xref: /openbmc/linux/fs/splice.c (revision f3a8b664)
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
35 #include "internal.h"
36 
37 /*
38  * Attempt to steal a page from a pipe buffer. This should perhaps go into
39  * a vm helper function, it's already simplified quite a bit by the
40  * addition of remove_mapping(). If success is returned, the caller may
41  * attempt to reuse this page for another destination.
42  */
43 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
44 				     struct pipe_buffer *buf)
45 {
46 	struct page *page = buf->page;
47 	struct address_space *mapping;
48 
49 	lock_page(page);
50 
51 	mapping = page_mapping(page);
52 	if (mapping) {
53 		WARN_ON(!PageUptodate(page));
54 
55 		/*
56 		 * At least for ext2 with nobh option, we need to wait on
57 		 * writeback completing on this page, since we'll remove it
58 		 * from the pagecache.  Otherwise truncate wont wait on the
59 		 * page, allowing the disk blocks to be reused by someone else
60 		 * before we actually wrote our data to them. fs corruption
61 		 * ensues.
62 		 */
63 		wait_on_page_writeback(page);
64 
65 		if (page_has_private(page) &&
66 		    !try_to_release_page(page, GFP_KERNEL))
67 			goto out_unlock;
68 
69 		/*
70 		 * If we succeeded in removing the mapping, set LRU flag
71 		 * and return good.
72 		 */
73 		if (remove_mapping(mapping, page)) {
74 			buf->flags |= PIPE_BUF_FLAG_LRU;
75 			return 0;
76 		}
77 	}
78 
79 	/*
80 	 * Raced with truncate or failed to remove page from current
81 	 * address space, unlock and return failure.
82 	 */
83 out_unlock:
84 	unlock_page(page);
85 	return 1;
86 }
87 
88 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
89 					struct pipe_buffer *buf)
90 {
91 	put_page(buf->page);
92 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
93 }
94 
95 /*
96  * Check whether the contents of buf is OK to access. Since the content
97  * is a page cache page, IO may be in flight.
98  */
99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
100 				       struct pipe_buffer *buf)
101 {
102 	struct page *page = buf->page;
103 	int err;
104 
105 	if (!PageUptodate(page)) {
106 		lock_page(page);
107 
108 		/*
109 		 * Page got truncated/unhashed. This will cause a 0-byte
110 		 * splice, if this is the first page.
111 		 */
112 		if (!page->mapping) {
113 			err = -ENODATA;
114 			goto error;
115 		}
116 
117 		/*
118 		 * Uh oh, read-error from disk.
119 		 */
120 		if (!PageUptodate(page)) {
121 			err = -EIO;
122 			goto error;
123 		}
124 
125 		/*
126 		 * Page is ok afterall, we are done.
127 		 */
128 		unlock_page(page);
129 	}
130 
131 	return 0;
132 error:
133 	unlock_page(page);
134 	return err;
135 }
136 
137 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
138 	.can_merge = 0,
139 	.confirm = page_cache_pipe_buf_confirm,
140 	.release = page_cache_pipe_buf_release,
141 	.steal = page_cache_pipe_buf_steal,
142 	.get = generic_pipe_buf_get,
143 };
144 
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 				    struct pipe_buffer *buf)
147 {
148 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 		return 1;
150 
151 	buf->flags |= PIPE_BUF_FLAG_LRU;
152 	return generic_pipe_buf_steal(pipe, buf);
153 }
154 
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 	.can_merge = 0,
157 	.confirm = generic_pipe_buf_confirm,
158 	.release = page_cache_pipe_buf_release,
159 	.steal = user_page_pipe_buf_steal,
160 	.get = generic_pipe_buf_get,
161 };
162 
163 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
164 {
165 	smp_mb();
166 	if (waitqueue_active(&pipe->wait))
167 		wake_up_interruptible(&pipe->wait);
168 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
169 }
170 
171 /**
172  * splice_to_pipe - fill passed data into a pipe
173  * @pipe:	pipe to fill
174  * @spd:	data to fill
175  *
176  * Description:
177  *    @spd contains a map of pages and len/offset tuples, along with
178  *    the struct pipe_buf_operations associated with these pages. This
179  *    function will link that data to the pipe.
180  *
181  */
182 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183 		       struct splice_pipe_desc *spd)
184 {
185 	unsigned int spd_pages = spd->nr_pages;
186 	int ret = 0, page_nr = 0;
187 
188 	if (!spd_pages)
189 		return 0;
190 
191 	if (unlikely(!pipe->readers)) {
192 		send_sig(SIGPIPE, current, 0);
193 		ret = -EPIPE;
194 		goto out;
195 	}
196 
197 	while (pipe->nrbufs < pipe->buffers) {
198 		int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
199 		struct pipe_buffer *buf = pipe->bufs + newbuf;
200 
201 		buf->page = spd->pages[page_nr];
202 		buf->offset = spd->partial[page_nr].offset;
203 		buf->len = spd->partial[page_nr].len;
204 		buf->private = spd->partial[page_nr].private;
205 		buf->ops = spd->ops;
206 
207 		pipe->nrbufs++;
208 		page_nr++;
209 		ret += buf->len;
210 
211 		if (!--spd->nr_pages)
212 			break;
213 	}
214 
215 	if (!ret)
216 		ret = -EAGAIN;
217 
218 out:
219 	while (page_nr < spd_pages)
220 		spd->spd_release(spd, page_nr++);
221 
222 	return ret;
223 }
224 EXPORT_SYMBOL_GPL(splice_to_pipe);
225 
226 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
227 {
228 	int ret;
229 
230 	if (unlikely(!pipe->readers)) {
231 		send_sig(SIGPIPE, current, 0);
232 		ret = -EPIPE;
233 	} else if (pipe->nrbufs == pipe->buffers) {
234 		ret = -EAGAIN;
235 	} else {
236 		int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
237 		pipe->bufs[newbuf] = *buf;
238 		pipe->nrbufs++;
239 		return buf->len;
240 	}
241 	pipe_buf_release(pipe, buf);
242 	return ret;
243 }
244 EXPORT_SYMBOL(add_to_pipe);
245 
246 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
247 {
248 	put_page(spd->pages[i]);
249 }
250 
251 /*
252  * Check if we need to grow the arrays holding pages and partial page
253  * descriptions.
