xref: /openbmc/linux/fs/splice.c (revision f30828a6)
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 
33 /*
34  * Attempt to steal a page from a pipe buffer. This should perhaps go into
35  * a vm helper function, it's already simplified quite a bit by the
36  * addition of remove_mapping(). If success is returned, the caller may
37  * attempt to reuse this page for another destination.
38  */
39 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
40 				     struct pipe_buffer *buf)
41 {
42 	struct page *page = buf->page;
43 	struct address_space *mapping;
44 
45 	lock_page(page);
46 
47 	mapping = page_mapping(page);
48 	if (mapping) {
49 		WARN_ON(!PageUptodate(page));
50 
51 		/*
52 		 * At least for ext2 with nobh option, we need to wait on
53 		 * writeback completing on this page, since we'll remove it
54 		 * from the pagecache.  Otherwise truncate wont wait on the
55 		 * page, allowing the disk blocks to be reused by someone else
56 		 * before we actually wrote our data to them. fs corruption
57 		 * ensues.
58 		 */
59 		wait_on_page_writeback(page);
60 
61 		if (PagePrivate(page) && !try_to_release_page(page, GFP_KERNEL))
62 			goto out_unlock;
63 
64 		/*
65 		 * If we succeeded in removing the mapping, set LRU flag
66 		 * and return good.
67 		 */
68 		if (remove_mapping(mapping, page)) {
69 			buf->flags |= PIPE_BUF_FLAG_LRU;
70 			return 0;
71 		}
72 	}
73 
74 	/*
75 	 * Raced with truncate or failed to remove page from current
76 	 * address space, unlock and return failure.
77 	 */
78 out_unlock:
79 	unlock_page(page);
80 	return 1;
81 }
82 
83 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
84 					struct pipe_buffer *buf)
85 {
86 	page_cache_release(buf->page);
87 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
88 }
89 
90 /*
91  * Check whether the contents of buf is OK to access. Since the content
92  * is a page cache page, IO may be in flight.
93  */
94 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
95 				       struct pipe_buffer *buf)
96 {
97 	struct page *page = buf->page;
98 	int err;
99 
100 	if (!PageUptodate(page)) {
101 		lock_page(page);
102 
103 		/*
104 		 * Page got truncated/unhashed. This will cause a 0-byte
105 		 * splice, if this is the first page.
106 		 */
107 		if (!page->mapping) {
108 			err = -ENODATA;
109 			goto error;
110 		}
111 
112 		/*
113 		 * Uh oh, read-error from disk.
114 		 */
115 		if (!PageUptodate(page)) {
116 			err = -EIO;
117 			goto error;
118 		}
119 
120 		/*
121 		 * Page is ok afterall, we are done.
122 		 */
123 		unlock_page(page);
124 	}
125 
126 	return 0;
127 error:
128 	unlock_page(page);
129 	return err;
130 }
131 
132 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
133 	.can_merge = 0,
134 	.map = generic_pipe_buf_map,
135 	.unmap = generic_pipe_buf_unmap,
136 	.confirm = page_cache_pipe_buf_confirm,
137 	.release = page_cache_pipe_buf_release,
138 	.steal = page_cache_pipe_buf_steal,
139 	.get = generic_pipe_buf_get,
140 };
141 
142 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
143 				    struct pipe_buffer *buf)
144 {
145 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
146 		return 1;
147 
148 	buf->flags |= PIPE_BUF_FLAG_LRU;
149 	return generic_pipe_buf_steal(pipe, buf);
150 }
151 
152 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
153 	.can_merge = 0,
154 	.map = generic_pipe_buf_map,
155 	.unmap = generic_pipe_buf_unmap,
156 	.confirm = generic_pipe_buf_confirm,
157 	.release = page_cache_pipe_buf_release,
158 	.steal = user_page_pipe_buf_steal,
159 	.get = generic_pipe_buf_get,
160 };
161 
162 /**
163  * splice_to_pipe - fill passed data into a pipe
164  * @pipe:	pipe to fill
165  * @spd:	data to fill
166  *
167  * Description:
168  *    @spd contains a map of pages and len/offset tuples, along with
169  *    the struct pipe_buf_operations associated with these pages. This
170  *    function will link that data to the pipe.
171  *
172  */
173 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
174 		       struct splice_pipe_desc *spd)
175 {
176 	unsigned int spd_pages = spd->nr_pages;
177 	int ret, do_wakeup, page_nr;
178 
179 	ret = 0;
180 	do_wakeup = 0;
181 	page_nr = 0;
182 
183 	if (pipe->inode)
184 		mutex_lock(&pipe->inode->i_mutex);
185 
186 	for (;;) {
187 		if (!pipe->readers) {
188 			send_sig(SIGPIPE, current, 0);
189 			if (!ret)
190 				ret = -EPIPE;
191 			break;
192 		}
193 
194 		if (pipe->nrbufs < PIPE_BUFFERS) {
195 			int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
196 			struct pipe_buffer *buf = pipe->bufs + newbuf;
197 
198 			buf->page = spd->pages[page_nr];
199 			buf->offset = spd->partial[page_nr].offset;
200 			buf->len = spd->partial[page_nr].len;
201 			buf->private = spd->partial[page_nr].private;
202 			buf->ops = spd->ops;
203 			if (spd->flags & SPLICE_F_GIFT)
204 				buf->flags |= PIPE_BUF_FLAG_GIFT;
205 
206 			pipe->nrbufs++;
207 			page_nr++;
208 			ret += buf->len;
209 
210 			if (pipe->inode)
211 				do_wakeup = 1;
212 
213 			if (!--spd->nr_pages)
214 				break;
215 			if (pipe->nrbufs < PIPE_BUFFERS)
216 				continue;
217 
218 			break;
219 		}
220 
221 		if (spd->flags & SPLICE_F_NONBLOCK) {
222 			if (!ret)
223 				ret = -EAGAIN;
224 			break;
225 		}
226 
227 		if (signal_pending(current)) {
228 			if (!ret)
229 				ret = -ERESTARTSYS;
230 			break;
231 		}
232 
233 		if (do_wakeup) {
234 			smp_mb();
235 			if (waitqueue_active(&pipe->wait))
236 				wake_up_interruptible_sync(&pipe->wait);
237 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
238 			do_wakeup = 0;
239 		}
240 
241 		pipe->waiting_writers++;
242 		pipe_wait(pipe);
243 		pipe->waiting_writers--;
244 	}
245 
246 	if (pipe->inode) {
247 		mutex_unlock(&pipe->inode->i_mutex);
248 
249 		if (do_wakeup) {
250 			smp_mb();
251 			if (waitqueue_active(&pipe->wait))
252 				wake_up_interruptible(&pipe->wait);
253 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
254 		}
255 	}
256 
257 	while (page_nr < spd_pages)
258 		spd->spd_release(spd, page_nr++);
259 
260 	return ret;
261 }
262 
263 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
264 {
265 	page_cache_release(spd->pages[i]);
266 }
267 
268 static int
269 __generic_file_splice_read(struct file *in, loff_t *ppos,
270 			   struct pipe_inode_info *pipe, size_t len,
271 			   unsigned int flags)
272 {
273 	struct address_space *mapping = in->f_mapping;
274 	unsigned int loff, nr_pages, req_pages;
275 	struct page *pages[PIPE_BUFFERS];
276 	struct partial_page partial[PIPE_BUFFERS];
277 	struct page *page;
278 	pgoff_t index, end_index;
279 	loff_t isize;
280 	int error, page_nr;
281 	struct splice_pipe_desc spd = {
282 		.pages = pages,
283 		.partial = partial,
284 		.flags = flags,
285 		.ops = &page_cache_pipe_buf_ops,
286 		.spd_release = spd_release_page,
287 	};
288 
289 	index = *ppos >> PAGE_CACHE_SHIFT;
290 	loff = *ppos & ~PAGE_CACHE_MASK;
291 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
292 	nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS);
293 
294 	/*
295 	 * Lookup the (hopefully) full range of pages we need.
