EXPORT_SYMBOL(__splice_from_pipe); 619 620 /** 621 * splice_from_pipe - splice data from a pipe to a file 622 * @pipe: pipe to splice from 623 * @out: file to splice to 624 * @ppos: position in @out 625 * @len: how many bytes to splice 626 * @flags: splice modifier flags 627 * @actor: handler that splices the data 628 * 629 * Description: 630 * See __splice_from_pipe. This function locks the pipe inode, 631 * otherwise it's identical to __splice_from_pipe(). 632 * 633 */ 634 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 635 loff_t *ppos, size_t len, unsigned int flags, 636 splice_actor *actor) 637 { 638 ssize_t ret; 639 struct splice_desc sd = { 640 .total_len = len, 641 .flags = flags, 642 .pos = *ppos, 643 .u.file = out, 644 }; 645 646 pipe_lock(pipe); 647 ret = __splice_from_pipe(pipe, &sd, actor); 648 pipe_unlock(pipe); 649 650 return ret; 651 } 652 653 /** 654 * iter_file_splice_write - splice data from a pipe to a file 655 * @pipe: pipe info 656 * @out: file to write to 657 * @ppos: position in @out 658 * @len: number of bytes to splice 659 * @flags: splice modifier flags 660 * 661 * Description: 662 * Will either move or copy pages (determined by @flags options) from 663 * the given pipe inode to the given file. 664 * This one is ->write_iter-based. 665 * 666 */ 667 ssize_t 668 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 669 loff_t *ppos, size_t len, unsigned int flags) 670 { 671 struct splice_desc sd = { 672 .total_len = len, 673 .flags = flags, 674 .pos = *ppos, 675 .u.file = out, 676 }; 677 int nbufs = pipe->max_usage; 678 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec), 679 GFP_KERNEL); 680 ssize_t ret; 681 682 if (unlikely(!array)) 683 return -ENOMEM; 684 685 pipe_lock(pipe); 686 687 splice_from_pipe_begin(&sd); 688 while (sd.total_len) { 689 struct iov_iter from; 690 unsigned int head, tail, mask; 691 size_t left; 692 int n; 693 694 ret = splice_from_pipe_next(pipe, &sd); 695 if (ret <= 0) 696 break; 697 698 if (unlikely(nbufs < pipe->max_usage)) { 699 kfree(array); 700 nbufs = pipe->max_usage; 701 array = kcalloc(nbufs, sizeof(struct bio_vec), 702 GFP_KERNEL); 703 if (!array) { 704 ret = -ENOMEM; 705 break; 706 } 707 } 708 709 head = pipe->head; 710 tail = pipe->tail; 711 mask = pipe->ring_size - 1; 712 713 /* build the vector */ 714 left = sd.total_len; 715 for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) { 716 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 717 size_t this_len = buf->len; 718 719 /* zero-length bvecs are not supported, skip them */ 720 if (!this_len) 721 continue; 722 this_len = min(this_len, left); 723 724 ret = pipe_buf_confirm(pipe, buf); 725 if (unlikely(ret)) { 726 if (ret == -ENODATA) 727 ret = 0; 728 goto done; 729 } 730 731 bvec_set_page(&array[n], buf->page, this_len, 732 buf->offset); 733 left -= this_len; 734 n++; 735 } 736 737 iov_iter_bvec(&from, ITER_SOURCE, array, n, sd.total_len - left); 738 ret = vfs_iter_write(out, &from, &sd.pos, 0); 739 if (ret <= 0) 740 break; 741 742 sd.num_spliced += ret; 743 sd.total_len -= ret; 744 *ppos = sd.pos; 745 746 /* dismiss the fully eaten buffers, adjust the partial one */ 747 tail = pipe->tail; 748 while (ret) { 749 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 750 if (ret >= buf->len) { 751 ret -= buf->len; 752 buf->len = 0; 753 pipe_buf_release(pipe, buf); 754 tail++; 755 pipe->tail = tail; 756 if (pipe->files) 757 sd.need_wakeup = true; 758 } else { 759 buf->offset += ret; 760 buf->len -= ret; 761 ret = 0; 762 } 763 } 764 } 765 done: 766 kfree(array); 767 splice_from_pipe_end(pipe, &sd); 768 769 pipe_unlock(pipe); 770 771 if (sd.num_spliced) 772 ret = sd.num_spliced; 773 774 return ret; 775 } 776 777 EXPORT_SYMBOL(iter_file_splice_write); 778 779 #ifdef CONFIG_NET 780 /** 781 * splice_to_socket - splice data from a pipe to a socket 782 * @pipe: pipe to splice from 783 * @out: socket to write to 784 * @ppos: position in @out 785 * @len: number of bytes to splice 786 * @flags: splice modifier flags 787 * 788 * Description: 789 * Will send @len bytes from the pipe to a network socket. No data copying 790 * is involved. 