xref: /openbmc/linux/fs/splice.c (revision f0f2c2b5b40b5e621a47a6a274117cce77841f1e)
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33 #include <linux/gfp.h>
34 
35 /*
36  * Attempt to steal a page from a pipe buffer. This should perhaps go into
37  * a vm helper function, it's already simplified quite a bit by the
38  * addition of remove_mapping(). If success is returned, the caller may
39  * attempt to reuse this page for another destination.
40  */
41 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
42 				     struct pipe_buffer *buf)
43 {
44 	struct page *page = buf->page;
45 	struct address_space *mapping;
46 
47 	lock_page(page);
48 
49 	mapping = page_mapping(page);
50 	if (mapping) {
51 		WARN_ON(!PageUptodate(page));
52 
53 		/*
54 		 * At least for ext2 with nobh option, we need to wait on
55 		 * writeback completing on this page, since we'll remove it
56 		 * from the pagecache.  Otherwise truncate wont wait on the
57 		 * page, allowing the disk blocks to be reused by someone else
58 		 * before we actually wrote our data to them. fs corruption
59 		 * ensues.
60 		 */
61 		wait_on_page_writeback(page);
62 
63 		if (page_has_private(page) &&
64 		    !try_to_release_page(page, GFP_KERNEL))
65 			goto out_unlock;
66 
67 		/*
68 		 * If we succeeded in removing the mapping, set LRU flag
69 		 * and return good.
70 		 */
71 		if (remove_mapping(mapping, page)) {
72 			buf->flags |= PIPE_BUF_FLAG_LRU;
73 			return 0;
74 		}
75 	}
76 
77 	/*
78 	 * Raced with truncate or failed to remove page from current
79 	 * address space, unlock and return failure.
80 	 */
81 out_unlock:
82 	unlock_page(page);
83 	return 1;
84 }
85 
86 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
87 					struct pipe_buffer *buf)
88 {
89 	page_cache_release(buf->page);
90 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
91 }
92 
93 /*
94  * Check whether the contents of buf is OK to access. Since the content
95  * is a page cache page, IO may be in flight.
96  */
97 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
98 				       struct pipe_buffer *buf)
99 {
100 	struct page *page = buf->page;
101 	int err;
102 
103 	if (!PageUptodate(page)) {
104 		lock_page(page);
105 
106 		/*
107 		 * Page got truncated/unhashed. This will cause a 0-byte
108 		 * splice, if this is the first page.
109 		 */
110 		if (!page->mapping) {
111 			err = -ENODATA;
112 			goto error;
113 		}
114 
115 		/*
116 		 * Uh oh, read-error from disk.
117 		 */
118 		if (!PageUptodate(page)) {
119 			err = -EIO;
120 			goto error;
121 		}
122 
123 		/*
124 		 * Page is ok afterall, we are done.
125 		 */
126 		unlock_page(page);
127 	}
128 
129 	return 0;
130 error:
131 	unlock_page(page);
132 	return err;
133 }
134 
135 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
136 	.can_merge = 0,
137 	.map = generic_pipe_buf_map,
138 	.unmap = generic_pipe_buf_unmap,
139 	.confirm = page_cache_pipe_buf_confirm,
140 	.release = page_cache_pipe_buf_release,
141 	.steal = page_cache_pipe_buf_steal,
142 	.get = generic_pipe_buf_get,
143 };
144 
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 				    struct pipe_buffer *buf)
147 {
148 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 		return 1;
150 
151 	buf->flags |= PIPE_BUF_FLAG_LRU;
152 	return generic_pipe_buf_steal(pipe, buf);
153 }
154 
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 	.can_merge = 0,
157 	.map = generic_pipe_buf_map,
158 	.unmap = generic_pipe_buf_unmap,
159 	.confirm = generic_pipe_buf_confirm,
160 	.release = page_cache_pipe_buf_release,
161 	.steal = user_page_pipe_buf_steal,
162 	.get = generic_pipe_buf_get,
163 };
164 
165 /**
166  * splice_to_pipe - fill passed data into a pipe
167  * @pipe:	pipe to fill
168  * @spd:	data to fill
169  *
170  * Description:
171  *    @spd contains a map of pages and len/offset tuples, along with
172  *    the struct pipe_buf_operations associated with these pages. This
173  *    function will link that data to the pipe.
174  *
175  */
176 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
177 		       struct splice_pipe_desc *spd)
178 {
179 	unsigned int spd_pages = spd->nr_pages;
180 	int ret, do_wakeup, page_nr;
181 
182 	ret = 0;
183 	do_wakeup = 0;
184 	page_nr = 0;
185 
186 	pipe_lock(pipe);
187 
188 	for (;;) {
189 		if (!pipe->readers) {
190 			send_sig(SIGPIPE, current, 0);
191 			if (!ret)
192 				ret = -EPIPE;
193 			break;
194 		}
195 
196 		if (pipe->nrbufs < pipe->buffers) {
197 			int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
198 			struct pipe_buffer *buf = pipe->bufs + newbuf;
199 
200 			buf->page = spd->pages[page_nr];
201 			buf->offset = spd->partial[page_nr].offset;
202 			buf->len = spd->partial[page_nr].len;
203 			buf->private = spd->partial[page_nr].private;
204 			buf->ops = spd->ops;
205 			if (spd->flags & SPLICE_F_GIFT)
206 				buf->flags |= PIPE_BUF_FLAG_GIFT;
207 
208 			pipe->nrbufs++;
209 			page_nr++;
210 			ret += buf->len;
211 
212 			if (pipe->inode)
213 				do_wakeup = 1;
214 
215 			if (!--spd->nr_pages)
216 				break;
217 			if (pipe->nrbufs < pipe->buffers)
218 				continue;
219 
220 			break;
221 		}
222 
223 		if (spd->flags & SPLICE_F_NONBLOCK) {
224 			if (!ret)
225 				ret = -EAGAIN;
226 			break;
227 		}
228 
229 		if (signal_pending(current)) {
230 			if (!ret)
231 				ret = -ERESTARTSYS;
232 			break;
233 		}
234 
235 		if (do_wakeup) {
236 			smp_mb();
237 			if (waitqueue_active(&pipe->wait))
238 				wake_up_interruptible_sync(&pipe->wait);
239 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
240 			do_wakeup = 0;
241 		}
242 
243 		pipe->waiting_writers++;
244 		pipe_wait(pipe);
245 		pipe->waiting_writers--;
246 	}
247 
248 	pipe_unlock(pipe);
249 
250 	if (do_wakeup) {
251 		smp_mb();
252 		if (waitqueue_active(&pipe->wait))
253 			wake_up_interruptible(&pipe->wait);
254 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
255 	}
256 
257 	while (page_nr < spd_pages)
258 		spd->spd_release(spd, page_nr++);
259 
260 	return ret;
261 }
262 
263 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
264 {
265 	page_cache_release(spd->pages[i]);
266 }
267 
268 /*
269  * Check if we need to grow the arrays holding pages and partial page
270  * descriptions.
