1 /* 2 * "splice": joining two ropes together by interweaving their strands. 3 * 4 * This is the "extended pipe" functionality, where a pipe is used as 5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 6 * buffer that you can use to transfer data from one end to the other. 7 * 8 * The traditional unix read/write is extended with a "splice()" operation 9 * that transfers data buffers to or from a pipe buffer. 10 * 11 * Named by Larry McVoy, original implementation from Linus, extended by 12 * Jens to support splicing to files, network, direct splicing, etc and 13 * fixing lots of bugs. 14 * 15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 18 * 19 */ 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/pagemap.h> 23 #include <linux/splice.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm_inline.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/buffer_head.h> 29 #include <linux/module.h> 30 #include <linux/syscalls.h> 31 #include <linux/uio.h> 32 #include <linux/security.h> 33 #include <linux/gfp.h> 34 35 /* 36 * Attempt to steal a page from a pipe buffer. This should perhaps go into 37 * a vm helper function, it's already simplified quite a bit by the 38 * addition of remove_mapping(). If success is returned, the caller may 39 * attempt to reuse this page for another destination. 40 */ 41 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe, 42 struct pipe_buffer *buf) 43 { 44 struct page *page = buf->page; 45 struct address_space *mapping; 46 47 lock_page(page); 48 49 mapping = page_mapping(page); 50 if (mapping) { 51 WARN_ON(!PageUptodate(page)); 52 53 /* 54 * At least for ext2 with nobh option, we need to wait on 55 * writeback completing on this page, since we'll remove it 56 * from the pagecache. Otherwise truncate wont wait on the 57 * page, allowing the disk blocks to be reused by someone else 58 * before we actually wrote our data to them. fs corruption 59 * ensues. 60 */ 61 wait_on_page_writeback(page); 62 63 if (page_has_private(page) && 64 !try_to_release_page(page, GFP_KERNEL)) 65 goto out_unlock; 66 67 /* 68 * If we succeeded in removing the mapping, set LRU flag 69 * and return good. 70 */ 71 if (remove_mapping(mapping, page)) { 72 buf->flags |= PIPE_BUF_FLAG_LRU; 73 return 0; 74 } 75 } 76 77 /* 78 * Raced with truncate or failed to remove page from current 79 * address space, unlock and return failure. 80 */ 81 out_unlock: 82 unlock_page(page); 83 return 1; 84 } 85 86 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 87 struct pipe_buffer *buf) 88 { 89 page_cache_release(buf->page); 90 buf->flags &= ~PIPE_BUF_FLAG_LRU; 91 } 92 93 /* 94 * Check whether the contents of buf is OK to access. Since the content 95 * is a page cache page, IO may be in flight. 96 */ 97 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 98 struct pipe_buffer *buf) 99 { 100 struct page *page = buf->page; 101 int err; 102 103 if (!PageUptodate(page)) { 104 lock_page(page); 105 106 /* 107 * Page got truncated/unhashed. This will cause a 0-byte 108 * splice, if this is the first page. 109 */ 110 if (!page->mapping) { 111 err = -ENODATA; 112 goto error; 113 } 114 115 /* 116 * Uh oh, read-error from disk. 117 */ 118 if (!PageUptodate(page)) { 119 err = -EIO; 120 goto error; 121 } 122 123 /* 124 * Page is ok afterall, we are done. 125 */ 126 unlock_page(page); 127 } 128 129 return 0; 130 error: 131 unlock_page(page); 132 return err; 133 } 134 135 static const struct pipe_buf_operations page_cache_pipe_buf_ops = { 136 .can_merge = 0, 137 .map = generic_pipe_buf_map, 138 .unmap = generic_pipe_buf_unmap, 139 .confirm = page_cache_pipe_buf_confirm, 140 .release = page_cache_pipe_buf_release, 141 .steal = page_cache_pipe_buf_steal, 142 .get = generic_pipe_buf_get, 143 }; 144 145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe, 146 struct pipe_buffer *buf) 147 { 148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 149 return 1; 150 151 buf->flags |= PIPE_BUF_FLAG_LRU; 152 return generic_pipe_buf_steal(pipe, buf); 153 } 154 155 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 156 .can_merge = 0, 157 .map = generic_pipe_buf_map, 158 .unmap = generic_pipe_buf_unmap, 159 .confirm = generic_pipe_buf_confirm, 160 .release = page_cache_pipe_buf_release, 161 .steal = user_page_pipe_buf_steal, 162 .get = generic_pipe_buf_get, 163 }; 164 165 /** 166 * splice_to_pipe - fill passed data into a pipe 167 * @pipe: pipe to fill 168 * @spd: data to fill 169 * 170 * Description: 171 * @spd contains a map of pages and len/offset tuples, along with 172 * the struct pipe_buf_operations associated with these pages. This 173 * function will link that data to the pipe. 174 * 175 */ 176 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 177 struct splice_pipe_desc *spd) 178 { 179 unsigned int spd_pages = spd->nr_pages; 180 int ret, do_wakeup, page_nr; 181 182 ret = 0; 183 do_wakeup = 0; 184 page_nr = 0; 185 186 pipe_lock(pipe); 187 188 for (;;) { 189 if (!pipe->readers) { 190 send_sig(SIGPIPE, current, 0); 191 if (!ret) 192 ret = -EPIPE; 193 break; 194 } 195 196 if (pipe->nrbufs < pipe->buffers) { 197 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1); 198 struct pipe_buffer *buf = pipe->bufs + newbuf; 199 200 buf->page = spd->pages[page_nr]; 201 buf->offset = spd->partial[page_nr].offset; 202 buf->len = spd->partial[page_nr].len; 203 buf->private = spd->partial[page_nr].private; 204 buf->ops = spd->ops; 205 if (spd->flags & SPLICE_F_GIFT) 206 buf->flags |= PIPE_BUF_FLAG_GIFT; 207 208 pipe->nrbufs++; 209 page_nr++; 210 ret += buf->len; 211 212 if (pipe->inode) 213 do_wakeup = 1; 214 215 if (!--spd->nr_pages) 216 break; 217 if (pipe->nrbufs < pipe->buffers) 218 continue; 219 220 break; 221 } 222 223 if (spd->flags & SPLICE_F_NONBLOCK) { 224 if (!ret) 225 ret = -EAGAIN; 226 break; 227 } 228 229 if (signal_pending(current)) { 230 if (!ret) 231 ret = -ERESTARTSYS; 232 break; 233 } 234 235 if (do_wakeup) { 236 smp_mb(); 237 if (waitqueue_active(&pipe->wait)) 238 wake_up_interruptible_sync(&pipe->wait); 239 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 240 do_wakeup = 0; 241 } 242 243 pipe->waiting_writers++; 244 pipe_wait(pipe); 245 pipe->waiting_writers--; 246 } 247 248 pipe_unlock(pipe); 249 250 if (do_wakeup) { 251 smp_mb(); 252 if (waitqueue_active(&pipe->wait)) 253 wake_up_interruptible(&pipe->wait); 254 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 255 } 256 257 while (page_nr < spd_pages) 258 spd->spd_release(spd, page_nr++); 259 260 return ret; 261 } 262 263 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i) 264 { 265 page_cache_release(spd->pages[i]); 266 } 267 268 /* 269 * Check if we need to grow the arrays holding pages and partial page 270 * descriptions. 