xref: /openbmc/linux/fs/splice.c (revision ebb9a9ae)
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/bvec.h>
21 #include <linux/fs.h>
22 #include <linux/file.h>
23 #include <linux/pagemap.h>
24 #include <linux/splice.h>
25 #include <linux/memcontrol.h>
26 #include <linux/mm_inline.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/export.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33 #include <linux/gfp.h>
34 #include <linux/socket.h>
35 #include <linux/compat.h>
36 #include "internal.h"
37 
38 /*
39  * Attempt to steal a page from a pipe buffer. This should perhaps go into
40  * a vm helper function, it's already simplified quite a bit by the
41  * addition of remove_mapping(). If success is returned, the caller may
42  * attempt to reuse this page for another destination.
43  */
44 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
45 				     struct pipe_buffer *buf)
46 {
47 	struct page *page = buf->page;
48 	struct address_space *mapping;
49 
50 	lock_page(page);
51 
52 	mapping = page_mapping(page);
53 	if (mapping) {
54 		WARN_ON(!PageUptodate(page));
55 
56 		/*
57 		 * At least for ext2 with nobh option, we need to wait on
58 		 * writeback completing on this page, since we'll remove it
59 		 * from the pagecache.  Otherwise truncate wont wait on the
60 		 * page, allowing the disk blocks to be reused by someone else
61 		 * before we actually wrote our data to them. fs corruption
62 		 * ensues.
63 		 */
64 		wait_on_page_writeback(page);
65 
66 		if (page_has_private(page) &&
67 		    !try_to_release_page(page, GFP_KERNEL))
68 			goto out_unlock;
69 
70 		/*
71 		 * If we succeeded in removing the mapping, set LRU flag
72 		 * and return good.
73 		 */
74 		if (remove_mapping(mapping, page)) {
75 			buf->flags |= PIPE_BUF_FLAG_LRU;
76 			return 0;
77 		}
78 	}
79 
80 	/*
81 	 * Raced with truncate or failed to remove page from current
82 	 * address space, unlock and return failure.
83 	 */
84 out_unlock:
85 	unlock_page(page);
86 	return 1;
87 }
88 
89 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
90 					struct pipe_buffer *buf)
91 {
92 	put_page(buf->page);
93 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
94 }
95 
96 /*
97  * Check whether the contents of buf is OK to access. Since the content
98  * is a page cache page, IO may be in flight.
99  */
100 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
101 				       struct pipe_buffer *buf)
102 {
103 	struct page *page = buf->page;
104 	int err;
105 
106 	if (!PageUptodate(page)) {
107 		lock_page(page);
108 
109 		/*
110 		 * Page got truncated/unhashed. This will cause a 0-byte
111 		 * splice, if this is the first page.
112 		 */
113 		if (!page->mapping) {
114 			err = -ENODATA;
115 			goto error;
116 		}
117 
118 		/*
119 		 * Uh oh, read-error from disk.
120 		 */
121 		if (!PageUptodate(page)) {
122 			err = -EIO;
123 			goto error;
124 		}
125 
126 		/*
127 		 * Page is ok afterall, we are done.
128 		 */
129 		unlock_page(page);
130 	}
131 
132 	return 0;
133 error:
134 	unlock_page(page);
135 	return err;
136 }
137 
138 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
139 	.can_merge = 0,
140 	.confirm = page_cache_pipe_buf_confirm,
141 	.release = page_cache_pipe_buf_release,
142 	.steal = page_cache_pipe_buf_steal,
143 	.get = generic_pipe_buf_get,
144 };
145 
146 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
147 				    struct pipe_buffer *buf)
148 {
149 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
150 		return 1;
151 
152 	buf->flags |= PIPE_BUF_FLAG_LRU;
153 	return generic_pipe_buf_steal(pipe, buf);
154 }
155 
156 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
157 	.can_merge = 0,
158 	.confirm = generic_pipe_buf_confirm,
159 	.release = page_cache_pipe_buf_release,
160 	.steal = user_page_pipe_buf_steal,
161 	.get = generic_pipe_buf_get,
162 };
163 
164 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
165 {
166 	smp_mb();
167 	if (waitqueue_active(&pipe->wait))
168 		wake_up_interruptible(&pipe->wait);
169 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
170 }
171 
172 /**
173  * splice_to_pipe - fill passed data into a pipe
174  * @pipe:	pipe to fill
175  * @spd:	data to fill
176  *
177  * Description:
178  *    @spd contains a map of pages and len/offset tuples, along with
179  *    the struct pipe_buf_operations associated with these pages. This
180  *    function will link that data to the pipe.
181  *
182  */
183 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
184 		       struct splice_pipe_desc *spd)
185 {
186 	unsigned int spd_pages = spd->nr_pages;
187 	int ret = 0, page_nr = 0;
188 
189 	if (!spd_pages)
190 		return 0;
191 
192 	if (unlikely(!pipe->readers)) {
193 		send_sig(SIGPIPE, current, 0);
194 		ret = -EPIPE;
195 		goto out;
196 	}
197 
198 	while (pipe->nrbufs < pipe->buffers) {
199 		int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
200 		struct pipe_buffer *buf = pipe->bufs + newbuf;
201 
202 		buf->page = spd->pages[page_nr];
203 		buf->offset = spd->partial[page_nr].offset;
204 		buf->len = spd->partial[page_nr].len;
205 		buf->private = spd->partial[page_nr].private;
206 		buf->ops = spd->ops;
207 
208 		pipe->nrbufs++;
209 		page_nr++;
210 		ret += buf->len;
211 
212 		if (!--spd->nr_pages)
213 			break;
214 	}
215 
216 	if (!ret)
217 		ret = -EAGAIN;
218 
219 out:
220 	while (page_nr < spd_pages)
221 		spd->spd_release(spd, page_nr++);
222 
223 	return ret;
224 }
225 EXPORT_SYMBOL_GPL(splice_to_pipe);
226 
227 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
228 {
229 	int ret;
230 
231 	if (unlikely(!pipe->readers)) {
232 		send_sig(SIGPIPE, current, 0);
233 		ret = -EPIPE;
234 	} else if (pipe->nrbufs == pipe->buffers) {
235 		ret = -EAGAIN;
236 	} else {
237 		int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
238 		pipe->bufs[newbuf] = *buf;
239 		pipe->nrbufs++;
240 		return buf->len;
241 	}
242 	pipe_buf_release(pipe, buf);
243 	return ret;
244 }
245 EXPORT_SYMBOL(add_to_pipe);
246 
247 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
248 {
249 	put_page(spd->pages[i]);
250 }
251 
252 /*
253  * Check if we need to grow the arrays holding pages and partial page
254  * descriptions.