271  */
272 int splice_grow_spd(struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
273 {
274 	if (pipe->buffers <= PIPE_DEF_BUFFERS)
275 		return 0;
276 
277 	spd->pages = kmalloc(pipe->buffers * sizeof(struct page *), GFP_KERNEL);
278 	spd->partial = kmalloc(pipe->buffers * sizeof(struct partial_page), GFP_KERNEL);
279 
280 	if (spd->pages && spd->partial)
281 		return 0;
282 
283 	kfree(spd->pages);
284 	kfree(spd->partial);
285 	return -ENOMEM;
286 }
287 
288 void splice_shrink_spd(struct pipe_inode_info *pipe,
289 		       struct splice_pipe_desc *spd)
290 {
291 	if (pipe->buffers <= PIPE_DEF_BUFFERS)
292 		return;
293 
294 	kfree(spd->pages);
295 	kfree(spd->partial);
296 }
297 
298 static int
299 __generic_file_splice_read(struct file *in, loff_t *ppos,
300 			   struct pipe_inode_info *pipe, size_t len,
301 			   unsigned int flags)
302 {
303 	struct address_space *mapping = in->f_mapping;
304 	unsigned int loff, nr_pages, req_pages;
305 	struct page *pages[PIPE_DEF_BUFFERS];
306 	struct partial_page partial[PIPE_DEF_BUFFERS];
307 	struct page *page;
308 	pgoff_t index, end_index;
309 	loff_t isize;
310 	int error, page_nr;
311 	struct splice_pipe_desc spd = {
312 		.pages = pages,
313 		.partial = partial,
314 		.flags = flags,
315 		.ops = &page_cache_pipe_buf_ops,
316 		.spd_release = spd_release_page,
317 	};
318 
319 	if (splice_grow_spd(pipe, &spd))
320 		return -ENOMEM;
321 
322 	index = *ppos >> PAGE_CACHE_SHIFT;
323 	loff = *ppos & ~PAGE_CACHE_MASK;
324 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
325 	nr_pages = min(req_pages, pipe->buffers);
326 
327 	/*
328 	 * Lookup the (hopefully) full range of pages we need.
329 	 */
330 	spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
331 	index += spd.nr_pages;
332 
333 	/*
334 	 * If find_get_pages_contig() returned fewer pages than we needed,
335 	 * readahead/allocate the rest and fill in the holes.
336 	 */
337 	if (spd.nr_pages < nr_pages)
338 		page_cache_sync_readahead(mapping, &in->f_ra, in,
339 				index, req_pages - spd.nr_pages);
340 
341 	error = 0;
342 	while (spd.nr_pages < nr_pages) {
343 		/*
344 		 * Page could be there, find_get_pages_contig() breaks on
345 		 * the first hole.
346 		 */
347 		page = find_get_page(mapping, index);
348 		if (!page) {
349 			/*
350 			 * page didn't exist, allocate one.
351 			 */
352 			page = page_cache_alloc_cold(mapping);
353 			if (!page)
354 				break;
355 
356 			error = add_to_page_cache_lru(page, mapping, index,
357 						GFP_KERNEL);
358 			if (unlikely(error)) {
359 				page_cache_release(page);
360 				if (error == -EEXIST)
361 					continue;
362 				break;
363 			}
364 			/*
365 			 * add_to_page_cache() locks the page, unlock it
366 			 * to avoid convoluting the logic below even more.
367 			 */
368 			unlock_page(page);
369 		}
370 
371 		spd.pages[spd.nr_pages++] = page;
372 		index++;
373 	}
374 
375 	/*
376 	 * Now loop over the map and see if we need to start IO on any
377 	 * pages, fill in the partial map, etc.
378 	 */
379 	index = *ppos >> PAGE_CACHE_SHIFT;
380 	nr_pages = spd.nr_pages;
381 	spd.nr_pages = 0;
382 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
383 		unsigned int this_len;
384 
385 		if (!len)
386 			break;
387 
388 		/*
389 		 * this_len is the max we'll use from this page
390 		 */
391 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
392 		page = spd.pages[page_nr];
393 
394 		if (PageReadahead(page))
395 			page_cache_async_readahead(mapping, &in->f_ra, in,
396 					page, index, req_pages - page_nr);
397 
398 		/*
399 		 * If the page isn't uptodate, we may need to start io on it
400 		 */
401 		if (!PageUptodate(page)) {
402 			lock_page(page);
403 
404 			/*
405 			 * Page was truncated, or invalidated by the
406 			 * filesystem.  Redo the find/create, but this time the
407 			 * page is kept locked, so there's no chance of another
408 			 * race with truncate/invalidate.
409 			 */
410 			if (!page->mapping) {
411 				unlock_page(page);
412 				page = find_or_create_page(mapping, index,
413 						mapping_gfp_mask(mapping));
414 
415 				if (!page) {
416 					error = -ENOMEM;
417 					break;
418 				}
419 				page_cache_release(spd.pages[page_nr]);
420 				spd.pages[page_nr] = page;
421 			}
422 			/*
423 			 * page was already under io and is now done, great
424 			 */
425 			if (PageUptodate(page)) {
426 				unlock_page(page);
427 				goto fill_it;
428 			}
429 
430 			/*
431 			 * need to read in the page
432 			 */
433 			error = mapping->a_ops->readpage(in, page);
434 			if (unlikely(error)) {
435 				/*
436 				 * We really should re-lookup the page here,
437 				 * but it complicates things a lot. Instead
438 				 * lets just do what we already stored, and
439 				 * we'll get it the next time we are called.
440 				 */
441 				if (error == AOP_TRUNCATED_PAGE)
442 					error = 0;
443 
444 				break;
445 			}
446 		}
447 fill_it:
448 		/*
449 		 * i_size must be checked after PageUptodate.
450 		 */
451 		isize = i_size_read(mapping->host);
452 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
453 		if (unlikely(!isize || index > end_index))
454 			break;
455 
456 		/*
457 		 * if this is the last page, see if we need to shrink
458 		 * the length and stop
459 		 */
460 		if (end_index == index) {
461 			unsigned int plen;
462 
463 			/*
464 			 * max good bytes in this page
465 			 */
466 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
467 			if (plen <= loff)
468 				break;
469 
470 			/*
471 			 * force quit after adding this page
472 			 */
473 			this_len = min(this_len, plen - loff);
474 			len = this_len;
475 		}
476 
477 		spd.partial[page_nr].offset = loff;
478 		spd.partial[page_nr].len = this_len;
479 		len -= this_len;
480 		loff = 0;
481 		spd.nr_pages++;
482 		index++;
483 	}
484 
485 	/*
486 	 * Release any pages at the end, if we quit early. 'page_nr' is how far
487 	 * we got, 'nr_pages' is how many pages are in the map.
488 	 */
489 	while (page_nr < nr_pages)
490 		page_cache_release(spd.pages[page_nr++]);
491 	in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
492 
493 	if (spd.nr_pages)
494 		error = splice_to_pipe(pipe, &spd);
495 
496 	splice_shrink_spd(pipe, &spd);
497 	return error;
498 }
499 
500 /**
501  * generic_file_splice_read - splice data from file to a pipe
502  * @in:		file to splice from
503  * @ppos:	position in @in
504  * @pipe:	pipe to splice to
505  * @len:	number of bytes to splice
506  * @flags:	splice modifier flags
507  *
508  * Description:
509  *    Will read pages from given file and fill them into a pipe. Can be
510  *    used as long as the address_space operations for the source implements
511  *    a readpage() hook.
