1 /* 2 * "splice": joining two ropes together by interweaving their strands. 3 * 4 * This is the "extended pipe" functionality, where a pipe is used as 5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 6 * buffer that you can use to transfer data from one end to the other. 7 * 8 * The traditional unix read/write is extended with a "splice()" operation 9 * that transfers data buffers to or from a pipe buffer. 10 * 11 * Named by Larry McVoy, original implementation from Linus, extended by 12 * Jens to support splicing to files, network, direct splicing, etc and 13 * fixing lots of bugs. 14 * 15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 18 * 19 */ 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/pagemap.h> 23 #include <linux/splice.h> 24 #include <linux/mm_inline.h> 25 #include <linux/swap.h> 26 #include <linux/writeback.h> 27 #include <linux/buffer_head.h> 28 #include <linux/module.h> 29 #include <linux/syscalls.h> 30 #include <linux/uio.h> 31 #include <linux/security.h> 32 33 /* 34 * Attempt to steal a page from a pipe buffer. This should perhaps go into 35 * a vm helper function, it's already simplified quite a bit by the 36 * addition of remove_mapping(). If success is returned, the caller may 37 * attempt to reuse this page for another destination. 38 */ 39 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe, 40 struct pipe_buffer *buf) 41 { 42 struct page *page = buf->page; 43 struct address_space *mapping; 44 45 lock_page(page); 46 47 mapping = page_mapping(page); 48 if (mapping) { 49 WARN_ON(!PageUptodate(page)); 50 51 /* 52 * At least for ext2 with nobh option, we need to wait on 53 * writeback completing on this page, since we'll remove it 54 * from the pagecache. Otherwise truncate wont wait on the 55 * page, allowing the disk blocks to be reused by someone else 56 * before we actually wrote our data to them. fs corruption 57 * ensues. 58 */ 59 wait_on_page_writeback(page); 60 61 if (PagePrivate(page) && !try_to_release_page(page, GFP_KERNEL)) 62 goto out_unlock; 63 64 /* 65 * If we succeeded in removing the mapping, set LRU flag 66 * and return good. 67 */ 68 if (remove_mapping(mapping, page)) { 69 buf->flags |= PIPE_BUF_FLAG_LRU; 70 return 0; 71 } 72 } 73 74 /* 75 * Raced with truncate or failed to remove page from current 76 * address space, unlock and return failure. 77 */ 78 out_unlock: 79 unlock_page(page); 80 return 1; 81 } 82 83 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 84 struct pipe_buffer *buf) 85 { 86 page_cache_release(buf->page); 87 buf->flags &= ~PIPE_BUF_FLAG_LRU; 88 } 89 90 /* 91 * Check whether the contents of buf is OK to access. Since the content 92 * is a page cache page, IO may be in flight. 93 */ 94 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 95 struct pipe_buffer *buf) 96 { 97 struct page *page = buf->page; 98 int err; 99 100 if (!PageUptodate(page)) { 101 lock_page(page); 102 103 /* 104 * Page got truncated/unhashed. This will cause a 0-byte 105 * splice, if this is the first page. 106 */ 107 if (!page->mapping) { 108 err = -ENODATA; 109 goto error; 110 } 111 112 /* 113 * Uh oh, read-error from disk. 114 */ 115 if (!PageUptodate(page)) { 116 err = -EIO; 117 goto error; 118 } 119 120 /* 121 * Page is ok afterall, we are done. 122 */ 123 unlock_page(page); 124 } 125 126 return 0; 127 error: 128 unlock_page(page); 129 return err; 130 } 131 132 static const struct pipe_buf_operations page_cache_pipe_buf_ops = { 133 .can_merge = 0, 134 .map = generic_pipe_buf_map, 135 .unmap = generic_pipe_buf_unmap, 136 .confirm = page_cache_pipe_buf_confirm, 137 .release = page_cache_pipe_buf_release, 138 .steal = page_cache_pipe_buf_steal, 139 .get = generic_pipe_buf_get, 140 }; 141 142 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe, 143 struct pipe_buffer *buf) 144 { 145 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 146 return 1; 147 148 buf->flags |= PIPE_BUF_FLAG_LRU; 149 return generic_pipe_buf_steal(pipe, buf); 150 } 151 152 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 153 .can_merge = 0, 154 .map = generic_pipe_buf_map, 155 .unmap = generic_pipe_buf_unmap, 156 .confirm = generic_pipe_buf_confirm, 157 .release = page_cache_pipe_buf_release, 158 .steal = user_page_pipe_buf_steal, 159 .get = generic_pipe_buf_get, 160 }; 161 162 /** 163 * splice_to_pipe - fill passed data into a pipe 164 * @pipe: pipe to fill 165 * @spd: data to fill 166 * 167 * Description: 168 * @spd contains a map of pages and len/offset tuples, along with 169 * the struct pipe_buf_operations associated with these pages. This 170 * function will link that data to the pipe. 171 * 172 */ 173 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 174 struct splice_pipe_desc *spd) 175 { 176 unsigned int spd_pages = spd->nr_pages; 177 int ret, do_wakeup, page_nr; 178 179 ret = 0; 180 do_wakeup = 0; 181 page_nr = 0; 182 183 if (pipe->inode) 184 mutex_lock(&pipe->inode->i_mutex); 185 186 for (;;) { 187 if (!pipe->readers) { 188 send_sig(SIGPIPE, current, 0); 189 if (!ret) 190 ret = -EPIPE; 191 break; 192 } 193 194 if (pipe->nrbufs < PIPE_BUFFERS) { 195 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1); 196 struct pipe_buffer *buf = pipe->bufs + newbuf; 197 198 buf->page = spd->pages[page_nr]; 199 buf->offset = spd->partial[page_nr].offset; 200 buf->len = spd->partial[page_nr].len; 201 buf->private = spd->partial[page_nr].private; 202 buf->ops = spd->ops; 203 if (spd->flags & SPLICE_F_GIFT) 204 buf->flags |= PIPE_BUF_FLAG_GIFT; 205 206 pipe->nrbufs++; 207 page_nr++; 208 ret += buf->len; 209 210 if (pipe->inode) 211 do_wakeup = 1; 212 213 if (!