296 	 */
297 	spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
298 	index += spd.nr_pages;
299 
300 	/*
301 	 * If find_get_pages_contig() returned fewer pages than we needed,
302 	 * readahead/allocate the rest and fill in the holes.
303 	 */
304 	if (spd.nr_pages < nr_pages)
305 		page_cache_sync_readahead(mapping, &in->f_ra, in,
306 				index, req_pages - spd.nr_pages);
307 
308 	error = 0;
309 	while (spd.nr_pages < nr_pages) {
310 		/*
311 		 * Page could be there, find_get_pages_contig() breaks on
312 		 * the first hole.
313 		 */
314 		page = find_get_page(mapping, index);
315 		if (!page) {
316 			/*
317 			 * page didn't exist, allocate one.
318 			 */
319 			page = page_cache_alloc_cold(mapping);
320 			if (!page)
321 				break;
322 
323 			error = add_to_page_cache_lru(page, mapping, index,
324 						mapping_gfp_mask(mapping));
325 			if (unlikely(error)) {
326 				page_cache_release(page);
327 				if (error == -EEXIST)
328 					continue;
329 				break;
330 			}
331 			/*
332 			 * add_to_page_cache() locks the page, unlock it
333 			 * to avoid convoluting the logic below even more.
334 			 */
335 			unlock_page(page);
336 		}
337 
338 		pages[spd.nr_pages++] = page;
339 		index++;
340 	}
341 
342 	/*
343 	 * Now loop over the map and see if we need to start IO on any
344 	 * pages, fill in the partial map, etc.
345 	 */
346 	index = *ppos >> PAGE_CACHE_SHIFT;
347 	nr_pages = spd.nr_pages;
348 	spd.nr_pages = 0;
349 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
350 		unsigned int this_len;
351 
352 		if (!len)
353 			break;
354 
355 		/*
356 		 * this_len is the max we'll use from this page
357 		 */
358 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
359 		page = pages[page_nr];
360 
361 		if (PageReadahead(page))
362 			page_cache_async_readahead(mapping, &in->f_ra, in,
363 					page, index, req_pages - page_nr);
364 
365 		/*
366 		 * If the page isn't uptodate, we may need to start io on it
367 		 */
368 		if (!PageUptodate(page)) {
369 			/*
370 			 * If in nonblock mode then dont block on waiting
371 			 * for an in-flight io page
372 			 */
373 			if (flags & SPLICE_F_NONBLOCK) {
374 				if (TestSetPageLocked(page)) {
375 					error = -EAGAIN;
376 					break;
377 				}
378 			} else
379 				lock_page(page);
380 
381 			/*
382 			 * Page was truncated, or invalidated by the
383 			 * filesystem.  Redo the find/create, but this time the
384 			 * page is kept locked, so there's no chance of another
385 			 * race with truncate/invalidate.
386 			 */
387 			if (!page->mapping) {
388 				unlock_page(page);
389 				page = find_or_create_page(mapping, index,
390 						mapping_gfp_mask(mapping));
391 
392 				if (!page) {
393 					error = -ENOMEM;
394 					break;
395 				}
396 				page_cache_release(pages[page_nr]);
397 				pages[page_nr] = page;
398 			}
399 			/*
400 			 * page was already under io and is now done, great
401 			 */
402 			if (PageUptodate(page)) {
403 				unlock_page(page);
404 				goto fill_it;
405 			}
406 
407 			/*
408 			 * need to read in the page
409 			 */
410 			error = mapping->a_ops->readpage(in, page);
411 			if (unlikely(error)) {
412 				/*
413 				 * We really should re-lookup the page here,
414 				 * but it complicates things a lot. Instead
415 				 * lets just do what we already stored, and
416 				 * we'll get it the next time we are called.
417 				 */
418 				if (error == AOP_TRUNCATED_PAGE)
419 					error = 0;
420 
421 				break;
422 			}
423 		}
424 fill_it:
425 		/*
426 		 * i_size must be checked after PageUptodate.
427 		 */
428 		isize = i_size_read(mapping->host);
429 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
430 		if (unlikely(!isize || index > end_index))
431 			break;
432 
433 		/*
434 		 * if this is the last page, see if we need to shrink
435 		 * the length and stop
436 		 */
437 		if (end_index == index) {
438 			unsigned int plen;
439 
440 			/*
441 			 * max good bytes in this page
442 			 */
443 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
444 			if (plen <= loff)
445 				break;
446 
447 			/*
448 			 * force quit after adding this page
449 			 */
450 			this_len = min(this_len, plen - loff);
451 			len = this_len;
452 		}
453 
454 		partial[page_nr].offset = loff;
455 		partial[page_nr].len = this_len;
456 		len -= this_len;
457 		loff = 0;
458 		spd.nr_pages++;
459 		index++;
460 	}
461 
462 	/*
463 	 * Release any pages at the end, if we quit early. 'page_nr' is how far
464 	 * we got, 'nr_pages' is how many pages are in the map.