512  *
513  */
514 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
515 				 struct pipe_inode_info *pipe, size_t len,
516 				 unsigned int flags)
517 {
518 	loff_t isize, left;
519 	int ret;
520 
521 	isize = i_size_read(in->f_mapping->host);
522 	if (unlikely(*ppos >= isize))
523 		return 0;
524 
525 	left = isize - *ppos;
526 	if (unlikely(left < len))
527 		len = left;
528 
529 	ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
530 	if (ret > 0) {
531 		*ppos += ret;
532 		file_accessed(in);
533 	}
534 
535 	return ret;
536 }
537 EXPORT_SYMBOL(generic_file_splice_read);
538 
539 static const struct pipe_buf_operations default_pipe_buf_ops = {
540 	.can_merge = 0,
541 	.map = generic_pipe_buf_map,
542 	.unmap = generic_pipe_buf_unmap,
543 	.confirm = generic_pipe_buf_confirm,
544 	.release = generic_pipe_buf_release,
545 	.steal = generic_pipe_buf_steal,
546 	.get = generic_pipe_buf_get,
547 };
548 
549 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
550 			    unsigned long vlen, loff_t offset)
551 {
552 	mm_segment_t old_fs;
553 	loff_t pos = offset;
554 	ssize_t res;
555 
556 	old_fs = get_fs();
557 	set_fs(get_ds());
558 	/* The cast to a user pointer is valid due to the set_fs() */
559 	res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
560 	set_fs(old_fs);
561 
562 	return res;
563 }
564 
565 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
566 			    loff_t pos)
567 {
568 	mm_segment_t old_fs;
569 	ssize_t res;
570 
571 	old_fs = get_fs();
572 	set_fs(get_ds());
573 	/* The cast to a user pointer is valid due to the set_fs() */
574 	res = vfs_write(file, (const char __user *)buf, count, &pos);
575 	set_fs(old_fs);
576 
577 	return res;
578 }
579 
580 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
581 				 struct pipe_inode_info *pipe, size_t len,
582 				 unsigned int flags)
583 {
584 	unsigned int nr_pages;
585 	unsigned int nr_freed;
586 	size_t offset;
587 	struct page *pages[PIPE_DEF_BUFFERS];
588 	struct partial_page partial[PIPE_DEF_BUFFERS];
589 	struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
590 	ssize_t res;
591 	size_t this_len;
592 	int error;
593 	int i;
594 	struct splice_pipe_desc spd = {
595 		.pages = pages,
596 		.partial = partial,
597 		.flags = flags,
598 		.ops = &default_pipe_buf_ops,
599 		.spd_release = spd_release_page,
600 	};
601 
602 	if (splice_grow_spd(pipe, &spd))
603 		return -ENOMEM;
604 
605 	res = -ENOMEM;
606 	vec = __vec;
607 	if (pipe->buffers > PIPE_DEF_BUFFERS) {
608 		vec = kmalloc(pipe->buffers * sizeof(struct iovec), GFP_KERNEL);
609 		if (!vec)
610 			goto shrink_ret;
611 	}
612 
613 	offset = *ppos & ~PAGE_CACHE_MASK;
614 	nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
615 
616 	for (i = 0; i < nr_pages && i < pipe->buffers && len; i++) {
617 		struct page *page;
618 
619 		page = alloc_page(GFP_USER);
620 		error = -ENOMEM;
621 		if (!page)
622 			goto err;
623 
624 		this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
625 		vec[i].iov_base = (void __user *) page_address(page);
626 		vec[i].iov_len = this_len;
627 		spd.pages[i] = page;
628 		spd.nr_pages++;
629 		len -= this_len;
630 		offset = 0;
631 	}
632 
633 	res = kernel_readv(in, vec, spd.nr_pages, *ppos);
634 	if (res < 0) {
635 		error = res;
636 		goto err;
637 	}
638 
639 	error = 0;
640 	if (!res)
641 		goto err;
642 
643 	nr_freed = 0;
644 	for (i = 0; i < spd.nr_pages; i++) {
645 		this_len = min_t(size_t, vec[i].iov_len, res);
646 		spd.partial[i].offset = 0;
647 		spd.partial[i].len = this_len;
648 		if (!this_len) {
649 			__free_page(spd.pages[i]);
650 			spd.pages[i] = NULL;
651 			nr_freed++;
652 		}
653 		res -= this_len;
654 	}
655 	spd.nr_pages -= nr_freed;
656 
657 	res = splice_to_pipe(pipe, &spd);
658 	if (res > 0)
659 		*ppos += res;
660 
661 shrink_ret:
662 	if (vec != __vec)
663 		kfree(vec);
664 	splice_shrink_spd(pipe, &spd);
665 	return res;
666 
667 err:
668 	for (i = 0; i < spd.nr_pages; i++)
669 		__free_page(spd.pages[i]);
670 
671 	res = error;
672 	goto shrink_ret;
673 }
674 EXPORT_SYMBOL(default_file_splice_read);
675 
676 /*
677  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
678  * using sendpage(). Return the number of bytes sent.
679  */
680 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
681 			    struct pipe_buffer *buf, struct splice_desc *sd)
682 {
683 	struct file *file = sd->u.file;
684 	loff_t pos = sd->pos;
685 	int ret, more;
686 
687 	ret = buf->ops->confirm(pipe, buf);
688 	if (!ret) {
689 		more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
690 		if (file->f_op && file->f_op->sendpage)
691 			ret = file->f_op->sendpage(file, buf->page, buf->offset,
692 						   sd->len, &pos, more);
693 		else
694 			ret = -EINVAL;
695 	}
696 
697 	return ret;
698 }
699 
700 /*
701  * This is a little more tricky than the file -> pipe splicing. There are
702  * basically three cases:
703  *
704  *	- Destination page already exists in the address space and there
705  *	  are users of it. For that case we have no other option that
706  *	  copying the data. Tough luck.
707  *	- Destination page already exists in the address space, but there
708  *	  are no users of it. Make sure it's uptodate, then drop it. Fall
709  *	  through to last case.
710  *	- Destination page does not exist, we can add the pipe page to
711  *	  the page cache and avoid the copy.
712  *
713  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
714  * sd->flags), we attempt to migrate pages from the pipe to the output
715  * file address space page cache. This is possible if no one else has
716  * the pipe page referenced outside of the pipe and page cache. If
717  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
718  * a new page in the output file page cache and fill/dirty that.
719  */
720 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
721 		 struct splice_desc *sd)
722 {
723 	struct file *file = sd->u.file;
724 	struct address_space *mapping = file->f_mapping;
725 	unsigned int offset, this_len;
726 	struct page *page;
727 	void *fsdata;
728 	int ret;
729 
730 	/*
731 	 * make sure the data in this buffer is uptodate
732 	 */
733 	ret = buf->ops->confirm(pipe, buf);
734 	if (unlikely(ret))
735 		return ret;
736 
737 	offset = sd->pos & ~PAGE_CACHE_MASK;
738 
739 	this_len = sd->len;
740 	if (this_len + offset > PAGE_CACHE_SIZE)
741 		this_len = PAGE_CACHE_SIZE - offset;
742 
743 	ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
744 				AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
745 	if (unlikely(ret))
746 		goto out;
747 
748 	if (buf->page != page) {
749 		/*
750 		 * Careful, ->map() uses KM_USER0!
751 		 */
752 		char *src = buf->ops->map(pipe, buf, 1);
753 		char *dst = kmap_atomic(page, KM_USER1);
754 
755 		memcpy(dst + offset, src + buf->offset, this_len);
756 		flush_dcache_page(page);
757 		kunmap_atomic(dst, KM_USER1);
758 		buf->ops->unmap(pipe, buf, src);
759 	}
760 	ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
761 				page, fsdata);
762 out:
763 	return ret;
764 }
765 EXPORT_SYMBOL(pipe_to_file);
766 
767 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
768 {
769 	smp_mb();
770 	if (waitqueue_active(&pipe->wait))
771 		wake_up_interruptible(&pipe->wait);
772 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
773 }
774 
775 /**
776  * splice_from_pipe_feed - feed available data from a pipe to a file
777  * @pipe:	pipe to splice from
778  * @sd:		information to @actor
779  * @actor:	handler that splices the data
780  *
781  * Description:
782  *    This function loops over the pipe and calls @actor to do the
783  *    actual moving of a single struct pipe_buffer to the desired
784  *    destination.  It returns when there's no more buffers left in
785  *    the pipe or if the requested number of bytes (@sd->total_len)
786  *    have been copied.  It returns a positive number (one) if the
787  *    pipe needs to be filled with more data, zero if the required
788  *    number of bytes have been copied and -errno on error.