791 * 792 */ 793 ssize_t splice_to_socket(struct pipe_inode_info *pipe, struct file *out, 794 loff_t *ppos, size_t len, unsigned int flags) 795 { 796 struct socket *sock = sock_from_file(out); 797 struct bio_vec bvec[16]; 798 struct msghdr msg = {}; 799 ssize_t ret = 0; 800 size_t spliced = 0; 801 bool need_wakeup = false; 802 803 pipe_lock(pipe); 804 805 while (len > 0) { 806 unsigned int head, tail, mask, bc = 0; 807 size_t remain = len; 808 809 /* 810 * Check for signal early to make process killable when there 811 * are always buffers available 812 */ 813 ret = -ERESTARTSYS; 814 if (signal_pending(current)) 815 break; 816 817 while (pipe_empty(pipe->head, pipe->tail)) { 818 ret = 0; 819 if (!pipe->writers) 820 goto out; 821 822 if (spliced) 823 goto out; 824 825 ret = -EAGAIN; 826 if (flags & SPLICE_F_NONBLOCK) 827 goto out; 828 829 ret = -ERESTARTSYS; 830 if (signal_pending(current)) 831 goto out; 832 833 if (need_wakeup) { 834 wakeup_pipe_writers(pipe); 835 need_wakeup = false; 836 } 837 838 pipe_wait_readable(pipe); 839 } 840 841 head = pipe->head; 842 tail = pipe->tail; 843 mask = pipe->ring_size - 1; 844 845 while (!pipe_empty(head, tail)) { 846 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 847 size_t seg; 848 849 if (!buf->len) { 850 tail++; 851 continue; 852 } 853 854 seg = min_t(size_t, remain, buf->len); 855 856 ret = pipe_buf_confirm(pipe, buf); 857 if (unlikely(ret)) { 858 if (ret == -ENODATA) 859 ret = 0; 860 break; 861 } 862 863 bvec_set_page(&bvec[bc++], buf->page, seg, buf->offset); 864 remain -= seg; 865 if (remain == 0 || bc >= ARRAY_SIZE(bvec)) 866 break; 867 tail++; 868 } 869 870 if (!bc) 871 break; 872 873 msg.msg_flags = MSG_SPLICE_PAGES; 874 if (flags & SPLICE_F_MORE) 875 msg.msg_flags |= MSG_MORE; 876 if (remain && pipe_occupancy(pipe->head, tail) > 0) 877 msg.msg_flags |= MSG_MORE; 878 if (out->f_flags & O_NONBLOCK) 879 msg.msg_flags |= MSG_DONTWAIT; 880 881 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, bvec, bc, 882 len - remain); 883 ret = sock_sendmsg(sock, &msg); 884 if (ret <= 0) 885 break; 886 887 spliced += ret; 888 len -= ret; 889 tail = pipe->tail; 890 while (ret > 0) { 891 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 892 size_t seg = min_t(size_t, ret, buf->len); 893 894 buf->offset += seg; 895 buf->len -= seg; 896 ret -= seg; 897 898 if (!buf->len) { 899 pipe_buf_release(pipe, buf); 900 tail++; 901 } 902 } 903 904 if (tail != pipe->tail) { 905 pipe->tail = tail; 906 if (pipe->files) 907 need_wakeup = true; 908 } 909 } 910 911 out: 912 pipe_unlock(pipe); 913 if (need_wakeup) 914 wakeup_pipe_writers(pipe); 915 return spliced ?: ret; 916 } 917 #endif 918 919 static int warn_unsupported(struct file *file, const char *op) 920 { 921 pr_debug_ratelimited( 922 "splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n", 923 op, file, current->pid, current->comm); 924 return -EINVAL; 925 } 926 927 /* 928 * Attempt to initiate a splice from pipe to file. 929 */ 930 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 931 loff_t *ppos, size_t len, unsigned int flags) 932 { 933 if (unlikely(!out->f_op->splice_write)) 934 return warn_unsupported(out, "write"); 935 return out->f_op->splice_write(pipe, out, ppos, len, flags); 936 } 937 938 /* 939 * Indicate to the caller that there was a premature EOF when reading from the 940 * source and the caller didn't indicate they would be sending more data after 941 * this. 942 */ 943 static void do_splice_eof(struct splice_desc *sd) 944 { 945 if (sd->splice_eof) 946 sd->splice_eof(sd); 947 } 948 949 /** 950 * vfs_splice_read - Read data from a file and splice it into a pipe 951 * @in: File to splice from 952 * @ppos: Input file offset 953 * @pipe: Pipe to splice to 954 * @len: Number of bytes to splice 955 * @flags: Splice modifier flags (SPLICE_F_*) 956 * 957 * Splice the requested amount of data from the input file to the pipe. This 958 * is synchronous as the caller must hold the pipe lock across the entire 959 * operation. 960 * 961 * If successful, it returns the amount of data spliced, 0 if it hit the EOF or 962 * a hole and a negative error code otherwise. 