254  */
255 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
256 {
257 	unsigned int buffers = ACCESS_ONCE(pipe->buffers);
258 
259 	spd->nr_pages_max = buffers;
260 	if (buffers <= PIPE_DEF_BUFFERS)
261 		return 0;
262 
263 	spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
264 	spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
265 
266 	if (spd->pages && spd->partial)
267 		return 0;
268 
269 	kfree(spd->pages);
270 	kfree(spd->partial);
271 	return -ENOMEM;
272 }
273 
274 void splice_shrink_spd(struct splice_pipe_desc *spd)
275 {
276 	if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
277 		return;
278 
279 	kfree(spd->pages);
280 	kfree(spd->partial);
281 }
282 
283 /**
284  * generic_file_splice_read - splice data from file to a pipe
285  * @in:		file to splice from
286  * @ppos:	position in @in
287  * @pipe:	pipe to splice to
288  * @len:	number of bytes to splice
289  * @flags:	splice modifier flags
290  *
291  * Description:
292  *    Will read pages from given file and fill them into a pipe. Can be
293  *    used as long as it has more or less sane ->read_iter().
294  *
295  */
296 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
297 				 struct pipe_inode_info *pipe, size_t len,
298 				 unsigned int flags)
299 {
300 	struct iov_iter to;
301 	struct kiocb kiocb;
302 	loff_t isize;
303 	int idx, ret;
304 
305 	isize = i_size_read(in->f_mapping->host);
306 	if (unlikely(*ppos >= isize))
307 		return 0;
308 
309 	iov_iter_pipe(&to, ITER_PIPE | READ, pipe, len);
310 	idx = to.idx;
311 	init_sync_kiocb(&kiocb, in);
312 	kiocb.ki_pos = *ppos;
313 	ret = in->f_op->read_iter(&kiocb, &to);
314 	if (ret > 0) {
315 		*ppos = kiocb.ki_pos;
316 		file_accessed(in);
317 	} else if (ret < 0) {
318 		to.idx = idx;
319 		to.iov_offset = 0;
320 		iov_iter_advance(&to, 0); /* to free what was emitted */
321 		/*
322 		 * callers of ->splice_read() expect -EAGAIN on
323 		 * "can't put anything in there", rather than -EFAULT.
324 		 */
325 		if (ret == -EFAULT)
326 			ret = -EAGAIN;
327 	}
328 
329 	return ret;
330 }
331 EXPORT_SYMBOL(generic_file_splice_read);
332 
333 const struct pipe_buf_operations default_pipe_buf_ops = {
334 	.can_merge = 0,
335 	.confirm = generic_pipe_buf_confirm,
336 	.release = generic_pipe_buf_release,
337 	.steal = generic_pipe_buf_steal,
338 	.get = generic_pipe_buf_get,
339 };
340 
341 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
342 				    struct pipe_buffer *buf)
343 {
344 	return 1;
345 }
346 
347 /* Pipe buffer operations for a socket and similar. */
348 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
349 	.can_merge = 0,
350 	.confirm = generic_pipe_buf_confirm,
351 	.release = generic_pipe_buf_release,
352 	.steal = generic_pipe_buf_nosteal,
353 	.get = generic_pipe_buf_get,
354 };
355 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
356 
357 static ssize_t kernel_readv(struct file *file, const struct kvec *vec,
358 			    unsigned long vlen, loff_t offset)
359 {
360 	mm_segment_t old_fs;
361 	loff_t pos = offset;
362 	ssize_t res;
363 
364 	old_fs = get_fs();
365 	set_fs(get_ds());
366 	/* The cast to a user pointer is valid due to the set_fs() */
367 	res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos, 0);
368 	set_fs(old_fs);
369 
370 	return res;
371 }
372 
373 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
374 			    loff_t pos)
375 {
376 	mm_segment_t old_fs;
377 	ssize_t res;
378 
379 	old_fs = get_fs();
380 	set_fs(get_ds());
381 	/* The cast to a user pointer is valid due to the set_fs() */
382 	res = vfs_write(file, (__force const char __user *)buf, count, &pos);
383 	set_fs(old_fs);
384 
385 	return res;
386 }
387 EXPORT_SYMBOL(kernel_write);
388 
389 static ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
390 				 struct pipe_inode_info *pipe, size_t len,
391 				 unsigned int flags)
392 {
393 	struct kvec *vec, __vec[PIPE_DEF_BUFFERS];
394 	struct iov_iter to;
395 	struct page **pages;
396 	unsigned int nr_pages;
397 	size_t offset, dummy, copied = 0;
398 	ssize_t res;
399 	int i;
400 
401 	if (pipe->nrbufs == pipe->buffers)
402 		return -EAGAIN;
403 
404 	/*
405 	 * Try to keep page boundaries matching to source pagecache ones -
406 	 * it probably won't be much help, but...
407 	 */
408 	offset = *ppos & ~PAGE_MASK;
409 
410 	iov_iter_pipe(&to, ITER_PIPE | READ, pipe, len + offset);
411 
412 	res = iov_iter_get_pages_alloc(&to, &pages, len + offset, &dummy);
413 	if (res <= 0)
414 		return -ENOMEM;
415 
416 	nr_pages = res / PAGE_SIZE;
417 
418 	vec = __vec;
419 	if (nr_pages > PIPE_DEF_BUFFERS) {
420 		vec = kmalloc(nr_pages * sizeof(struct kvec), GFP_KERNEL);
421 		if (unlikely(!vec)) {
422 			res = -ENOMEM;
423 			goto out;
424 		}
425 	}
426 
427 	pipe->bufs[to.idx].offset = offset;
428 	pipe->bufs[to.idx].len -= offset;
429 
430 	for (i = 0; i < nr_pages; i++) {
431 		size_t this_len = min_t(size_t, len, PAGE_SIZE - offset);
432 		vec[i].iov_base = page_address(pages[i]) + offset;
433 		vec[i].iov_len = this_len;
434 		len -= this_len;
435 		offset = 0;
436 	}
437 
438 	res = kernel_readv(in, vec, nr_pages, *ppos);
439 	if (res > 0) {
440 		copied = res;
441 		*ppos += res;
442 	}
443 
444 	if (vec != __vec)
445 		kfree(vec);
446 out:
447 	for (i = 0; i < nr_pages; i++)
448 		put_page(pages[i]);
449 	kvfree(pages);
450 	iov_iter_advance(&to, copied);	/* truncates and discards */
451 	return res;
452 }
453 
454 /*
455  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
456  * using sendpage(). Return the number of bytes sent.