271 */ 272 int splice_grow_spd(struct pipe_inode_info *pipe, struct splice_pipe_desc *spd) 273 { 274 if (pipe->buffers <= PIPE_DEF_BUFFERS) 275 return 0; 276 277 spd->pages = kmalloc(pipe->buffers * sizeof(struct page *), GFP_KERNEL); 278 spd->partial = kmalloc(pipe->buffers * sizeof(struct partial_page), GFP_KERNEL); 279 280 if (spd->pages && spd->partial) 281 return 0; 282 283 kfree(spd->pages); 284 kfree(spd->partial); 285 return -ENOMEM; 286 } 287 288 void splice_shrink_spd(struct pipe_inode_info *pipe, 289 struct splice_pipe_desc *spd) 290 { 291 if (pipe->buffers <= PIPE_DEF_BUFFERS) 292 return; 293 294 kfree(spd->pages); 295 kfree(spd->partial); 296 } 297 298 static int 299 __generic_file_splice_read(struct file *in, loff_t *ppos, 300 struct pipe_inode_info *pipe, size_t len, 301 unsigned int flags) 302 { 303 struct address_space *mapping = in->f_mapping; 304 unsigned int loff, nr_pages, req_pages; 305 struct page *pages[PIPE_DEF_BUFFERS]; 306 struct partial_page partial[PIPE_DEF_BUFFERS]; 307 struct page *page; 308 pgoff_t index, end_index; 309 loff_t isize; 310 int error, page_nr; 311 struct splice_pipe_desc spd = { 312 .pages = pages, 313 .partial = partial, 314 .flags = flags, 315 .ops = &page_cache_pipe_buf_ops, 316 .spd_release = spd_release_page, 317 }; 318 319 if (splice_grow_spd(pipe, &spd)) 320 return -ENOMEM; 321 322 index = *ppos >> PAGE_CACHE_SHIFT; 323 loff = *ppos & ~PAGE_CACHE_MASK; 324 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 325 nr_pages = min(req_pages, pipe->buffers); 326 327 /* 328 * Lookup the (hopefully) full range of pages we need. 329 */ 330 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages); 331 index += spd.nr_pages; 332 333 /* 334 * If find_get_pages_contig() returned fewer pages than we needed, 335 * readahead/allocate the rest and fill in the holes. 336 */ 337 if (spd.nr_pages < nr_pages) 338 page_cache_sync_readahead(mapping, &in->f_ra, in, 339 index, req_pages - spd.nr_pages); 340 341 error = 0; 342 while (spd.nr_pages < nr_pages) { 343 /* 344 * Page could be there, find_get_pages_contig() breaks on 345 * the first hole. 346 */ 347 page = find_get_page(mapping, index); 348 if (!page) { 349 /* 350 * page didn't exist, allocate one. 351 */ 352 page = page_cache_alloc_cold(mapping); 353 if (!page) 354 break; 355 356 error = add_to_page_cache_lru(page, mapping, index, 357 GFP_KERNEL); 358 if (unlikely(error)) { 359 page_cache_release(page); 360 if (error == -EEXIST) 361 continue; 362 break; 363 } 364 /* 365 * add_to_page_cache() locks the page, unlock it 366 * to avoid convoluting the logic below even more. 367 */ 368 unlock_page(page); 369 } 370 371 spd.pages[spd.nr_pages++] = page; 372 index++; 373 } 374 375 /* 376 * Now loop over the map and see if we need to start IO on any 377 * pages, fill in the partial map, etc. 378 */ 379 index = *ppos >> PAGE_CACHE_SHIFT; 380 nr_pages = spd.nr_pages; 381 spd.nr_pages = 0; 382 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 383 unsigned int this_len; 384 385 if (!len) 386 break; 387 388 /* 389 * this_len is the max we'll use from this page 390 */ 391 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 392 page = spd.pages[page_nr]; 393 394 if (PageReadahead(page)) 395 page_cache_async_readahead(mapping, &in->f_ra, in, 396 page, index, req_pages - page_nr); 397 398 /* 399 * If the page isn't uptodate, we may need to start io on it 400 */ 401 if (!PageUptodate(page)) { 402 lock_page(page); 403 404 /* 405 * Page was truncated, or invalidated by the 406 * filesystem. Redo the find/create, but this time the 407 * page is kept locked, so there's no chance of another 408 * race with truncate/invalidate. 409 */ 410 if (!page->mapping) { 411 unlock_page(page); 412 page = find_or_create_page(mapping, index, 413 mapping_gfp_mask(mapping)); 414 415 if (!page) { 416 error = -ENOMEM; 417 break; 418 } 419 page_cache_release(spd.pages[page_nr]); 420 spd.pages[page_nr] = page; 421 } 422 /* 423 * page was already under io and is now done, great 424 */ 425 if (PageUptodate(page)) { 426 unlock_page(page); 427 goto fill_it; 428 } 429 430 /* 431 * need to read in the page 432 */ 433 error = mapping->a_ops->readpage(in, page); 434 if (unlikely(error)) { 435 /* 436 * We really should re-lookup the page here, 437 * but it complicates things a lot. Instead 438 * lets just do what we already stored, and 439 * we'll get it the next time we are called. 440 */ 441 if (error == AOP_TRUNCATED_PAGE) 442 error = 0; 443 444 break; 445 } 446 } 447 fill_it: 448 /* 449 * i_size must be checked after PageUptodate. 450 */ 451 isize = i_size_read(mapping->host); 452 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 453 if (unlikely(!isize || index > end_index)) 454 break; 455 456 /* 457 * if this is the last page, see if we need to shrink 458 * the length and stop 459 */ 460 if (end_index == index) { 461 unsigned int plen; 462 463 /* 464 * max good bytes in this page 465 */ 466 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 467 if (plen <= loff) 468 break; 469 470 /* 471 * force quit after adding this page 472 */ 473 this_len = min(this_len, plen - loff); 474 len = this_len; 475 } 476 477 spd.partial[page_nr].offset = loff; 478 spd.partial[page_nr].len = this_len; 479 len -= this_len; 480 loff = 0; 481 spd.nr_pages++; 482 index++; 483 } 484 485 /* 486 * Release any pages at the end, if we quit early. 'page_nr' is how far 487 * we got, 'nr_pages' is how many pages are in the map. 488 */ 489 while (page_nr < nr_pages) 490 page_cache_release(spd.pages[page_nr++]); 491 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT; 492 493 if (spd.nr_pages) 494 error = splice_to_pipe(pipe, &spd); 495 496 splice_shrink_spd(pipe, &spd); 497 return error; 498 } 499 500 /** 501 * generic_file_splice_read - splice data from file to a pipe 502 * @in: file to splice from 503 * @ppos: position in @in 504 * @pipe: pipe to splice to 505 * @len: number of bytes to splice 506 * @flags: splice modifier flags 507 * 508 * Description: 509 * Will read pages from given file and fill them into a pipe. Can be 510 * used as long as the address_space operations for the source implements 511 * a readpage() hook. 512 * 513 */ 514 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos, 515 struct pipe_inode_info *pipe, size_t len, 516 unsigned int flags) 517 { 518 loff_t isize, left; 519 int ret; 520 521 isize = i_size_read(in->f_mapping->host); 522 if (unlikely(*ppos >= isize)) 523 return 0; 524 525 left = isize - *ppos; 526 if (unlikely(left < len)) 527 len = left; 528 529 ret = __generic_file_splice_read(in, ppos, pipe, len, flags); 530 if (ret > 0) { 531 *ppos += ret; 532 file_accessed(in); 533 } 534 535 return ret; 536 } 537 EXPORT_SYMBOL(generic_file_splice_read); 538 539 static const struct pipe_buf_operations default_pipe_buf_ops = { 540 .can_merge = 0, 541 .map = generic_pipe_buf_map, 542 .unmap = generic_pipe_buf_unmap, 543 .confirm = generic_pipe_buf_confirm, 544 .release = generic_pipe_buf_release, 545 .steal = generic_pipe_buf_steal, 546 .get = generic_pipe_buf_get, 547 }; 548 549 static ssize_t kernel_readv(struct file *file, const struct iovec *vec, 550 unsigned long vlen, loff_t offset) 551 { 552 mm_segment_t old_fs; 553 loff_t pos = offset; 554 ssize_t res; 555 556 old_fs = get_fs(); 557 set_fs(get_ds()); 558 /* The cast to a user pointer is valid due to the set_fs() */ 559 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos); 560 set_fs(old_fs); 561 562 return res; 563 } 564 565 static ssize_t kernel_write(struct file *file, const char *buf, size_t count, 566 loff_t pos) 567 { 568 mm_segment_t old_fs; 569 ssize_t res; 570 571 old_fs = get_fs(); 572 set_fs(get_ds()); 573 /* The cast to a user pointer is valid due to the set_fs() */ 574 res = vfs_write(file, (const char __user *)buf, count, &pos); 575 set_fs(old_fs); 576 577 return res; 578 } 579 580 ssize_t default_file_splice_read(struct file *in, loff_t *ppos, 581 struct pipe_inode_info *pipe, size_t len, 582 unsigned int flags) 583 { 584 unsigned int nr_pages; 585 unsigned int nr_freed; 586 size_t offset; 587 struct page *pages[PIPE_DEF_BUFFERS]; 588 struct partial_page partial[PIPE_DEF_BUFFERS]; 589 struct iovec *vec, __vec[PIPE_DEF_BUFFERS]; 590 ssize_t res; 591 size_t this_len; 592 int error; 593 int i; 594 struct splice_pipe_desc spd = { 595 .pages = pages, 596 .partial = partial, 597 .flags = flags, 598 .ops = &default_pipe_buf_ops, 599 .spd_release = spd_release_page, 600 }; 601 602 if (splice_grow_spd(pipe, &spd)) 603 return -ENOMEM; 604 605 res = -ENOMEM; 606 vec = __vec; 607 if (pipe->buffers > PIPE_DEF_BUFFERS) { 608 vec = kmalloc(pipe->buffers * sizeof(struct iovec), GFP_KERNEL); 609 if (!vec) 610 goto shrink_ret; 611 } 612 613 offset = *ppos & ~PAGE_CACHE_MASK; 614 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 615 616 for (i = 0; i < nr_pages && i < pipe->buffers && len; i++) { 617 struct page *page; 618 619 page = alloc_page(GFP_USER); 620 error = -ENOMEM; 621 if (!page) 622 goto err; 623 624 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset); 625 vec[i].iov_base = (void __user *) page_address(page); 626 vec[i].iov_len = this_len; 627 spd.pages[i] = page; 628 spd.nr_pages++; 629 len -= this_len; 630 offset = 0; 631 } 632 633 res = kernel_readv(in, vec, spd.nr_pages, *ppos); 634 if (res < 0) { 635 error = res; 636 goto err; 637 } 638 639 error = 0; 640 if (!res) 641 goto err; 642 643 nr_freed = 0; 644 for (i = 0; i < spd.nr_pages; i++) { 645 this_len = min_t(size_t, vec[i].iov_len, res); 646 spd.partial[i].offset = 0; 647 spd.partial[i].len = this_len; 648 if (!this_len) { 649 __free_page(spd.pages[i]); 650 spd.pages[i] = NULL; 651 nr_freed++; 652 } 653 res -= this_len; 654 } 655 spd.nr_pages -= nr_freed; 656 657 res = splice_to_pipe(pipe, &spd); 658 if (res > 0) 659 *ppos += res; 660 661 shrink_ret: 662 if (vec != __vec) 663 kfree(vec); 664 splice_shrink_spd(pipe, &spd); 665 return res; 666 667 err: 668 for (i = 0; i < spd.nr_pages; i++) 669 __free_page(spd.pages[i]); 670 671 res = error; 672 goto shrink_ret; 673 } 674 EXPORT_SYMBOL(default_file_splice_read); 675 676 /* 677 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos' 678 * using sendpage(). Return the number of bytes sent. 679 */ 680 static int pipe_to_sendpage(struct pipe_inode_info *pipe, 681 struct pipe_buffer *buf, struct splice_desc *sd) 682 { 683 struct file *file = sd->u.file; 684 loff_t pos = sd->pos; 685 int ret, more; 686 687 ret = buf->ops->confirm(pipe, buf); 688 if (!ret) { 689 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len; 690 if (file->f_op && file->f_op->sendpage) 691 ret = file->f_op->sendpage(file, buf->page, buf->offset, 692 sd->len, &pos, more); 693 else 694 ret = -EINVAL; 695 } 696 697 return ret; 698 } 699 700 /* 701 * This is a little more tricky than the file -> pipe splicing. There are 702 * basically three cases: 703 * 704 * - Destination page already exists in the address space and there 705 * are users of it. For that case we have no other option that 706 * copying the data. Tough luck. 707 * - Destination page already exists in the address space, but there 708 * are no users of it. Make sure it's uptodate, then drop it. Fall 709 * through to last case. 710 * - Destination page does not exist, we can add the pipe page to 711 * the page cache and avoid the copy. 712 * 713 * If asked to move pages to the output file (SPLICE_F_MOVE is set in 714 * sd->flags), we attempt to migrate pages from the pipe to the output 715 * file address space page cache. This is possible if no one else has 716 * the pipe page referenced outside of the pipe and page cache. If 717 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create 718 * a new page in the output file page cache and fill/dirty that. 719 */ 720 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 721 struct splice_desc *sd) 722 { 723 struct file *file = sd->u.file; 724 struct address_space *mapping = file->f_mapping; 725 unsigned int offset, this_len; 726 struct page *page; 727 void *fsdata; 728 int ret; 729 730 /* 731 * make sure the data in this buffer is uptodate 732 */ 733 ret = buf->ops->confirm(pipe, buf); 734 if (unlikely(ret)) 735 return ret; 736 737 offset = sd->pos & ~PAGE_CACHE_MASK; 738 739 this_len = sd->len; 740 if (this_len + offset > PAGE_CACHE_SIZE) 741 this_len = PAGE_CACHE_SIZE - offset; 742 743 ret = pagecache_write_begin(file, mapping, sd->pos, this_len, 744 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 745 if (unlikely(ret)) 746 goto out; 747 748 if (buf->page != page) { 749 /* 750 * Careful, ->map() uses KM_USER0! 