789  *
790  *    This, together with splice_from_pipe_{begin,end,next}, may be
791  *    used to implement the functionality of __splice_from_pipe() when
792  *    locking is required around copying the pipe buffers to the
793  *    destination.
794  */
795 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
796 			  splice_actor *actor)
797 {
798 	int ret;
799 
800 	while (pipe->nrbufs) {
801 		struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
802 		const struct pipe_buf_operations *ops = buf->ops;
803 
804 		sd->len = buf->len;
805 		if (sd->len > sd->total_len)
806 			sd->len = sd->total_len;
807 
808 		ret = actor(pipe, buf, sd);
809 		if (ret <= 0) {
810 			if (ret == -ENODATA)
811 				ret = 0;
812 			return ret;
813 		}
814 		buf->offset += ret;
815 		buf->len -= ret;
816 
817 		sd->num_spliced += ret;
818 		sd->len -= ret;
819 		sd->pos += ret;
820 		sd->total_len -= ret;
821 
822 		if (!buf->len) {
823 			buf->ops = NULL;
824 			ops->release(pipe, buf);
825 			pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
826 			pipe->nrbufs--;
827 			if (pipe->inode)
828 				sd->need_wakeup = true;
829 		}
830 
831 		if (!sd->total_len)
832 			return 0;
833 	}
834 
835 	return 1;
836 }
837 EXPORT_SYMBOL(splice_from_pipe_feed);
838 
839 /**
840  * splice_from_pipe_next - wait for some data to splice from
841  * @pipe:	pipe to splice from
842  * @sd:		information about the splice operation
843  *
844  * Description:
845  *    This function will wait for some data and return a positive
846  *    value (one) if pipe buffers are available.  It will return zero
847  *    or -errno if no more data needs to be spliced.
848  */
849 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
850 {
851 	while (!pipe->nrbufs) {
852 		if (!pipe->writers)
853 			return 0;
854 
855 		if (!pipe->waiting_writers && sd->num_spliced)
856 			return 0;
857 
858 		if (sd->flags & SPLICE_F_NONBLOCK)
859 			return -EAGAIN;
860 
861 		if (signal_pending(current))
862 			return -ERESTARTSYS;
863 
864 		if (sd->need_wakeup) {
865 			wakeup_pipe_writers(pipe);
866 			sd->need_wakeup = false;
867 		}
868 
869 		pipe_wait(pipe);
870 	}
871 
872 	return 1;
873 }
874 EXPORT_SYMBOL(splice_from_pipe_next);
875 
876 /**
877  * splice_from_pipe_begin - start splicing from pipe
878  * @sd:		information about the splice operation
879  *
880  * Description:
881  *    This function should be called before a loop containing
882  *    splice_from_pipe_next() and splice_from_pipe_feed() to
883  *    initialize the necessary fields of @sd.
884  */
885 void splice_from_pipe_begin(struct splice_desc *sd)
886 {
887 	sd->num_spliced = 0;
888 	sd->need_wakeup = false;
889 }
890 EXPORT_SYMBOL(splice_from_pipe_begin);
891 
892 /**
893  * splice_from_pipe_end - finish splicing from pipe
894  * @pipe:	pipe to splice from
895  * @sd:		information about the splice operation
896  *
897  * Description:
898  *    This function will wake up pipe writers if necessary.  It should
899  *    be called after a loop containing splice_from_pipe_next() and
900  *    splice_from_pipe_feed().
901  */
902 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
903 {
904 	if (sd->need_wakeup)
905 		wakeup_pipe_writers(pipe);
906 }
907 EXPORT_SYMBOL(splice_from_pipe_end);
908 
909 /**
910  * __splice_from_pipe - splice data from a pipe to given actor
911  * @pipe:	pipe to splice from
912  * @sd:		information to @actor
913  * @actor:	handler that splices the data
914  *
915  * Description:
916  *    This function does little more than loop over the pipe and call
917  *    @actor to do the actual moving of a single struct pipe_buffer to
918  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
919  *    pipe_to_user.
920  *
921  */
922 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
923 			   splice_actor *actor)
924 {
925 	int ret;
926 
927 	splice_from_pipe_begin(sd);
928 	do {
929 		ret = splice_from_pipe_next(pipe, sd);
930 		if (ret > 0)
931 			ret = splice_from_pipe_feed(pipe, sd, actor);
932 	} while (ret > 0);
933 	splice_from_pipe_end(pipe, sd);
934 
935 	return sd->num_spliced ? sd->num_spliced : ret;
936 }
937 EXPORT_SYMBOL(__splice_from_pipe);
938 
939 /**
940  * splice_from_pipe - splice data from a pipe to a file
941  * @pipe:	pipe to splice from
942  * @out:	file to splice to
943  * @ppos:	position in @out
944  * @len:	how many bytes to splice
945  * @flags:	splice modifier flags
946  * @actor:	handler that splices the data
947  *
948  * Description:
949  *    See __splice_from_pipe. This function locks the pipe inode,
950  *    otherwise it's identical to __splice_from_pipe().
951  *
952  */
953 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
954 			 loff_t *ppos, size_t len, unsigned int flags,
955 			 splice_actor *actor)
956 {
957 	ssize_t ret;
958 	struct splice_desc sd = {
959 		.total_len = len,
960 		.flags = flags,
961 		.pos = *ppos,
962 		.u.file = out,
963 	};
964 
965 	pipe_lock(pipe);
966 	ret = __splice_from_pipe(pipe, &sd, actor);
967 	pipe_unlock(pipe);
968 
969 	return ret;
970 }
971 
972 /**
973  * generic_file_splice_write - splice data from a pipe to a file
974  * @pipe:	pipe info
975  * @out:	file to write to
976  * @ppos:	position in @out
977  * @len:	number of bytes to splice
978  * @flags:	splice modifier flags
979  *
980  * Description:
981  *    Will either move or copy pages (determined by @flags options) from
982  *    the given pipe inode to the given file.
983  *
984  */
985 ssize_t
986 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
987 			  loff_t *ppos, size_t len, unsigned int flags)
988 {
989 	struct address_space *mapping = out->f_mapping;
990 	struct inode *inode = mapping->host;
991 	struct splice_desc sd = {
992 		.total_len = len,
993 		.flags = flags,
994 		.pos = *ppos,
995 		.u.file = out,
996 	};
997 	ssize_t ret;
998 
999 	pipe_lock(pipe);
1000 
1001 	splice_from_pipe_begin(&sd);
1002 	do {
1003 		ret = splice_from_pipe_next(pipe, &sd);
1004 		if (ret <= 0)
1005 			break;
1006 
1007 		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1008 		ret = file_remove_suid(out);
1009 		if (!ret) {
1010 			file_update_time(out);
1011 			ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
1012 		}
1013 		mutex_unlock(&inode->i_mutex);
1014 	} while (ret > 0);
1015 	splice_from_pipe_end(pipe, &sd);
1016 
1017 	pipe_unlock(pipe);
1018 
1019 	if (sd.num_spliced)
1020 		ret = sd.num_spliced;
1021 
1022 	if (ret > 0) {
1023 		unsigned long nr_pages;
1024 		int err;
1025 
1026 		nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1027 
1028 		err = generic_write_sync(out, *ppos, ret);
1029 		if (err)
1030 			ret = err;
1031 		else
1032 			*ppos += ret;
1033 		balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
1034 	}
1035 
1036 	return ret;
1037 }
1038 
1039 EXPORT_SYMBOL(generic_file_splice_write);
1040 
1041 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1042 			  struct splice_desc *sd)
1043 {
1044 	int ret;
1045 	void *data;
1046 
1047 	ret = buf->ops->confirm(pipe, buf);
1048 	if (ret)
1049 		return ret;
1050 
1051 	data = buf->ops->map(pipe, buf, 0);
1052 	ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1053 	buf->ops->unmap(pipe, buf, data);
1054 
1055 	return ret;
1056 }
1057 
1058 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1059 					 struct file *out, loff_t *ppos,
1060 					 size_t len, unsigned int flags)
1061 {
1062 	ssize_t ret;
1063 
1064 	ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1065 	if (ret > 0)
1066 		*ppos += ret;
1067 
1068 	return ret;
1069 }
1070 
1071 /**
1072  * generic_splice_sendpage - splice data from a pipe to a socket
1073  * @pipe:	pipe to splice from
1074  * @out:	socket to write to
1075  * @ppos:	position in @out
1076  * @len:	number of bytes to splice
1077  * @flags:	splice modifier flags
1078  *
1079  * Description:
1080  *    Will send @len bytes from the pipe to a network socket. No data copying
1081  *    is involved.