457  */
458 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
459 			    struct pipe_buffer *buf, struct splice_desc *sd)
460 {
461 	struct file *file = sd->u.file;
462 	loff_t pos = sd->pos;
463 	int more;
464 
465 	if (!likely(file->f_op->sendpage))
466 		return -EINVAL;
467 
468 	more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
469 
470 	if (sd->len < sd->total_len && pipe->nrbufs > 1)
471 		more |= MSG_SENDPAGE_NOTLAST;
472 
473 	return file->f_op->sendpage(file, buf->page, buf->offset,
474 				    sd->len, &pos, more);
475 }
476 
477 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
478 {
479 	smp_mb();
480 	if (waitqueue_active(&pipe->wait))
481 		wake_up_interruptible(&pipe->wait);
482 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
483 }
484 
485 /**
486  * splice_from_pipe_feed - feed available data from a pipe to a file
487  * @pipe:	pipe to splice from
488  * @sd:		information to @actor
489  * @actor:	handler that splices the data
490  *
491  * Description:
492  *    This function loops over the pipe and calls @actor to do the
493  *    actual moving of a single struct pipe_buffer to the desired
494  *    destination.  It returns when there's no more buffers left in
495  *    the pipe or if the requested number of bytes (@sd->total_len)
496  *    have been copied.  It returns a positive number (one) if the
497  *    pipe needs to be filled with more data, zero if the required
498  *    number of bytes have been copied and -errno on error.
499  *
500  *    This, together with splice_from_pipe_{begin,end,next}, may be
501  *    used to implement the functionality of __splice_from_pipe() when
502  *    locking is required around copying the pipe buffers to the
503  *    destination.
504  */
505 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
506 			  splice_actor *actor)
507 {
508 	int ret;
509 
510 	while (pipe->nrbufs) {
511 		struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
512 
513 		sd->len = buf->len;
514 		if (sd->len > sd->total_len)
515 			sd->len = sd->total_len;
516 
517 		ret = pipe_buf_confirm(pipe, buf);
518 		if (unlikely(ret)) {
519 			if (ret == -ENODATA)
520 				ret = 0;
521 			return ret;
522 		}
523 
524 		ret = actor(pipe, buf, sd);
525 		if (ret <= 0)
526 			return ret;
527 
528 		buf->offset += ret;
529 		buf->len -= ret;
530 
531 		sd->num_spliced += ret;
532 		sd->len -= ret;
533 		sd->pos += ret;
534 		sd->total_len -= ret;
535 
536 		if (!buf->len) {
537 			pipe_buf_release(pipe, buf);
538 			pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
539 			pipe->nrbufs--;
540 			if (pipe->files)
541 				sd->need_wakeup = true;
542 		}
543 
544 		if (!sd->total_len)
545 			return 0;
546 	}
547 
548 	return 1;
549 }
550 
551 /**
552  * splice_from_pipe_next - wait for some data to splice from
553  * @pipe:	pipe to splice from
554  * @sd:		information about the splice operation
555  *
556  * Description:
557  *    This function will wait for some data and return a positive
558  *    value (one) if pipe buffers are available.  It will return zero
559  *    or -errno if no more data needs to be spliced.
560  */
561 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
562 {
563 	/*
564 	 * Check for signal early to make process killable when there are
565 	 * always buffers available
566 	 */
567 	if (signal_pending(current))
568 		return -ERESTARTSYS;
569 
570 	while (!pipe->nrbufs) {
571 		if (!pipe->writers)
572 			return 0;
573 
574 		if (!pipe->waiting_writers && sd->num_spliced)
575 			return 0;
576 
577 		if (sd->flags & SPLICE_F_NONBLOCK)
578 			return -EAGAIN;
579 
580 		if (signal_pending(current))
581 			return -ERESTARTSYS;
582 
583 		if (sd->need_wakeup) {
584 			wakeup_pipe_writers(pipe);
585 			sd->need_wakeup = false;
586 		}
587 
588 		pipe_wait(pipe);
589 	}
590 
591 	return 1;
592 }
593 
594 /**
595  * splice_from_pipe_begin - start splicing from pipe
596  * @sd:		information about the splice operation
597  *
598  * Description:
599  *    This function should be called before a loop containing
600  *    splice_from_pipe_next() and splice_from_pipe_feed() to
601  *    initialize the necessary fields of @sd.
602  */
603 static void splice_from_pipe_begin(struct splice_desc *sd)
604 {
605 	sd->num_spliced = 0;
606 	sd->need_wakeup = false;
607 }
608 
609 /**
610  * splice_from_pipe_end - finish splicing from pipe
611  * @pipe:	pipe to splice from
612  * @sd:		information about the splice operation
613  *
614  * Description:
615  *    This function will wake up pipe writers if necessary.  It should
616  *    be called after a loop containing splice_from_pipe_next() and
617  *    splice_from_pipe_feed().
618  */
619 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
620 {
621 	if (sd->need_wakeup)
622 		wakeup_pipe_writers(pipe);
623 }
624 
625 /**
626  * __splice_from_pipe - splice data from a pipe to given actor
627  * @pipe:	pipe to splice from
628  * @sd:		information to @actor
629  * @actor:	handler that splices the data
630  *
631  * Description:
632  *    This function does little more than loop over the pipe and call
633  *    @actor to do the actual moving of a single struct pipe_buffer to
634  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
635  *    pipe_to_user.
636  *
637  */
638 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
639 			   splice_actor *actor)
640 {
641 	int ret;
642 
643 	splice_from_pipe_begin(sd);
644 	do {
645 		cond_resched();
646 		ret = splice_from_pipe_next(pipe, sd);
647 		if (ret > 0)
648 			ret = splice_from_pipe_feed(pipe, sd, actor);
649 	} while (ret > 0);
650 	splice_from_pipe_end(pipe, sd);
651 
652 	return sd->num_spliced ? sd->num_spliced : ret;
653 }
654 EXPORT_SYMBOL(__splice_from_pipe);
655 
656 /**
657  * splice_from_pipe - splice data from a pipe to a file
658  * @pipe:	pipe to splice from
659  * @out:	file to splice to
660  * @ppos:	position in @out
661  * @len:	how many bytes to splice
662  * @flags:	splice modifier flags
663  * @actor:	handler that splices the data
664  *
665  * Description:
666  *    See __splice_from_pipe. This function locks the pipe inode,
667  *    otherwise it's identical to __splice_from_pipe().
668  *
669  */
670 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
671 			 loff_t *ppos, size_t len, unsigned int flags,
672 			 splice_actor *actor)
673 {
674 	ssize_t ret;
675 	struct splice_desc sd = {
676 		.total_len = len,
677 		.flags = flags,
678 		.pos = *ppos,
679 		.u.file = out,
680 	};
681 
682 	pipe_lock(pipe);
683 	ret = __splice_from_pipe(pipe, &sd, actor);
684 	pipe_unlock(pipe);
685 
686 	return ret;
687 }
688 
689 /**
690  * iter_file_splice_write - splice data from a pipe to a file
691  * @pipe:	pipe info
692  * @out:	file to write to
693  * @ppos:	position in @out
694  * @len:	number of bytes to splice
695  * @flags:	splice modifier flags
696  *
697  * Description:
698  *    Will either move or copy pages (determined by @flags options) from
699  *    the given pipe inode to the given file.