465 	 */
466 	while (page_nr < nr_pages)
467 		page_cache_release(pages[page_nr++]);
468 	in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
469 
470 	if (spd.nr_pages)
471 		return splice_to_pipe(pipe, &spd);
472 
473 	return error;
474 }
475 
476 /**
477  * generic_file_splice_read - splice data from file to a pipe
478  * @in:		file to splice from
479  * @ppos:	position in @in
480  * @pipe:	pipe to splice to
481  * @len:	number of bytes to splice
482  * @flags:	splice modifier flags
483  *
484  * Description:
485  *    Will read pages from given file and fill them into a pipe. Can be
486  *    used as long as the address_space operations for the source implements
487  *    a readpage() hook.
488  *
489  */
490 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
491 				 struct pipe_inode_info *pipe, size_t len,
492 				 unsigned int flags)
493 {
494 	loff_t isize, left;
495 	int ret;
496 
497 	isize = i_size_read(in->f_mapping->host);
498 	if (unlikely(*ppos >= isize))
499 		return 0;
500 
501 	left = isize - *ppos;
502 	if (unlikely(left < len))
503 		len = left;
504 
505 	ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
506 	if (ret > 0)
507 		*ppos += ret;
508 
509 	return ret;
510 }
511 
512 EXPORT_SYMBOL(generic_file_splice_read);
513 
514 /*
515  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
516  * using sendpage(). Return the number of bytes sent.
517  */
518 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
519 			    struct pipe_buffer *buf, struct splice_desc *sd)
520 {
521 	struct file *file = sd->u.file;
522 	loff_t pos = sd->pos;
523 	int ret, more;
524 
525 	ret = buf->ops->confirm(pipe, buf);
526 	if (!ret) {
527 		more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
528 
529 		ret = file->f_op->sendpage(file, buf->page, buf->offset,
530 					   sd->len, &pos, more);
531 	}
532 
533 	return ret;
534 }
535 
536 /*
537  * This is a little more tricky than the file -> pipe splicing. There are
538  * basically three cases:
539  *
540  *	- Destination page already exists in the address space and there
541  *	  are users of it. For that case we have no other option that
542  *	  copying the data. Tough luck.
543  *	- Destination page already exists in the address space, but there
544  *	  are no users of it. Make sure it's uptodate, then drop it. Fall
545  *	  through to last case.
546  *	- Destination page does not exist, we can add the pipe page to
547  *	  the page cache and avoid the copy.
548  *
549  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
550  * sd->flags), we attempt to migrate pages from the pipe to the output
551  * file address space page cache. This is possible if no one else has
552  * the pipe page referenced outside of the pipe and page cache. If
553  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
554  * a new page in the output file page cache and fill/dirty that.
555  */
556 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
557 			struct splice_desc *sd)
558 {
559 	struct file *file = sd->u.file;
560 	struct address_space *mapping = file->f_mapping;
561 	unsigned int offset, this_len;
562 	struct page *page;
563 	void *fsdata;
564 	int ret;
565 
566 	/*
567 	 * make sure the data in this buffer is uptodate
568 	 */
569 	ret = buf->ops->confirm(pipe, buf);
570 	if (unlikely(ret))
571 		return ret;
572 
573 	offset = sd->pos & ~PAGE_CACHE_MASK;
574 
575 	this_len = sd->len;
576 	if (this_len + offset > PAGE_CACHE_SIZE)
577 		this_len = PAGE_CACHE_SIZE - offset;
578 
579 	ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
580 				AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
581 	if (unlikely(ret))
582 		goto out;
583 
584 	if (buf->page != page) {
585 		/*
586 		 * Careful, ->map() uses KM_USER0!
587 		 */
588 		char *src = buf->ops->map(pipe, buf, 1);
589 		char *dst = kmap_atomic(page, KM_USER1);
590 
591 		memcpy(dst + offset, src + buf->offset, this_len);
592 		flush_dcache_page(page);
593 		kunmap_atomic(dst, KM_USER1);
594 		buf->ops->unmap(pipe, buf, src);
595 	}
596 	ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
597 				page, fsdata);
598 out:
599 	return ret;
600 }
601 
602 /**
603  * __splice_from_pipe - splice data from a pipe to given actor
604  * @pipe:	pipe to splice from
605  * @sd:		information to @actor
606  * @actor:	handler that splices the data
607  *
608  * Description:
609  *    This function does little more than loop over the pipe and call
610  *    @actor to do the actual moving of a single struct pipe_buffer to
611  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
612  *    pipe_to_user.
613  *
614  */
615 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
616 			   splice_actor *actor)
617 {
618 	int ret, do_wakeup, err;
619 
620 	ret = 0;
621 	do_wakeup = 0;
622 
623 	for (;;) {
624 		if (pipe->nrbufs) {
625 			struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
626 			const struct pipe_buf_operations *ops = buf->ops;
627 
628 			sd->len = buf->len;
629 			if (sd->len > sd->total_len)
630 				sd->len = sd->total_len;
631 
632 			err = actor(pipe, buf, sd);
633 			if (err <= 0) {
634 				if (!ret && err != -ENODATA)
635 					ret = err;
636 
637 				break;
638 			}
639 
640 			ret += err;
641 			buf->offset += err;
642 			buf->len -= err;
643 
644 			sd->len -= err;
645 			sd->pos += err;
646 			sd->total_len -= err;
647 			if (sd->len)
648 				continue;
649 
650 			if (!buf->len) {
651 				buf->ops = NULL;
652 				ops->release(pipe, buf);
653 				pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
654 				pipe->nrbufs--;
655 				if (pipe->inode)
656 					do_wakeup = 1;
657 			}
658 
659 			if (!sd->total_len)
660 				break;
661 		}
662 
663 		if (pipe->nrbufs)
664 			continue;
665 		if (!pipe->writers)
666 			break;
667 		if (!pipe->waiting_writers) {
668 			if (ret)
669 				break;
670 		}
671 
672 		if (sd->flags & SPLICE_F_NONBLOCK) {
673 			if (!ret)
674 				ret = -EAGAIN;
675 			break;
676 		}
677 
678 		if (signal_pending(current)) {
679 			if (!ret)
680 				ret = -ERESTARTSYS;
681 			break;
682 		}
683 
684 		if (do_wakeup) {
685 			smp_mb();
686 			if (waitqueue_active(&pipe->wait))
687 				wake_up_interruptible_sync(&pipe->wait);
688 			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
689 			do_wakeup = 0;
690 		}
691 
692 		pipe_wait(pipe);
693 	}
694 
695 	if (do_wakeup) {
696 		smp_mb();
697 		if (waitqueue_active(&pipe->wait))
698 			wake_up_interruptible(&pipe->wait);
699 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
700 	}
701 
702 	return ret;
703 }
704 EXPORT_SYMBOL(__splice_from_pipe);
705 
706 /**
707  * splice_from_pipe - splice data from a pipe to a file
708  * @pipe:	pipe to splice from
709  * @out:	file to splice to
710  * @ppos:	position in @out
711  * @len:	how many bytes to splice
712  * @flags:	splice modifier flags
713  * @actor:	handler that splices the data
714  *
715  * Description:
716  *    See __splice_from_pipe. This function locks the input and output inodes,
717  *    otherwise it's identical to __splice_from_pipe().