1082  *
1083  */
1084 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1085 				loff_t *ppos, size_t len, unsigned int flags)
1086 {
1087 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1088 }
1089 
1090 EXPORT_SYMBOL(generic_splice_sendpage);
1091 
1092 /*
1093  * Attempt to initiate a splice from pipe to file.
1094  */
1095 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1096 			   loff_t *ppos, size_t len, unsigned int flags)
1097 {
1098 	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1099 				loff_t *, size_t, unsigned int);
1100 	int ret;
1101 
1102 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1103 		return -EBADF;
1104 
1105 	if (unlikely(out->f_flags & O_APPEND))
1106 		return -EINVAL;
1107 
1108 	ret = rw_verify_area(WRITE, out, ppos, len);
1109 	if (unlikely(ret < 0))
1110 		return ret;
1111 
1112 	if (out->f_op && out->f_op->splice_write)
1113 		splice_write = out->f_op->splice_write;
1114 	else
1115 		splice_write = default_file_splice_write;
1116 
1117 	return splice_write(pipe, out, ppos, len, flags);
1118 }
1119 
1120 /*
1121  * Attempt to initiate a splice from a file to a pipe.
1122  */
1123 static long do_splice_to(struct file *in, loff_t *ppos,
1124 			 struct pipe_inode_info *pipe, size_t len,
1125 			 unsigned int flags)
1126 {
1127 	ssize_t (*splice_read)(struct file *, loff_t *,
1128 			       struct pipe_inode_info *, size_t, unsigned int);
1129 	int ret;
1130 
1131 	if (unlikely(!(in->f_mode & FMODE_READ)))
1132 		return -EBADF;
1133 
1134 	ret = rw_verify_area(READ, in, ppos, len);
1135 	if (unlikely(ret < 0))
1136 		return ret;
1137 
1138 	if (in->f_op && in->f_op->splice_read)
1139 		splice_read = in->f_op->splice_read;
1140 	else
1141 		splice_read = default_file_splice_read;
1142 
1143 	return splice_read(in, ppos, pipe, len, flags);
1144 }
1145 
1146 /**
1147  * splice_direct_to_actor - splices data directly between two non-pipes
1148  * @in:		file to splice from
1149  * @sd:		actor information on where to splice to
1150  * @actor:	handles the data splicing
1151  *
1152  * Description:
1153  *    This is a special case helper to splice directly between two
1154  *    points, without requiring an explicit pipe. Internally an allocated
1155  *    pipe is cached in the process, and reused during the lifetime of
1156  *    that process.
1157  *
1158  */
1159 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1160 			       splice_direct_actor *actor)
1161 {
1162 	struct pipe_inode_info *pipe;
1163 	long ret, bytes;
1164 	umode_t i_mode;
1165 	size_t len;
1166 	int i, flags;
1167 
1168 	/*
1169 	 * We require the input being a regular file, as we don't want to
1170 	 * randomly drop data for eg socket -> socket splicing. Use the
1171 	 * piped splicing for that!
1172 	 */
1173 	i_mode = in->f_path.dentry->d_inode->i_mode;
1174 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1175 		return -EINVAL;
1176 
1177 	/*
1178 	 * neither in nor out is a pipe, setup an internal pipe attached to
1179 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
1180 	 */
1181 	pipe = current->splice_pipe;
1182 	if (unlikely(!pipe)) {
1183 		pipe = alloc_pipe_info(NULL);
1184 		if (!pipe)
1185 			return -ENOMEM;
1186 
1187 		/*
1188 		 * We don't have an immediate reader, but we'll read the stuff
1189 		 * out of the pipe right after the splice_to_pipe(). So set
1190 		 * PIPE_READERS appropriately.
1191 		 */
1192 		pipe->readers = 1;
1193 
1194 		current->splice_pipe = pipe;
1195 	}
1196 
1197 	/*
1198 	 * Do the splice.
1199 	 */
1200 	ret = 0;
1201 	bytes = 0;
1202 	len = sd->total_len;
1203 	flags = sd->flags;
1204 
1205 	/*
1206 	 * Don't block on output, we have to drain the direct pipe.
1207 	 */
1208 	sd->flags &= ~SPLICE_F_NONBLOCK;
1209 
1210 	while (len) {
1211 		size_t read_len;
1212 		loff_t pos = sd->pos, prev_pos = pos;
1213 
1214 		ret = do_splice_to(in, &pos, pipe, len, flags);
1215 		if (unlikely(ret <= 0))
1216 			goto out_release;
1217 
1218 		read_len = ret;
1219 		sd->total_len = read_len;
1220 
1221 		/*
1222 		 * NOTE: nonblocking mode only applies to the input. We
1223 		 * must not do the output in nonblocking mode as then we
1224 		 * could get stuck data in the internal pipe:
1225 		 */
1226 		ret = actor(pipe, sd);
1227 		if (unlikely(ret <= 0)) {
1228 			sd->pos = prev_pos;
1229 			goto out_release;
1230 		}
1231 
1232 		bytes += ret;
1233 		len -= ret;
1234 		sd->pos = pos;
1235 
1236 		if (ret < read_len) {
1237 			sd->pos = prev_pos + ret;
1238 			goto out_release;
1239 		}
1240 	}
1241 
1242 done:
1243 	pipe->nrbufs = pipe->curbuf = 0;
1244 	file_accessed(in);
1245 	return bytes;
1246 
1247 out_release:
1248 	/*
1249 	 * If we did an incomplete transfer we must release
1250 	 * the pipe buffers in question:
1251 	 */
1252 	for (i = 0; i < pipe->buffers; i++) {
1253 		struct pipe_buffer *buf = pipe->bufs + i;
1254 
1255 		if (buf->ops) {
1256 			buf->ops->release(pipe, buf);
1257 			buf->ops = NULL;
1258 		}
1259 	}
1260 
1261 	if (!bytes)
1262 		bytes = ret;
1263 
1264 	goto done;
1265 }
1266 EXPORT_SYMBOL(splice_direct_to_actor);
1267 
1268 static int direct_splice_actor(struct pipe_inode_info *pipe,
1269 			       struct splice_desc *sd)
1270 {
1271 	struct file *file = sd->u.file;
1272 
1273 	return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1274 			      sd->flags);
1275 }
1276 
1277 /**
1278  * do_splice_direct - splices data directly between two files
1279  * @in:		file to splice from
1280  * @ppos:	input file offset
1281  * @out:	file to splice to
1282  * @len:	number of bytes to splice
1283  * @flags:	splice modifier flags
1284  *
1285  * Description:
1286  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1287  *    doing it in the application would incur an extra system call
1288  *    (splice in + splice out, as compared to just sendfile()). So this helper
1289  *    can splice directly through a process-private pipe.