--spd->nr_pages) 214 break; 215 if (pipe->nrbufs < PIPE_BUFFERS) 216 continue; 217 218 break; 219 } 220 221 if (spd->flags & SPLICE_F_NONBLOCK) { 222 if (!ret) 223 ret = -EAGAIN; 224 break; 225 } 226 227 if (signal_pending(current)) { 228 if (!ret) 229 ret = -ERESTARTSYS; 230 break; 231 } 232 233 if (do_wakeup) { 234 smp_mb(); 235 if (waitqueue_active(&pipe->wait)) 236 wake_up_interruptible_sync(&pipe->wait); 237 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 238 do_wakeup = 0; 239 } 240 241 pipe->waiting_writers++; 242 pipe_wait(pipe); 243 pipe->waiting_writers--; 244 } 245 246 if (pipe->inode) { 247 mutex_unlock(&pipe->inode->i_mutex); 248 249 if (do_wakeup) { 250 smp_mb(); 251 if (waitqueue_active(&pipe->wait)) 252 wake_up_interruptible(&pipe->wait); 253 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 254 } 255 } 256 257 while (page_nr < spd_pages) 258 spd->spd_release(spd, page_nr++); 259 260 return ret; 261 } 262 263 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i) 264 { 265 page_cache_release(spd->pages[i]); 266 } 267 268 static int 269 __generic_file_splice_read(struct file *in, loff_t *ppos, 270 struct pipe_inode_info *pipe, size_t len, 271 unsigned int flags) 272 { 273 struct address_space *mapping = in->f_mapping; 274 unsigned int loff, nr_pages, req_pages; 275 struct page *pages[PIPE_BUFFERS]; 276 struct partial_page partial[PIPE_BUFFERS]; 277 struct page *page; 278 pgoff_t index, end_index; 279 loff_t isize; 280 int error, page_nr; 281 struct splice_pipe_desc spd = { 282 .pages = pages, 283 .partial = partial, 284 .flags = flags, 285 .ops = &page_cache_pipe_buf_ops, 286 .spd_release = spd_release_page, 287 }; 288 289 index = *ppos >> PAGE_CACHE_SHIFT; 290 loff = *ppos & ~PAGE_CACHE_MASK; 291 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 292 nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS); 293 294 /* 295 * Lookup the (hopefully) full range of pages we need. 296 */ 297 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages); 298 index += spd.nr_pages; 299 300 /* 301 * If find_get_pages_contig() returned fewer pages than we needed, 302 * readahead/allocate the rest and fill in the holes. 303 */ 304 if (spd.nr_pages < nr_pages) 305 page_cache_sync_readahead(mapping, &in->f_ra, in, 306 index, req_pages - spd.nr_pages); 307 308 error = 0; 309 while (spd.nr_pages < nr_pages) { 310 /* 311 * Page could be there, find_get_pages_contig() breaks on 312 * the first hole. 313 */ 314 page = find_get_page(mapping, index); 315 if (!page) { 316 /* 317 * page didn't exist, allocate one. 318 */ 319 page = page_cache_alloc_cold(mapping); 320 if (!page) 321 break; 322 323 error = add_to_page_cache_lru(page, mapping, index, 324 mapping_gfp_mask(mapping)); 325 if (unlikely(error)) { 326 page_cache_release(page); 327 if (error == -EEXIST) 328 continue; 329 break; 330 } 331 /* 332 * add_to_page_cache() locks the page, unlock it 333 * to avoid convoluting the logic below even more. 334 */ 335 unlock_page(page); 336 } 337 338 pages[spd.nr_pages++] = page; 339 index++; 340 } 341 342 /* 343 * Now loop over the map and see if we need to start IO on any 344 * pages, fill in the partial map, etc. 345 */ 346 index = *ppos >> PAGE_CACHE_SHIFT; 347 nr_pages = spd.nr_pages; 348 spd.nr_pages = 0; 349 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 350 unsigned int this_len; 351 352 if (!len) 353 break; 354 355 /* 356 * this_len is the max we'll use from this page 357 */ 358 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 359 page = pages[page_nr]; 360 361 if (PageReadahead(page)) 362 page_cache_async_readahead(mapping, &in->f_ra, in, 363 page, index, req_pages - page_nr); 364 365 /* 366 * If the page isn't uptodate, we may need to start io on it 367 */ 368 if (!PageUptodate(page)) { 369 /* 370 * If in nonblock mode then dont block on waiting 371 * for an in-flight io page 372 */ 373 if (flags & SPLICE_F_NONBLOCK) { 374 if (TestSetPageLocked(page)) { 375 error = -EAGAIN; 376 break; 377 } 378 } else 379 lock_page(page); 380 381 /* 382 * Page was truncated, or invalidated by the 383 * filesystem. Redo the find/create, but this time the 384 * page is kept locked, so there's no chance of another 385 * race with truncate/invalidate. 386 */ 387 if (!page->mapping) { 388 unlock_page(page); 389 page = find_or_create_page(mapping, index, 390 mapping_gfp_mask(mapping)); 391 392 if (!page) { 393 error = -ENOMEM; 394 break; 395 } 396 page_cache_release(pages[page_nr]); 397 pages[page_nr] = page; 398 } 399 /* 400 * page was already under io and is now done, great 401 */ 402 if (PageUptodate(page)) { 403 unlock_page(page); 404 goto fill_it; 405 } 406 407 /* 408 * need to read in the page 409 */ 410 error = mapping->a_ops->readpage(in, page); 411 if (unlikely(error)) { 412 /* 413 * We really should re-lookup the page here, 414 * but it complicates things a lot. Instead 415 * lets just do what we already stored, and 416 * we'll get it the next time we are called. 417 */ 418 if (error == AOP_TRUNCATED_PAGE) 419 error = 0; 420 421 break; 422 } 423 } 424 fill_it: 425 /* 426 * i_size must be checked after PageUptodate. 