718  *
719  */
720 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
721 			 loff_t *ppos, size_t len, unsigned int flags,
722 			 splice_actor *actor)
723 {
724 	ssize_t ret;
725 	struct inode *inode = out->f_mapping->host;
726 	struct splice_desc sd = {
727 		.total_len = len,
728 		.flags = flags,
729 		.pos = *ppos,
730 		.u.file = out,
731 	};
732 
733 	/*
734 	 * The actor worker might be calling ->prepare_write and
735 	 * ->commit_write. Most of the time, these expect i_mutex to
736 	 * be held. Since this may result in an ABBA deadlock with
737 	 * pipe->inode, we have to order lock acquiry here.
738 	 */
739 	inode_double_lock(inode, pipe->inode);
740 	ret = __splice_from_pipe(pipe, &sd, actor);
741 	inode_double_unlock(inode, pipe->inode);
742 
743 	return ret;
744 }
745 
746 /**
747  * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
748  * @pipe:	pipe info
749  * @out:	file to write to
750  * @ppos:	position in @out
751  * @len:	number of bytes to splice
752  * @flags:	splice modifier flags
753  *
754  * Description:
755  *    Will either move or copy pages (determined by @flags options) from
756  *    the given pipe inode to the given file. The caller is responsible
757  *    for acquiring i_mutex on both inodes.
758  *
759  */
760 ssize_t
761 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
762 				 loff_t *ppos, size_t len, unsigned int flags)
763 {
764 	struct address_space *mapping = out->f_mapping;
765 	struct inode *inode = mapping->host;
766 	struct splice_desc sd = {
767 		.total_len = len,
768 		.flags = flags,
769 		.pos = *ppos,
770 		.u.file = out,
771 	};
772 	ssize_t ret;
773 	int err;
774 
775 	err = remove_suid(out->f_path.dentry);
776 	if (unlikely(err))
777 		return err;
778 
779 	ret = __splice_from_pipe(pipe, &sd, pipe_to_file);
780 	if (ret > 0) {
781 		unsigned long nr_pages;
782 
783 		*ppos += ret;
784 		nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
785 
786 		/*
787 		 * If file or inode is SYNC and we actually wrote some data,
788 		 * sync it.
789 		 */
790 		if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
791 			err = generic_osync_inode(inode, mapping,
792 						  OSYNC_METADATA|OSYNC_DATA);
793 
794 			if (err)
795 				ret = err;
796 		}
797 		balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
798 	}
799 
800 	return ret;
801 }
802 
803 EXPORT_SYMBOL(generic_file_splice_write_nolock);
804 
805 /**
806  * generic_file_splice_write - splice data from a pipe to a file
807  * @pipe:	pipe info
808  * @out:	file to write to
809  * @ppos:	position in @out
810  * @len:	number of bytes to splice
811  * @flags:	splice modifier flags
812  *
813  * Description:
814  *    Will either move or copy pages (determined by @flags options) from
815  *    the given pipe inode to the given file.
816  *
817  */
818 ssize_t
819 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
820 			  loff_t *ppos, size_t len, unsigned int flags)
821 {
822 	struct address_space *mapping = out->f_mapping;
823 	struct inode *inode = mapping->host;
824 	struct splice_desc sd = {
825 		.total_len = len,
826 		.flags = flags,
827 		.pos = *ppos,
828 		.u.file = out,
829 	};
830 	ssize_t ret;
831 
832 	inode_double_lock(inode, pipe->inode);
833 	ret = remove_suid(out->f_path.dentry);
834 	if (likely(!ret))
835 		ret = __splice_from_pipe(pipe, &sd, pipe_to_file);
836 	inode_double_unlock(inode, pipe->inode);
837 	if (ret > 0) {
838 		unsigned long nr_pages;
839 
840 		*ppos += ret;
841 		nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
842 
843 		/*
844 		 * If file or inode is SYNC and we actually wrote some data,
845 		 * sync it.
846 		 */
847 		if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
848 			int err;
849 
850 			mutex_lock(&inode->i_mutex);
851 			err = generic_osync_inode(inode, mapping,
852 						  OSYNC_METADATA|OSYNC_DATA);
853 			mutex_unlock(&inode->i_mutex);
854 
855 			if (err)
856 				ret = err;
857 		}
858 		balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
859 	}
860 
861 	return ret;
862 }
863 
864 EXPORT_SYMBOL(generic_file_splice_write);
865 
866 /**
867  * generic_splice_sendpage - splice data from a pipe to a socket
868  * @pipe:	pipe to splice from
869  * @out:	socket to write to
870  * @ppos:	position in @out
871  * @len:	number of bytes to splice
872  * @flags:	splice modifier flags
873  *
874  * Description:
875  *    Will send @len bytes from the pipe to a network socket. No data copying
876  *    is involved.
877  *
878  */
879 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
880 				loff_t *ppos, size_t len, unsigned int flags)
881 {
882 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
883 }
884 
885 EXPORT_SYMBOL(generic_splice_sendpage);
886 
887 /*
888  * Attempt to initiate a splice from pipe to file.
889  */
890 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
891 			   loff_t *ppos, size_t len, unsigned int flags)
892 {
893 	int ret;
894 
895 	if (unlikely(!out->f_op || !out->f_op->splice_write))
896 		return -EINVAL;
897 
898 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
899 		return -EBADF;
900 
901 	ret = rw_verify_area(WRITE, out, ppos, len);
902 	if (unlikely(ret < 0))
903 		return ret;
904 
905 	return out->f_op->splice_write(pipe, out, ppos, len, flags);
906 }
907 
908 /*
909  * Attempt to initiate a splice from a file to a pipe.