1290  *
1291  */
1292 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1293 		      size_t len, unsigned int flags)
1294 {
1295 	struct splice_desc sd = {
1296 		.len		= len,
1297 		.total_len	= len,
1298 		.flags		= flags,
1299 		.pos		= *ppos,
1300 		.u.file		= out,
1301 	};
1302 	long ret;
1303 
1304 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1305 	if (ret > 0)
1306 		*ppos = sd.pos;
1307 
1308 	return ret;
1309 }
1310 
1311 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1312 			       struct pipe_inode_info *opipe,
1313 			       size_t len, unsigned int flags);
1314 
1315 /*
1316  * Determine where to splice to/from.
1317  */
1318 static long do_splice(struct file *in, loff_t __user *off_in,
1319 		      struct file *out, loff_t __user *off_out,
1320 		      size_t len, unsigned int flags)
1321 {
1322 	struct pipe_inode_info *ipipe;
1323 	struct pipe_inode_info *opipe;
1324 	loff_t offset, *off;
1325 	long ret;
1326 
1327 	ipipe = get_pipe_info(in);
1328 	opipe = get_pipe_info(out);
1329 
1330 	if (ipipe && opipe) {
1331 		if (off_in || off_out)
1332 			return -ESPIPE;
1333 
1334 		if (!(in->f_mode & FMODE_READ))
1335 			return -EBADF;
1336 
1337 		if (!(out->f_mode & FMODE_WRITE))
1338 			return -EBADF;
1339 
1340 		/* Splicing to self would be fun, but... */
1341 		if (ipipe == opipe)
1342 			return -EINVAL;
1343 
1344 		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1345 	}
1346 
1347 	if (ipipe) {
1348 		if (off_in)
1349 			return -ESPIPE;
1350 		if (off_out) {
1351 			if (!(out->f_mode & FMODE_PWRITE))
1352 				return -EINVAL;
1353 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1354 				return -EFAULT;
1355 			off = &offset;
1356 		} else
1357 			off = &out->f_pos;
1358 
1359 		ret = do_splice_from(ipipe, out, off, len, flags);
1360 
1361 		if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1362 			ret = -EFAULT;
1363 
1364 		return ret;
1365 	}
1366 
1367 	if (opipe) {
1368 		if (off_out)
1369 			return -ESPIPE;
1370 		if (off_in) {
1371 			if (!(in->f_mode & FMODE_PREAD))
1372 				return -EINVAL;
1373 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1374 				return -EFAULT;
1375 			off = &offset;
1376 		} else
1377 			off = &in->f_pos;
1378 
1379 		ret = do_splice_to(in, off, opipe, len, flags);
1380 
1381 		if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1382 			ret = -EFAULT;
1383 
1384 		return ret;
1385 	}
1386 
1387 	return -EINVAL;
1388 }
1389 
1390 /*
1391  * Map an iov into an array of pages and offset/length tupples. With the
1392  * partial_page structure, we can map several non-contiguous ranges into
1393  * our ones pages[] map instead of splitting that operation into pieces.
1394  * Could easily be exported as a generic helper for other users, in which
1395  * case one would probably want to add a 'max_nr_pages' parameter as well.
1396  */
1397 static int get_iovec_page_array(const struct iovec __user *iov,
1398 				unsigned int nr_vecs, struct page **pages,
1399 				struct partial_page *partial, int aligned,
1400 				unsigned int pipe_buffers)
1401 {
1402 	int buffers = 0, error = 0;
1403 
1404 	while (nr_vecs) {
1405 		unsigned long off, npages;
1406 		struct iovec entry;
1407 		void __user *base;
1408 		size_t len;
1409 		int i;
1410 
1411 		error = -EFAULT;
1412 		if (copy_from_user(&entry, iov, sizeof(entry)))
1413 			break;
1414 
1415 		base = entry.iov_base;
1416 		len = entry.iov_len;
1417 
1418 		/*
1419 		 * Sanity check this iovec. 0 read succeeds.
1420 		 */
1421 		error = 0;
1422 		if (unlikely(!len))
1423 			break;
1424 		error = -EFAULT;
1425 		if (!access_ok(VERIFY_READ, base, len))
1426 			break;
1427 
1428 		/*
1429 		 * Get this base offset and number of pages, then map
1430 		 * in the user pages.
1431 		 */
1432 		off = (unsigned long) base & ~PAGE_MASK;
1433 
1434 		/*
1435 		 * If asked for alignment, the offset must be zero and the
1436 		 * length a multiple of the PAGE_SIZE.
1437 		 */
1438 		error = -EINVAL;
1439 		if (aligned && (off || len & ~PAGE_MASK))
1440 			break;
1441 
1442 		npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1443 		if (npages > pipe_buffers - buffers)
1444 			npages = pipe_buffers - buffers;
1445 
1446 		error = get_user_pages_fast((unsigned long)base, npages,
1447 					0, &pages[buffers]);
1448 
1449 		if (unlikely(error <= 0))
1450 			break;
1451 
1452 		/*
1453 		 * Fill this contiguous range into the partial page map.
1454 		 */
1455 		for (i = 0; i < error; i++) {
1456 			const int plen = min_t(size_t, len, PAGE_SIZE - off);
1457 
1458 			partial[buffers].offset = off;
1459 			partial[buffers].len = plen;
1460 
1461 			off = 0;
1462 			len -= plen;
1463 			buffers++;
1464 		}
1465 
1466 		/*
1467 		 * We didn't complete this iov, stop here since it probably
1468 		 * means we have to move some of this into a pipe to
1469 		 * be able to continue.
1470 		 */
1471 		if (len)
1472 			break;
1473 
1474 		/*
1475 		 * Don't continue if we mapped fewer pages than we asked for,
1476 		 * or if we mapped the max number of pages that we have
1477 		 * room for.
1478 		 */
1479 		if (error < npages || buffers == pipe_buffers)
1480 			break;
1481 
1482 		nr_vecs--;
1483 		iov++;
1484 	}
1485 
1486 	if (buffers)
1487 		return buffers;
1488 
1489 	return error;
1490 }
1491 
1492 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1493 			struct splice_desc *sd)
1494 {
1495 	char *src;
1496 	int ret;
1497 
1498 	ret = buf->ops->confirm(pipe, buf);
1499 	if (unlikely(ret))
1500 		return ret;
1501 
1502 	/*
1503 	 * See if we can use the atomic maps, by prefaulting in the
1504 	 * pages and doing an atomic copy
1505 	 */
1506 	if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1507 		src = buf->ops->map(pipe, buf, 1);
1508 		ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1509 							sd->len);
1510 		buf->ops->unmap(pipe, buf, src);
1511 		if (!ret) {
1512 			ret = sd->len;
1513 			goto out;
1514 		}
1515 	}
1516 
1517 	/*
1518 	 * No dice, use slow non-atomic map and copy
1519  	 */
1520 	src = buf->ops->map(pipe, buf, 0);
1521 
1522 	ret = sd->len;
1523 	if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1524 		ret = -EFAULT;
1525 
1526 	buf->ops->unmap(pipe, buf, src);
1527 out:
1528 	if (ret > 0)
1529 		sd->u.userptr += ret;
1530 	return ret;
1531 }
1532 
1533 /*
1534  * For lack of a better implementation, implement vmsplice() to userspace
1535  * as a simple copy of the pipes pages to the user iov.
1536  */
1537 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1538 			     unsigned long nr_segs, unsigned int flags)
1539 {
1540 	struct pipe_inode_info *pipe;
1541 	struct splice_desc sd;
1542 	ssize_t size;
1543 	int error;
1544 	long ret;
1545 
1546 	pipe = get_pipe_info(file);
1547 	if (!pipe)
1548 		return -EBADF;
1549 
1550 	pipe_lock(pipe);
1551 
1552 	error = ret = 0;
1553 	while (nr_segs) {
1554 		void __user *base;
1555 		size_t len;
1556 
1557 		/*
1558 		 * Get user address base and length for this iovec.