255  */
256 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
257 {
258 	unsigned int buffers = ACCESS_ONCE(pipe->buffers);
259 
260 	spd->nr_pages_max = buffers;
261 	if (buffers <= PIPE_DEF_BUFFERS)
262 		return 0;
263 
264 	spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
265 	spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
266 
267 	if (spd->pages && spd->partial)
268 		return 0;
269 
270 	kfree(spd->pages);
271 	kfree(spd->partial);
272 	return -ENOMEM;
273 }
274 
275 void splice_shrink_spd(struct splice_pipe_desc *spd)
276 {
277 	if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
278 		return;
279 
280 	kfree(spd->pages);
281 	kfree(spd->partial);
282 }
283 
284 /**
285  * generic_file_splice_read - splice data from file to a pipe
286  * @in:		file to splice from
287  * @ppos:	position in @in
288  * @pipe:	pipe to splice to
289  * @len:	number of bytes to splice
290  * @flags:	splice modifier flags
291  *
292  * Description:
293  *    Will read pages from given file and fill them into a pipe. Can be
294  *    used as long as it has more or less sane ->read_iter().
295  *
296  */
297 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
298 				 struct pipe_inode_info *pipe, size_t len,
299 				 unsigned int flags)
300 {
301 	struct iov_iter to;
302 	struct kiocb kiocb;
303 	int idx, ret;
304 
305 	iov_iter_pipe(&to, ITER_PIPE | READ, pipe, len);
306 	idx = to.idx;
307 	init_sync_kiocb(&kiocb, in);
308 	kiocb.ki_pos = *ppos;
309 	ret = in->f_op->read_iter(&kiocb, &to);
310 	if (ret > 0) {
311 		*ppos = kiocb.ki_pos;
312 		file_accessed(in);
313 	} else if (ret < 0) {
314 		to.idx = idx;
315 		to.iov_offset = 0;
316 		iov_iter_advance(&to, 0); /* to free what was emitted */
317 		/*
318 		 * callers of ->splice_read() expect -EAGAIN on
319 		 * "can't put anything in there", rather than -EFAULT.
320 		 */
321 		if (ret == -EFAULT)
322 			ret = -EAGAIN;
323 	}
324 
325 	return ret;
326 }
327 EXPORT_SYMBOL(generic_file_splice_read);
328 
329 const struct pipe_buf_operations default_pipe_buf_ops = {
330 	.can_merge = 0,
331 	.confirm = generic_pipe_buf_confirm,
332 	.release = generic_pipe_buf_release,
333 	.steal = generic_pipe_buf_steal,
334 	.get = generic_pipe_buf_get,
335 };
336 
337 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
338 				    struct pipe_buffer *buf)
339 {
340 	return 1;
341 }
342 
343 /* Pipe buffer operations for a socket and similar. */
344 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
345 	.can_merge = 0,
346 	.confirm = generic_pipe_buf_confirm,
347 	.release = generic_pipe_buf_release,
348 	.steal = generic_pipe_buf_nosteal,
349 	.get = generic_pipe_buf_get,
350 };
351 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
352 
353 static ssize_t kernel_readv(struct file *file, const struct kvec *vec,
354 			    unsigned long vlen, loff_t offset)
355 {
356 	mm_segment_t old_fs;
357 	loff_t pos = offset;
358 	ssize_t res;
359 
360 	old_fs = get_fs();
361 	set_fs(get_ds());
362 	/* The cast to a user pointer is valid due to the set_fs() */
363 	res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos, 0);
364 	set_fs(old_fs);
365 
366 	return res;
367 }
368 
369 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
370 			    loff_t pos)
371 {
372 	mm_segment_t old_fs;
373 	ssize_t res;
374 
375 	old_fs = get_fs();
376 	set_fs(get_ds());
377 	/* The cast to a user pointer is valid due to the set_fs() */
378 	res = vfs_write(file, (__force const char __user *)buf, count, &pos);
379 	set_fs(old_fs);
380 
381 	return res;
382 }
383 EXPORT_SYMBOL(kernel_write);
384 
385 static ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
386 				 struct pipe_inode_info *pipe, size_t len,
387 				 unsigned int flags)
388 {
389 	struct kvec *vec, __vec[PIPE_DEF_BUFFERS];
390 	struct iov_iter to;
391 	struct page **pages;
392 	unsigned int nr_pages;
393 	size_t offset, dummy, copied = 0;
394 	ssize_t res;
395 	int i;
396 
397 	if (pipe->nrbufs == pipe->buffers)
398 		return -EAGAIN;
399 
400 	/*
401 	 * Try to keep page boundaries matching to source pagecache ones -
402 	 * it probably won't be much help, but...
403 	 */
404 	offset = *ppos & ~PAGE_MASK;
405 
406 	iov_iter_pipe(&to, ITER_PIPE | READ, pipe, len + offset);
407 
408 	res = iov_iter_get_pages_alloc(&to, &pages, len + offset, &dummy);
409 	if (res <= 0)
410 		return -ENOMEM;
411 
412 	BUG_ON(dummy);
413 	nr_pages = DIV_ROUND_UP(res, PAGE_SIZE);
414 
415 	vec = __vec;
416 	if (nr_pages > PIPE_DEF_BUFFERS) {
417 		vec = kmalloc(nr_pages * sizeof(struct kvec), GFP_KERNEL);
418 		if (unlikely(!vec)) {
419 			res = -ENOMEM;
420 			goto out;
421 		}
422 	}
423 
424 	pipe->bufs[to.idx].offset = offset;
425 	pipe->bufs[to.idx].len -= offset;
426 
427 	for (i = 0; i < nr_pages; i++) {
428 		size_t this_len = min_t(size_t, len, PAGE_SIZE - offset);
429 		vec[i].iov_base = page_address(pages[i]) + offset;
430 		vec[i].iov_len = this_len;
431 		len -= this_len;
432 		offset = 0;
433 	}
434 
435 	res = kernel_readv(in, vec, nr_pages, *ppos);
436 	if (res > 0) {
437 		copied = res;
438 		*ppos += res;
439 	}
440 
441 	if (vec != __vec)
442 		kfree(vec);
443 out:
444 	for (i = 0; i < nr_pages; i++)
445 		put_page(pages[i]);
446 	kvfree(pages);
447 	iov_iter_advance(&to, copied);	/* truncates and discards */
448 	return res;
449 }
450 
451 /*
452  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
453  * using sendpage(). Return the number of bytes sent.