700  *    This one is ->write_iter-based.
701  *
702  */
703 ssize_t
704 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
705 			  loff_t *ppos, size_t len, unsigned int flags)
706 {
707 	struct splice_desc sd = {
708 		.total_len = len,
709 		.flags = flags,
710 		.pos = *ppos,
711 		.u.file = out,
712 	};
713 	int nbufs = pipe->buffers;
714 	struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
715 					GFP_KERNEL);
716 	ssize_t ret;
717 
718 	if (unlikely(!array))
719 		return -ENOMEM;
720 
721 	pipe_lock(pipe);
722 
723 	splice_from_pipe_begin(&sd);
724 	while (sd.total_len) {
725 		struct iov_iter from;
726 		size_t left;
727 		int n, idx;
728 
729 		ret = splice_from_pipe_next(pipe, &sd);
730 		if (ret <= 0)
731 			break;
732 
733 		if (unlikely(nbufs < pipe->buffers)) {
734 			kfree(array);
735 			nbufs = pipe->buffers;
736 			array = kcalloc(nbufs, sizeof(struct bio_vec),
737 					GFP_KERNEL);
738 			if (!array) {
739 				ret = -ENOMEM;
740 				break;
741 			}
742 		}
743 
744 		/* build the vector */
745 		left = sd.total_len;
746 		for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
747 			struct pipe_buffer *buf = pipe->bufs + idx;
748 			size_t this_len = buf->len;
749 
750 			if (this_len > left)
751 				this_len = left;
752 
753 			if (idx == pipe->buffers - 1)
754 				idx = -1;
755 
756 			ret = pipe_buf_confirm(pipe, buf);
757 			if (unlikely(ret)) {
758 				if (ret == -ENODATA)
759 					ret = 0;
760 				goto done;
761 			}
762 
763 			array[n].bv_page = buf->page;
764 			array[n].bv_len = this_len;
765 			array[n].bv_offset = buf->offset;
766 			left -= this_len;
767 		}
768 
769 		iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n,
770 			      sd.total_len - left);
771 		ret = vfs_iter_write(out, &from, &sd.pos);
772 		if (ret <= 0)
773 			break;
774 
775 		sd.num_spliced += ret;
776 		sd.total_len -= ret;
777 		*ppos = sd.pos;
778 
779 		/* dismiss the fully eaten buffers, adjust the partial one */
780 		while (ret) {
781 			struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
782 			if (ret >= buf->len) {
783 				ret -= buf->len;
784 				buf->len = 0;
785 				pipe_buf_release(pipe, buf);
786 				pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
787 				pipe->nrbufs--;
788 				if (pipe->files)
789 					sd.need_wakeup = true;
790 			} else {
791 				buf->offset += ret;
792 				buf->len -= ret;
793 				ret = 0;
794 			}
795 		}
796 	}
797 done:
798 	kfree(array);
799 	splice_from_pipe_end(pipe, &sd);
800 
801 	pipe_unlock(pipe);
802 
803 	if (sd.num_spliced)
804 		ret = sd.num_spliced;
805 
806 	return ret;
807 }
808 
809 EXPORT_SYMBOL(iter_file_splice_write);
810 
811 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
812 			  struct splice_desc *sd)
813 {
814 	int ret;
815 	void *data;
816 	loff_t tmp = sd->pos;
817 
818 	data = kmap(buf->page);
819 	ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
820 	kunmap(buf->page);
821 
822 	return ret;
823 }
824 
825 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
826 					 struct file *out, loff_t *ppos,
827 					 size_t len, unsigned int flags)
828 {
829 	ssize_t ret;
830 
831 	ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
832 	if (ret > 0)
833 		*ppos += ret;
834 
835 	return ret;
836 }
837 
838 /**
839  * generic_splice_sendpage - splice data from a pipe to a socket
840  * @pipe:	pipe to splice from
841  * @out:	socket to write to
842  * @ppos:	position in @out
843  * @len:	number of bytes to splice
844  * @flags:	splice modifier flags
845  *
846  * Description:
847  *    Will send @len bytes from the pipe to a network socket. No data copying
848  *    is involved.
849  *
850  */
851 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
852 				loff_t *ppos, size_t len, unsigned int flags)
853 {
854 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
855 }
856 
857 EXPORT_SYMBOL(generic_splice_sendpage);
858 
859 /*
860  * Attempt to initiate a splice from pipe to file.
861  */
862 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
863 			   loff_t *ppos, size_t len, unsigned int flags)
864 {
865 	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
866 				loff_t *, size_t, unsigned int);
867 
868 	if (out->f_op->splice_write)
869 		splice_write = out->f_op->splice_write;
870 	else
871 		splice_write = default_file_splice_write;
872 
873 	return splice_write(pipe, out, ppos, len, flags);
874 }
875 
876 /*
877  * Attempt to initiate a splice from a file to a pipe.
878  */
879 static long do_splice_to(struct file *in, loff_t *ppos,
880 			 struct pipe_inode_info *pipe, size_t len,
881 			 unsigned int flags)
882 {
883 	ssize_t (*splice_read)(struct file *, loff_t *,
884 			       struct pipe_inode_info *, size_t, unsigned int);
885 	int ret;
886 
887 	if (unlikely(!(in->f_mode & FMODE_READ)))
888 		return -EBADF;
889 
890 	ret = rw_verify_area(READ, in, ppos, len);
891 	if (unlikely(ret < 0))
892 		return ret;
893 
894 	if (unlikely(len > MAX_RW_COUNT))
895 		len = MAX_RW_COUNT;
896 
897 	if (in->f_op->splice_read)
898 		splice_read = in->f_op->splice_read;
899 	else
900 		splice_read = default_file_splice_read;
901 
902 	return splice_read(in, ppos, pipe, len, flags);
903 }
904 
905 /**
906  * splice_direct_to_actor - splices data directly between two non-pipes
907  * @in:		file to splice from
908  * @sd:		actor information on where to splice to
909  * @actor:	handles the data splicing
910  *
911  * Description:
912  *    This is a special case helper to splice directly between two
913  *    points, without requiring an explicit pipe. Internally an allocated
914  *    pipe is cached in the process, and reused during the lifetime of
915  *    that process.