963 */ 964 long vfs_splice_read(struct file *in, loff_t *ppos, 965 struct pipe_inode_info *pipe, size_t len, 966 unsigned int flags) 967 { 968 unsigned int p_space; 969 int ret; 970 971 if (unlikely(!(in->f_mode & FMODE_READ))) 972 return -EBADF; 973 if (!len) 974 return 0; 975 976 /* Don't try to read more the pipe has space for. */ 977 p_space = pipe->max_usage - pipe_occupancy(pipe->head, pipe->tail); 978 len = min_t(size_t, len, p_space << PAGE_SHIFT); 979 980 ret = rw_verify_area(READ, in, ppos, len); 981 if (unlikely(ret < 0)) 982 return ret; 983 984 if (unlikely(len > MAX_RW_COUNT)) 985 len = MAX_RW_COUNT; 986 987 if (unlikely(!in->f_op->splice_read)) 988 return warn_unsupported(in, "read"); 989 /* 990 * O_DIRECT and DAX don't deal with the pagecache, so we allocate a 991 * buffer, copy into it and splice that into the pipe. 992 */ 993 if ((in->f_flags & O_DIRECT) || IS_DAX(in->f_mapping->host)) 994 return copy_splice_read(in, ppos, pipe, len, flags); 995 return in->f_op->splice_read(in, ppos, pipe, len, flags); 996 } 997 EXPORT_SYMBOL_GPL(vfs_splice_read); 998 999 /** 1000 * splice_direct_to_actor - splices data directly between two non-pipes 1001 * @in: file to splice from 1002 * @sd: actor information on where to splice to 1003 * @actor: handles the data splicing 1004 * 1005 * Description: 1006 * This is a special case helper to splice directly between two 1007 * points, without requiring an explicit pipe. Internally an allocated 1008 * pipe is cached in the process, and reused during the lifetime of 1009 * that process. 1010 * 1011 */ 1012 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 1013 splice_direct_actor *actor) 1014 { 1015 struct pipe_inode_info *pipe; 1016 long ret, bytes; 1017 size_t len; 1018 int i, flags, more; 1019 1020 /* 1021 * We require the input to be seekable, as we don't want to randomly 1022 * drop data for eg socket -> socket splicing. Use the piped splicing 1023 * for that! 1024 */ 1025 if (unlikely(!(in->f_mode & FMODE_LSEEK))) 1026 return -EINVAL; 1027 1028 /* 1029 * neither in nor out is a pipe, setup an internal pipe attached to 1030 * 'out' and transfer the wanted data from 'in' to 'out' through that 1031 */ 1032 pipe = current->splice_pipe; 1033 if (unlikely(!pipe)) { 1034 pipe = alloc_pipe_info(); 1035 if (!pipe) 1036 return -ENOMEM; 1037 1038 /* 1039 * We don't have an immediate reader, but we'll read the stuff 1040 * out of the pipe right after the splice_to_pipe(). So set 1041 * PIPE_READERS appropriately. 1042 */ 1043 pipe->readers = 1; 1044 1045 current->splice_pipe = pipe; 1046 } 1047 1048 /* 1049 * Do the splice. 1050 */ 1051 bytes = 0; 1052 len = sd->total_len; 1053 1054 /* Don't block on output, we have to drain the direct pipe. */ 1055 flags = sd->flags; 1056 sd->flags &= ~SPLICE_F_NONBLOCK; 1057 1058 /* 1059 * We signal MORE until we've read sufficient data to fulfill the 1060 * request and we keep signalling it if the caller set it. 1061 */ 1062 more = sd->flags & SPLICE_F_MORE; 1063 sd->flags |= SPLICE_F_MORE; 1064 1065 WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail)); 1066 1067 while (len) { 1068 size_t read_len; 1069 loff_t pos = sd->pos, prev_pos = pos; 1070 1071 ret = vfs_splice_read(in, &pos, pipe, len, flags); 1072 if (unlikely(ret <= 0)) 1073 goto read_failure; 1074 1075 read_len = ret; 1076 sd->total_len = read_len; 1077 1078 /* 1079 * If we now have sufficient data to fulfill the request then 1080 * we clear SPLICE_F_MORE if it was not set initially. 1081 */ 1082 if (read_len >= len && !more) 1083 sd->flags &= ~SPLICE_F_MORE; 1084 1085 /* 1086 * NOTE: nonblocking mode only applies to the input. We 1087 * must not do the output in nonblocking mode as then we 1088 * could get stuck data in the internal pipe: 1089 */ 1090 ret = actor(pipe, sd); 1091 if (unlikely(ret <= 0)) { 1092 sd->pos = prev_pos; 1093 goto out_release; 1094 } 1095 1096 bytes += ret; 1097 len -= ret; 1098 sd->pos = pos; 1099 1100 if (ret < read_len) { 1101 sd->pos = prev_pos + ret; 1102 goto out_release; 1103 } 1104 } 1105 1106 done: 1107 pipe->tail = pipe->head = 0; 1108 file_accessed(in); 1109 return bytes; 1110 1111 read_failure: 1112 /* 1113 * If the user did *not* set SPLICE_F_MORE *and* we