910  */
911 static long do_splice_to(struct file *in, loff_t *ppos,
912 			 struct pipe_inode_info *pipe, size_t len,
913 			 unsigned int flags)
914 {
915 	int ret;
916 
917 	if (unlikely(!in->f_op || !in->f_op->splice_read))
918 		return -EINVAL;
919 
920 	if (unlikely(!(in->f_mode & FMODE_READ)))
921 		return -EBADF;
922 
923 	ret = rw_verify_area(READ, in, ppos, len);
924 	if (unlikely(ret < 0))
925 		return ret;
926 
927 	return in->f_op->splice_read(in, ppos, pipe, len, flags);
928 }
929 
930 /**
931  * splice_direct_to_actor - splices data directly between two non-pipes
932  * @in:		file to splice from
933  * @sd:		actor information on where to splice to
934  * @actor:	handles the data splicing
935  *
936  * Description:
937  *    This is a special case helper to splice directly between two
938  *    points, without requiring an explicit pipe. Internally an allocated
939  *    pipe is cached in the process, and reused during the lifetime of
940  *    that process.
941  *
942  */
943 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
944 			       splice_direct_actor *actor)
945 {
946 	struct pipe_inode_info *pipe;
947 	long ret, bytes;
948 	umode_t i_mode;
949 	size_t len;
950 	int i, flags;
951 
952 	/*
953 	 * We require the input being a regular file, as we don't want to
954 	 * randomly drop data for eg socket -> socket splicing. Use the
955 	 * piped splicing for that!
956 	 */
957 	i_mode = in->f_path.dentry->d_inode->i_mode;
958 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
959 		return -EINVAL;
960 
961 	/*
962 	 * neither in nor out is a pipe, setup an internal pipe attached to
963 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
964 	 */
965 	pipe = current->splice_pipe;
966 	if (unlikely(!pipe)) {
967 		pipe = alloc_pipe_info(NULL);
968 		if (!pipe)
969 			return -ENOMEM;
970 
971 		/*
972 		 * We don't have an immediate reader, but we'll read the stuff
973 		 * out of the pipe right after the splice_to_pipe(). So set
974 		 * PIPE_READERS appropriately.
975 		 */
976 		pipe->readers = 1;
977 
978 		current->splice_pipe = pipe;
979 	}
980 
981 	/*
982 	 * Do the splice.
983 	 */
984 	ret = 0;
985 	bytes = 0;
986 	len = sd->total_len;
987 	flags = sd->flags;
988 
989 	/*
990 	 * Don't block on output, we have to drain the direct pipe.
991 	 */
992 	sd->flags &= ~SPLICE_F_NONBLOCK;
993 
994 	while (len) {
995 		size_t read_len;
996 		loff_t pos = sd->pos, prev_pos = pos;
997 
998 		ret = do_splice_to(in, &pos, pipe, len, flags);
999 		if (unlikely(ret <= 0))
1000 			goto out_release;
1001 
1002 		read_len = ret;
1003 		sd->total_len = read_len;
1004 
1005 		/*
1006 		 * NOTE: nonblocking mode only applies to the input. We
1007 		 * must not do the output in nonblocking mode as then we
1008 		 * could get stuck data in the internal pipe:
1009 		 */
1010 		ret = actor(pipe, sd);
1011 		if (unlikely(ret <= 0)) {
1012 			sd->pos = prev_pos;
1013 			goto out_release;
1014 		}
1015 
1016 		bytes += ret;
1017 		len -= ret;
1018 		sd->pos = pos;
1019 
1020 		if (ret < read_len) {
1021 			sd->pos = prev_pos + ret;
1022 			goto out_release;
1023 		}
1024 	}
1025 
1026 done:
1027 	pipe->nrbufs = pipe->curbuf = 0;
1028 	file_accessed(in);
1029 	return bytes;
1030 
1031 out_release:
1032 	/*
1033 	 * If we did an incomplete transfer we must release
1034 	 * the pipe buffers in question:
1035 	 */
1036 	for (i = 0; i < PIPE_BUFFERS; i++) {
1037 		struct pipe_buffer *buf = pipe->bufs + i;
1038 
1039 		if (buf->ops) {
1040 			buf->ops->release(pipe, buf);
1041 			buf->ops = NULL;
1042 		}
1043 	}
1044 
1045 	if (!bytes)
1046 		bytes = ret;
1047 
1048 	goto done;
1049 }
1050 EXPORT_SYMBOL(splice_direct_to_actor);
1051 
1052 static int direct_splice_actor(struct pipe_inode_info *pipe,
1053 			       struct splice_desc *sd)
1054 {
1055 	struct file *file = sd->u.file;
1056 
1057 	return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1058 }
1059 
1060 /**
1061  * do_splice_direct - splices data directly between two files
1062  * @in:		file to splice from
1063  * @ppos:	input file offset
1064  * @out:	file to splice to
1065  * @len:	number of bytes to splice
1066  * @flags:	splice modifier flags
1067  *
1068  * Description:
1069  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1070  *    doing it in the application would incur an extra system call
1071  *    (splice in + splice out, as compared to just sendfile()). So this helper
1072  *    can splice directly through a process-private pipe.
1073  *
1074  */
1075 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1076 		      size_t len, unsigned int flags)
1077 {
1078 	struct splice_desc sd = {
1079 		.len		= len,
1080 		.total_len	= len,
1081 		.flags		= flags,
1082 		.pos		= *ppos,
1083 		.u.file		= out,
1084 	};
1085 	long ret;
1086 
1087 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1088 	if (ret > 0)
1089 		*ppos = sd.pos;
1090 
1091 	return ret;
1092 }
1093 
1094 /*
1095  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1096  * location, so checking ->i_pipe is not enough to verify that this is a
1097  * pipe.
1098  */
1099 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1100 {
1101 	if (S_ISFIFO(inode->i_mode))
1102 		return inode->i_pipe;
1103 
1104 	return NULL;
1105 }
1106 
1107 /*
1108  * Determine where to splice to/from.