427 */ 428 isize = i_size_read(mapping->host); 429 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 430 if (unlikely(!isize || index > end_index)) 431 break; 432 433 /* 434 * if this is the last page, see if we need to shrink 435 * the length and stop 436 */ 437 if (end_index == index) { 438 unsigned int plen; 439 440 /* 441 * max good bytes in this page 442 */ 443 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 444 if (plen <= loff) 445 break; 446 447 /* 448 * force quit after adding this page 449 */ 450 this_len = min(this_len, plen - loff); 451 len = this_len; 452 } 453 454 partial[page_nr].offset = loff; 455 partial[page_nr].len = this_len; 456 len -= this_len; 457 loff = 0; 458 spd.nr_pages++; 459 index++; 460 } 461 462 /* 463 * Release any pages at the end, if we quit early. 'page_nr' is how far 464 * we got, 'nr_pages' is how many pages are in the map. 465 */ 466 while (page_nr < nr_pages) 467 page_cache_release(pages[page_nr++]); 468 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT; 469 470 if (spd.nr_pages) 471 return splice_to_pipe(pipe, &spd); 472 473 return error; 474 } 475 476 /** 477 * generic_file_splice_read - splice data from file to a pipe 478 * @in: file to splice from 479 * @ppos: position in @in 480 * @pipe: pipe to splice to 481 * @len: number of bytes to splice 482 * @flags: splice modifier flags 483 * 484 * Description: 485 * Will read pages from given file and fill them into a pipe. Can be 486 * used as long as the address_space operations for the source implements 487 * a readpage() hook. 488 * 489 */ 490 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos, 491 struct pipe_inode_info *pipe, size_t len, 492 unsigned int flags) 493 { 494 loff_t isize, left; 495 int ret; 496 497 isize = i_size_read(in->f_mapping->host); 498 if (unlikely(*ppos >= isize)) 499 return 0; 500 501 left = isize - *ppos; 502 if (unlikely(left < len)) 503 len = left; 504 505 ret = __generic_file_splice_read(in, ppos, pipe, len, flags); 506 if (ret > 0) 507 *ppos += ret; 508 509 return ret; 510 } 511 512 EXPORT_SYMBOL(generic_file_splice_read); 513 514 /* 515 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos' 516 * using sendpage(). Return the number of bytes sent. 517 */ 518 static int pipe_to_sendpage(struct pipe_inode_info *pipe, 519 struct pipe_buffer *buf, struct splice_desc *sd) 520 { 521 struct file *file = sd->u.file; 522 loff_t pos = sd->pos; 523 int ret, more; 524 525 ret = buf->ops->confirm(pipe, buf); 526 if (!ret) { 527 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len; 528 529 ret = file->f_op->sendpage(file, buf->page, buf->offset, 530 sd->len, &pos, more); 531 } 532 533 return ret; 534 } 535 536 /* 537 * This is a little more tricky than the file -> pipe splicing. There are 538 * basically three cases: 539 * 540 * - Destination page already exists in the address space and there 541 * are users of it. For that case we have no other option that 542 * copying the data. Tough luck. 543 * - Destination page already exists in the address space, but there 544 * are no users of it. Make sure it's uptodate, then drop it. Fall 545 * through to last case. 546 * - Destination page does not exist, we can add the pipe page to 547 * the page cache and avoid the copy. 548 * 549 * If asked to move pages to the output file (SPLICE_F_MOVE is set in 550 * sd->flags), we attempt to migrate pages from the pipe to the output 551 * file address space page cache. This is possible if no one else has 552 * the pipe page referenced outside of the pipe and page cache. If 553 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create 554 * a new page in the output file page cache and fill/dirty that. 555 */ 556 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 557 struct splice_desc *sd) 558 { 559 struct file *file = sd->u.file; 560 struct address_space *mapping = file->f_mapping; 561 unsigned int offset, this_len; 562 struct page *page; 563 void *fsdata; 564 int ret; 565 566 /* 567 * make sure the data in this buffer is uptodate 568 */ 569 ret = buf->ops->confirm(pipe, buf); 570 if (unlikely(ret)) 571 return ret; 572 573 offset = sd->pos & ~PAGE_CACHE_MASK; 574 575 this_len = sd->len; 576 if (this_len + offset > PAGE_CACHE_SIZE) 577 this_len = PAGE_CACHE_SIZE - offset; 578 579 ret = pagecache_write_begin(file, mapping, sd->pos, this_len, 580 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 581 if (unlikely(ret)) 582 goto out; 583 584 if (buf->page != page) { 585 /* 586 * Careful, ->map() uses KM_USER0! 587 */ 588 char *src = buf->ops->map(pipe, buf, 1); 589 char *dst = kmap_atomic(page, KM_USER1); 590 591 memcpy(dst + offset, src + buf->offset, this_len); 592 flush_dcache_page(page); 593 kunmap_atomic(dst, KM_USER1); 594 buf->ops->unmap(pipe, buf, src); 595 } 596 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len, 597 page, fsdata); 598 out: 599 return ret; 600 } 601 602 /** 603 * __splice_from_pipe - splice data from a pipe to given actor 604 * @pipe: pipe to splice from 605 * @sd: information to @actor 606 * @actor: handler that splices the data 607 * 608 * Description: 609 * This function does little more than loop over the pipe and call 610 * @actor to do the actual moving of a single struct pipe_buffer to 611 * the desired destination. See pipe_to_file, pipe_to_sendpage, or 612 * pipe_to_user. 613 * 614 */ 615 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 616 splice_actor *actor) 617 { 618 int ret, do_wakeup, err; 619 620 ret = 0; 621 do_wakeup = 0; 622 623 for (;;) { 624 if (pipe->nrbufs) { 