916  *
917  */
918 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
919 			       splice_direct_actor *actor)
920 {
921 	struct pipe_inode_info *pipe;
922 	long ret, bytes;
923 	umode_t i_mode;
924 	size_t len;
925 	int i, flags, more;
926 
927 	/*
928 	 * We require the input being a regular file, as we don't want to
929 	 * randomly drop data for eg socket -> socket splicing. Use the
930 	 * piped splicing for that!
931 	 */
932 	i_mode = file_inode(in)->i_mode;
933 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
934 		return -EINVAL;
935 
936 	/*
937 	 * neither in nor out is a pipe, setup an internal pipe attached to
938 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
939 	 */
940 	pipe = current->splice_pipe;
941 	if (unlikely(!pipe)) {
942 		pipe = alloc_pipe_info();
943 		if (!pipe)
944 			return -ENOMEM;
945 
946 		/*
947 		 * We don't have an immediate reader, but we'll read the stuff
948 		 * out of the pipe right after the splice_to_pipe(). So set
949 		 * PIPE_READERS appropriately.
950 		 */
951 		pipe->readers = 1;
952 
953 		current->splice_pipe = pipe;
954 	}
955 
956 	/*
957 	 * Do the splice.
958 	 */
959 	ret = 0;
960 	bytes = 0;
961 	len = sd->total_len;
962 	flags = sd->flags;
963 
964 	/*
965 	 * Don't block on output, we have to drain the direct pipe.
966 	 */
967 	sd->flags &= ~SPLICE_F_NONBLOCK;
968 	more = sd->flags & SPLICE_F_MORE;
969 
970 	while (len) {
971 		size_t read_len;
972 		loff_t pos = sd->pos, prev_pos = pos;
973 
974 		ret = do_splice_to(in, &pos, pipe, len, flags);
975 		if (unlikely(ret <= 0))
976 			goto out_release;
977 
978 		read_len = ret;
979 		sd->total_len = read_len;
980 
981 		/*
982 		 * If more data is pending, set SPLICE_F_MORE
983 		 * If this is the last data and SPLICE_F_MORE was not set
984 		 * initially, clears it.
985 		 */
986 		if (read_len < len)
987 			sd->flags |= SPLICE_F_MORE;
988 		else if (!more)
989 			sd->flags &= ~SPLICE_F_MORE;
990 		/*
991 		 * NOTE: nonblocking mode only applies to the input. We
992 		 * must not do the output in nonblocking mode as then we
993 		 * could get stuck data in the internal pipe:
994 		 */
995 		ret = actor(pipe, sd);
996 		if (unlikely(ret <= 0)) {
997 			sd->pos = prev_pos;
998 			goto out_release;
999 		}
1000 
1001 		bytes += ret;
1002 		len -= ret;
1003 		sd->pos = pos;
1004 
1005 		if (ret < read_len) {
1006 			sd->pos = prev_pos + ret;
1007 			goto out_release;
1008 		}
1009 	}
1010 
1011 done:
1012 	pipe->nrbufs = pipe->curbuf = 0;
1013 	file_accessed(in);
1014 	return bytes;
1015 
1016 out_release:
1017 	/*
1018 	 * If we did an incomplete transfer we must release
1019 	 * the pipe buffers in question:
1020 	 */
1021 	for (i = 0; i < pipe->buffers; i++) {
1022 		struct pipe_buffer *buf = pipe->bufs + i;
1023 
1024 		if (buf->ops)
1025 			pipe_buf_release(pipe, buf);
1026 	}
1027 
1028 	if (!bytes)
1029 		bytes = ret;
1030 
1031 	goto done;
1032 }
1033 EXPORT_SYMBOL(splice_direct_to_actor);
1034 
1035 static int direct_splice_actor(struct pipe_inode_info *pipe,
1036 			       struct splice_desc *sd)
1037 {
1038 	struct file *file = sd->u.file;
1039 
1040 	return do_splice_from(pipe, file, sd->opos, sd->total_len,
1041 			      sd->flags);
1042 }
1043 
1044 /**
1045  * do_splice_direct - splices data directly between two files
1046  * @in:		file to splice from
1047  * @ppos:	input file offset
1048  * @out:	file to splice to
1049  * @opos:	output file offset
1050  * @len:	number of bytes to splice
1051  * @flags:	splice modifier flags
1052  *
1053  * Description:
1054  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1055  *    doing it in the application would incur an extra system call
1056  *    (splice in + splice out, as compared to just sendfile()). So this helper
1057  *    can splice directly through a process-private pipe.
1058  *
1059  */
1060 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1061 		      loff_t *opos, size_t len, unsigned int flags)
1062 {
1063 	struct splice_desc sd = {
1064 		.len		= len,
1065 		.total_len	= len,
1066 		.flags		= flags,
1067 		.pos		= *ppos,
1068 		.u.file		= out,
1069 		.opos		= opos,
1070 	};
1071 	long ret;
1072 
1073 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1074 		return -EBADF;
1075 
1076 	if (unlikely(out->f_flags & O_APPEND))
1077 		return -EINVAL;
1078 
1079 	ret = rw_verify_area(WRITE, out, opos, len);
1080 	if (unlikely(ret < 0))
1081 		return ret;
1082 
1083 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1084 	if (ret > 0)
1085 		*ppos = sd.pos;
1086 
1087 	return ret;
1088 }
1089 EXPORT_SYMBOL(do_splice_direct);
1090 
1091 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1092 {
1093 	while (pipe->nrbufs == pipe->buffers) {
1094 		if (flags & SPLICE_F_NONBLOCK)
1095 			return -EAGAIN;
1096 		if (signal_pending(current))
1097 			return -ERESTARTSYS;
1098 		pipe->waiting_writers++;
1099 		pipe_wait(pipe);
1100 		pipe->waiting_writers--;
1101 	}
1102 	return 0;
1103 }
1104 
1105 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1106 			       struct pipe_inode_info *opipe,
1107 			       size_t len, unsigned int flags);
1108 
1109 /*
1110  * Determine where to splice to/from.