454  */
455 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
456 			    struct pipe_buffer *buf, struct splice_desc *sd)
457 {
458 	struct file *file = sd->u.file;
459 	loff_t pos = sd->pos;
460 	int more;
461 
462 	if (!likely(file->f_op->sendpage))
463 		return -EINVAL;
464 
465 	more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
466 
467 	if (sd->len < sd->total_len && pipe->nrbufs > 1)
468 		more |= MSG_SENDPAGE_NOTLAST;
469 
470 	return file->f_op->sendpage(file, buf->page, buf->offset,
471 				    sd->len, &pos, more);
472 }
473 
474 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
475 {
476 	smp_mb();
477 	if (waitqueue_active(&pipe->wait))
478 		wake_up_interruptible(&pipe->wait);
479 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
480 }
481 
482 /**
483  * splice_from_pipe_feed - feed available data from a pipe to a file
484  * @pipe:	pipe to splice from
485  * @sd:		information to @actor
486  * @actor:	handler that splices the data
487  *
488  * Description:
489  *    This function loops over the pipe and calls @actor to do the
490  *    actual moving of a single struct pipe_buffer to the desired
491  *    destination.  It returns when there's no more buffers left in
492  *    the pipe or if the requested number of bytes (@sd->total_len)
493  *    have been copied.  It returns a positive number (one) if the
494  *    pipe needs to be filled with more data, zero if the required
495  *    number of bytes have been copied and -errno on error.
496  *
497  *    This, together with splice_from_pipe_{begin,end,next}, may be
498  *    used to implement the functionality of __splice_from_pipe() when
499  *    locking is required around copying the pipe buffers to the
500  *    destination.
501  */
502 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
503 			  splice_actor *actor)
504 {
505 	int ret;
506 
507 	while (pipe->nrbufs) {
508 		struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
509 
510 		sd->len = buf->len;
511 		if (sd->len > sd->total_len)
512 			sd->len = sd->total_len;
513 
514 		ret = pipe_buf_confirm(pipe, buf);
515 		if (unlikely(ret)) {
516 			if (ret == -ENODATA)
517 				ret = 0;
518 			return ret;
519 		}
520 
521 		ret = actor(pipe, buf, sd);
522 		if (ret <= 0)
523 			return ret;
524 
525 		buf->offset += ret;
526 		buf->len -= ret;
527 
528 		sd->num_spliced += ret;
529 		sd->len -= ret;
530 		sd->pos += ret;
531 		sd->total_len -= ret;
532 
533 		if (!buf->len) {
534 			pipe_buf_release(pipe, buf);
535 			pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
536 			pipe->nrbufs--;
537 			if (pipe->files)
538 				sd->need_wakeup = true;
539 		}
540 
541 		if (!sd->total_len)
542 			return 0;
543 	}
544 
545 	return 1;
546 }
547 
548 /**
549  * splice_from_pipe_next - wait for some data to splice from
550  * @pipe:	pipe to splice from
551  * @sd:		information about the splice operation
552  *
553  * Description:
554  *    This function will wait for some data and return a positive
555  *    value (one) if pipe buffers are available.  It will return zero
556  *    or -errno if no more data needs to be spliced.
557  */
558 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
559 {
560 	/*
561 	 * Check for signal early to make process killable when there are
562 	 * always buffers available
563 	 */
564 	if (signal_pending(current))
565 		return -ERESTARTSYS;
566 
567 	while (!pipe->nrbufs) {
568 		if (!pipe->writers)
569 			return 0;
570 
571 		if (!pipe->waiting_writers && sd->num_spliced)
572 			return 0;
573 
574 		if (sd->flags & SPLICE_F_NONBLOCK)
575 			return -EAGAIN;
576 
577 		if (signal_pending(current))
578 			return -ERESTARTSYS;
579 
580 		if (sd->need_wakeup) {
581 			wakeup_pipe_writers(pipe);
582 			sd->need_wakeup = false;
583 		}
584 
585 		pipe_wait(pipe);
586 	}
587 
588 	return 1;
589 }
590 
591 /**
592  * splice_from_pipe_begin - start splicing from pipe
593  * @sd:		information about the splice operation
594  *
595  * Description:
596  *    This function should be called before a loop containing
597  *    splice_from_pipe_next() and splice_from_pipe_feed() to
598  *    initialize the necessary fields of @sd.
599  */
600 static void splice_from_pipe_begin(struct splice_desc *sd)
601 {
602 	sd->num_spliced = 0;
603 	sd->need_wakeup = false;
604 }
605 
606 /**
607  * splice_from_pipe_end - finish splicing from pipe
608  * @pipe:	pipe to splice from
609  * @sd:		information about the splice operation
610  *
611  * Description:
612  *    This function will wake up pipe writers if necessary.  It should
613  *    be called after a loop containing splice_from_pipe_next() and
614  *    splice_from_pipe_feed().
615  */
616 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
617 {
618 	if (sd->need_wakeup)
619 		wakeup_pipe_writers(pipe);
620 }
621 
622 /**
623  * __splice_from_pipe - splice data from a pipe to given actor
624  * @pipe:	pipe to splice from
625  * @sd:		information to @actor
626  * @actor:	handler that splices the data
627  *
628  * Description:
629  *    This function does little more than loop over the pipe and call
630  *    @actor to do the actual moving of a single struct pipe_buffer to
631  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
632  *    pipe_to_user.