625 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 626 const struct pipe_buf_operations *ops = buf->ops; 627 628 sd->len = buf->len; 629 if (sd->len > sd->total_len) 630 sd->len = sd->total_len; 631 632 err = actor(pipe, buf, sd); 633 if (err <= 0) { 634 if (!ret && err != -ENODATA) 635 ret = err; 636 637 break; 638 } 639 640 ret += err; 641 buf->offset += err; 642 buf->len -= err; 643 644 sd->len -= err; 645 sd->pos += err; 646 sd->total_len -= err; 647 if (sd->len) 648 continue; 649 650 if (!buf->len) { 651 buf->ops = NULL; 652 ops->release(pipe, buf); 653 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1); 654 pipe->nrbufs--; 655 if (pipe->inode) 656 do_wakeup = 1; 657 } 658 659 if (!sd->total_len) 660 break; 661 } 662 663 if (pipe->nrbufs) 664 continue; 665 if (!pipe->writers) 666 break; 667 if (!pipe->waiting_writers) { 668 if (ret) 669 break; 670 } 671 672 if (sd->flags & SPLICE_F_NONBLOCK) { 673 if (!ret) 674 ret = -EAGAIN; 675 break; 676 } 677 678 if (signal_pending(current)) { 679 if (!ret) 680 ret = -ERESTARTSYS; 681 break; 682 } 683 684 if (do_wakeup) { 685 smp_mb(); 686 if (waitqueue_active(&pipe->wait)) 687 wake_up_interruptible_sync(&pipe->wait); 688 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 689 do_wakeup = 0; 690 } 691 692 pipe_wait(pipe); 693 } 694 695 if (do_wakeup) { 696 smp_mb(); 697 if (waitqueue_active(&pipe->wait)) 698 wake_up_interruptible(&pipe->wait); 699 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 700 } 701 702 return ret; 703 } 704 EXPORT_SYMBOL(__splice_from_pipe); 705 706 /** 707 * splice_from_pipe - splice data from a pipe to a file 708 * @pipe: pipe to splice from 709 * @out: file to splice to 710 * @ppos: position in @out 711 * @len: how many bytes to splice 712 * @flags: splice modifier flags 713 * @actor: handler that splices the data 714 * 715 * Description: 716 * See __splice_from_pipe. This function locks the input and output inodes, 717 * otherwise it's identical to __splice_from_pipe(). 718 * 719 */ 720 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 721 loff_t *ppos, size_t len, unsigned int flags, 722 splice_actor *actor) 723 { 724 ssize_t ret; 725 struct inode *inode = out->f_mapping->host; 726 struct splice_desc sd = { 727 .total_len = len, 728 .flags = flags, 729 .pos = *ppos, 730 .u.file = out, 731 }; 732 733 /* 734 * The actor worker might be calling ->prepare_write and 735 * ->commit_write. Most of the time, these expect i_mutex to 736 * be held. Since this may result in an ABBA deadlock with 737 * pipe->inode, we have to order lock acquiry here. 738 */ 739 inode_double_lock(inode, pipe->inode); 740 ret = __splice_from_pipe(pipe, &sd, actor); 741 inode_double_unlock(inode, pipe->inode); 742 743 return ret; 744 } 745 746 /** 747 * generic_file_splice_write_nolock - generic_file_splice_write without mutexes 748 * @pipe: pipe info 749 * @out: file to write to 750 * @ppos: position in @out 751 * @len: number of bytes to splice 752 * @flags: splice modifier flags 753 * 754 * Description: 755 * Will either move or copy pages (determined by @flags options) from 756 * the given pipe inode to the given file. The caller is responsible 757 * for acquiring i_mutex on both inodes. 758 * 759 */ 760 ssize_t 761 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out, 762 loff_t *ppos, size_t len, unsigned int flags) 763 { 764 struct address_space *mapping = out->f_mapping; 765 struct inode *inode = mapping->host; 766 struct splice_desc sd = { 767 .total_len = len, 768 .flags = flags, 769 .pos = *ppos, 770 .u.file = out, 771 }; 772 ssize_t ret; 773 int err; 774 775 err = file_remove_suid(out); 776 if (unlikely(err)) 777 return err; 778 779 ret = __splice_from_pipe(pipe, &sd, pipe_to_file); 780 if (ret > 0) { 781 unsigned long nr_pages; 782 783 *ppos += ret; 784 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 785 786 /* 787 * If file or inode is SYNC and we actually wrote some data, 788 * sync it. 789 */ 790 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) { 791 err = generic_osync_inode(inode, mapping, 792 OSYNC_METADATA|OSYNC_DATA); 793 794 if (err) 795 ret = err; 796 } 797 balance_dirty_pages_ratelimited_nr(mapping, nr_pages); 798 } 799 800 return ret; 801 } 802 803 EXPORT_SYMBOL(generic_file_splice_write_nolock); 804 805 /** 806 * generic_file_splice_write - splice data from a pipe to a file 807 * @pipe: pipe info 808 * @out: file to write to 809 * @ppos: position in @out 810 * @len: number of bytes to splice 811 * @flags: splice modifier flags 812 * 813 * Description: 814 * Will either move or copy pages (determined by @flags options) from 815 * the given pipe inode to the given file. 816 * 817 */ 818 ssize_t 819 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 820 loff_t *ppos, size_t len, unsigned int flags) 821 { 822 struct address_space *mapping = out->f_mapping; 823 struct inode *inode = mapping->host; 824 struct splice_desc sd = { 825 .total_len = len, 826 .flags = flags, 827 .pos = *ppos, 828 .u.file = out, 829 }; 830 ssize_t ret; 831 832 inode_double_lock(inode, pipe->inode); 833 ret = file_remove_suid(out); 834 if (likely(!ret)) 835 ret = __splice_from_pipe(pipe, &sd, pipe_to_file); 836 inode_double_unlock(inode, pipe->inode); 837 if (ret > 0) { 838 unsigned long nr_pages; 839 840 *ppos += ret; 841 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 842 843 /* 844 * If file or inode is SYNC and we actually wrote some data, 845 * sync it. 846 */ 847 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) { 848 int err; 849 850 mutex_lock(&inode->i_mutex); 851 err = generic_osync_inode(inode, mapping, 852 OSYNC_METADATA|OSYNC_DATA); 853 mutex_unlock(&inode->i_mutex); 854 855 if (err) 856 ret = err; 857 } 858 balance_dirty_pages_ratelimited_nr(mapping, nr_pages); 859 } 860 861 return ret; 862 } 863 864 EXPORT_SYMBOL(generic_file_splice_write); 865 866 /** 867 * generic_splice_sendpage - splice data from a pipe to a socket 868 * @pipe: pipe to splice from 869 * @out: socket to write to 870 * @ppos: position in @out 871 * @len: number of bytes to splice 872 * @flags: splice modifier flags 873 * 874 * Description: 875 * Will send @len bytes from the pipe to a network socket. No data copying 876 * is involved. 