751 */ 752 char *src = buf->ops->map(pipe, buf, 1); 753 char *dst = kmap_atomic(page, KM_USER1); 754 755 memcpy(dst + offset, src + buf->offset, this_len); 756 flush_dcache_page(page); 757 kunmap_atomic(dst, KM_USER1); 758 buf->ops->unmap(pipe, buf, src); 759 } 760 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len, 761 page, fsdata); 762 out: 763 return ret; 764 } 765 EXPORT_SYMBOL(pipe_to_file); 766 767 static void wakeup_pipe_writers(struct pipe_inode_info *pipe) 768 { 769 smp_mb(); 770 if (waitqueue_active(&pipe->wait)) 771 wake_up_interruptible(&pipe->wait); 772 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 773 } 774 775 /** 776 * splice_from_pipe_feed - feed available data from a pipe to a file 777 * @pipe: pipe to splice from 778 * @sd: information to @actor 779 * @actor: handler that splices the data 780 * 781 * Description: 782 * This function loops over the pipe and calls @actor to do the 783 * actual moving of a single struct pipe_buffer to the desired 784 * destination. It returns when there's no more buffers left in 785 * the pipe or if the requested number of bytes (@sd->total_len) 786 * have been copied. It returns a positive number (one) if the 787 * pipe needs to be filled with more data, zero if the required 788 * number of bytes have been copied and -errno on error. 789 * 790 * This, together with splice_from_pipe_{begin,end,next}, may be 791 * used to implement the functionality of __splice_from_pipe() when 792 * locking is required around copying the pipe buffers to the 793 * destination. 794 */ 795 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd, 796 splice_actor *actor) 797 { 798 int ret; 799 800 while (pipe->nrbufs) { 801 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 802 const struct pipe_buf_operations *ops = buf->ops; 803 804 sd->len = buf->len; 805 if (sd->len > sd->total_len) 806 sd->len = sd->total_len; 807 808 ret = actor(pipe, buf, sd); 809 if (ret <= 0) { 810 if (ret == -ENODATA) 811 ret = 0; 812 return ret; 813 } 814 buf->offset += ret; 815 buf->len -= ret; 816 817 sd->num_spliced += ret; 818 sd->len -= ret; 819 sd->pos += ret; 820 sd->total_len -= ret; 821 822 if (!buf->len) { 823 buf->ops = NULL; 824 ops->release(pipe, buf); 825 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1); 826 pipe->nrbufs--; 827 if (pipe->inode) 828 sd->need_wakeup = true; 829 } 830 831 if (!sd->total_len) 832 return 0; 833 } 834 835 return 1; 836 } 837 EXPORT_SYMBOL(splice_from_pipe_feed); 838 839 /** 840 * splice_from_pipe_next - wait for some data to splice from 841 * @pipe: pipe to splice from 842 * @sd: information about the splice operation 843 * 844 * Description: 845 * This function will wait for some data and return a positive 846 * value (one) if pipe buffers are available. It will return zero 847 * or -errno if no more data needs to be spliced. 848 */ 849 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd) 850 { 851 while (!pipe->nrbufs) { 852 if (!pipe->writers) 853 return 0; 854 855 if (!pipe->waiting_writers && sd->num_spliced) 856 return 0; 857 858 if (sd->flags & SPLICE_F_NONBLOCK) 859 return -EAGAIN; 860 861 if (signal_pending(current)) 862 return -ERESTARTSYS; 863 864 if (sd->need_wakeup) { 865 wakeup_pipe_writers(pipe); 866 sd->need_wakeup = false; 867 } 868 869 pipe_wait(pipe); 870 } 871 872 return 1; 873 } 874 EXPORT_SYMBOL(splice_from_pipe_next); 875 876 /** 877 * splice_from_pipe_begin - start splicing from pipe 878 * @sd: information about the splice operation 879 * 880 * Description: 881 * This function should be called before a loop containing 882 * splice_from_pipe_next() and splice_from_pipe_feed() to 883 * initialize the necessary fields of @sd. 884 */ 885 void splice_from_pipe_begin(struct splice_desc *sd) 886 { 887 sd->num_spliced = 0; 888 sd->need_wakeup = false; 889 } 890 EXPORT_SYMBOL(splice_from_pipe_begin); 891 892 /** 893 * splice_from_pipe_end - finish splicing from pipe 894 * @pipe: pipe to splice from 895 * @sd: information about the splice operation 896 * 897 * Description: 898 * This function will wake up pipe writers if necessary. It should 899 * be called after a loop containing splice_from_pipe_next() and 900 * splice_from_pipe_feed(). 901 */ 902 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd) 903 { 904 if (sd->need_wakeup) 905 wakeup_pipe_writers(pipe); 906 } 907 EXPORT_SYMBOL(splice_from_pipe_end); 908 909 /** 910 * __splice_from_pipe - splice data from a pipe to given actor 911 * @pipe: pipe to splice from 912 * @sd: information to @actor 913 * @actor: handler that splices the data 914 * 915 * Description: 916 * This function does little more than loop over the pipe and call 917 * @actor to do the actual moving of a single struct pipe_buffer to 918 * the desired destination. See pipe_to_file, pipe_to_sendpage, or 919 * pipe_to_user. 920 * 921 */ 922 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 923 splice_actor *actor) 924 { 925 int ret; 926 927 splice_from_pipe_begin(sd); 928 do { 929 ret = splice_from_pipe_next(pipe, sd); 930 if (ret > 0) 931 ret = splice_from_pipe_feed(pipe, sd, actor); 932 } while (ret > 0); 933 splice_from_pipe_end(pipe, sd); 934 935 return sd->num_spliced ? sd->num_spliced : ret; 936 } 937 EXPORT_SYMBOL(__splice_from_pipe); 938 939 /** 940 * splice_from_pipe - splice data from a pipe to a file 941 * @pipe: pipe to splice from 942 * @out: file to splice to 943 * @ppos: position in @out 944 * @len: how many bytes to splice 945 * @flags: splice modifier flags 946 * @actor: handler that splices the data 947 * 948 * Description: 949 * See __splice_from_pipe. This function locks the pipe inode, 950 * otherwise it's identical to __splice_from_pipe(). 951 * 952 */ 953 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 954 loff_t *ppos, size_t len, unsigned int flags, 955 splice_actor *actor) 956 { 957 ssize_t ret; 958 struct splice_desc sd = { 959 .total_len = len, 960 .flags = flags, 961 .pos = *ppos, 962 .u.file = out, 963 }; 964 965 pipe_lock(pipe); 966 ret = __splice_from_pipe(pipe, &sd, actor); 967 pipe_unlock(pipe); 968 969 return ret; 970 } 971 972 /** 973 * generic_file_splice_write - splice data from a pipe to a file 974 * @pipe: pipe info 975 * @out: file to write to 976 * @ppos: position in @out 977 * @len: number of bytes to splice 978 * @flags: splice modifier flags 979 * 980 * Description: 981 * Will either move or copy pages (determined by @flags options) from 982 * the given pipe inode to the given file. 983 * 984 */ 985 ssize_t 986 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 987 loff_t *ppos, size_t len, unsigned int flags) 988 { 989 struct address_space *mapping = out->f_mapping; 990 struct inode *inode = mapping->host; 991 struct splice_desc sd = { 992 .total_len = len, 993 .flags = flags, 994 .pos = *ppos, 995 .u.file = out, 996 }; 997 ssize_t ret; 998 999 pipe_lock(pipe); 1000 1001 splice_from_pipe_begin(&sd); 1002 do { 1003 ret = splice_from_pipe_next(pipe, &sd); 1004 if (ret <= 0) 1005 break; 1006 1007 