1109  */
1110 static long do_splice(struct file *in, loff_t __user *off_in,
1111 		      struct file *out, loff_t __user *off_out,
1112 		      size_t len, unsigned int flags)
1113 {
1114 	struct pipe_inode_info *pipe;
1115 	loff_t offset, *off;
1116 	long ret;
1117 
1118 	pipe = pipe_info(in->f_path.dentry->d_inode);
1119 	if (pipe) {
1120 		if (off_in)
1121 			return -ESPIPE;
1122 		if (off_out) {
1123 			if (out->f_op->llseek == no_llseek)
1124 				return -EINVAL;
1125 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1126 				return -EFAULT;
1127 			off = &offset;
1128 		} else
1129 			off = &out->f_pos;
1130 
1131 		ret = do_splice_from(pipe, out, off, len, flags);
1132 
1133 		if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1134 			ret = -EFAULT;
1135 
1136 		return ret;
1137 	}
1138 
1139 	pipe = pipe_info(out->f_path.dentry->d_inode);
1140 	if (pipe) {
1141 		if (off_out)
1142 			return -ESPIPE;
1143 		if (off_in) {
1144 			if (in->f_op->llseek == no_llseek)
1145 				return -EINVAL;
1146 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1147 				return -EFAULT;
1148 			off = &offset;
1149 		} else
1150 			off = &in->f_pos;
1151 
1152 		ret = do_splice_to(in, off, pipe, len, flags);
1153 
1154 		if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1155 			ret = -EFAULT;
1156 
1157 		return ret;
1158 	}
1159 
1160 	return -EINVAL;
1161 }
1162 
1163 /*
1164  * Do a copy-from-user while holding the mmap_semaphore for reading, in a
1165  * manner safe from deadlocking with simultaneous mmap() (grabbing mmap_sem
1166  * for writing) and page faulting on the user memory pointed to by src.
1167  * This assumes that we will very rarely hit the partial != 0 path, or this
1168  * will not be a win.
1169  */
1170 static int copy_from_user_mmap_sem(void *dst, const void __user *src, size_t n)
1171 {
1172 	int partial;
1173 
1174 	if (!access_ok(VERIFY_READ, src, n))
1175 		return -EFAULT;
1176 
1177 	pagefault_disable();
1178 	partial = __copy_from_user_inatomic(dst, src, n);
1179 	pagefault_enable();
1180 
1181 	/*
1182 	 * Didn't copy everything, drop the mmap_sem and do a faulting copy
1183 	 */
1184 	if (unlikely(partial)) {
1185 		up_read(&current->mm->mmap_sem);
1186 		partial = copy_from_user(dst, src, n);
1187 		down_read(&current->mm->mmap_sem);
1188 	}
1189 
1190 	return partial;
1191 }
1192 
1193 /*
1194  * Map an iov into an array of pages and offset/length tupples. With the
1195  * partial_page structure, we can map several non-contiguous ranges into
1196  * our ones pages[] map instead of splitting that operation into pieces.
1197  * Could easily be exported as a generic helper for other users, in which
1198  * case one would probably want to add a 'max_nr_pages' parameter as well.
1199  */
1200 static int get_iovec_page_array(const struct iovec __user *iov,
1201 				unsigned int nr_vecs, struct page **pages,
1202 				struct partial_page *partial, int aligned)
1203 {
1204 	int buffers = 0, error = 0;
1205 
1206 	down_read(&current->mm->mmap_sem);
1207 
1208 	while (nr_vecs) {
1209 		unsigned long off, npages;
1210 		struct iovec entry;
1211 		void __user *base;
1212 		size_t len;
1213 		int i;
1214 
1215 		error = -EFAULT;
1216 		if (copy_from_user_mmap_sem(&entry, iov, sizeof(entry)))
1217 			break;
1218 
1219 		base = entry.iov_base;
1220 		len = entry.iov_len;
1221 
1222 		/*
1223 		 * Sanity check this iovec. 0 read succeeds.
1224 		 */
1225 		error = 0;
1226 		if (unlikely(!len))
1227 			break;
1228 		error = -EFAULT;
1229 		if (!access_ok(VERIFY_READ, base, len))
1230 			break;
1231 
1232 		/*
1233 		 * Get this base offset and number of pages, then map
1234 		 * in the user pages.
1235 		 */
1236 		off = (unsigned long) base & ~PAGE_MASK;
1237 
1238 		/*
1239 		 * If asked for alignment, the offset must be zero and the
1240 		 * length a multiple of the PAGE_SIZE.
1241 		 */
1242 		error = -EINVAL;
1243 		if (aligned && (off || len & ~PAGE_MASK))
1244 			break;
1245 
1246 		npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1247 		if (npages > PIPE_BUFFERS - buffers)
1248 			npages = PIPE_BUFFERS - buffers;
1249 
1250 		error = get_user_pages(current, current->mm,
1251 				       (unsigned long) base, npages, 0, 0,
1252 				       &pages[buffers], NULL);
1253 
1254 		if (unlikely(error <= 0))
1255 			break;
1256 
1257 		/*
1258 		 * Fill this contiguous range into the partial page map.
1259 		 */
1260 		for (i = 0; i < error; i++) {
1261 			const int plen = min_t(size_t, len, PAGE_SIZE - off);
1262 
1263 			partial[buffers].offset = off;
1264 			partial[buffers].len = plen;
1265 
1266 			off = 0;
1267 			len -= plen;
1268 			buffers++;
1269 		}
1270 
1271 		/*
1272 		 * We didn't complete this iov, stop here since it probably
1273 		 * means we have to move some of this into a pipe to
1274 		 * be able to continue.
1275 		 */
1276 		if (len)
1277 			break;
1278 
1279 		/*
1280 		 * Don't continue if we mapped fewer pages than we asked for,
1281 		 * or if we mapped the max number of pages that we have
1282 		 * room for.
1283 		 */
1284 		if (error < npages || buffers == PIPE_BUFFERS)
1285 			break;
1286 
1287 		nr_vecs--;
1288 		iov++;
1289 	}
1290 
1291 	up_read(&current->mm->mmap_sem);
1292 
1293 	if (buffers)
1294 		return buffers;
1295 
1296 	return error;
1297 }
1298 
1299 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1300 			struct splice_desc *sd)
1301 {
1302 	char *src;
1303 	int ret;
1304 
1305 	ret = buf->ops->confirm(pipe, buf);
1306 	if (unlikely(ret))
1307 		return ret;
1308 
1309 	/*
1310 	 * See if we can use the atomic maps, by prefaulting in the
1311 	 * pages and doing an atomic copy
1312 	 */
1313 	if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1314 		src = buf->ops->map(pipe, buf, 1);
1315 		ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1316 							sd->len);
1317 		buf->ops->unmap(pipe, buf, src);
1318 		if (!ret) {
1319 			ret = sd->len;
1320 			goto out;
1321 		}
1322 	}
1323 
1324 	/*
1325 	 * No dice, use slow non-atomic map and copy
1326  	 */
1327 	src = buf->ops->map(pipe, buf, 0);
1328 
1329 	ret = sd->len;
1330 	if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1331 		ret = -EFAULT;
1332 
1333 	buf->ops->unmap(pipe, buf, src);
1334 out:
1335 	if (ret > 0)
1336 		sd->u.userptr += ret;
1337 	return ret;
1338 }
1339 
1340 /*
1341  * For lack of a better implementation, implement vmsplice() to userspace
1342  * as a simple copy of the pipes pages to the user iov.