877 * 878 */ 879 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, 880 loff_t *ppos, size_t len, unsigned int flags) 881 { 882 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage); 883 } 884 885 EXPORT_SYMBOL(generic_splice_sendpage); 886 887 /* 888 * Attempt to initiate a splice from pipe to file. 889 */ 890 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 891 loff_t *ppos, size_t len, unsigned int flags) 892 { 893 int ret; 894 895 if (unlikely(!out->f_op || !out->f_op->splice_write)) 896 return -EINVAL; 897 898 if (unlikely(!(out->f_mode & FMODE_WRITE))) 899 return -EBADF; 900 901 ret = rw_verify_area(WRITE, out, ppos, len); 902 if (unlikely(ret < 0)) 903 return ret; 904 905 return out->f_op->splice_write(pipe, out, ppos, len, flags); 906 } 907 908 /* 909 * Attempt to initiate a splice from a file to a pipe. 910 */ 911 static long do_splice_to(struct file *in, loff_t *ppos, 912 struct pipe_inode_info *pipe, size_t len, 913 unsigned int flags) 914 { 915 int ret; 916 917 if (unlikely(!in->f_op || !in->f_op->splice_read)) 918 return -EINVAL; 919 920 if (unlikely(!(in->f_mode & FMODE_READ))) 921 return -EBADF; 922 923 ret = rw_verify_area(READ, in, ppos, len); 924 if (unlikely(ret < 0)) 925 return ret; 926 927 return in->f_op->splice_read(in, ppos, pipe, len, flags); 928 } 929 930 /** 931 * splice_direct_to_actor - splices data directly between two non-pipes 932 * @in: file to splice from 933 * @sd: actor information on where to splice to 934 * @actor: handles the data splicing 935 * 936 * Description: 937 * This is a special case helper to splice directly between two 938 * points, without requiring an explicit pipe. Internally an allocated 939 * pipe is cached in the process, and reused during the lifetime of 940 * that process. 941 * 942 */ 943 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 944 splice_direct_actor *actor) 945 { 946 struct pipe_inode_info *pipe; 947 long ret, bytes; 948 umode_t i_mode; 949 size_t len; 950 int i, flags; 951 952 /* 953 * We require the input being a regular file, as we don't want to 954 * randomly drop data for eg socket -> socket splicing. Use the 955 * piped splicing for that! 956 */ 957 i_mode = in->f_path.dentry->d_inode->i_mode; 958 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode))) 959 return -EINVAL; 960 961 /* 962 * neither in nor out is a pipe, setup an internal pipe attached to 963 * 'out' and transfer the wanted data from 'in' to 'out' through that 964 */ 965 pipe = current->splice_pipe; 966 if (unlikely(!pipe)) { 967 pipe = alloc_pipe_info(NULL); 968 if (!pipe) 969 return -ENOMEM; 970 971 /* 972 * We don't have an immediate reader, but we'll read the stuff 973 * out of the pipe right after the splice_to_pipe(). So set 974 * PIPE_READERS appropriately. 975 */ 976 pipe->readers = 1; 977 978 current->splice_pipe = pipe; 979 } 980 981 /* 982 * Do the splice. 983 */ 984 ret = 0; 985 bytes = 0; 986 len = sd->total_len; 987 flags = sd->flags; 988 989 /* 990 * Don't block on output, we have to drain the direct pipe. 991 */ 992 sd->flags &= ~SPLICE_F_NONBLOCK; 993 994 while (len) { 995 size_t read_len; 996 loff_t pos = sd->pos, prev_pos = pos; 997 998 ret = do_splice_to(in, &pos, pipe, len, flags); 999 if (unlikely(ret <= 0)) 1000 goto out_release; 1001 1002 read_len = ret; 1003 sd->total_len = read_len; 1004 1005 /* 1006 * NOTE: nonblocking mode only applies to the input. We 1007 * must not do the output in nonblocking mode as then we 1008 * could get stuck data in the internal pipe: 1009 */ 1010 ret = actor(pipe, sd); 1011 if (unlikely(ret <= 0)) { 1012 sd->pos = prev_pos; 1013 goto out_release; 1014 } 1015 1016 bytes += ret; 1017 len -= ret; 1018 sd->pos = pos; 1019 1020 if (ret < read_len) { 1021 sd->pos = prev_pos + ret; 1022 goto out_release; 1023 } 1024 } 1025 1026 done: 1027 pipe->nrbufs = pipe->curbuf = 0; 1028 file_accessed(in); 1029 return bytes; 1030 1031 out_release: 1032 /* 1033 * If we did an incomplete transfer we must release 1034 * the pipe buffers in question: 1035 */ 1036 for (i = 0; i < PIPE_BUFFERS; i++) { 1037 struct pipe_buffer *buf = pipe->bufs + i; 1038 1039 if (buf->ops) { 1040 buf->ops->release(pipe, buf); 1041 buf->ops = NULL; 1042 } 1043 } 1044 1045 if (!bytes) 1046 bytes = ret; 1047 1048 goto done; 1049 } 1050 EXPORT_SYMBOL(splice_direct_to_actor); 1051 1052 static int direct_splice_actor(struct pipe_inode_info *pipe, 1053 struct splice_desc *sd) 1054 { 1055 struct file *file = sd->u.file; 1056 1057 return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags); 1058 } 1059 1060 /** 1061 * do_splice_direct - splices data directly between