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); 1008 ret = file_remove_suid(out); 1009 if (!ret) { 1010 file_update_time(out); 1011 ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file); 1012 } 1013 mutex_unlock(&inode->i_mutex); 1014 } while (ret > 0); 1015 splice_from_pipe_end(pipe, &sd); 1016 1017 pipe_unlock(pipe); 1018 1019 if (sd.num_spliced) 1020 ret = sd.num_spliced; 1021 1022 if (ret > 0) { 1023 unsigned long nr_pages; 1024 int err; 1025 1026 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1027 1028 err = generic_write_sync(out, *ppos, ret); 1029 if (err) 1030 ret = err; 1031 else 1032 *ppos += ret; 1033 balance_dirty_pages_ratelimited_nr(mapping, nr_pages); 1034 } 1035 1036 return ret; 1037 } 1038 1039 EXPORT_SYMBOL(generic_file_splice_write); 1040 1041 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1042 struct splice_desc *sd) 1043 { 1044 int ret; 1045 void *data; 1046 1047 ret = buf->ops->confirm(pipe, buf); 1048 if (ret) 1049 return ret; 1050 1051 data = buf->ops->map(pipe, buf, 0); 1052 ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos); 1053 buf->ops->unmap(pipe, buf, data); 1054 1055 return ret; 1056 } 1057 1058 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe, 1059 struct file *out, loff_t *ppos, 1060 size_t len, unsigned int flags) 1061 { 1062 ssize_t ret; 1063 1064 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf); 1065 if (ret > 0) 1066 *ppos += ret; 1067 1068 return ret; 1069 } 1070 1071 /** 1072 * generic_splice_sendpage - splice data from a pipe to a socket 1073 * @pipe: pipe to splice from 1074 * @out: socket to write to 1075 * @ppos: position in @out 1076 * @len: number of bytes to splice 1077 * @flags: splice modifier flags 1078 * 1079 * Description: 1080 * Will send @len bytes from the pipe to a network socket. No data copying 1081 * is involved. 1082 * 1083 */ 1084 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, 1085 loff_t *ppos, size_t len, unsigned int flags) 1086 { 1087 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage); 1088 } 1089 1090 EXPORT_SYMBOL(generic_splice_sendpage); 1091 1092 /* 1093 * Attempt to initiate a splice from pipe to file. 1094 */ 1095 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 1096 loff_t *ppos, size_t len, unsigned int flags) 1097 { 1098 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, 1099 loff_t *, size_t, unsigned int); 1100 int ret; 1101 1102 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1103 return -EBADF; 1104 1105 if (unlikely(out->f_flags & O_APPEND)) 1106 return -EINVAL; 1107 1108 ret = rw_verify_area(WRITE, out, ppos, len); 1109 if (unlikely(ret < 0)) 1110 return ret; 1111 1112 if (out->f_op && out->f_op->splice_write) 1113 splice_write = out->f_op->splice_write; 1114 else 1115 splice_write = default_file_splice_write; 1116 1117 return splice_write(pipe, out, ppos, len, flags); 1118 } 1119 1120 /* 1121 * Attempt to initiate a splice from a file to a pipe. 1122 */ 1123 static long do_splice_to(struct file *in, loff_t *ppos, 1124 struct pipe_inode_info *pipe, size_t len, 1125 unsigned int flags) 1126 { 1127 ssize_t (*splice_read)(struct file *, loff_t *, 1128 struct pipe_inode_info *, size_t, unsigned int); 1129 int ret; 1130 1131 if (unlikely(!(in->f_mode & FMODE_READ))) 1132 return -EBADF; 1133 1134 ret = rw_verify_area(READ, in, ppos, len); 1135 if (unlikely(ret < 0)) 1136 return ret; 1137 1138 if (in->f_op && in->f_op->splice_read) 1139 splice_read = in->f_op->splice_read; 1140 else 1141 splice_read = default_file_splice_read; 1142 1143 return splice_read(in, ppos, pipe, len, flags); 1144 } 1145 1146 /** 1147 * splice_direct_to_actor - splices data directly between two non-pipes 1148 * @in: file to splice from 1149 * @sd: actor information on where to splice to 1150 * @actor: handles the data splicing 1151 * 1152 * Description: 1153 * This is a special case helper to splice directly between two 1154 * points, without requiring an explicit pipe. Internally an allocated 1155 * pipe is cached in the process, and reused during the lifetime of 1156 * that process. 1157 * 1158 */ 1159 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 1160 splice_direct_actor *actor) 1161 { 1162 struct pipe_inode_info *pipe; 1163 long ret, bytes; 1164 umode_t i_mode; 1165 size_t len; 1166 int i, flags; 1167 1168 /* 1169 * We require the input being a regular file, as we don't want to 1170 * randomly drop data for eg socket -> socket splicing. Use the 1171 * piped splicing for that! 1172 */ 1173 i_mode = in->f_path.dentry->d_inode->i_mode; 1174 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode))) 1175 return -EINVAL; 1176 1177 /* 1178 * neither in nor out is a pipe, setup an internal pipe attached to 1179 * 'out' and transfer the wanted data from 'in' to 'out' through that 1180 */ 1181 pipe = current->splice_pipe; 1182 if (unlikely(!pipe)) { 1183 pipe = alloc_pipe_info(NULL); 1184 if (!pipe) 1185 return -ENOMEM; 1186 1187 /* 1188 * We don't have an immediate reader, but we'll read the stuff 1189 * out of the pipe right after the splice_to_pipe(). So set 1190 * PIPE_READERS appropriately. 1191 */ 1192 pipe->readers = 1; 1193 1194 current->splice_pipe = pipe; 1195 } 1196 1197 /* 1198 * Do the splice. 1199 */ 1200 ret = 0; 1201 bytes = 0; 1202 len = sd->total_len; 1203 flags = sd->flags; 1204 1205 /* 1206 * Don't block on output, we have to drain the direct pipe. 1207 */ 1208 sd->flags &= ~SPLICE_F_NONBLOCK; 1209 1210 while (len) { 1211 size_t read_len; 1212 loff_t pos = sd->pos, prev_pos = pos; 1213 1214 ret = do_splice_to(in, &pos, pipe, len, flags); 1215 if (unlikely(ret <= 0)) 1216 goto out_release; 1217 1218 read_len = ret; 1219 sd->total_len = read_len; 1220 1221 /* 1222 * NOTE: nonblocking mode only applies to the input. We 1223 * must not do the output in nonblocking mode as then we 1224 * could get stuck data in the internal pipe: 1225 */ 1226 ret = actor(pipe, sd); 1227 if (unlikely(ret <= 0)) { 1228 sd->pos = prev_pos; 1229 goto out_release; 1230 } 1231 1232 bytes += ret; 1233 len -= ret; 1234 sd->pos = pos; 1235 1236 if (ret < read_len) { 1237 sd->pos = prev_pos + ret; 1238 goto out_release; 1239 } 1240 } 1241 1242 done: 1243 pipe->nrbufs = pipe->curbuf = 0; 1244 file_accessed(in); 1245 return bytes; 1246 1247 out_release: 1248 /* 1249 * If we did an incomplete transfer we must release 1250 * the pipe buffers in question: 1251 */ 1252 for (i = 0; i < pipe->buffers; i++) { 1253 struct pipe_buffer *buf = pipe->bufs + i; 1254 1255 if (buf->ops) { 1256 buf->ops->release(pipe, buf); 1257 buf->ops = NULL; 1258 } 1259 } 1260 