1559 		 */
1560 		error = get_user(base, &iov->iov_base);
1561 		if (unlikely(error))
1562 			break;
1563 		error = get_user(len, &iov->iov_len);
1564 		if (unlikely(error))
1565 			break;
1566 
1567 		/*
1568 		 * Sanity check this iovec. 0 read succeeds.
1569 		 */
1570 		if (unlikely(!len))
1571 			break;
1572 		if (unlikely(!base)) {
1573 			error = -EFAULT;
1574 			break;
1575 		}
1576 
1577 		if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1578 			error = -EFAULT;
1579 			break;
1580 		}
1581 
1582 		sd.len = 0;
1583 		sd.total_len = len;
1584 		sd.flags = flags;
1585 		sd.u.userptr = base;
1586 		sd.pos = 0;
1587 
1588 		size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1589 		if (size < 0) {
1590 			if (!ret)
1591 				ret = size;
1592 
1593 			break;
1594 		}
1595 
1596 		ret += size;
1597 
1598 		if (size < len)
1599 			break;
1600 
1601 		nr_segs--;
1602 		iov++;
1603 	}
1604 
1605 	pipe_unlock(pipe);
1606 
1607 	if (!ret)
1608 		ret = error;
1609 
1610 	return ret;
1611 }
1612 
1613 /*
1614  * vmsplice splices a user address range into a pipe. It can be thought of
1615  * as splice-from-memory, where the regular splice is splice-from-file (or
1616  * to file). In both cases the output is a pipe, naturally.
1617  */
1618 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1619 			     unsigned long nr_segs, unsigned int flags)
1620 {
1621 	struct pipe_inode_info *pipe;
1622 	struct page *pages[PIPE_DEF_BUFFERS];
1623 	struct partial_page partial[PIPE_DEF_BUFFERS];
1624 	struct splice_pipe_desc spd = {
1625 		.pages = pages,
1626 		.partial = partial,
1627 		.flags = flags,
1628 		.ops = &user_page_pipe_buf_ops,
1629 		.spd_release = spd_release_page,
1630 	};
1631 	long ret;
1632 
1633 	pipe = get_pipe_info(file);
1634 	if (!pipe)
1635 		return -EBADF;
1636 
1637 	if (splice_grow_spd(pipe, &spd))
1638 		return -ENOMEM;
1639 
1640 	spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1641 					    spd.partial, flags & SPLICE_F_GIFT,
1642 					    pipe->buffers);
1643 	if (spd.nr_pages <= 0)
1644 		ret = spd.nr_pages;
1645 	else
1646 		ret = splice_to_pipe(pipe, &spd);
1647 
1648 	splice_shrink_spd(pipe, &spd);
1649 	return ret;
1650 }
1651 
1652 /*
1653  * Note that vmsplice only really supports true splicing _from_ user memory
1654  * to a pipe, not the other way around. Splicing from user memory is a simple
1655  * operation that can be supported without any funky alignment restrictions
1656  * or nasty vm tricks. We simply map in the user memory and fill them into
1657  * a pipe. The reverse isn't quite as easy, though. There are two possible
1658  * solutions for that:
1659  *
1660  *	- memcpy() the data internally, at which point we might as well just
1661  *	  do a regular read() on the buffer anyway.
1662  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1663  *	  has restriction limitations on both ends of the pipe).
1664  *
1665  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1666  *
1667  */
1668 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1669 		unsigned long, nr_segs, unsigned int, flags)
1670 {
1671 	struct file *file;
1672 	long error;
1673 	int fput;
1674 
1675 	if (unlikely(nr_segs > UIO_MAXIOV))
1676 		return -EINVAL;
1677 	else if (unlikely(!nr_segs))
1678 		return 0;
1679 
1680 	error = -EBADF;
1681 	file = fget_light(fd, &fput);
1682 	if (file) {
1683 		if (file->f_mode & FMODE_WRITE)
1684 			error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1685 		else if (file->f_mode & FMODE_READ)
1686 			error = vmsplice_to_user(file, iov, nr_segs, flags);
1687 
1688 		fput_light(file, fput);
1689 	}
1690 
1691 	return error;
1692 }
1693 
1694 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1695 		int, fd_out, loff_t __user *, off_out,
1696 		size_t, len, unsigned int, flags)
1697 {
1698 	long error;
1699 	struct file *in, *out;
1700 	int fput_in, fput_out;
1701 
1702 	if (unlikely(!len))
1703 		return 0;
1704 
1705 	error = -EBADF;
1706 	in = fget_light(fd_in, &fput_in);
1707 	if (in) {
1708 		if (in->f_mode & FMODE_READ) {
1709 			out = fget_light(fd_out, &fput_out);
1710 			if (out) {
1711 				if (out->f_mode & FMODE_WRITE)
1712 					error = do_splice(in, off_in,
1713 							  out, off_out,
1714 							  len, flags);
1715 				fput_light(out, fput_out);
1716 			}
1717 		}
1718 
1719 		fput_light(in, fput_in);
1720 	}
1721 
1722 	return error;
1723 }
1724 
1725 /*
1726  * Make sure there's data to read. Wait for input if we can, otherwise
1727  * return an appropriate error.
1728  */
1729 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1730 {
1731 	int ret;
1732 
1733 	/*
1734 	 * Check ->nrbufs without the inode lock first. This function
1735 	 * is speculative anyways, so missing one is ok.
1736 	 */
1737 	if (pipe->nrbufs)
1738 		return 0;
1739 
1740 	ret = 0;
1741 	pipe_lock(pipe);
1742 
1743 	while (!pipe->nrbufs) {
1744 		if (signal_pending(current)) {
1745 			ret = -ERESTARTSYS;
1746 			break;
1747 		}
1748 		if (!pipe->writers)
1749 			break;
1750 		if (!pipe->waiting_writers) {
1751 			if (flags & SPLICE_F_NONBLOCK) {
1752 				ret = -EAGAIN;
1753 				break;
1754 			}
1755 		}
1756 		pipe_wait(pipe);
1757 	}
1758 
1759 	pipe_unlock(pipe);
1760 	return ret;
1761 }
1762 
1763 /*
1764  * Make sure there's writeable room. Wait for room if we can, otherwise
1765  * return an appropriate error.
1766  */
1767 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1768 {
1769 	int ret;
1770 
1771 	/*
1772 	 * Check ->nrbufs without the inode lock first. This function
1773 	 * is speculative anyways, so missing one is ok.
1774 	 */
1775 	if (pipe->nrbufs < pipe->buffers)
1776 		return 0;
1777 
1778 	ret = 0;
1779 	pipe_lock(pipe);
1780 
1781 	while (pipe->nrbufs >= pipe->buffers) {
1782 		if (!pipe->readers) {
1783 			send_sig(SIGPIPE, current, 0);
1784 			ret = -EPIPE;
1785 			break;
1786 		}
1787 		if (flags & SPLICE_F_NONBLOCK) {
1788 			ret = -EAGAIN;
1789 			break;
1790 		}
1791 		if (signal_pending(current)) {
1792 			ret = -ERESTARTSYS;
1793 			break;
1794 		}
1795 		pipe->waiting_writers++;
1796 		pipe_wait(pipe);
1797 		pipe->waiting_writers--;
1798 	}
1799 
1800 	pipe_unlock(pipe);
1801 	return ret;
1802 }
1803 
1804 /*
1805  * Splice contents of ipipe to opipe.