didn't hit that 1114 * "use all of len" case that cleared SPLICE_F_MORE, *and* we did a 1115 * "->splice_in()" that returned EOF (ie zero) *and* we have sent at 1116 * least 1 byte *then* we will also do the ->splice_eof() call. 1117 */ 1118 if (ret == 0 && !more && len > 0 && bytes) 1119 do_splice_eof(sd); 1120 out_release: 1121 /* 1122 * If we did an incomplete transfer we must release 1123 * the pipe buffers in question: 1124 */ 1125 for (i = 0; i < pipe->ring_size; i++) { 1126 struct pipe_buffer *buf = &pipe->bufs[i]; 1127 1128 if (buf->ops) 1129 pipe_buf_release(pipe, buf); 1130 } 1131 1132 if (!bytes) 1133 bytes = ret; 1134 1135 goto done; 1136 } 1137 EXPORT_SYMBOL(splice_direct_to_actor); 1138 1139 static int direct_splice_actor(struct pipe_inode_info *pipe, 1140 struct splice_desc *sd) 1141 { 1142 struct file *file = sd->u.file; 1143 1144 return do_splice_from(pipe, file, sd->opos, sd->total_len, 1145 sd->flags); 1146 } 1147 1148 static void direct_file_splice_eof(struct splice_desc *sd) 1149 { 1150 struct file *file = sd->u.file; 1151 1152 if (file->f_op->splice_eof) 1153 file->f_op->splice_eof(file); 1154 } 1155 1156 /** 1157 * do_splice_direct - splices data directly between two files 1158 * @in: file to splice from 1159 * @ppos: input file offset 1160 * @out: file to splice to 1161 * @opos: output file offset 1162 * @len: number of bytes to splice 1163 * @flags: splice modifier flags 1164 * 1165 * Description: 1166 * For use by do_sendfile(). splice can easily emulate sendfile, but 1167 * doing it in the application would incur an extra system call 1168 * (splice in + splice out, as compared to just sendfile()). So this helper 1169 * can splice directly through a process-private pipe. 1170 * 1171 */ 1172 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1173 loff_t *opos, size_t len, unsigned int flags) 1174 { 1175 struct splice_desc sd = { 1176 .len = len, 1177 .total_len = len, 1178 .flags = flags, 1179 .pos = *ppos, 1180 .u.file = out, 1181 .splice_eof = direct_file_splice_eof, 1182 .opos = opos, 1183 }; 1184 long ret; 1185 1186 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1187 return -EBADF; 1188 1189 if (unlikely(out->f_flags & O_APPEND)) 1190 return -EINVAL; 1191 1192 ret = rw_verify_area(WRITE, out, opos, len); 1193 if (unlikely(ret < 0)) 1194 return ret; 1195 1196 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 1197 if (ret > 0) 1198 *ppos = sd.pos; 1199 1200 return ret; 1201 } 1202 EXPORT_SYMBOL(do_splice_direct); 1203 1204 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags) 1205 { 1206 for (;;) { 1207 if (unlikely(!pipe->readers)) { 1208 send_sig(SIGPIPE, current, 0); 1209 return -EPIPE; 1210 } 1211 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 1212 return 0; 1213 if (flags & SPLICE_F_NONBLOCK) 1214 return -EAGAIN; 1215 if (signal_pending(current)) 1216 return -ERESTARTSYS; 1217 pipe_wait_writable(pipe); 1218 } 1219 } 1220 1221 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1222 struct pipe_inode_info *opipe, 1223 size_t len, unsigned int flags); 1224 1225 long splice_file_to_pipe(struct file *in, 1226 struct pipe_inode_info *opipe, 1227 loff_t *offset, 1228 size_t len, unsigned int flags) 1229 { 1230 long ret; 1231 1232 pipe_lock(opipe); 1233 ret = wait_for_space(opipe, flags); 1234 if (!ret) 1235 ret = vfs_splice_read(in, offset, opipe, len, flags); 1236 pipe_unlock(opipe); 1237 if (ret > 0) 1238 wakeup_pipe_readers(opipe); 1239 return ret; 1240 } 1241 1242 /* 1243 * Determine where to splice to/from. 1244 */ 1245 long do_splice(struct file *in, loff_t *off_in, struct file *out, 1246 loff_t *off_out, size_t len, unsigned int flags) 1247 { 1248 struct pipe_inode_info *ipipe; 1249 struct pipe_inode_info *opipe; 1250 loff_t offset; 1251 long ret; 1252 1253 if (unlikely(!(in->f_mode & FMODE_READ) || 1254 !(out->f_mode & FMODE_WRITE))) 1255 return -EBADF; 1256 1257 ipipe = get_pipe_info(in, true); 1258 opipe = get_pipe_info(out, true); 1259 1260 if (ipipe && opipe) { 1261 if (off_in || off_out) 1262 return -ESPIPE; 1263 1264 /* Splicing to self would be fun, but... */ 1265 if (ipipe == opipe) 1266 return -EINVAL; 1267 1268 if ((in->f_flags | out->f_flags) & O_NONBLOCK) 1269 flags |= SPLICE_F_NONBLOCK; 1270 1271 return splice_pipe_to_pipe(ipipe, opipe, len, flags); 1272 } 1273 1274 if (ipipe) { 1275 if (off_in) 1276 return -ESPIPE; 1277 if (off_out) { 1278 if (!