1111  */
1112 static long do_splice(struct file *in, loff_t __user *off_in,
1113 		      struct file *out, loff_t __user *off_out,
1114 		      size_t len, unsigned int flags)
1115 {
1116 	struct pipe_inode_info *ipipe;
1117 	struct pipe_inode_info *opipe;
1118 	loff_t offset;
1119 	long ret;
1120 
1121 	ipipe = get_pipe_info(in);
1122 	opipe = get_pipe_info(out);
1123 
1124 	if (ipipe && opipe) {
1125 		if (off_in || off_out)
1126 			return -ESPIPE;
1127 
1128 		if (!(in->f_mode & FMODE_READ))
1129 			return -EBADF;
1130 
1131 		if (!(out->f_mode & FMODE_WRITE))
1132 			return -EBADF;
1133 
1134 		/* Splicing to self would be fun, but... */
1135 		if (ipipe == opipe)
1136 			return -EINVAL;
1137 
1138 		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1139 	}
1140 
1141 	if (ipipe) {
1142 		if (off_in)
1143 			return -ESPIPE;
1144 		if (off_out) {
1145 			if (!(out->f_mode & FMODE_PWRITE))
1146 				return -EINVAL;
1147 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1148 				return -EFAULT;
1149 		} else {
1150 			offset = out->f_pos;
1151 		}
1152 
1153 		if (unlikely(!(out->f_mode & FMODE_WRITE)))
1154 			return -EBADF;
1155 
1156 		if (unlikely(out->f_flags & O_APPEND))
1157 			return -EINVAL;
1158 
1159 		ret = rw_verify_area(WRITE, out, &offset, len);
1160 		if (unlikely(ret < 0))
1161 			return ret;
1162 
1163 		file_start_write(out);
1164 		ret = do_splice_from(ipipe, out, &offset, len, flags);
1165 		file_end_write(out);
1166 
1167 		if (!off_out)
1168 			out->f_pos = offset;
1169 		else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1170 			ret = -EFAULT;
1171 
1172 		return ret;
1173 	}
1174 
1175 	if (opipe) {
1176 		if (off_out)
1177 			return -ESPIPE;
1178 		if (off_in) {
1179 			if (!(in->f_mode & FMODE_PREAD))
1180 				return -EINVAL;
1181 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1182 				return -EFAULT;
1183 		} else {
1184 			offset = in->f_pos;
1185 		}
1186 
1187 		pipe_lock(opipe);
1188 		ret = wait_for_space(opipe, flags);
1189 		if (!ret)
1190 			ret = do_splice_to(in, &offset, opipe, len, flags);
1191 		pipe_unlock(opipe);
1192 		if (ret > 0)
1193 			wakeup_pipe_readers(opipe);
1194 		if (!off_in)
1195 			in->f_pos = offset;
1196 		else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1197 			ret = -EFAULT;
1198 
1199 		return ret;
1200 	}
1201 
1202 	return -EINVAL;
1203 }
1204 
1205 static int iter_to_pipe(struct iov_iter *from,
1206 			struct pipe_inode_info *pipe,
1207 			unsigned flags)
1208 {
1209 	struct pipe_buffer buf = {
1210 		.ops = &user_page_pipe_buf_ops,
1211 		.flags = flags
1212 	};
1213 	size_t total = 0;
1214 	int ret = 0;
1215 	bool failed = false;
1216 
1217 	while (iov_iter_count(from) && !failed) {
1218 		struct page *pages[16];
1219 		ssize_t copied;
1220 		size_t start;
1221 		int n;
1222 
1223 		copied = iov_iter_get_pages(from, pages, ~0UL, 16, &start);
1224 		if (copied <= 0) {
1225 			ret = copied;
1226 			break;
1227 		}
1228 
1229 		for (n = 0; copied; n++, start = 0) {
1230 			int size = min_t(int, copied, PAGE_SIZE - start);
1231 			if (!failed) {
1232 				buf.page = pages[n];
1233 				buf.offset = start;
1234 				buf.len = size;
1235 				ret = add_to_pipe(pipe, &buf);
1236 				if (unlikely(ret < 0)) {
1237 					failed = true;
1238 				} else {
1239 					iov_iter_advance(from, ret);
1240 					total += ret;
1241 				}
1242 			} else {
1243 				put_page(pages[n]);
1244 			}
1245 			copied -= size;
1246 		}
1247 	}
1248 	return total ? total : ret;
1249 }
1250 
1251 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1252 			struct splice_desc *sd)
1253 {
1254 	int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1255 	return n == sd->len ? n : -EFAULT;
1256 }
1257 
1258 /*
1259  * For lack of a better implementation, implement vmsplice() to userspace
1260  * as a simple copy of the pipes pages to the user iov.
1261  */
1262 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1263 			     unsigned long nr_segs, unsigned int flags)
1264 {
1265 	struct pipe_inode_info *pipe;
1266 	struct splice_desc sd;
1267 	long ret;
1268 	struct iovec iovstack[UIO_FASTIOV];
1269 	struct iovec *iov = iovstack;
1270 	struct iov_iter iter;
1271 
1272 	pipe = get_pipe_info(file);
1273 	if (!pipe)
1274 		return -EBADF;
1275 
1276 	ret = import_iovec(READ, uiov, nr_segs,
1277 			   ARRAY_SIZE(iovstack), &iov, &iter);
1278 	if (ret < 0)
1279 		return ret;
1280 
1281 	sd.total_len = iov_iter_count(&iter);
1282 	sd.len = 0;
1283 	sd.flags = flags;
1284 	sd.u.data = &iter;
1285 	sd.pos = 0;
1286 
1287 	if (sd.total_len) {
1288 		pipe_lock(pipe);
1289 		ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1290 		pipe_unlock(pipe);
1291 	}
1292 
1293 	kfree(iov);
1294 	return ret;
1295 }
1296 
1297 /*
1298  * vmsplice splices a user address range into a pipe. It can be thought of
1299  * as splice-from-memory, where the regular splice is splice-from-file (or
1300  * to file). In both cases the output is a pipe, naturally.
1301  */
1302 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *uiov,
1303 			     unsigned long nr_segs, unsigned int flags)
1304 {
1305 	struct pipe_inode_info *pipe;
1306 	struct iovec iovstack[UIO_FASTIOV];
1307 	struct iovec *iov = iovstack;
1308 	struct iov_iter from;
1309 	long ret;
1310 	unsigned buf_flag = 0;
1311 
1312 	if (flags & SPLICE_F_GIFT)
1313 		buf_flag = PIPE_BUF_FLAG_GIFT;
1314 
1315 	pipe = get_pipe_info(file);
1316 	if (!pipe)
1317 		return -EBADF;
1318 
1319 	ret = import_iovec(WRITE, uiov, nr_segs,
1320 			   ARRAY_SIZE(iovstack), &iov, &from);
1321 	if (ret < 0)
1322 		return ret;
1323 
1324 	pipe_lock(pipe);
1325 	ret = wait_for_space(pipe, flags);
1326 	if (!ret)
1327 		ret = iter_to_pipe(&from, pipe, buf_flag);
1328 	pipe_unlock(pipe);
1329 	if (ret > 0)
1330 		wakeup_pipe_readers(pipe);
1331 	kfree(iov);
1332 	return ret;
1333 }
1334 
1335 /*
1336  * Note that vmsplice only really supports true splicing _from_ user memory
1337  * to a pipe, not the other way around. Splicing from user memory is a simple
1338  * operation that can be supported without any funky alignment restrictions
1339  * or nasty vm tricks. We simply map in the user memory and fill them into
1340  * a pipe. The reverse isn't quite as easy, though. There are two possible
1341  * solutions for that:
1342  *
1343  *	- memcpy() the data internally, at which point we might as well just
1344  *	  do a regular read() on the buffer anyway.