633  *
634  */
635 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
636 			   splice_actor *actor)
637 {
638 	int ret;
639 
640 	splice_from_pipe_begin(sd);
641 	do {
642 		cond_resched();
643 		ret = splice_from_pipe_next(pipe, sd);
644 		if (ret > 0)
645 			ret = splice_from_pipe_feed(pipe, sd, actor);
646 	} while (ret > 0);
647 	splice_from_pipe_end(pipe, sd);
648 
649 	return sd->num_spliced ? sd->num_spliced : ret;
650 }
651 EXPORT_SYMBOL(__splice_from_pipe);
652 
653 /**
654  * splice_from_pipe - splice data from a pipe to a file
655  * @pipe:	pipe to splice from
656  * @out:	file to splice to
657  * @ppos:	position in @out
658  * @len:	how many bytes to splice
659  * @flags:	splice modifier flags
660  * @actor:	handler that splices the data
661  *
662  * Description:
663  *    See __splice_from_pipe. This function locks the pipe inode,
664  *    otherwise it's identical to __splice_from_pipe().
665  *
666  */
667 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
668 			 loff_t *ppos, size_t len, unsigned int flags,
669 			 splice_actor *actor)
670 {
671 	ssize_t ret;
672 	struct splice_desc sd = {
673 		.total_len = len,
674 		.flags = flags,
675 		.pos = *ppos,
676 		.u.file = out,
677 	};
678 
679 	pipe_lock(pipe);
680 	ret = __splice_from_pipe(pipe, &sd, actor);
681 	pipe_unlock(pipe);
682 
683 	return ret;
684 }
685 
686 /**
687  * iter_file_splice_write - splice data from a pipe to a file
688  * @pipe:	pipe info
689  * @out:	file to write to
690  * @ppos:	position in @out
691  * @len:	number of bytes to splice
692  * @flags:	splice modifier flags
693  *
694  * Description:
695  *    Will either move or copy pages (determined by @flags options) from
696  *    the given pipe inode to the given file.
697  *    This one is ->write_iter-based.
698  *
699  */
700 ssize_t
701 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
702 			  loff_t *ppos, size_t len, unsigned int flags)
703 {
704 	struct splice_desc sd = {
705 		.total_len = len,
706 		.flags = flags,
707 		.pos = *ppos,
708 		.u.file = out,
709 	};
710 	int nbufs = pipe->buffers;
711 	struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
712 					GFP_KERNEL);
713 	ssize_t ret;
714 
715 	if (unlikely(!array))
716 		return -ENOMEM;
717 
718 	pipe_lock(pipe);
719 
720 	splice_from_pipe_begin(&sd);
721 	while (sd.total_len) {
722 		struct iov_iter from;
723 		size_t left;
724 		int n, idx;
725 
726 		ret = splice_from_pipe_next(pipe, &sd);
727 		if (ret <= 0)
728 			break;
729 
730 		if (unlikely(nbufs < pipe->buffers)) {
731 			kfree(array);
732 			nbufs = pipe->buffers;
733 			array = kcalloc(nbufs, sizeof(struct bio_vec),
734 					GFP_KERNEL);
735 			if (!array) {
736 				ret = -ENOMEM;
737 				break;
738 			}
739 		}
740 
741 		/* build the vector */
742 		left = sd.total_len;
743 		for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
744 			struct pipe_buffer *buf = pipe->bufs + idx;
745 			size_t this_len = buf->len;
746 
747 			if (this_len > left)
748 				this_len = left;
749 
750 			if (idx == pipe->buffers - 1)
751 				idx = -1;
752 
753 			ret = pipe_buf_confirm(pipe, buf);
754 			if (unlikely(ret)) {
755 				if (ret == -ENODATA)
756 					ret = 0;
757 				goto done;
758 			}
759 
760 			array[n].bv_page = buf->page;
761 			array[n].bv_len = this_len;
762 			array[n].bv_offset = buf->offset;
763 			left -= this_len;
764 		}
765 
766 		iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n,
767 			      sd.total_len - left);
768 		ret = vfs_iter_write(out, &from, &sd.pos);
769 		if (ret <= 0)
770 			break;
771 
772 		sd.num_spliced += ret;
773 		sd.total_len -= ret;
774 		*ppos = sd.pos;
775 
776 		/* dismiss the fully eaten buffers, adjust the partial one */
777 		while (ret) {
778 			struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
779 			if (ret >= buf->len) {
780 				ret -= buf->len;
781 				buf->len = 0;
782 				pipe_buf_release(pipe, buf);
783 				pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
784 				pipe->nrbufs--;
785 				if (pipe->files)
786 					sd.need_wakeup = true;
787 			} else {
788 				buf->offset += ret;
789 				buf->len -= ret;
790 				ret = 0;
791 			}
792 		}
793 	}
794 done:
795 	kfree(array);
796 	splice_from_pipe_end(pipe, &sd);
797 
798 	pipe_unlock(pipe);
799 
800 	if (sd.num_spliced)
801 		ret = sd.num_spliced;
802 
803 	return ret;
804 }
805 
806 EXPORT_SYMBOL(iter_file_splice_write);
807 
808 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
809 			  struct splice_desc *sd)
810 {
811 	int ret;
812 	void *data;
813 	loff_t tmp = sd->pos;
814 
815 	data = kmap(buf->page);
816 	ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
817 	kunmap(buf->page);
818 
819 	return ret;
820 }
821 
822 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
823 					 struct file *out, loff_t *ppos,
824 					 size_t len, unsigned int flags)
825 {
826 	ssize_t ret;
827 
828 	ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
829 	if (ret > 0)
830 		*ppos += ret;
831 
832 	return ret;
833 }
834 
835 /**
836  * generic_splice_sendpage - splice data from a pipe to a socket
837  * @pipe:	pipe to splice from
838  * @out:	socket to write to
839  * @ppos:	position in @out
840  * @len:	number of bytes to splice
841  * @flags:	splice modifier flags
842  *
843  * Description:
844  *    Will send @len bytes from the pipe to a network socket. No data copying
845  *    is involved.