two files 1062 * @in: file to splice from 1063 * @ppos: input file offset 1064 * @out: file to splice to 1065 * @len: number of bytes to splice 1066 * @flags: splice modifier flags 1067 * 1068 * Description: 1069 * For use by do_sendfile(). splice can easily emulate sendfile, but 1070 * doing it in the application would incur an extra system call 1071 * (splice in + splice out, as compared to just sendfile()). So this helper 1072 * can splice directly through a process-private pipe. 1073 * 1074 */ 1075 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1076 size_t len, unsigned int flags) 1077 { 1078 struct splice_desc sd = { 1079 .len = len, 1080 .total_len = len, 1081 .flags = flags, 1082 .pos = *ppos, 1083 .u.file = out, 1084 }; 1085 long ret; 1086 1087 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 1088 if (ret > 0) 1089 *ppos = sd.pos; 1090 1091 return ret; 1092 } 1093 1094 /* 1095 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same 1096 * location, so checking ->i_pipe is not enough to verify that this is a 1097 * pipe. 1098 */ 1099 static inline struct pipe_inode_info *pipe_info(struct inode *inode) 1100 { 1101 if (S_ISFIFO(inode->i_mode)) 1102 return inode->i_pipe; 1103 1104 return NULL; 1105 } 1106 1107 /* 1108 * Determine where to splice to/from. 1109 */ 1110 static long do_splice(struct file *in, loff_t __user *off_in, 1111 struct file *out, loff_t __user *off_out, 1112 size_t len, unsigned int flags) 1113 { 1114 struct pipe_inode_info *pipe; 1115 loff_t offset, *off; 1116 long ret; 1117 1118 pipe = pipe_info(in->f_path.dentry->d_inode); 1119 if (pipe) { 1120 if (off_in) 1121 return -ESPIPE; 1122 if (off_out) { 1123 if (out->f_op->llseek == no_llseek) 1124 return -EINVAL; 1125 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1126 return -EFAULT; 1127 off = &offset; 1128 } else 1129 off = &out->f_pos; 1130 1131 ret = do_splice_from(pipe, out, off, len, flags); 1132 1133 if (off_out && copy_to_user(off_out, off, sizeof(loff_t))) 1134 ret = -EFAULT; 1135 1136 return ret; 1137 } 1138 1139 pipe = pipe_info(out->f_path.dentry->d_inode); 1140 if (pipe) { 1141 if (off_out) 1142 return -ESPIPE; 1143 if (off_in) { 1144 if (in->f_op->llseek == no_llseek) 1145 return -EINVAL; 1146 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1147 return -EFAULT; 1148 off = &offset; 1149 } else 1150 off = &in->f_pos; 1151 1152 ret = do_splice_to(in, off, pipe, len, flags); 1153 1154 if (off_in && copy_to_user(off_in, off, sizeof(loff_t))) 1155 ret = -EFAULT; 1156 1157 return ret; 1158 } 1159 1160 return -EINVAL; 1161 } 1162 1163 /* 1164 * Map an iov into an array of pages and offset/length tupples. With the 1165 * partial_page structure, we can map several non-contiguous ranges into 1166 * our ones pages[] map instead of splitting that operation into pieces. 1167 * Could easily be exported as a generic helper for other users, in which 1168 * case one would probably want to add a 'max_nr_pages' parameter as well. 1169 */ 1170 static int get_iovec_page_array(const struct iovec __user *iov, 1171 unsigned int nr_vecs, struct page **pages, 1172 struct partial_page *partial, int aligned) 1173 { 1174 int buffers = 0, error = 0; 1175 1176 while (nr_vecs) { 1177 unsigned long off, npages; 1178 struct iovec entry; 1179 void __user *base; 1180 size_t len; 1181 int i; 1182 1183 error = -EFAULT; 1184 if (copy_from_user(&entry, iov, sizeof(entry))) 1185 break; 1186 1187 base = entry.iov_base; 1188 len = entry.iov_len; 1189 1190 /* 1191 * Sanity check this iovec. 0 read succeeds. 1192 */ 1193 error = 0; 1194 if (unlikely(!len)) 1195 break; 1196 error = -EFAULT; 1197 if (!access_ok(VERIFY_READ, base, len)) 1198 break; 1199 1200 /* 1201 * Get this base offset and number of pages, then map 1202 * in the user pages. 1203 */ 1204 off = (unsigned long) base & ~PAGE_MASK; 1205 1206 /* 1207 * If asked for alignment, the offset must be zero and the 1208 * length a multiple of the PAGE_SIZE. 1209 */ 1210 error = -EINVAL; 1211 if (aligned && (off || len & ~PAGE_MASK)) 1212 break; 1213 1214 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1215 if (npages > PIPE_BUFFERS - buffers) 1216 npages = PIPE_BUFFERS - buffers; 1217 1218 error = get_user_pages_fast((unsigned long)base, npages, 1219 0, &pages[buffers]); 1220 1221 if (unlikely(error <= 0)) 1222 break; 1223 1224 /* 1225 * Fill this contiguous range into the partial page map. 1226 */ 1227 for (i = 0; i < error; i++) { 1228 const int plen = min_t(size_t, len, PAGE_SIZE - off); 1229 1230 partial[buffers].offset = off; 1231 partial[buffers].len = plen; 1232 1233 off = 0; 1234 len -= plen; 1235 buffers++; 1236 } 1237 1238 /* 1239 * We didn't complete this iov, stop here since it probably 1240 * means we have to move some of this into a pipe to 1241 * be able to continue. 