1345  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1346  *	  has restriction limitations on both ends of the pipe).
1347  *
1348  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1349  *
1350  */
1351 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1352 		unsigned long, nr_segs, unsigned int, flags)
1353 {
1354 	struct fd f;
1355 	long error;
1356 
1357 	if (unlikely(nr_segs > UIO_MAXIOV))
1358 		return -EINVAL;
1359 	else if (unlikely(!nr_segs))
1360 		return 0;
1361 
1362 	error = -EBADF;
1363 	f = fdget(fd);
1364 	if (f.file) {
1365 		if (f.file->f_mode & FMODE_WRITE)
1366 			error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1367 		else if (f.file->f_mode & FMODE_READ)
1368 			error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1369 
1370 		fdput(f);
1371 	}
1372 
1373 	return error;
1374 }
1375 
1376 #ifdef CONFIG_COMPAT
1377 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1378 		    unsigned int, nr_segs, unsigned int, flags)
1379 {
1380 	unsigned i;
1381 	struct iovec __user *iov;
1382 	if (nr_segs > UIO_MAXIOV)
1383 		return -EINVAL;
1384 	iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1385 	for (i = 0; i < nr_segs; i++) {
1386 		struct compat_iovec v;
1387 		if (get_user(v.iov_base, &iov32[i].iov_base) ||
1388 		    get_user(v.iov_len, &iov32[i].iov_len) ||
1389 		    put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1390 		    put_user(v.iov_len, &iov[i].iov_len))
1391 			return -EFAULT;
1392 	}
1393 	return sys_vmsplice(fd, iov, nr_segs, flags);
1394 }
1395 #endif
1396 
1397 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1398 		int, fd_out, loff_t __user *, off_out,
1399 		size_t, len, unsigned int, flags)
1400 {
1401 	struct fd in, out;
1402 	long error;
1403 
1404 	if (unlikely(!len))
1405 		return 0;
1406 
1407 	error = -EBADF;
1408 	in = fdget(fd_in);
1409 	if (in.file) {
1410 		if (in.file->f_mode & FMODE_READ) {
1411 			out = fdget(fd_out);
1412 			if (out.file) {
1413 				if (out.file->f_mode & FMODE_WRITE)
1414 					error = do_splice(in.file, off_in,
1415 							  out.file, off_out,
1416 							  len, flags);
1417 				fdput(out);
1418 			}
1419 		}
1420 		fdput(in);
1421 	}
1422 	return error;
1423 }
1424 
1425 /*
1426  * Make sure there's data to read. Wait for input if we can, otherwise
1427  * return an appropriate error.
1428  */
1429 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1430 {
1431 	int ret;
1432 
1433 	/*
1434 	 * Check ->nrbufs without the inode lock first. This function
1435 	 * is speculative anyways, so missing one is ok.
1436 	 */
1437 	if (pipe->nrbufs)
1438 		return 0;
1439 
1440 	ret = 0;
1441 	pipe_lock(pipe);
1442 
1443 	while (!pipe->nrbufs) {
1444 		if (signal_pending(current)) {
1445 			ret = -ERESTARTSYS;
1446 			break;
1447 		}
1448 		if (!pipe->writers)
1449 			break;
1450 		if (!pipe->waiting_writers) {
1451 			if (flags & SPLICE_F_NONBLOCK) {
1452 				ret = -EAGAIN;
1453 				break;
1454 			}
1455 		}
1456 		pipe_wait(pipe);
1457 	}
1458 
1459 	pipe_unlock(pipe);
1460 	return ret;
1461 }
1462 
1463 /*
1464  * Make sure there's writeable room. Wait for room if we can, otherwise
1465  * return an appropriate error.
1466  */
1467 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1468 {
1469 	int ret;
1470 
1471 	/*
1472 	 * Check ->nrbufs without the inode lock first. This function
1473 	 * is speculative anyways, so missing one is ok.
1474 	 */
1475 	if (pipe->nrbufs < pipe->buffers)
1476 		return 0;
1477 
1478 	ret = 0;
1479 	pipe_lock(pipe);
1480 
1481 	while (pipe->nrbufs >= pipe->buffers) {
1482 		if (!pipe->readers) {
1483 			send_sig(SIGPIPE, current, 0);
1484 			ret = -EPIPE;
1485 			break;
1486 		}
1487 		if (flags & SPLICE_F_NONBLOCK) {
1488 			ret = -EAGAIN;
1489 			break;
1490 		}
1491 		if (signal_pending(current)) {
1492 			ret = -ERESTARTSYS;
1493 			break;
1494 		}
1495 		pipe->waiting_writers++;
1496 		pipe_wait(pipe);
1497 		pipe->waiting_writers--;
1498 	}
1499 
1500 	pipe_unlock(pipe);
1501 	return ret;
1502 }
1503 
1504 /*
1505  * Splice contents of ipipe to opipe.
1506  */
1507 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1508 			       struct pipe_inode_info *opipe,
1509 			       size_t len, unsigned int flags)
1510 {
1511 	struct pipe_buffer *ibuf, *obuf;
1512 	int ret = 0, nbuf;
1513 	bool input_wakeup = false;
1514 
1515 
1516 retry:
1517 	ret = ipipe_prep(ipipe, flags);
1518 	if (ret)
1519 		return ret;
1520 
1521 	ret = opipe_prep(opipe, flags);
1522 	if (ret)
1523 		return ret;
1524 
1525 	/*
1526 	 * Potential ABBA deadlock, work around it by ordering lock
1527 	 * grabbing by pipe info address. Otherwise two different processes
1528 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1529 	 */
1530 	pipe_double_lock(ipipe, opipe);
1531 
1532 	do {
1533 		if (!opipe->readers) {
1534 			send_sig(SIGPIPE, current, 0);
1535 			if (!ret)
1536 				ret = -EPIPE;
1537 			break;
1538 		}
1539 
1540 		if (!ipipe->nrbufs && !ipipe->writers)
1541 			break;
1542 
1543 		/*
1544 		 * Cannot make any progress, because either the input
1545 		 * pipe is empty or the output pipe is full.