846  *
847  */
848 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
849 				loff_t *ppos, size_t len, unsigned int flags)
850 {
851 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
852 }
853 
854 EXPORT_SYMBOL(generic_splice_sendpage);
855 
856 /*
857  * Attempt to initiate a splice from pipe to file.
858  */
859 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
860 			   loff_t *ppos, size_t len, unsigned int flags)
861 {
862 	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
863 				loff_t *, size_t, unsigned int);
864 
865 	if (out->f_op->splice_write)
866 		splice_write = out->f_op->splice_write;
867 	else
868 		splice_write = default_file_splice_write;
869 
870 	return splice_write(pipe, out, ppos, len, flags);
871 }
872 
873 /*
874  * Attempt to initiate a splice from a file to a pipe.
875  */
876 static long do_splice_to(struct file *in, loff_t *ppos,
877 			 struct pipe_inode_info *pipe, size_t len,
878 			 unsigned int flags)
879 {
880 	ssize_t (*splice_read)(struct file *, loff_t *,
881 			       struct pipe_inode_info *, size_t, unsigned int);
882 	int ret;
883 
884 	if (unlikely(!(in->f_mode & FMODE_READ)))
885 		return -EBADF;
886 
887 	ret = rw_verify_area(READ, in, ppos, len);
888 	if (unlikely(ret < 0))
889 		return ret;
890 
891 	if (unlikely(len > MAX_RW_COUNT))
892 		len = MAX_RW_COUNT;
893 
894 	if (in->f_op->splice_read)
895 		splice_read = in->f_op->splice_read;
896 	else
897 		splice_read = default_file_splice_read;
898 
899 	return splice_read(in, ppos, pipe, len, flags);
900 }
901 
902 /**
903  * splice_direct_to_actor - splices data directly between two non-pipes
904  * @in:		file to splice from
905  * @sd:		actor information on where to splice to
906  * @actor:	handles the data splicing
907  *
908  * Description:
909  *    This is a special case helper to splice directly between two
910  *    points, without requiring an explicit pipe. Internally an allocated
911  *    pipe is cached in the process, and reused during the lifetime of
912  *    that process.
913  *
914  */
915 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
916 			       splice_direct_actor *actor)
917 {
918 	struct pipe_inode_info *pipe;
919 	long ret, bytes;
920 	umode_t i_mode;
921 	size_t len;
922 	int i, flags, more;
923 
924 	/*
925 	 * We require the input being a regular file, as we don't want to
926 	 * randomly drop data for eg socket -> socket splicing. Use the
927 	 * piped splicing for that!
928 	 */
929 	i_mode = file_inode(in)->i_mode;
930 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
931 		return -EINVAL;
932 
933 	/*
934 	 * neither in nor out is a pipe, setup an internal pipe attached to
935 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
936 	 */
937 	pipe = current->splice_pipe;
938 	if (unlikely(!pipe)) {
939 		pipe = alloc_pipe_info();
940 		if (!pipe)
941 			return -ENOMEM;
942 
943 		/*
944 		 * We don't have an immediate reader, but we'll read the stuff
945 		 * out of the pipe right after the splice_to_pipe(). So set
946 		 * PIPE_READERS appropriately.
947 		 */
948 		pipe->readers = 1;
949 
950 		current->splice_pipe = pipe;
951 	}
952 
953 	/*
954 	 * Do the splice.
955 	 */
956 	ret = 0;
957 	bytes = 0;
958 	len = sd->total_len;
959 	flags = sd->flags;
960 
961 	/*
962 	 * Don't block on output, we have to drain the direct pipe.
963 	 */
964 	sd->flags &= ~SPLICE_F_NONBLOCK;
965 	more = sd->flags & SPLICE_F_MORE;
966 
967 	while (len) {
968 		size_t read_len;
969 		loff_t pos = sd->pos, prev_pos = pos;
970 
971 		ret = do_splice_to(in, &pos, pipe, len, flags);
972 		if (unlikely(ret <= 0))
973 			goto out_release;
974 
975 		read_len = ret;
976 		sd->total_len = read_len;
977 
978 		/*
979 		 * If more data is pending, set SPLICE_F_MORE
980 		 * If this is the last data and SPLICE_F_MORE was not set
981 		 * initially, clears it.
982 		 */
983 		if (read_len < len)
984 			sd->flags |= SPLICE_F_MORE;
985 		else if (!more)
986 			sd->flags &= ~SPLICE_F_MORE;
987 		/*
988 		 * NOTE: nonblocking mode only applies to the input. We
989 		 * must not do the output in nonblocking mode as then we
990 		 * could get stuck data in the internal pipe:
991 		 */
992 		ret = actor(pipe, sd);
993 		if (unlikely(ret <= 0)) {
994 			sd->pos = prev_pos;
995 			goto out_release;
996 		}
997 
998 		bytes += ret;
999 		len -= ret;
1000 		sd->pos = pos;
1001 
1002 		if (ret < read_len) {
1003 			sd->pos = prev_pos + ret;
1004 			goto out_release;
1005 		}
1006 	}
1007 
1008 done:
1009 	pipe->nrbufs = pipe->curbuf = 0;
1010 	file_accessed(in);
1011 	return bytes;
1012 
1013 out_release:
1014 	/*
1015 	 * If we did an incomplete transfer we must release
1016 	 * the pipe buffers in question:
1017 	 */
1018 	for (i = 0; i < pipe->buffers; i++) {
1019 		struct pipe_buffer *buf = pipe->bufs + i;
1020 
1021 		if (buf->ops)
1022 			pipe_buf_release(pipe, buf);
1023 	}
1024 
1025 	if (!bytes)
1026 		bytes = ret;
1027 
1028 	goto done;
1029 }
1030 EXPORT_SYMBOL(splice_direct_to_actor);
1031 
1032 static int direct_splice_actor(struct pipe_inode_info *pipe,
1033 			       struct splice_desc *sd)
1034 {
1035 	struct file *file = sd->u.file;
1036 
1037 	return do_splice_from(pipe, file, sd->opos, sd->total_len,
1038 			      sd->flags);
1039 }
1040 
1041 /**
1042  * do_splice_direct - splices data directly between two files
1043  * @in:		file to splice from
1044  * @ppos:	input file offset
1045  * @out:	file to splice to
1046  * @opos:	output file offset
1047  * @len:	number of bytes to splice
1048  * @flags:	splice modifier flags
1049  *
1050  * Description:
1051  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1052  *    doing it in the application would incur an extra system call
1053  *    (splice in + splice out, as compared to just sendfile()). So this helper
1054  *    can splice directly through a process-private pipe.