1343  */
1344 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1345 			     unsigned long nr_segs, unsigned int flags)
1346 {
1347 	struct pipe_inode_info *pipe;
1348 	struct splice_desc sd;
1349 	ssize_t size;
1350 	int error;
1351 	long ret;
1352 
1353 	pipe = pipe_info(file->f_path.dentry->d_inode);
1354 	if (!pipe)
1355 		return -EBADF;
1356 
1357 	if (pipe->inode)
1358 		mutex_lock(&pipe->inode->i_mutex);
1359 
1360 	error = ret = 0;
1361 	while (nr_segs) {
1362 		void __user *base;
1363 		size_t len;
1364 
1365 		/*
1366 		 * Get user address base and length for this iovec.
1367 		 */
1368 		error = get_user(base, &iov->iov_base);
1369 		if (unlikely(error))
1370 			break;
1371 		error = get_user(len, &iov->iov_len);
1372 		if (unlikely(error))
1373 			break;
1374 
1375 		/*
1376 		 * Sanity check this iovec. 0 read succeeds.
1377 		 */
1378 		if (unlikely(!len))
1379 			break;
1380 		if (unlikely(!base)) {
1381 			error = -EFAULT;
1382 			break;
1383 		}
1384 
1385 		if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1386 			error = -EFAULT;
1387 			break;
1388 		}
1389 
1390 		sd.len = 0;
1391 		sd.total_len = len;
1392 		sd.flags = flags;
1393 		sd.u.userptr = base;
1394 		sd.pos = 0;
1395 
1396 		size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1397 		if (size < 0) {
1398 			if (!ret)
1399 				ret = size;
1400 
1401 			break;
1402 		}
1403 
1404 		ret += size;
1405 
1406 		if (size < len)
1407 			break;
1408 
1409 		nr_segs--;
1410 		iov++;
1411 	}
1412 
1413 	if (pipe->inode)
1414 		mutex_unlock(&pipe->inode->i_mutex);
1415 
1416 	if (!ret)
1417 		ret = error;
1418 
1419 	return ret;
1420 }
1421 
1422 /*
1423  * vmsplice splices a user address range into a pipe. It can be thought of
1424  * as splice-from-memory, where the regular splice is splice-from-file (or
1425  * to file). In both cases the output is a pipe, naturally.
1426  */
1427 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1428 			     unsigned long nr_segs, unsigned int flags)
1429 {
1430 	struct pipe_inode_info *pipe;
1431 	struct page *pages[PIPE_BUFFERS];
1432 	struct partial_page partial[PIPE_BUFFERS];
1433 	struct splice_pipe_desc spd = {
1434 		.pages = pages,
1435 		.partial = partial,
1436 		.flags = flags,
1437 		.ops = &user_page_pipe_buf_ops,
1438 		.spd_release = spd_release_page,
1439 	};
1440 
1441 	pipe = pipe_info(file->f_path.dentry->d_inode);
1442 	if (!pipe)
1443 		return -EBADF;
1444 
1445 	spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1446 					    flags & SPLICE_F_GIFT);
1447 	if (spd.nr_pages <= 0)
1448 		return spd.nr_pages;
1449 
1450 	return splice_to_pipe(pipe, &spd);
1451 }
1452 
1453 /*
1454  * Note that vmsplice only really supports true splicing _from_ user memory
1455  * to a pipe, not the other way around. Splicing from user memory is a simple
1456  * operation that can be supported without any funky alignment restrictions
1457  * or nasty vm tricks. We simply map in the user memory and fill them into
1458  * a pipe. The reverse isn't quite as easy, though. There are two possible
1459  * solutions for that:
1460  *
1461  *	- memcpy() the data internally, at which point we might as well just
1462  *	  do a regular read() on the buffer anyway.
1463  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1464  *	  has restriction limitations on both ends of the pipe).
1465  *
1466  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1467  *
1468  */
1469 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1470 			     unsigned long nr_segs, unsigned int flags)
1471 {
1472 	struct file *file;
1473 	long error;
1474 	int fput;
1475 
1476 	if (unlikely(nr_segs > UIO_MAXIOV))
1477 		return -EINVAL;
1478 	else if (unlikely(!nr_segs))
1479 		return 0;
1480 
1481 	error = -EBADF;
1482 	file = fget_light(fd, &fput);
1483 	if (file) {
1484 		if (file->f_mode & FMODE_WRITE)
1485 			error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1486 		else if (file->f_mode & FMODE_READ)
1487 			error = vmsplice_to_user(file, iov, nr_segs, flags);
1488 
1489 		fput_light(file, fput);
1490 	}
1491 
1492 	return error;
1493 }
1494 
1495 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1496 			   int fd_out, loff_t __user *off_out,
1497 			   size_t len, unsigned int flags)
1498 {
1499 	long error;
1500 	struct file *in, *out;
1501 	int fput_in, fput_out;
1502 
1503 	if (unlikely(!len))
1504 		return 0;
1505 
1506 	error = -EBADF;
1507 	in = fget_light(fd_in, &fput_in);
1508 	if (in) {
1509 		if (in->f_mode & FMODE_READ) {
1510 			out = fget_light(fd_out, &fput_out);
1511 			if (out) {
1512 				if (out->f_mode & FMODE_WRITE)
1513 					error = do_splice(in, off_in,
1514 							  out, off_out,
1515 							  len, flags);
1516 				fput_light(out, fput_out);
1517 			}
1518 		}
1519 
1520 		fput_light(in, fput_in);
1521 	}
1522 
1523 	return error;
1524 }
1525 
1526 /*
1527  * Make sure there's data to read. Wait for input if we can, otherwise
1528  * return an appropriate error.
1529  */
1530 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1531 {
1532 	int ret;
1533 
1534 	/*
1535 	 * Check ->nrbufs without the inode lock first. This function
1536 	 * is speculative anyways, so missing one is ok.