1242 */ 1243 if (len) 1244 break; 1245 1246 /* 1247 * Don't continue if we mapped fewer pages than we asked for, 1248 * or if we mapped the max number of pages that we have 1249 * room for. 1250 */ 1251 if (error < npages || buffers == PIPE_BUFFERS) 1252 break; 1253 1254 nr_vecs--; 1255 iov++; 1256 } 1257 1258 if (buffers) 1259 return buffers; 1260 1261 return error; 1262 } 1263 1264 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1265 struct splice_desc *sd) 1266 { 1267 char *src; 1268 int ret; 1269 1270 ret = buf->ops->confirm(pipe, buf); 1271 if (unlikely(ret)) 1272 return ret; 1273 1274 /* 1275 * See if we can use the atomic maps, by prefaulting in the 1276 * pages and doing an atomic copy 1277 */ 1278 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) { 1279 src = buf->ops->map(pipe, buf, 1); 1280 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset, 1281 sd->len); 1282 buf->ops->unmap(pipe, buf, src); 1283 if (!ret) { 1284 ret = sd->len; 1285 goto out; 1286 } 1287 } 1288 1289 /* 1290 * No dice, use slow non-atomic map and copy 1291 */ 1292 src = buf->ops->map(pipe, buf, 0); 1293 1294 ret = sd->len; 1295 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len)) 1296 ret = -EFAULT; 1297 1298 buf->ops->unmap(pipe, buf, src); 1299 out: 1300 if (ret > 0) 1301 sd->u.userptr += ret; 1302 return ret; 1303 } 1304 1305 /* 1306 * For lack of a better implementation, implement vmsplice() to userspace 1307 * as a simple copy of the pipes pages to the user iov. 1308 */ 1309 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov, 1310 unsigned long nr_segs, unsigned int flags) 1311 { 1312 struct pipe_inode_info *pipe; 1313 struct splice_desc sd; 1314 ssize_t size; 1315 int error; 1316 long ret; 1317 1318 pipe = pipe_info(file->f_path.dentry->d_inode); 1319 if (!pipe) 1320 return -EBADF; 1321 1322 if (pipe->inode) 1323 mutex_lock(&pipe->inode->i_mutex); 1324 1325 error = ret = 0; 1326 while (nr_segs) { 1327 void __user *base; 1328 size_t len; 1329 1330 /* 1331 * Get user address base and length for this iovec. 1332 */ 1333 error = get_user(base, &iov->iov_base); 1334 if (unlikely(error)) 1335 break; 1336 error = get_user(len, &iov->iov_len); 1337 if (unlikely(error)) 1338 break; 1339 1340 /* 1341 * Sanity check this iovec. 0 read succeeds. 1342 */ 1343 if (unlikely(!len)) 1344 break; 1345 if (unlikely(!base)) { 1346 error = -EFAULT; 1347 break; 1348 } 1349 1350 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) { 1351 error = -EFAULT; 1352 break; 1353 } 1354 1355 sd.len = 0; 1356 sd.total_len = len; 1357 sd.flags = flags; 1358 sd.u.userptr = base; 1359 sd.pos = 0; 1360 1361 size = __splice_from_pipe(pipe, &sd, pipe_to_user); 1362 if (size < 0) { 1363 if (!ret) 1364 ret = size; 1365 1366 break; 1367 } 1368 1369 ret += size; 1370 1371 if (size < len) 1372 break; 1373 1374 nr_segs--; 1375 iov++; 1376 } 1377 1378 if (pipe->inode) 1379 mutex_unlock(&pipe->inode->i_mutex); 1380 1381 if (!ret) 1382 ret = error; 1383 1384 return ret; 1385 } 1386 1387 /* 1388 * vmsplice splices a user address range into a pipe. It can be thought of 1389 * as splice-from-memory, where the regular splice is splice-from-file (or 1390 * to file). In both cases the output is a pipe, naturally. 1391 */ 1392 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov, 1393 unsigned long nr_segs, unsigned int flags) 1394 { 1395 struct pipe_inode_info *pipe; 1396 struct page *pages[PIPE_BUFFERS]; 1397 struct partial_page partial[PIPE_BUFFERS]; 1398 struct splice_pipe_desc spd = { 1399 .pages = pages, 1400 .partial = partial, 1401 .flags = flags, 1402 .ops = &user_page_pipe_buf_ops, 1403 .spd_release = spd_release_page, 1404 }; 1405 1406 pipe = pipe_info(file->f_path.dentry->d_inode); 1407 if (!pipe) 1408 return -EBADF; 1409 1410 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial, 1411 flags & SPLICE_F_GIFT); 1412 if (spd.nr_pages <= 0) 1413 return spd.nr_pages; 1414 1415 return splice_to_pipe(pipe, &spd); 1416 } 1417 1418 /* 1419 * Note that vmsplice only really supports true splicing _from_ user memory 1420 * to a pipe, not the other way around. Splicing from user memory is a simple 1421 * operation that can be supported without any funky alignment restrictions 1422 * or nasty vm tricks. We simply map in the user memory and fill them into 1423 * a pipe. The reverse isn't quite as easy, though. There are two possible 1424 * solutions for that: 1425 * 1426 * - memcpy() the data internally, at which point we might as well just 1427 * do a regular read() on the buffer anyway. 1428 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1429 * has restriction limitations on both ends of the pipe). 1430 * 1431 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1432 * 1433 */ 1434 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov, 1435 unsigned long nr_segs, unsigned int flags) 1436 { 1437 struct file *file; 1438 long error; 1439 int fput; 1440 1441 if (unlikely(nr_segs > UIO_MAXIOV)) 1442 return -EINVAL; 1443 else if (unlikely(!nr_segs)) 1444 return 0; 1445 1446 error = -EBADF; 1447 file = fget_light(fd, &fput); 1448 if (file) { 1449 if (file->f_mode & FMODE_WRITE) 1450 error = vmsplice_to_pipe(file, iov, nr_segs, flags); 1451 else if (file->f_mode & FMODE_READ) 1452 error = vmsplice_to_user(file, iov, nr_segs, flags); 1453 1454 fput_light(file, fput); 1455 } 1456 1457 return error; 1458 } 1459 1460 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in, 1461 int fd_out, loff_t __user *off_out, 1462 size_t len, unsigned int flags) 1463 { 1464 long error; 1465 struct file *in, *out; 1466 int fput_in, fput_out; 1467 1468 if (unlikely(!len)) 1469 return 0; 1470 1471 error = -EBADF; 1472 in = fget_light(fd_in, &fput_in); 1473 if (in) { 1474 if (in->f_mode & FMODE_READ) { 1475 out = fget_light(fd_out, &fput_out); 1476 if (out) { 1477 if (out->f_mode & FMODE_WRITE) 1478 error = do_splice(in, off_in, 1479 out, off_out, 1480 len, flags); 1481 fput_light(out, fput_out); 1482 } 1483 } 1484 1485 fput_light(in, fput_in); 1486 } 1487 1488 return error; 1489 } 1490 1491 /* 1492 * Make sure there's data to read. Wait for input if we can, otherwise 1493 * return an appropriate error. 