1055  *
1056  */
1057 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1058 		      loff_t *opos, size_t len, unsigned int flags)
1059 {
1060 	struct splice_desc sd = {
1061 		.len		= len,
1062 		.total_len	= len,
1063 		.flags		= flags,
1064 		.pos		= *ppos,
1065 		.u.file		= out,
1066 		.opos		= opos,
1067 	};
1068 	long ret;
1069 
1070 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1071 		return -EBADF;
1072 
1073 	if (unlikely(out->f_flags & O_APPEND))
1074 		return -EINVAL;
1075 
1076 	ret = rw_verify_area(WRITE, out, opos, len);
1077 	if (unlikely(ret < 0))
1078 		return ret;
1079 
1080 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1081 	if (ret > 0)
1082 		*ppos = sd.pos;
1083 
1084 	return ret;
1085 }
1086 EXPORT_SYMBOL(do_splice_direct);
1087 
1088 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1089 {
1090 	while (pipe->nrbufs == pipe->buffers) {
1091 		if (flags & SPLICE_F_NONBLOCK)
1092 			return -EAGAIN;
1093 		if (signal_pending(current))
1094 			return -ERESTARTSYS;
1095 		pipe->waiting_writers++;
1096 		pipe_wait(pipe);
1097 		pipe->waiting_writers--;
1098 	}
1099 	return 0;
1100 }
1101 
1102 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1103 			       struct pipe_inode_info *opipe,
1104 			       size_t len, unsigned int flags);
1105 
1106 /*
1107  * Determine where to splice to/from.
1108  */
1109 static long do_splice(struct file *in, loff_t __user *off_in,
1110 		      struct file *out, loff_t __user *off_out,
1111 		      size_t len, unsigned int flags)
1112 {
1113 	struct pipe_inode_info *ipipe;
1114 	struct pipe_inode_info *opipe;
1115 	loff_t offset;
1116 	long ret;
1117 
1118 	ipipe = get_pipe_info(in);
1119 	opipe = get_pipe_info(out);
1120 
1121 	if (ipipe && opipe) {
1122 		if (off_in || off_out)
1123 			return -ESPIPE;
1124 
1125 		if (!(in->f_mode & FMODE_READ))
1126 			return -EBADF;
1127 
1128 		if (!(out->f_mode & FMODE_WRITE))
1129 			return -EBADF;
1130 
1131 		/* Splicing to self would be fun, but... */
1132 		if (ipipe == opipe)
1133 			return -EINVAL;
1134 
1135 		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1136 	}
1137 
1138 	if (ipipe) {
1139 		if (off_in)
1140 			return -ESPIPE;
1141 		if (off_out) {
1142 			if (!(out->f_mode & FMODE_PWRITE))
1143 				return -EINVAL;
1144 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1145 				return -EFAULT;
1146 		} else {
1147 			offset = out->f_pos;
1148 		}
1149 
1150 		if (unlikely(!(out->f_mode & FMODE_WRITE)))
1151 			return -EBADF;
1152 
1153 		if (unlikely(out->f_flags & O_APPEND))
1154 			return -EINVAL;
1155 
1156 		ret = rw_verify_area(WRITE, out, &offset, len);
1157 		if (unlikely(ret < 0))
1158 			return ret;
1159 
1160 		file_start_write(out);
1161 		ret = do_splice_from(ipipe, out, &offset, len, flags);
1162 		file_end_write(out);
1163 
1164 		if (!off_out)
1165 			out->f_pos = offset;
1166 		else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1167 			ret = -EFAULT;
1168 
1169 		return ret;
1170 	}
1171 
1172 	if (opipe) {
1173 		if (off_out)
1174 			return -ESPIPE;
1175 		if (off_in) {
1176 			if (!(in->f_mode & FMODE_PREAD))
1177 				return -EINVAL;
1178 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1179 				return -EFAULT;
1180 		} else {
1181 			offset = in->f_pos;
1182 		}
1183 
1184 		pipe_lock(opipe);
1185 		ret = wait_for_space(opipe, flags);
1186 		if (!ret)
1187 			ret = do_splice_to(in, &offset, opipe, len, flags);
1188 		pipe_unlock(opipe);
1189 		if (ret > 0)
1190 			wakeup_pipe_readers(opipe);
1191 		if (!off_in)
1192 			in->f_pos = offset;
1193 		else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1194 			ret = -EFAULT;
1195 
1196 		return ret;
1197 	}
1198 
1199 	return -EINVAL;
1200 }
1201 
1202 static int iter_to_pipe(struct iov_iter *from,
1203 			struct pipe_inode_info *pipe,
1204 			unsigned flags)
1205 {
1206 	struct pipe_buffer buf = {
1207 		.ops = &user_page_pipe_buf_ops,
1208 		.flags = flags
1209 	};
1210 	size_t total = 0;
1211 	int ret = 0;
1212 	bool failed = false;
1213 
1214 	while (iov_iter_count(from) && !failed) {
1215 		struct page *pages[16];
1216 		ssize_t copied;
1217 		size_t start;
1218 		int n;
1219 
1220 		copied = iov_iter_get_pages(from, pages, ~0UL, 16, &start);
1221 		if (copied <= 0) {
1222 			ret = copied;
1223 			break;
1224 		}
1225 
1226 		for (n = 0; copied; n++, start = 0) {
1227 			int size = min_t(int, copied, PAGE_SIZE - start);
1228 			if (!failed) {
1229 				buf.page = pages[n];
1230 				buf.offset = start;
1231 				buf.len = size;
1232 				ret = add_to_pipe(pipe, &buf);
1233 				if (unlikely(ret < 0)) {
1234 					failed = true;
1235 				} else {
1236 					iov_iter_advance(from, ret);
1237 					total += ret;
1238 				}
1239 			} else {
1240 				put_page(pages[n]);
1241 			}
1242 			copied -= size;
1243 		}
1244 	}
1245 	return total ? total : ret;
1246 }
1247 
1248 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1249 			struct splice_desc *sd)
1250 {
1251 	int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1252 	return n == sd->len ? n : -EFAULT;
1253 }
1254 
1255 /*
1256  * For lack of a better implementation, implement vmsplice() to userspace
1257  * as a simple copy of the pipes pages to the user iov.