1261 if (!bytes) 1262 bytes = ret; 1263 1264 goto done; 1265 } 1266 EXPORT_SYMBOL(splice_direct_to_actor); 1267 1268 static int direct_splice_actor(struct pipe_inode_info *pipe, 1269 struct splice_desc *sd) 1270 { 1271 struct file *file = sd->u.file; 1272 1273 return do_splice_from(pipe, file, &file->f_pos, sd->total_len, 1274 sd->flags); 1275 } 1276 1277 /** 1278 * do_splice_direct - splices data directly between two files 1279 * @in: file to splice from 1280 * @ppos: input file offset 1281 * @out: file to splice to 1282 * @len: number of bytes to splice 1283 * @flags: splice modifier flags 1284 * 1285 * Description: 1286 * For use by do_sendfile(). splice can easily emulate sendfile, but 1287 * doing it in the application would incur an extra system call 1288 * (splice in + splice out, as compared to just sendfile()). So this helper 1289 * can splice directly through a process-private pipe. 1290 * 1291 */ 1292 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1293 size_t len, unsigned int flags) 1294 { 1295 struct splice_desc sd = { 1296 .len = len, 1297 .total_len = len, 1298 .flags = flags, 1299 .pos = *ppos, 1300 .u.file = out, 1301 }; 1302 long ret; 1303 1304 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 1305 if (ret > 0) 1306 *ppos = sd.pos; 1307 1308 return ret; 1309 } 1310 1311 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1312 struct pipe_inode_info *opipe, 1313 size_t len, unsigned int flags); 1314 1315 /* 1316 * Determine where to splice to/from. 1317 */ 1318 static long do_splice(struct file *in, loff_t __user *off_in, 1319 struct file *out, loff_t __user *off_out, 1320 size_t len, unsigned int flags) 1321 { 1322 struct pipe_inode_info *ipipe; 1323 struct pipe_inode_info *opipe; 1324 loff_t offset, *off; 1325 long ret; 1326 1327 ipipe = get_pipe_info(in); 1328 opipe = get_pipe_info(out); 1329 1330 if (ipipe && opipe) { 1331 if (off_in || off_out) 1332 return -ESPIPE; 1333 1334 if (!(in->f_mode & FMODE_READ)) 1335 return -EBADF; 1336 1337 if (!(out->f_mode & FMODE_WRITE)) 1338 return -EBADF; 1339 1340 /* Splicing to self would be fun, but... */ 1341 if (ipipe == opipe) 1342 return -EINVAL; 1343 1344 return splice_pipe_to_pipe(ipipe, opipe, len, flags); 1345 } 1346 1347 if (ipipe) { 1348 if (off_in) 1349 return -ESPIPE; 1350 if (off_out) { 1351 if (!(out->f_mode & FMODE_PWRITE)) 1352 return -EINVAL; 1353 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1354 return -EFAULT; 1355 off = &offset; 1356 } else 1357 off = &out->f_pos; 1358 1359 ret = do_splice_from(ipipe, out, off, len, flags); 1360 1361 if (off_out && copy_to_user(off_out, off, sizeof(loff_t))) 1362 ret = -EFAULT; 1363 1364 return ret; 1365 } 1366 1367 if (opipe) { 1368 if (off_out) 1369 return -ESPIPE; 1370 if (off_in) { 1371 if (!(in->f_mode & FMODE_PREAD)) 1372 return -EINVAL; 1373 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1374 return -EFAULT; 1375 off = &offset; 1376 } else 1377 off = &in->f_pos; 1378 1379 ret = do_splice_to(in, off, opipe, len, flags); 1380 1381 if (off_in && copy_to_user(off_in, off, sizeof(loff_t))) 1382 ret = -EFAULT; 1383 1384 return ret; 1385 } 1386 1387 return -EINVAL; 1388 } 1389 1390 /* 1391 * Map an iov into an array of pages and offset/length tupples. With the 1392 * partial_page structure, we can map several non-contiguous ranges into 1393 * our ones pages[] map instead of splitting that operation into pieces. 1394 * Could easily be exported as a generic helper for other users, in which 1395 * case one would probably want to add a 'max_nr_pages' parameter as well. 1396 */ 1397 static int get_iovec_page_array(const struct iovec __user *iov, 1398 unsigned int nr_vecs, struct page **pages, 1399 struct partial_page *partial, int aligned, 1400 unsigned int pipe_buffers) 1401 { 1402 int buffers = 0, error = 0; 1403 1404 while (nr_vecs) { 1405 unsigned long off, npages; 1406 struct iovec entry; 1407 void __user *base; 1408 size_t len; 1409 int i; 1410 1411 error = -EFAULT; 1412 if (copy_from_user(&entry, iov, sizeof(entry))) 1413 break; 1414 1415 base = entry.iov_base; 1416 len = entry.iov_len; 1417 1418 /* 1419 * Sanity check this iovec. 0 read succeeds. 1420 */ 1421 error = 0; 1422 if (unlikely(!len)) 1423 break; 1424 error = -EFAULT; 1425 if (!access_ok(VERIFY_READ, base, len)) 1426 break; 1427 1428 /* 1429 * Get this base offset and number of pages, then map 1430 * in the user pages. 1431 */ 1432 off = (unsigned long) base & ~PAGE_MASK; 1433 1434 /* 1435 * If asked for alignment, the offset must be zero and the 1436 * length a multiple of the PAGE_SIZE. 1437 */ 1438 error = -EINVAL; 1439 if (aligned && (off || len & ~PAGE_MASK)) 1440 break; 1441 1442 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1443 if (npages > pipe_buffers - buffers) 1444 npages = pipe_buffers - buffers; 1445 1446 error = get_user_pages_fast((unsigned long)base, npages, 1447 0, &pages[buffers]); 1448 1449 if (unlikely(error <= 0)) 1450 break; 1451 1452 /* 1453 * Fill this contiguous range into the partial page map. 1454 */ 1455 for (i = 0; i < error; i++) { 1456 const int plen = min_t(size_t, len, PAGE_SIZE - off); 1457 1458 partial[buffers].offset = off; 1459 partial[buffers].len = plen; 1460 1461 off = 0; 1462 len -= plen; 1463 buffers++; 1464 } 1465 1466 /* 1467 * We didn't complete this iov, stop here since it probably 1468 * means we have to move some of this into a pipe to 1469 * be able to continue. 1470 */ 1471 if (len) 1472 break; 1473 1474 /* 1475 * Don't continue if we mapped fewer pages than we asked for, 1476 * or if we mapped the max number of pages that we have 1477 * room for. 1478 */ 1479 if (error < npages || buffers == pipe_buffers) 1480 break; 1481 1482 nr_vecs--; 1483 iov++; 1484 } 1485 1486 if (buffers) 1487 return buffers; 1488 1489 return error; 1490 } 1491 1492 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1493 struct splice_desc *sd) 1494 { 1495 char *src; 1496 int ret; 1497 1498 ret = buf->ops->confirm(pipe, buf); 1499 if (unlikely(ret)) 1500 return ret; 1501 1502 /* 1503 * See if we can use the atomic maps, by prefaulting in the 1504 * pages and doing an atomic copy 1505 */ 1506 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) { 1507 src = buf->ops->map(pipe, buf, 1); 1508 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset, 1509 sd->len); 1510 buf->ops->unmap(pipe, buf, src); 1511 if (!ret) { 1512 ret = sd->len; 1513 goto out; 1514 } 1515 } 1516 1517 /* 1518 * No dice, use slow non-atomic map and copy 1519 */ 1520 src = buf->ops->map(pipe, buf, 0); 1521 1522 ret = sd->len; 1523 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len)) 1524 ret = -EFAULT; 1525 1526 buf->ops->unmap(pipe, buf, src); 1527 out: 1528 if (ret > 0) 1529 sd->u.userptr += ret; 1530 return ret; 1531 } 1532 1533 /* 1534 * For lack of a better implementation, implement vmsplice() to userspace 1535 * as a simple copy of the pipes pages to the user iov. 1536 */ 1537 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov, 1538 unsigned long nr_segs, unsigned int flags) 1539 { 1540 struct pipe_inode_info *pipe; 1541 struct splice_desc sd; 1542 ssize_t size; 1543 int error; 1544 long ret; 1545 1546 pipe = get_pipe_info(file); 1547 if (!pipe) 1548 return -EBADF; 1549 1550 pipe_lock(pipe); 1551 1552 error = ret = 0; 1553 while (nr_segs) { 1554 void __user *base; 1555 size_t len; 1556 1557 /* 1558 * Get user address base and length for this iovec. 