(out->f_mode & FMODE_PWRITE)) 1279 return -EINVAL; 1280 offset = *off_out; 1281 } else { 1282 offset = out->f_pos; 1283 } 1284 1285 if (unlikely(out->f_flags & O_APPEND)) 1286 return -EINVAL; 1287 1288 ret = rw_verify_area(WRITE, out, &offset, len); 1289 if (unlikely(ret < 0)) 1290 return ret; 1291 1292 if (in->f_flags & O_NONBLOCK) 1293 flags |= SPLICE_F_NONBLOCK; 1294 1295 file_start_write(out); 1296 ret = do_splice_from(ipipe, out, &offset, len, flags); 1297 file_end_write(out); 1298 1299 if (ret > 0) 1300 fsnotify_modify(out); 1301 1302 if (!off_out) 1303 out->f_pos = offset; 1304 else 1305 *off_out = offset; 1306 1307 return ret; 1308 } 1309 1310 if (opipe) { 1311 if (off_out) 1312 return -ESPIPE; 1313 if (off_in) { 1314 if (!(in->f_mode & FMODE_PREAD)) 1315 return -EINVAL; 1316 offset = *off_in; 1317 } else { 1318 offset = in->f_pos; 1319 } 1320 1321 if (out->f_flags & O_NONBLOCK) 1322 flags |= SPLICE_F_NONBLOCK; 1323 1324 ret = splice_file_to_pipe(in, opipe, &offset, len, flags); 1325 1326 if (ret > 0) 1327 fsnotify_access(in); 1328 1329 if (!off_in) 1330 in->f_pos = offset; 1331 else 1332 *off_in = offset; 1333 1334 return ret; 1335 } 1336 1337 return -EINVAL; 1338 } 1339 1340 static long __do_splice(struct file *in, loff_t __user *off_in, 1341 struct file *out, loff_t __user *off_out, 1342 size_t len, unsigned int flags) 1343 { 1344 struct pipe_inode_info *ipipe; 1345 struct pipe_inode_info *opipe; 1346 loff_t offset, *__off_in = NULL, *__off_out = NULL; 1347 long ret; 1348 1349 ipipe = get_pipe_info(in, true); 1350 opipe = get_pipe_info(out, true); 1351 1352 if (ipipe) { 1353 if (off_in) 1354 return -ESPIPE; 1355 pipe_clear_nowait(in); 1356 } 1357 if (opipe) { 1358 if (off_out) 1359 return -ESPIPE; 1360 pipe_clear_nowait(out); 1361 } 1362 1363 if (off_out) { 1364 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1365 return -EFAULT; 1366 __off_out = &offset; 1367 } 1368 if (off_in) { 1369 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1370 return -EFAULT; 1371 __off_in = &offset; 1372 } 1373 1374 ret = do_splice(in, __off_in, out, __off_out, len, flags); 1375 if (ret < 0) 1376 return ret; 1377 1378 if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t))) 1379 return -EFAULT; 1380 if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t))) 1381 return -EFAULT; 1382 1383 return ret; 1384 } 1385 1386 static int iter_to_pipe(struct iov_iter *from, 1387 struct pipe_inode_info *pipe, 1388 unsigned flags) 1389 { 1390 struct pipe_buffer buf = { 1391 .ops = &user_page_pipe_buf_ops, 1392 .flags = flags 1393 }; 1394 size_t total = 0; 1395 int ret = 0; 1396 1397 while (iov_iter_count(from)) { 1398 struct page *pages[16]; 1399 ssize_t left; 1400 size_t start; 1401 int i, n; 1402 1403 left = iov_iter_get_pages2(from, pages, ~0UL, 16, &start); 1404 if (left <= 0) { 1405 ret = left; 1406 break; 1407 } 1408 1409 n = DIV_ROUND_UP(left + start, PAGE_SIZE); 1410 for (i = 0; i < n; i++) { 1411 int size = min_t(int, left, PAGE_SIZE - start); 1412 1413 buf.page = pages[i]; 1414 buf.offset = start; 1415 buf.len = size; 1416 ret = add_to_pipe(pipe, &buf); 1417 if (unlikely(ret < 0)) { 1418 iov_iter_revert(from, left); 1419 // this one got dropped by add_to_pipe() 1420 while (++i < n) 1421 put_page(pages[i]); 1422 goto out; 1423 } 1424 total += ret; 1425 left -= size; 1426 start = 0; 1427 } 1428 } 1429 out: 1430 return total ? total : ret; 1431 } 1432 1433 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1434 struct splice_desc *sd) 1435 { 1436 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data); 1437 return n == sd->len ? n : -EFAULT; 1438 } 1439 1440 /* 1441 * For lack of a better implementation, implement vmsplice() to userspace 1442 * as a simple copy of the pipes pages to the user iov. 1443 */ 1444 static long vmsplice_to_user(struct file *file, struct iov_iter *iter, 1445 unsigned int flags) 1446 { 1447 struct pipe_inode_info *pipe = get_pipe_info(file, true); 1448 struct splice_desc sd = { 1449 .total_len = iov_iter_count(iter), 1450 .flags = flags, 1451 .u.data = iter 1452 }; 1453 long ret = 0; 1454 1455 if (!pipe) 1456 return -EBADF; 1457 1458 pipe_clear_nowait(file); 1459 1460 if (sd.total_len) { 1461 pipe_lock(pipe); 1462 ret = __splice_from_pipe(pipe, &sd, pipe_to_user); 1463 pipe_unlock(pipe); 1464 } 1465 1466 return ret; 1467 } 1468 1469 /* 1470 * vmsplice splices a user address range into a pipe. It can be thought of 1471 * as splice-from-memory, where the regular splice is splice-from-file (or 1472 * to file). In both cases the output is a pipe, naturally. 1473 */ 1474 static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter, 1475 unsigned int flags) 1476 { 1477 struct pipe_inode_info *pipe; 1478 long ret = 0; 1479 unsigned buf_flag = 0; 1480 1481 if (flags & SPLICE_F_GIFT) 1482 buf_flag = PIPE_BUF_FLAG_GIFT; 1483 1484 pipe = get_pipe_info(file, true); 1485 if (!pipe) 1486 return -EBADF; 1487 1488 pipe_clear_nowait(file); 1489 1490 pipe_lock(pipe); 1491 ret = wait_for_space(pipe, flags); 1492 if (!ret) 1493 ret = iter_to_pipe(iter, pipe, buf_flag); 1494 pipe_unlock(pipe); 1495 if (ret > 0) 1496 wakeup_pipe_readers(pipe); 1497 return ret; 1498 } 1499 1500 static int vmsplice_type(struct fd f, int *type) 1501 { 1502 if (!f.file) 1503 return -EBADF; 1504 if (f.file->f_mode & FMODE_WRITE) { 1505 *type = ITER_SOURCE; 1506 } else if (f.file->f_mode & FMODE_READ) { 1507 *type = ITER_DEST; 1508 } else { 1509 fdput(f); 1510 return -EBADF; 1511 } 1512 return 0; 1513 } 1514 1515 /* 1516 * Note that vmsplice only really supports true splicing _from_ user memory 1517 * to a pipe, not the other way around. Splicing from user memory is a simple 1518 * operation that can be supported without any funky alignment restrictions 1519 * or nasty vm tricks. We simply map in the user memory and fill them into 1520 * a pipe. The reverse isn't quite as easy, though. There are two possible 1521 * solutions for that: 1522 * 1523 * - memcpy() the data internally, at which point we might as well just 1524 * do a regular read() on the buffer anyway. 1525 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1526 * has restriction limitations on both ends of the pipe). 1527 * 1528 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1529 * 1530 */ 1531 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov, 1532 unsigned long, nr_segs, unsigned int, flags) 1533 { 1534 struct iovec iovstack[UIO_FASTIOV]; 1535 struct iovec *iov = iovstack; 1536 struct iov_iter iter; 1537 ssize_t error; 1538 struct fd f; 1539 int type; 1540 1541 if (unlikely(flags & ~SPLICE_F_ALL)) 1542 return -EINVAL; 1543 1544 f = fdget(fd); 1545 error = vmsplice_type(f, &type); 1546 if (error) 1547 return error; 1548 1549 error = import_iovec(type, uiov, nr_segs, 1550 ARRAY_SIZE(iovstack), &iov, &iter); 1551 if (error < 0) 1552 goto out_fdput; 1553 1554 if (!iov_iter_count(&iter)) 1555 error = 0; 1556 else if (type == ITER_SOURCE) 1557 error = vmsplice_to_pipe(f.file, &iter, flags); 1558 else 1559 error = vmsplice_to_user(f.file, &iter, flags); 1560 1561 kfree(iov); 1562 out_fdput: 1563 fdput(f); 1564 return error; 1565 } 1566 1567 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in, 1568 int, fd_out, loff_t __user *, off_out, 1569 size_t, len, unsigned int, flags) 1570 { 1571 struct fd in, out; 1572 long error; 1573 1574 if (unlikely(!len)) 1575 return 0; 1576 1577 if (unlikely(flags & ~SPLICE_F_ALL)) 1578 return -EINVAL; 1579 1580 error = -EBADF; 1581 in = fdget(fd_in); 1582 if (in.file) { 1583 out = fdget(fd_out); 1584 if (out.file) { 1585 error = __do_splice(in.file, off_in, out.file, off_out, 1586 len, flags); 1587 fdput(out); 1588 } 1589 fdput(in); 1590 } 1591 return error; 1592 } 1593 1594 /* 1595 * Make sure there's data to read. Wait for input if we can, otherwise 1596 * return an appropriate error. 