1546 		 */
1547 		if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1548 			/* Already processed some buffers, break */
1549 			if (ret)
1550 				break;
1551 
1552 			if (flags & SPLICE_F_NONBLOCK) {
1553 				ret = -EAGAIN;
1554 				break;
1555 			}
1556 
1557 			/*
1558 			 * We raced with another reader/writer and haven't
1559 			 * managed to process any buffers.  A zero return
1560 			 * value means EOF, so retry instead.
1561 			 */
1562 			pipe_unlock(ipipe);
1563 			pipe_unlock(opipe);
1564 			goto retry;
1565 		}
1566 
1567 		ibuf = ipipe->bufs + ipipe->curbuf;
1568 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1569 		obuf = opipe->bufs + nbuf;
1570 
1571 		if (len >= ibuf->len) {
1572 			/*
1573 			 * Simply move the whole buffer from ipipe to opipe
1574 			 */
1575 			*obuf = *ibuf;
1576 			ibuf->ops = NULL;
1577 			opipe->nrbufs++;
1578 			ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1579 			ipipe->nrbufs--;
1580 			input_wakeup = true;
1581 		} else {
1582 			/*
1583 			 * Get a reference to this pipe buffer,
1584 			 * so we can copy the contents over.
1585 			 */
1586 			pipe_buf_get(ipipe, ibuf);
1587 			*obuf = *ibuf;
1588 
1589 			/*
1590 			 * Don't inherit the gift flag, we need to
1591 			 * prevent multiple steals of this page.
1592 			 */
1593 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1594 
1595 			obuf->len = len;
1596 			opipe->nrbufs++;
1597 			ibuf->offset += obuf->len;
1598 			ibuf->len -= obuf->len;
1599 		}
1600 		ret += obuf->len;
1601 		len -= obuf->len;
1602 	} while (len);
1603 
1604 	pipe_unlock(ipipe);
1605 	pipe_unlock(opipe);
1606 
1607 	/*
1608 	 * If we put data in the output pipe, wakeup any potential readers.
1609 	 */
1610 	if (ret > 0)
1611 		wakeup_pipe_readers(opipe);
1612 
1613 	if (input_wakeup)
1614 		wakeup_pipe_writers(ipipe);
1615 
1616 	return ret;
1617 }
1618 
1619 /*
1620  * Link contents of ipipe to opipe.
1621  */
1622 static int link_pipe(struct pipe_inode_info *ipipe,
1623 		     struct pipe_inode_info *opipe,
1624 		     size_t len, unsigned int flags)
1625 {
1626 	struct pipe_buffer *ibuf, *obuf;
1627 	int ret = 0, i = 0, nbuf;
1628 
1629 	/*
1630 	 * Potential ABBA deadlock, work around it by ordering lock
1631 	 * grabbing by pipe info address. Otherwise two different processes
1632 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1633 	 */
1634 	pipe_double_lock(ipipe, opipe);
1635 
1636 	do {
1637 		if (!opipe->readers) {
1638 			send_sig(SIGPIPE, current, 0);
1639 			if (!ret)
1640 				ret = -EPIPE;
1641 			break;
1642 		}
1643 
1644 		/*
1645 		 * If we have iterated all input buffers or ran out of
1646 		 * output room, break.
1647 		 */
1648 		if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1649 			break;
1650 
1651 		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1652 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1653 
1654 		/*
1655 		 * Get a reference to this pipe buffer,
1656 		 * so we can copy the contents over.
1657 		 */
1658 		pipe_buf_get(ipipe, ibuf);
1659 
1660 		obuf = opipe->bufs + nbuf;
1661 		*obuf = *ibuf;
1662 
1663 		/*
1664 		 * Don't inherit the gift flag, we need to
1665 		 * prevent multiple steals of this page.
1666 		 */
1667 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1668 
1669 		if (obuf->len > len)
1670 			obuf->len = len;
1671 
1672 		opipe->nrbufs++;
1673 		ret += obuf->len;
1674 		len -= obuf->len;
1675 		i++;
1676 	} while (len);
1677 
1678 	/*
1679 	 * return EAGAIN if we have the potential of some data in the
1680 	 * future, otherwise just return 0
1681 	 */
1682 	if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1683 		ret = -EAGAIN;
1684 
1685 	pipe_unlock(ipipe);
1686 	pipe_unlock(opipe);
1687 
1688 	/*
1689 	 * If we put data in the output pipe, wakeup any potential readers.
1690 	 */
1691 	if (ret > 0)
1692 		wakeup_pipe_readers(opipe);
1693 
1694 	return ret;
1695 }
1696 
1697 /*
1698  * This is a tee(1) implementation that works on pipes. It doesn't copy
1699  * any data, it simply references the 'in' pages on the 'out' pipe.
1700  * The 'flags' used are the SPLICE_F_* variants, currently the only
1701  * applicable one is SPLICE_F_NONBLOCK.
1702  */
1703 static long do_tee(struct file *in, struct file *out, size_t len,
1704 		   unsigned int flags)
1705 {
1706 	struct pipe_inode_info *ipipe = get_pipe_info(in);
1707 	struct pipe_inode_info *opipe = get_pipe_info(out);
1708 	int ret = -EINVAL;
1709 
1710 	/*
1711 	 * Duplicate the contents of ipipe to opipe without actually
1712 	 * copying the data.
1713 	 */
1714 	if (ipipe && opipe && ipipe != opipe) {
1715 		/*
1716 		 * Keep going, unless we encounter an error. The ipipe/opipe
1717 		 * ordering doesn't really matter.
1718 		 */
1719 		ret = ipipe_prep(ipipe, flags);
1720 		if (!ret) {
1721 			ret = opipe_prep(opipe, flags);
1722 			if (!ret)
1723 				ret = link_pipe(ipipe, opipe, len, flags);
1724 		}
1725 	}
1726 
1727 	return ret;
1728 }
1729 
1730 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1731 {
1732 	struct fd in;
1733 	int error;
1734 
1735 	if (unlikely(!len))
1736 		return 0;
1737 
1738 	error = -EBADF;
1739 	in = fdget(fdin);
1740 	if (in.file) {
1741 		if (in.file->f_mode & FMODE_READ) {
1742 			struct fd out = fdget(fdout);
1743 			if (out.file) {
1744 				if (out.file->f_mode & FMODE_WRITE)
1745 					error = do_tee(in.file, out.file,
1746 							len, flags);
1747 				fdput(out);
1748 			}
1749 		}
1750  		fdput(in);
1751  	}
1752 
1753 	return error;
1754 }
1755