1258  */
1259 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1260 			     unsigned long nr_segs, unsigned int flags)
1261 {
1262 	struct pipe_inode_info *pipe;
1263 	struct splice_desc sd;
1264 	long ret;
1265 	struct iovec iovstack[UIO_FASTIOV];
1266 	struct iovec *iov = iovstack;
1267 	struct iov_iter iter;
1268 
1269 	pipe = get_pipe_info(file);
1270 	if (!pipe)
1271 		return -EBADF;
1272 
1273 	ret = import_iovec(READ, uiov, nr_segs,
1274 			   ARRAY_SIZE(iovstack), &iov, &iter);
1275 	if (ret < 0)
1276 		return ret;
1277 
1278 	sd.total_len = iov_iter_count(&iter);
1279 	sd.len = 0;
1280 	sd.flags = flags;
1281 	sd.u.data = &iter;
1282 	sd.pos = 0;
1283 
1284 	if (sd.total_len) {
1285 		pipe_lock(pipe);
1286 		ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1287 		pipe_unlock(pipe);
1288 	}
1289 
1290 	kfree(iov);
1291 	return ret;
1292 }
1293 
1294 /*
1295  * vmsplice splices a user address range into a pipe. It can be thought of
1296  * as splice-from-memory, where the regular splice is splice-from-file (or
1297  * to file). In both cases the output is a pipe, naturally.
1298  */
1299 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *uiov,
1300 			     unsigned long nr_segs, unsigned int flags)
1301 {
1302 	struct pipe_inode_info *pipe;
1303 	struct iovec iovstack[UIO_FASTIOV];
1304 	struct iovec *iov = iovstack;
1305 	struct iov_iter from;
1306 	long ret;
1307 	unsigned buf_flag = 0;
1308 
1309 	if (flags & SPLICE_F_GIFT)
1310 		buf_flag = PIPE_BUF_FLAG_GIFT;
1311 
1312 	pipe = get_pipe_info(file);
1313 	if (!pipe)
1314 		return -EBADF;
1315 
1316 	ret = import_iovec(WRITE, uiov, nr_segs,
1317 			   ARRAY_SIZE(iovstack), &iov, &from);
1318 	if (ret < 0)
1319 		return ret;
1320 
1321 	pipe_lock(pipe);
1322 	ret = wait_for_space(pipe, flags);
1323 	if (!ret)
1324 		ret = iter_to_pipe(&from, pipe, buf_flag);
1325 	pipe_unlock(pipe);
1326 	if (ret > 0)
1327 		wakeup_pipe_readers(pipe);
1328 	kfree(iov);
1329 	return ret;
1330 }
1331 
1332 /*
1333  * Note that vmsplice only really supports true splicing _from_ user memory
1334  * to a pipe, not the other way around. Splicing from user memory is a simple
1335  * operation that can be supported without any funky alignment restrictions
1336  * or nasty vm tricks. We simply map in the user memory and fill them into
1337  * a pipe. The reverse isn't quite as easy, though. There are two possible
1338  * solutions for that:
1339  *
1340  *	- memcpy() the data internally, at which point we might as well just
1341  *	  do a regular read() on the buffer anyway.
1342  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1343  *	  has restriction limitations on both ends of the pipe).
1344  *
1345  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1346  *
1347  */
1348 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1349 		unsigned long, nr_segs, unsigned int, flags)
1350 {
1351 	struct fd f;
1352 	long error;
1353 
1354 	if (unlikely(nr_segs > UIO_MAXIOV))
1355 		return -EINVAL;
1356 	else if (unlikely(!nr_segs))
1357 		return 0;
1358 
1359 	error = -EBADF;
1360 	f = fdget(fd);
1361 	if (f.file) {
1362 		if (f.file->f_mode & FMODE_WRITE)
1363 			error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1364 		else if (f.file->f_mode & FMODE_READ)
1365 			error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1366 
1367 		fdput(f);
1368 	}
1369 
1370 	return error;
1371 }
1372 
1373 #ifdef CONFIG_COMPAT
1374 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1375 		    unsigned int, nr_segs, unsigned int, flags)
1376 {
1377 	unsigned i;
1378 	struct iovec __user *iov;
1379 	if (nr_segs > UIO_MAXIOV)
1380 		return -EINVAL;
1381 	iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1382 	for (i = 0; i < nr_segs; i++) {
1383 		struct compat_iovec v;
1384 		if (get_user(v.iov_base, &iov32[i].iov_base) ||
1385 		    get_user(v.iov_len, &iov32[i].iov_len) ||
1386 		    put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1387 		    put_user(v.iov_len, &iov[i].iov_len))
1388 			return -EFAULT;
1389 	}
1390 	return sys_vmsplice(fd, iov, nr_segs, flags);
1391 }
1392 #endif
1393 
1394 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1395 		int, fd_out, loff_t __user *, off_out,
1396 		size_t, len, unsigned int, flags)
1397 {
1398 	struct fd in, out;
1399 	long error;
1400 
1401 	if (unlikely(!len))
1402 		return 0;
1403 
1404 	error = -EBADF;
1405 	in = fdget(fd_in);
1406 	if (in.file) {
1407 		if (in.file->f_mode & FMODE_READ) {
1408 			out = fdget(fd_out);
1409 			if (out.file) {
1410 				if (out.file->f_mode & FMODE_WRITE)
1411 					error = do_splice(in.file, off_in,
1412 							  out.file, off_out,
1413 							  len, flags);
1414 				fdput(out);
1415 			}
1416 		}
1417 		fdput(in);
1418 	}
1419 	return error;
1420 }
1421 
1422 /*
1423  * Make sure there's data to read. Wait for input if we can, otherwise
1424  * return an appropriate error.