1494 */ 1495 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1496 { 1497 int ret; 1498 1499 /* 1500 * Check ->nrbufs without the inode lock first. This function 1501 * is speculative anyways, so missing one is ok. 1502 */ 1503 if (pipe->nrbufs) 1504 return 0; 1505 1506 ret = 0; 1507 mutex_lock(&pipe->inode->i_mutex); 1508 1509 while (!pipe->nrbufs) { 1510 if (signal_pending(current)) { 1511 ret = -ERESTARTSYS; 1512 break; 1513 } 1514 if (!pipe->writers) 1515 break; 1516 if (!pipe->waiting_writers) { 1517 if (flags & SPLICE_F_NONBLOCK) { 1518 ret = -EAGAIN; 1519 break; 1520 } 1521 } 1522 pipe_wait(pipe); 1523 } 1524 1525 mutex_unlock(&pipe->inode->i_mutex); 1526 return ret; 1527 } 1528 1529 /* 1530 * Make sure there's writeable room. Wait for room if we can, otherwise 1531 * return an appropriate error. 1532 */ 1533 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1534 { 1535 int ret; 1536 1537 /* 1538 * Check ->nrbufs without the inode lock first. This function 1539 * is speculative anyways, so missing one is ok. 1540 */ 1541 if (pipe->nrbufs < PIPE_BUFFERS) 1542 return 0; 1543 1544 ret = 0; 1545 mutex_lock(&pipe->inode->i_mutex); 1546 1547 while (pipe->nrbufs >= PIPE_BUFFERS) { 1548 if (!pipe->readers) { 1549 send_sig(SIGPIPE, current, 0); 1550 ret = -EPIPE; 1551 break; 1552 } 1553 if (flags & SPLICE_F_NONBLOCK) { 1554 ret = -EAGAIN; 1555 break; 1556 } 1557 if (signal_pending(current)) { 1558 ret = -ERESTARTSYS; 1559 break; 1560 } 1561 pipe->waiting_writers++; 1562 pipe_wait(pipe); 1563 pipe->waiting_writers--; 1564 } 1565 1566 mutex_unlock(&pipe->inode->i_mutex); 1567 return ret; 1568 } 1569 1570 /* 1571 * Link contents of ipipe to opipe. 1572 */ 1573 static int link_pipe(struct pipe_inode_info *ipipe, 1574 struct pipe_inode_info *opipe, 1575 size_t len, unsigned int flags) 1576 { 1577 struct pipe_buffer *ibuf, *obuf; 1578 int ret = 0, i = 0, nbuf; 1579 1580 /* 1581 * Potential ABBA deadlock, work around it by ordering lock 1582 * grabbing by inode address. Otherwise two different processes 1583 * could deadlock (one doing tee from A -> B, the other from B -> A). 1584 */ 1585 inode_double_lock(ipipe->inode, opipe->inode); 1586 1587 do { 1588 if (!opipe->readers) { 1589 send_sig(SIGPIPE, current, 0); 1590 if (!ret) 1591 ret = -EPIPE; 1592 break; 1593 } 1594 1595 /* 1596 * If we have iterated all input buffers or ran out of 1597 * output room, break. 1598 */ 1599 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS) 1600 break; 1601 1602 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1)); 1603 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1); 1604 1605 /* 1606 * Get a reference to this pipe buffer, 1607 * so we can copy the contents over. 1608 */ 1609 ibuf->ops->get(ipipe, ibuf); 1610 1611 obuf = opipe->bufs + nbuf; 1612 *obuf = *ibuf; 1613 1614 /* 1615 * Don't inherit the gift flag, we need to 1616 * prevent multiple steals of this page. 1617 */ 1618 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1619 1620 if (obuf->len > len) 1621 obuf->len = len; 1622 1623 opipe->nrbufs++; 1624 ret += obuf->len; 1625 len -= obuf->len; 1626 i++; 1627 } while (len); 1628 1629 /* 1630 * return EAGAIN if we have the potential of some data in the 1631 * future, otherwise just return 0 1632 */ 1633 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK)) 1634 ret = -EAGAIN; 1635 1636 inode_double_unlock(ipipe->inode, opipe->inode); 1637 1638 /* 1639 * If we put data in the output pipe, wakeup any potential readers. 1640 */ 1641 if (ret > 0) { 1642 smp_mb(); 1643 if (waitqueue_active(&opipe->wait)) 1644 wake_up_interruptible(&opipe->wait); 1645 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN); 1646 } 1647 1648 return ret; 1649 } 1650 1651 /* 1652 * This is a tee(1) implementation that works on pipes. It doesn't copy 1653 * any data, it simply references the 'in' pages on the 'out' pipe. 1654 * The 'flags' used are the SPLICE_F_* variants, currently the only 1655 * applicable one is SPLICE_F_NONBLOCK. 1656 */ 1657 static long do_tee(struct file *in, struct file *out, size_t len, 1658 unsigned int flags) 1659 { 1660 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode); 1661 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode); 1662 int ret = -EINVAL; 1663 1664 /* 1665 * Duplicate the contents of ipipe to opipe without actually 1666 * copying the data. 1667 */ 1668 if (ipipe && opipe && ipipe != opipe) { 1669 /* 1670 * Keep going, unless we encounter an error. The ipipe/opipe 1671 * ordering doesn't really matter. 1672 */ 1673 ret = link_ipipe_prep(ipipe, flags); 1674 if (!ret) { 1675 ret = link_opipe_prep(opipe, flags); 1676 if (!ret) 1677 ret = link_pipe(ipipe, opipe, len, flags); 1678 } 1679 } 1680 1681 return ret; 1682 } 1683 1684 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags) 1685 { 1686 struct file *in; 1687 int error, fput_in; 1688 1689 if (unlikely(!len)) 1690 return 0; 1691 1692 error = -EBADF; 1693 in = fget_light(fdin, &fput_in); 1694 if (in) { 1695 if (in->f_mode & FMODE_READ) { 1696 int fput_out; 1697 struct file *out = fget_light(fdout, &fput_out); 1698 1699 if (out) { 1700 if (out->f_mode & FMODE_WRITE) 1701 error = do_tee(in, out, len, flags); 1702 fput_light(out, fput_out); 1703 } 1704 } 1705 fput_light(in, fput_in); 1706 } 1707 1708 return error; 1709 } 1710