1559 */ 1560 error = get_user(base, &iov->iov_base); 1561 if (unlikely(error)) 1562 break; 1563 error = get_user(len, &iov->iov_len); 1564 if (unlikely(error)) 1565 break; 1566 1567 /* 1568 * Sanity check this iovec. 0 read succeeds. 1569 */ 1570 if (unlikely(!len)) 1571 break; 1572 if (unlikely(!base)) { 1573 error = -EFAULT; 1574 break; 1575 } 1576 1577 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) { 1578 error = -EFAULT; 1579 break; 1580 } 1581 1582 sd.len = 0; 1583 sd.total_len = len; 1584 sd.flags = flags; 1585 sd.u.userptr = base; 1586 sd.pos = 0; 1587 1588 size = __splice_from_pipe(pipe, &sd, pipe_to_user); 1589 if (size < 0) { 1590 if (!ret) 1591 ret = size; 1592 1593 break; 1594 } 1595 1596 ret += size; 1597 1598 if (size < len) 1599 break; 1600 1601 nr_segs--; 1602 iov++; 1603 } 1604 1605 pipe_unlock(pipe); 1606 1607 if (!ret) 1608 ret = error; 1609 1610 return ret; 1611 } 1612 1613 /* 1614 * vmsplice splices a user address range into a pipe. It can be thought of 1615 * as splice-from-memory, where the regular splice is splice-from-file (or 1616 * to file). In both cases the output is a pipe, naturally. 1617 */ 1618 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov, 1619 unsigned long nr_segs, unsigned int flags) 1620 { 1621 struct pipe_inode_info *pipe; 1622 struct page *pages[PIPE_DEF_BUFFERS]; 1623 struct partial_page partial[PIPE_DEF_BUFFERS]; 1624 struct splice_pipe_desc spd = { 1625 .pages = pages, 1626 .partial = partial, 1627 .flags = flags, 1628 .ops = &user_page_pipe_buf_ops, 1629 .spd_release = spd_release_page, 1630 }; 1631 long ret; 1632 1633 pipe = get_pipe_info(file); 1634 if (!pipe) 1635 return -EBADF; 1636 1637 if (splice_grow_spd(pipe, &spd)) 1638 return -ENOMEM; 1639 1640 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages, 1641 spd.partial, flags & SPLICE_F_GIFT, 1642 pipe->buffers); 1643 if (spd.nr_pages <= 0) 1644 ret = spd.nr_pages; 1645 else 1646 ret = splice_to_pipe(pipe, &spd); 1647 1648 splice_shrink_spd(pipe, &spd); 1649 return ret; 1650 } 1651 1652 /* 1653 * Note that vmsplice only really supports true splicing _from_ user memory 1654 * to a pipe, not the other way around. Splicing from user memory is a simple 1655 * operation that can be supported without any funky alignment restrictions 1656 * or nasty vm tricks. We simply map in the user memory and fill them into 1657 * a pipe. The reverse isn't quite as easy, though. There are two possible 1658 * solutions for that: 1659 * 1660 * - memcpy() the data internally, at which point we might as well just 1661 * do a regular read() on the buffer anyway. 1662 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1663 * has restriction limitations on both ends of the pipe). 1664 * 1665 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1666 * 1667 */ 1668 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov, 1669 unsigned long, nr_segs, unsigned int, flags) 1670 { 1671 struct file *file; 1672 long error; 1673 int fput; 1674 1675 if (unlikely(nr_segs > UIO_MAXIOV)) 1676 return -EINVAL; 1677 else if (unlikely(!nr_segs)) 1678 return 0; 1679 1680 error = -EBADF; 1681 file = fget_light(fd, &fput); 1682 if (file) { 1683 if (file->f_mode & FMODE_WRITE) 1684 error = vmsplice_to_pipe(file, iov, nr_segs, flags); 1685 else if (file->f_mode & FMODE_READ) 1686 error = vmsplice_to_user(file, iov, nr_segs, flags); 1687 1688 fput_light(file, fput); 1689 } 1690 1691 return error; 1692 } 1693 1694 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in, 1695 int, fd_out, loff_t __user *, off_out, 1696 size_t, len, unsigned int, flags) 1697 { 1698 long error; 1699 struct file *in, *out; 1700 int fput_in, fput_out; 1701 1702 if (unlikely(!len)) 1703 return 0; 1704 1705 error = -EBADF; 1706 in = fget_light(fd_in, &fput_in); 1707 if (in) { 1708 if (in->f_mode & FMODE_READ) { 1709 out = fget_light(fd_out, &fput_out); 1710 if (out) { 1711 if (out->f_mode & FMODE_WRITE) 1712 error = do_splice(in, off_in, 1713 out, off_out, 1714 len, flags); 1715 fput_light(out, fput_out); 1716 } 1717 } 1718 1719 fput_light(in, fput_in); 1720 } 1721 1722 return error; 1723 } 1724 1725 /* 1726 * Make sure there's data to read. Wait for input if we can, otherwise 1727 * return an appropriate error. 1728 */ 1729 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1730 { 1731 int ret; 1732 1733 /* 1734 * Check ->nrbufs without the inode lock first. This function 1735 * is speculative anyways, so missing one is ok. 1736 */ 1737 if (pipe->nrbufs) 1738 return 0; 1739 1740 ret = 0; 1741 pipe_lock(pipe); 1742 1743 while (!pipe->nrbufs) { 1744 if (signal_pending(current)) { 1745 ret = -ERESTARTSYS; 1746 break; 1747 } 1748 if (!pipe->writers) 1749 break; 1750 if (!pipe->waiting_writers) { 1751 if (flags & SPLICE_F_NONBLOCK) { 1752 ret = -EAGAIN; 1753 break; 1754 } 1755 } 1756 pipe_wait(pipe); 1757 } 1758 1759 pipe_unlock(pipe); 1760 return ret; 1761 } 1762 1763 /* 1764 * Make sure there's writeable room. Wait for room if we can, otherwise 1765 * return an appropriate error. 1766 */ 1767 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1768 { 1769 int ret; 1770 1771 /* 1772 * Check ->nrbufs without the inode lock first. This function 1773 * is speculative anyways, so missing one is ok. 1774 */ 1775 if (pipe->nrbufs < pipe->buffers) 1776 return 0; 1777 1778 ret = 0; 1779 pipe_lock(pipe); 1780 1781 while (pipe->nrbufs >= pipe->buffers) { 1782 if (!pipe->readers) { 1783 send_sig(SIGPIPE, current, 0); 1784 ret = -EPIPE; 1785 break; 1786 } 1787 if (flags & SPLICE_F_NONBLOCK) { 1788 ret = -EAGAIN; 1789 break; 1790 } 1791 if (signal_pending(current)) { 1792 ret = -ERESTARTSYS; 1793 break; 1794 } 1795 pipe->waiting_writers++; 1796 pipe_wait(pipe); 1797 pipe->waiting_writers--; 1798 } 1799 1800 pipe_unlock(pipe); 1801 return ret; 1802 } 1803 1804 /* 1805 * Splice contents of ipipe to opipe. 