1597 */ 1598 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1599 { 1600 int ret; 1601 1602 /* 1603 * Check the pipe occupancy without the inode lock first. This function 1604 * is speculative anyways, so missing one is ok. 1605 */ 1606 if (!pipe_empty(pipe->head, pipe->tail)) 1607 return 0; 1608 1609 ret = 0; 1610 pipe_lock(pipe); 1611 1612 while (pipe_empty(pipe->head, pipe->tail)) { 1613 if (signal_pending(current)) { 1614 ret = -ERESTARTSYS; 1615 break; 1616 } 1617 if (!pipe->writers) 1618 break; 1619 if (flags & SPLICE_F_NONBLOCK) { 1620 ret = -EAGAIN; 1621 break; 1622 } 1623 pipe_wait_readable(pipe); 1624 } 1625 1626 pipe_unlock(pipe); 1627 return ret; 1628 } 1629 1630 /* 1631 * Make sure there's writeable room. Wait for room if we can, otherwise 1632 * return an appropriate error. 1633 */ 1634 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1635 { 1636 int ret; 1637 1638 /* 1639 * Check pipe occupancy without the inode lock first. This function 1640 * is speculative anyways, so missing one is ok. 1641 */ 1642 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 1643 return 0; 1644 1645 ret = 0; 1646 pipe_lock(pipe); 1647 1648 while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 1649 if (!pipe->readers) { 1650 send_sig(SIGPIPE, current, 0); 1651 ret = -EPIPE; 1652 break; 1653 } 1654 if (flags & SPLICE_F_NONBLOCK) { 1655 ret = -EAGAIN; 1656 break; 1657 } 1658 if (signal_pending(current)) { 1659 ret = -ERESTARTSYS; 1660 break; 1661 } 1662 pipe_wait_writable(pipe); 1663 } 1664 1665 pipe_unlock(pipe); 1666 return ret; 1667 } 1668 1669 /* 1670 * Splice contents of ipipe to opipe. 1671 */ 1672 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1673 struct pipe_inode_info *opipe, 1674 size_t len, unsigned int flags) 1675 { 1676 struct pipe_buffer *ibuf, *obuf; 1677 unsigned int i_head, o_head; 1678 unsigned int i_tail, o_tail; 1679 unsigned int i_mask, o_mask; 1680 int ret = 0; 1681 bool input_wakeup = false; 1682 1683 1684 retry: 1685 ret = ipipe_prep(ipipe, flags); 1686 if (ret) 1687 return ret; 1688 1689 ret = opipe_prep(opipe, flags); 1690 if (ret) 1691 return ret; 1692 1693 /* 1694 * Potential ABBA deadlock, work around it by ordering lock 1695 * grabbing by pipe info address. Otherwise two different processes 1696 * could deadlock (one doing tee from A -> B, the other from B -> A). 1697 */ 1698 pipe_double_lock(ipipe, opipe); 1699 1700 i_tail = ipipe->tail; 1701 i_mask = ipipe->ring_size - 1; 1702 o_head = opipe->head; 1703 o_mask = opipe->ring_size - 1; 1704 1705 do { 1706 size_t o_len; 1707 1708 if (!opipe->readers) { 1709 send_sig(SIGPIPE, current, 0); 1710 if (!ret) 1711 ret = -EPIPE; 1712 break; 1713 } 1714 1715 i_head = ipipe->head; 1716 o_tail = opipe->tail; 1717 1718 if (pipe_empty(i_head, i_tail) && !ipipe->writers) 1719 break; 1720 1721 /* 1722 * Cannot make any progress, because either the input 1723 * pipe is empty or the output pipe is full. 1724 */ 1725 if (pipe_empty(i_head, i_tail) || 1726 pipe_full(o_head, o_tail, opipe->max_usage)) { 1727 /* Already processed some buffers, break */ 1728 if (ret) 1729 break; 1730 1731 if (flags & SPLICE_F_NONBLOCK) { 1732 ret = -EAGAIN; 1733 break; 1734 } 1735 1736 /* 1737 * We raced with another reader/writer and haven't 1738 * managed to process any buffers. A zero return 1739 * value means EOF, so retry instead. 1740 */ 1741 pipe_unlock(ipipe); 1742 pipe_unlock(opipe); 1743 goto retry; 1744 } 1745 1746 ibuf = &ipipe->bufs[i_tail & i_mask]; 1747 obuf = &opipe->bufs[o_head & o_mask]; 1748 1749 if (len >= ibuf->len) { 1750 /* 1751 * Simply move the whole buffer from ipipe to opipe 1752 */ 1753 *obuf = *ibuf; 1754 ibuf->ops = NULL; 1755 i_tail++; 1756 ipipe->tail = i_tail; 1757 input_wakeup = true; 1758 o_len = obuf->len; 1759 o_head++; 1760 opipe->head = o_head; 1761 } else { 1762 /* 1763 * Get a reference to this pipe buffer, 1764 * so we can copy the contents over. 1765 */ 1766 if (!pipe_buf_get(ipipe, ibuf)) { 1767 if (ret == 0) 1768 ret = -EFAULT; 1769 break; 1770 } 1771 *obuf = *ibuf; 1772 1773 /* 1774 * Don't inherit the gift and merge flags, we need to 1775 * prevent multiple steals of this page. 1776 */ 1777 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1778 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE; 1779 1780 obuf->len = len; 1781 ibuf->offset += len; 1782 ibuf->len -= len; 1783 o_len = len; 1784 o_head++; 1785 opipe->head = o_head; 1786 } 1787 ret += o_len; 1788 len -= o_len; 1789 } while (len); 1790 1791 pipe_unlock(ipipe); 1792 pipe_unlock(opipe); 1793 1794 /* 1795 * If we put data in the output pipe, wakeup any potential readers. 