1806  */
1807 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1808 			       struct pipe_inode_info *opipe,
1809 			       size_t len, unsigned int flags)
1810 {
1811 	struct pipe_buffer *ibuf, *obuf;
1812 	int ret = 0, nbuf;
1813 	bool input_wakeup = false;
1814 
1815 
1816 retry:
1817 	ret = ipipe_prep(ipipe, flags);
1818 	if (ret)
1819 		return ret;
1820 
1821 	ret = opipe_prep(opipe, flags);
1822 	if (ret)
1823 		return ret;
1824 
1825 	/*
1826 	 * Potential ABBA deadlock, work around it by ordering lock
1827 	 * grabbing by pipe info address. Otherwise two different processes
1828 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1829 	 */
1830 	pipe_double_lock(ipipe, opipe);
1831 
1832 	do {
1833 		if (!opipe->readers) {
1834 			send_sig(SIGPIPE, current, 0);
1835 			if (!ret)
1836 				ret = -EPIPE;
1837 			break;
1838 		}
1839 
1840 		if (!ipipe->nrbufs && !ipipe->writers)
1841 			break;
1842 
1843 		/*
1844 		 * Cannot make any progress, because either the input
1845 		 * pipe is empty or the output pipe is full.
1846 		 */
1847 		if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1848 			/* Already processed some buffers, break */
1849 			if (ret)
1850 				break;
1851 
1852 			if (flags & SPLICE_F_NONBLOCK) {
1853 				ret = -EAGAIN;
1854 				break;
1855 			}
1856 
1857 			/*
1858 			 * We raced with another reader/writer and haven't
1859 			 * managed to process any buffers.  A zero return
1860 			 * value means EOF, so retry instead.
1861 			 */
1862 			pipe_unlock(ipipe);
1863 			pipe_unlock(opipe);
1864 			goto retry;
1865 		}
1866 
1867 		ibuf = ipipe->bufs + ipipe->curbuf;
1868 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1869 		obuf = opipe->bufs + nbuf;
1870 
1871 		if (len >= ibuf->len) {
1872 			/*
1873 			 * Simply move the whole buffer from ipipe to opipe
1874 			 */
1875 			*obuf = *ibuf;
1876 			ibuf->ops = NULL;
1877 			opipe->nrbufs++;
1878 			ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1879 			ipipe->nrbufs--;
1880 			input_wakeup = true;
1881 		} else {
1882 			/*
1883 			 * Get a reference to this pipe buffer,
1884 			 * so we can copy the contents over.
1885 			 */
1886 			ibuf->ops->get(ipipe, ibuf);
1887 			*obuf = *ibuf;
1888 
1889 			/*
1890 			 * Don't inherit the gift flag, we need to
1891 			 * prevent multiple steals of this page.
1892 			 */
1893 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1894 
1895 			obuf->len = len;
1896 			opipe->nrbufs++;
1897 			ibuf->offset += obuf->len;
1898 			ibuf->len -= obuf->len;
1899 		}
1900 		ret += obuf->len;
1901 		len -= obuf->len;
1902 	} while (len);
1903 
1904 	pipe_unlock(ipipe);
1905 	pipe_unlock(opipe);
1906 
1907 	/*
1908 	 * If we put data in the output pipe, wakeup any potential readers.
1909 	 */
1910 	if (ret > 0) {
1911 		smp_mb();
1912 		if (waitqueue_active(&opipe->wait))
1913 			wake_up_interruptible(&opipe->wait);
1914 		kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1915 	}
1916 	if (input_wakeup)
1917 		wakeup_pipe_writers(ipipe);
1918 
1919 	return ret;
1920 }
1921 
1922 /*
1923  * Link contents of ipipe to opipe.
1924  */
1925 static int link_pipe(struct pipe_inode_info *ipipe,
1926 		     struct pipe_inode_info *opipe,
1927 		     size_t len, unsigned int flags)
1928 {
1929 	struct pipe_buffer *ibuf, *obuf;
1930 	int ret = 0, i = 0, nbuf;
1931 
1932 	/*
1933 	 * Potential ABBA deadlock, work around it by ordering lock
1934 	 * grabbing by pipe info address. Otherwise two different processes
1935 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1936 	 */
1937 	pipe_double_lock(ipipe, opipe);
1938 
1939 	do {
1940 		if (!opipe->readers) {
1941 			send_sig(SIGPIPE, current, 0);
1942 			if (!ret)
1943 				ret = -EPIPE;
1944 			break;
1945 		}
1946 
1947 		/*
1948 		 * If we have iterated all input buffers or ran out of
1949 		 * output room, break.
1950 		 */
1951 		if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1952 			break;
1953 
1954 		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1955 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1956 
1957 		/*
1958 		 * Get a reference to this pipe buffer,
1959 		 * so we can copy the contents over.
1960 		 */
1961 		ibuf->ops->get(ipipe, ibuf);
1962 
1963 		obuf = opipe->bufs + nbuf;
1964 		*obuf = *ibuf;
1965 
1966 		/*
1967 		 * Don't inherit the gift flag, we need to
1968 		 * prevent multiple steals of this page.
1969 		 */
1970 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1971 
1972 		if (obuf->len > len)
1973 			obuf->len = len;
1974 
1975 		opipe->nrbufs++;
1976 		ret += obuf->len;
1977 		len -= obuf->len;
1978 		i++;
1979 	} while (len);
1980 
1981 	/*
1982 	 * return EAGAIN if we have the potential of some data in the
1983 	 * future, otherwise just return 0
1984 	 */
1985 	if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1986 		ret = -EAGAIN;
1987 
1988 	pipe_unlock(ipipe);
1989 	pipe_unlock(opipe);
1990 
1991 	/*
1992 	 * If we put data in the output pipe, wakeup any potential readers.
1993 	 */
1994 	if (ret > 0) {
1995 		smp_mb();
1996 		if (waitqueue_active(&opipe->wait))
1997 			wake_up_interruptible(&opipe->wait);
1998 		kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1999 	}
2000 
2001 	return ret;
2002 }
2003 
2004 /*
2005  * This is a tee(1) implementation that works on pipes. It doesn't copy
2006  * any data, it simply references the 'in' pages on the 'out' pipe.
2007  * The 'flags' used are the SPLICE_F_* variants, currently the only
2008  * applicable one is SPLICE_F_NONBLOCK.
2009  */
2010 static long do_tee(struct file *in, struct file *out, size_t len,
2011 		   unsigned int flags)
2012 {
2013 	struct pipe_inode_info *ipipe = get_pipe_info(in);
2014 	struct pipe_inode_info *opipe = get_pipe_info(out);
2015 	int ret = -EINVAL;
2016 
2017 	/*
2018 	 * Duplicate the contents of ipipe to opipe without actually
2019 	 * copying the data.
2020 	 */
2021 	if (ipipe && opipe && ipipe != opipe) {
2022 		/*
2023 		 * Keep going, unless we encounter an error. The ipipe/opipe
2024 		 * ordering doesn't really matter.
2025 		 */
2026 		ret = ipipe_prep(ipipe, flags);
2027 		if (!ret) {
2028 			ret = opipe_prep(opipe, flags);
2029 			if (!ret)
2030 				ret = link_pipe(ipipe, opipe, len, flags);
2031 		}
2032 	}
2033 
2034 	return ret;
2035 }
2036 
2037 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2038 {
2039 	struct file *in;
2040 	int error, fput_in;
2041 
2042 	if (unlikely(!len))
2043 		return 0;
2044 
2045 	error = -EBADF;
2046 	in = fget_light(fdin, &fput_in);
2047 	if (in) {
2048 		if (in->f_mode & FMODE_READ) {
2049 			int fput_out;
2050 			struct file *out = fget_light(fdout, &fput_out);
2051 
2052 			if (out) {
2053 				if (out->f_mode & FMODE_WRITE)
2054 					error = do_tee(in, out, len, flags);
2055 				fput_light(out, fput_out);
2056 			}
2057 		}
2058  		fput_light(in, fput_in);
2059  	}
2060 
2061 	return error;
2062 }
2063