1806 */ 1807 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1808 struct pipe_inode_info *opipe, 1809 size_t len, unsigned int flags) 1810 { 1811 struct pipe_buffer *ibuf, *obuf; 1812 int ret = 0, nbuf; 1813 bool input_wakeup = false; 1814 1815 1816 retry: 1817 ret = ipipe_prep(ipipe, flags); 1818 if (ret) 1819 return ret; 1820 1821 ret = opipe_prep(opipe, flags); 1822 if (ret) 1823 return ret; 1824 1825 /* 1826 * Potential ABBA deadlock, work around it by ordering lock 1827 * grabbing by pipe info address. Otherwise two different processes 1828 * could deadlock (one doing tee from A -> B, the other from B -> A). 1829 */ 1830 pipe_double_lock(ipipe, opipe); 1831 1832 do { 1833 if (!opipe->readers) { 1834 send_sig(SIGPIPE, current, 0); 1835 if (!ret) 1836 ret = -EPIPE; 1837 break; 1838 } 1839 1840 if (!ipipe->nrbufs && !ipipe->writers) 1841 break; 1842 1843 /* 1844 * Cannot make any progress, because either the input 1845 * pipe is empty or the output pipe is full. 1846 */ 1847 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) { 1848 /* Already processed some buffers, break */ 1849 if (ret) 1850 break; 1851 1852 if (flags & SPLICE_F_NONBLOCK) { 1853 ret = -EAGAIN; 1854 break; 1855 } 1856 1857 /* 1858 * We raced with another reader/writer and haven't 1859 * managed to process any buffers. A zero return 1860 * value means EOF, so retry instead. 1861 */ 1862 pipe_unlock(ipipe); 1863 pipe_unlock(opipe); 1864 goto retry; 1865 } 1866 1867 ibuf = ipipe->bufs + ipipe->curbuf; 1868 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1); 1869 obuf = opipe->bufs + nbuf; 1870 1871 if (len >= ibuf->len) { 1872 /* 1873 * Simply move the whole buffer from ipipe to opipe 1874 */ 1875 *obuf = *ibuf; 1876 ibuf->ops = NULL; 1877 opipe->nrbufs++; 1878 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1); 1879 ipipe->nrbufs--; 1880 input_wakeup = true; 1881 } else { 1882 /* 1883 * Get a reference to this pipe buffer, 1884 * so we can copy the contents over. 1885 */ 1886 ibuf->ops->get(ipipe, ibuf); 1887 *obuf = *ibuf; 1888 1889 /* 1890 * Don't inherit the gift flag, we need to 1891 * prevent multiple steals of this page. 1892 */ 1893 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1894 1895 obuf->len = len; 1896 opipe->nrbufs++; 1897 ibuf->offset += obuf->len; 1898 ibuf->len -= obuf->len; 1899 } 1900 ret += obuf->len; 1901 len -= obuf->len; 1902 } while (len); 1903 1904 pipe_unlock(ipipe); 1905 pipe_unlock(opipe); 1906 1907 /* 1908 * If we put data in the output pipe, wakeup any potential readers. 1909 */ 1910 if (ret > 0) { 1911 smp_mb(); 1912 if (waitqueue_active(&opipe->wait)) 1913 wake_up_interruptible(&opipe->wait); 1914 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN); 1915 } 1916 if (input_wakeup) 1917 wakeup_pipe_writers(ipipe); 1918 1919 return ret; 1920 } 1921 1922 /* 1923 * Link contents of ipipe to opipe. 1924 */ 1925 static int link_pipe(struct pipe_inode_info *ipipe, 1926 struct pipe_inode_info *opipe, 1927 size_t len, unsigned int flags) 1928 { 1929 struct pipe_buffer *ibuf, *obuf; 1930 int ret = 0, i = 0, nbuf; 1931 1932 /* 1933 * Potential ABBA deadlock, work around it by ordering lock 1934 * grabbing by pipe info address. Otherwise two different processes 1935 * could deadlock (one doing tee from A -> B, the other from B -> A). 1936 */ 1937 pipe_double_lock(ipipe, opipe); 1938 1939 do { 1940 if (!opipe->readers) { 1941 send_sig(SIGPIPE, current, 0); 1942 if (!ret) 1943 ret = -EPIPE; 1944 break; 1945 } 1946 1947 /* 1948 * If we have iterated all input buffers or ran out of 1949 * output room, break. 1950 */ 1951 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) 1952 break; 1953 1954 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1)); 1955 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1); 1956 1957 /* 1958 * Get a reference to this pipe buffer, 1959 * so we can copy the contents over. 1960 */ 1961 ibuf->ops->get(ipipe, ibuf); 1962 1963 obuf = opipe->bufs + nbuf; 1964 *obuf = *ibuf; 1965 1966 /* 1967 * Don't inherit the gift flag, we need to 1968 * prevent multiple steals of this page. 1969 */ 1970 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1971 1972 if (obuf->len > len) 1973 obuf->len = len; 1974 1975 opipe->nrbufs++; 1976 ret += obuf->len; 1977 len -= obuf->len; 1978 i++; 1979 } while (len); 1980 1981 /* 1982 * return EAGAIN if we have the potential of some data in the 1983 * future, otherwise just return 0 1984 */ 1985 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK)) 1986 ret = -EAGAIN; 1987 1988 pipe_unlock(ipipe); 1989 pipe_unlock(opipe); 1990 1991 /* 1992 * If we put data in the output pipe, wakeup any potential readers. 1993 */ 1994 if (ret > 0) { 1995 smp_mb(); 1996 if (waitqueue_active(&opipe->wait)) 1997 wake_up_interruptible(&opipe->wait); 1998 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN); 1999 } 2000 2001 return ret; 2002 } 2003 2004 /* 2005 * This is a tee(1) implementation that works on pipes. It doesn't copy 2006 * any data, it simply references the 'in' pages on the 'out' pipe. 2007 * The 'flags' used are the SPLICE_F_* variants, currently the only 2008 * applicable one is SPLICE_F_NONBLOCK. 2009 */ 2010 static long do_tee(struct file *in, struct file *out, size_t len, 2011 unsigned int flags) 2012 { 2013 struct pipe_inode_info *ipipe = get_pipe_info(in); 2014 struct pipe_inode_info *opipe = get_pipe_info(out); 2015 int ret = -EINVAL; 2016 2017 /* 2018 * Duplicate the contents of ipipe to opipe without actually 2019 * copying the data. 2020 */ 2021 if (ipipe && opipe && ipipe != opipe) { 2022 /* 2023 * Keep going, unless we encounter an error. The ipipe/opipe 2024 * ordering doesn't really matter. 2025 */ 2026 ret = ipipe_prep(ipipe, flags); 2027 if (!ret) { 2028 ret = opipe_prep(opipe, flags); 2029 if (!ret) 2030 ret = link_pipe(ipipe, opipe, len, flags); 2031 } 2032 } 2033 2034 return ret; 2035 } 2036 2037 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags) 2038 { 2039 struct file *in; 2040 int error, fput_in; 2041 2042 if (unlikely(!len)) 2043 return 0; 2044 2045 error = -EBADF; 2046 in = fget_light(fdin, &fput_in); 2047 if (in) { 2048 if (in->f_mode & FMODE_READ) { 2049 int fput_out; 2050 struct file *out = fget_light(fdout, &fput_out); 2051 2052 if (out) { 2053 if (out->f_mode & FMODE_WRITE) 2054 error = do_tee(in, out, len, flags); 2055 fput_light(out, fput_out); 2056 } 2057 } 2058 fput_light(in, fput_in); 2059 } 2060 2061 return error; 2062 } 2063