1796 */ 1797 if (ret > 0) 1798 wakeup_pipe_readers(opipe); 1799 1800 if (input_wakeup) 1801 wakeup_pipe_writers(ipipe); 1802 1803 return ret; 1804 } 1805 1806 /* 1807 * Link contents of ipipe to opipe. 1808 */ 1809 static int link_pipe(struct pipe_inode_info *ipipe, 1810 struct pipe_inode_info *opipe, 1811 size_t len, unsigned int flags) 1812 { 1813 struct pipe_buffer *ibuf, *obuf; 1814 unsigned int i_head, o_head; 1815 unsigned int i_tail, o_tail; 1816 unsigned int i_mask, o_mask; 1817 int ret = 0; 1818 1819 /* 1820 * Potential ABBA deadlock, work around it by ordering lock 1821 * grabbing by pipe info address. Otherwise two different processes 1822 * could deadlock (one doing tee from A -> B, the other from B -> A). 1823 */ 1824 pipe_double_lock(ipipe, opipe); 1825 1826 i_tail = ipipe->tail; 1827 i_mask = ipipe->ring_size - 1; 1828 o_head = opipe->head; 1829 o_mask = opipe->ring_size - 1; 1830 1831 do { 1832 if (!opipe->readers) { 1833 send_sig(SIGPIPE, current, 0); 1834 if (!ret) 1835 ret = -EPIPE; 1836 break; 1837 } 1838 1839 i_head = ipipe->head; 1840 o_tail = opipe->tail; 1841 1842 /* 1843 * If we have iterated all input buffers or run out of 1844 * output room, break. 1845 */ 1846 if (pipe_empty(i_head, i_tail) || 1847 pipe_full(o_head, o_tail, opipe->max_usage)) 1848 break; 1849 1850 ibuf = &ipipe->bufs[i_tail & i_mask]; 1851 obuf = &opipe->bufs[o_head & o_mask]; 1852 1853 /* 1854 * Get a reference to this pipe buffer, 1855 * so we can copy the contents over. 1856 */ 1857 if (!pipe_buf_get(ipipe, ibuf)) { 1858 if (ret == 0) 1859 ret = -EFAULT; 1860 break; 1861 } 1862 1863 *obuf = *ibuf; 1864 1865 /* 1866 * Don't inherit the gift and merge flag, we need to prevent 1867 * multiple steals of this page. 1868 */ 1869 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1870 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE; 1871 1872 if (obuf->len > len) 1873 obuf->len = len; 1874 ret += obuf->len; 1875 len -= obuf->len; 1876 1877 o_head++; 1878 opipe->head = o_head; 1879 i_tail++; 1880 } while (len); 1881 1882 pipe_unlock(ipipe); 1883 pipe_unlock(opipe); 1884 1885 /* 1886 * If we put data in the output pipe, wakeup any potential readers. 1887 */ 1888 if (ret > 0) 1889 wakeup_pipe_readers(opipe); 1890 1891 return ret; 1892 } 1893 1894 /* 1895 * This is a tee(1) implementation that works on pipes. It doesn't copy 1896 * any data, it simply references the 'in' pages on the 'out' pipe. 1897 * The 'flags' used are the SPLICE_F_* variants, currently the only 1898 * applicable one is SPLICE_F_NONBLOCK. 1899 */ 1900 long do_tee(struct file *in, struct file *out, size_t len, unsigned int flags) 1901 { 1902 struct pipe_inode_info *ipipe = get_pipe_info(in, true); 1903 struct pipe_inode_info *opipe = get_pipe_info(out, true); 1904 int ret = -EINVAL; 1905 1906 if (unlikely(!(in->f_mode & FMODE_READ) || 1907 !(out->f_mode & FMODE_WRITE))) 1908 return -EBADF; 1909 1910 /* 1911 * Duplicate the contents of ipipe to opipe without actually 1912 * copying the data. 1913 */ 1914 if (ipipe && opipe && ipipe != opipe) { 1915 if ((in->f_flags | out->f_flags) & O_NONBLOCK) 1916 flags |= SPLICE_F_NONBLOCK; 1917 1918 /* 1919 * Keep going, unless we encounter an error. The ipipe/opipe 1920 * ordering doesn't really matter. 1921 */ 1922 ret = ipipe_prep(ipipe, flags); 1923 if (!ret) { 1924 ret = opipe_prep(opipe, flags); 1925 if (!ret) 1926 ret = link_pipe(ipipe, opipe, len, flags); 1927 } 1928 } 1929 1930 return ret; 1931 } 1932 1933 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags) 1934 { 1935 struct fd in, out; 1936 int error; 1937 1938 if (unlikely(flags & ~SPLICE_F_ALL)) 1939 return -EINVAL; 1940 1941 if (unlikely(!len)) 1942 return 0; 1943 1944 error = -EBADF; 1945 in = fdget(fdin); 1946 if (in.file) { 1947 out = fdget(fdout); 1948 if (out.file) { 1949 error = do_tee(in.file, out.file, len, flags); 1950 fdput(out); 1951 } 1952 fdput(in); 1953 } 1954 1955 return error; 1956 } 1957