1537 	 */
1538 	if (pipe->nrbufs)
1539 		return 0;
1540 
1541 	ret = 0;
1542 	mutex_lock(&pipe->inode->i_mutex);
1543 
1544 	while (!pipe->nrbufs) {
1545 		if (signal_pending(current)) {
1546 			ret = -ERESTARTSYS;
1547 			break;
1548 		}
1549 		if (!pipe->writers)
1550 			break;
1551 		if (!pipe->waiting_writers) {
1552 			if (flags & SPLICE_F_NONBLOCK) {
1553 				ret = -EAGAIN;
1554 				break;
1555 			}
1556 		}
1557 		pipe_wait(pipe);
1558 	}
1559 
1560 	mutex_unlock(&pipe->inode->i_mutex);
1561 	return ret;
1562 }
1563 
1564 /*
1565  * Make sure there's writeable room. Wait for room if we can, otherwise
1566  * return an appropriate error.
1567  */
1568 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1569 {
1570 	int ret;
1571 
1572 	/*
1573 	 * Check ->nrbufs without the inode lock first. This function
1574 	 * is speculative anyways, so missing one is ok.
1575 	 */
1576 	if (pipe->nrbufs < PIPE_BUFFERS)
1577 		return 0;
1578 
1579 	ret = 0;
1580 	mutex_lock(&pipe->inode->i_mutex);
1581 
1582 	while (pipe->nrbufs >= PIPE_BUFFERS) {
1583 		if (!pipe->readers) {
1584 			send_sig(SIGPIPE, current, 0);
1585 			ret = -EPIPE;
1586 			break;
1587 		}
1588 		if (flags & SPLICE_F_NONBLOCK) {
1589 			ret = -EAGAIN;
1590 			break;
1591 		}
1592 		if (signal_pending(current)) {
1593 			ret = -ERESTARTSYS;
1594 			break;
1595 		}
1596 		pipe->waiting_writers++;
1597 		pipe_wait(pipe);
1598 		pipe->waiting_writers--;
1599 	}
1600 
1601 	mutex_unlock(&pipe->inode->i_mutex);
1602 	return ret;
1603 }
1604 
1605 /*
1606  * Link contents of ipipe to opipe.
1607  */
1608 static int link_pipe(struct pipe_inode_info *ipipe,
1609 		     struct pipe_inode_info *opipe,
1610 		     size_t len, unsigned int flags)
1611 {
1612 	struct pipe_buffer *ibuf, *obuf;
1613 	int ret = 0, i = 0, nbuf;
1614 
1615 	/*
1616 	 * Potential ABBA deadlock, work around it by ordering lock
1617 	 * grabbing by inode address. Otherwise two different processes
1618 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1619 	 */
1620 	inode_double_lock(ipipe->inode, opipe->inode);
1621 
1622 	do {
1623 		if (!opipe->readers) {
1624 			send_sig(SIGPIPE, current, 0);
1625 			if (!ret)
1626 				ret = -EPIPE;
1627 			break;
1628 		}
1629 
1630 		/*
1631 		 * If we have iterated all input buffers or ran out of
1632 		 * output room, break.
1633 		 */
1634 		if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1635 			break;
1636 
1637 		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1638 		nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1639 
1640 		/*
1641 		 * Get a reference to this pipe buffer,
1642 		 * so we can copy the contents over.
1643 		 */
1644 		ibuf->ops->get(ipipe, ibuf);
1645 
1646 		obuf = opipe->bufs + nbuf;
1647 		*obuf = *ibuf;
1648 
1649 		/*
1650 		 * Don't inherit the gift flag, we need to
1651 		 * prevent multiple steals of this page.
1652 		 */
1653 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1654 
1655 		if (obuf->len > len)
1656 			obuf->len = len;
1657 
1658 		opipe->nrbufs++;
1659 		ret += obuf->len;
1660 		len -= obuf->len;
1661 		i++;
1662 	} while (len);
1663 
1664 	/*
1665 	 * return EAGAIN if we have the potential of some data in the
1666 	 * future, otherwise just return 0
1667 	 */
1668 	if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1669 		ret = -EAGAIN;
1670 
1671 	inode_double_unlock(ipipe->inode, opipe->inode);
1672 
1673 	/*
1674 	 * If we put data in the output pipe, wakeup any potential readers.
1675 	 */
1676 	if (ret > 0) {
1677 		smp_mb();
1678 		if (waitqueue_active(&opipe->wait))
1679 			wake_up_interruptible(&opipe->wait);
1680 		kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1681 	}
1682 
1683 	return ret;
1684 }
1685 
1686 /*
1687  * This is a tee(1) implementation that works on pipes. It doesn't copy
1688  * any data, it simply references the 'in' pages on the 'out' pipe.
1689  * The 'flags' used are the SPLICE_F_* variants, currently the only
1690  * applicable one is SPLICE_F_NONBLOCK.
1691  */
1692 static long do_tee(struct file *in, struct file *out, size_t len,
1693 		   unsigned int flags)
1694 {
1695 	struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1696 	struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1697 	int ret = -EINVAL;
1698 
1699 	/*
1700 	 * Duplicate the contents of ipipe to opipe without actually
1701 	 * copying the data.
1702 	 */
1703 	if (ipipe && opipe && ipipe != opipe) {
1704 		/*
1705 		 * Keep going, unless we encounter an error. The ipipe/opipe
1706 		 * ordering doesn't really matter.
1707 		 */
1708 		ret = link_ipipe_prep(ipipe, flags);
1709 		if (!ret) {
1710 			ret = link_opipe_prep(opipe, flags);
1711 			if (!ret)
1712 				ret = link_pipe(ipipe, opipe, len, flags);
1713 		}
1714 	}
1715 
1716 	return ret;
1717 }
1718 
1719 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1720 {
1721 	struct file *in;
1722 	int error, fput_in;
1723 
1724 	if (unlikely(!len))
1725 		return 0;
1726 
1727 	error = -EBADF;
1728 	in = fget_light(fdin, &fput_in);
1729 	if (in) {
1730 		if (in->f_mode & FMODE_READ) {
1731 			int fput_out;
1732 			struct file *out = fget_light(fdout, &fput_out);
1733 
1734 			if (out) {
1735 				if (out->f_mode & FMODE_WRITE)
1736 					error = do_tee(in, out, len, flags);
1737 				fput_light(out, fput_out);
1738 			}
1739 		}
1740  		fput_light(in, fput_in);
1741  	}
1742 
1743 	return error;
1744 }
1745