1425  */
1426 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1427 {
1428 	int ret;
1429 
1430 	/*
1431 	 * Check ->nrbufs without the inode lock first. This function
1432 	 * is speculative anyways, so missing one is ok.
1433 	 */
1434 	if (pipe->nrbufs)
1435 		return 0;
1436 
1437 	ret = 0;
1438 	pipe_lock(pipe);
1439 
1440 	while (!pipe->nrbufs) {
1441 		if (signal_pending(current)) {
1442 			ret = -ERESTARTSYS;
1443 			break;
1444 		}
1445 		if (!pipe->writers)
1446 			break;
1447 		if (!pipe->waiting_writers) {
1448 			if (flags & SPLICE_F_NONBLOCK) {
1449 				ret = -EAGAIN;
1450 				break;
1451 			}
1452 		}
1453 		pipe_wait(pipe);
1454 	}
1455 
1456 	pipe_unlock(pipe);
1457 	return ret;
1458 }
1459 
1460 /*
1461  * Make sure there's writeable room. Wait for room if we can, otherwise
1462  * return an appropriate error.
1463  */
1464 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1465 {
1466 	int ret;
1467 
1468 	/*
1469 	 * Check ->nrbufs without the inode lock first. This function
1470 	 * is speculative anyways, so missing one is ok.
1471 	 */
1472 	if (pipe->nrbufs < pipe->buffers)
1473 		return 0;
1474 
1475 	ret = 0;
1476 	pipe_lock(pipe);
1477 
1478 	while (pipe->nrbufs >= pipe->buffers) {
1479 		if (!pipe->readers) {
1480 			send_sig(SIGPIPE, current, 0);
1481 			ret = -EPIPE;
1482 			break;
1483 		}
1484 		if (flags & SPLICE_F_NONBLOCK) {
1485 			ret = -EAGAIN;
1486 			break;
1487 		}
1488 		if (signal_pending(current)) {
1489 			ret = -ERESTARTSYS;
1490 			break;
1491 		}
1492 		pipe->waiting_writers++;
1493 		pipe_wait(pipe);
1494 		pipe->waiting_writers--;
1495 	}
1496 
1497 	pipe_unlock(pipe);
1498 	return ret;
1499 }
1500 
1501 /*
1502  * Splice contents of ipipe to opipe.
1503  */
1504 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1505 			       struct pipe_inode_info *opipe,
1506 			       size_t len, unsigned int flags)
1507 {
1508 	struct pipe_buffer *ibuf, *obuf;
1509 	int ret = 0, nbuf;
1510 	bool input_wakeup = false;
1511 
1512 
1513 retry:
1514 	ret = ipipe_prep(ipipe, flags);
1515 	if (ret)
1516 		return ret;
1517 
1518 	ret = opipe_prep(opipe, flags);
1519 	if (ret)
1520 		return ret;
1521 
1522 	/*
1523 	 * Potential ABBA deadlock, work around it by ordering lock
1524 	 * grabbing by pipe info address. Otherwise two different processes
1525 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1526 	 */
1527 	pipe_double_lock(ipipe, opipe);
1528 
1529 	do {
1530 		if (!opipe->readers) {
1531 			send_sig(SIGPIPE, current, 0);
1532 			if (!ret)
1533 				ret = -EPIPE;
1534 			break;
1535 		}
1536 
1537 		if (!ipipe->nrbufs && !ipipe->writers)
1538 			break;
1539 
1540 		/*
1541 		 * Cannot make any progress, because either the input
1542 		 * pipe is empty or the output pipe is full.
1543 		 */
1544 		if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1545 			/* Already processed some buffers, break */
1546 			if (ret)
1547 				break;
1548 
1549 			if (flags & SPLICE_F_NONBLOCK) {
1550 				ret = -EAGAIN;
1551 				break;
1552 			}
1553 
1554 			/*
1555 			 * We raced with another reader/writer and haven't
1556 			 * managed to process any buffers.  A zero return
1557 			 * value means EOF, so retry instead.
1558 			 */
1559 			pipe_unlock(ipipe);
1560 			pipe_unlock(opipe);
1561 			goto retry;
1562 		}
1563 
1564 		ibuf = ipipe->bufs + ipipe->curbuf;
1565 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1566 		obuf = opipe->bufs + nbuf;
1567 
1568 		if (len >= ibuf->len) {
1569 			/*
1570 			 * Simply move the whole buffer from ipipe to opipe
1571 			 */
1572 			*obuf = *ibuf;
1573 			ibuf->ops = NULL;
1574 			opipe->nrbufs++;
1575 			ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1576 			ipipe->nrbufs--;
1577 			input_wakeup = true;
1578 		} else {
1579 			/*
1580 			 * Get a reference to this pipe buffer,
1581 			 * so we can copy the contents over.
1582 			 */
1583 			pipe_buf_get(ipipe, ibuf);
1584 			*obuf = *ibuf;
1585 
1586 			/*
1587 			 * Don't inherit the gift flag, we need to
1588 			 * prevent multiple steals of this page.
1589 			 */
1590 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1591 
1592 			obuf->len = len;
1593 			opipe->nrbufs++;
1594 			ibuf->offset += obuf->len;
1595 			ibuf->len -= obuf->len;
1596 		}
1597 		ret += obuf->len;
1598 		len -= obuf->len;
1599 	} while (len);
1600 
1601 	pipe_unlock(ipipe);
1602 	pipe_unlock(opipe);
1603 
1604 	/*
1605 	 * If we put data in the output pipe, wakeup any potential readers.
1606 	 */
1607 	if (ret > 0)
1608 		wakeup_pipe_readers(opipe);
1609 
1610 	if (input_wakeup)
1611 		wakeup_pipe_writers(ipipe);
1612 
1613 	return ret;
1614 }
1615 
1616 /*
1617  * Link contents of ipipe to opipe.
1618  */
1619 static int link_pipe(struct pipe_inode_info *ipipe,
1620 		     struct pipe_inode_info *opipe,
1621 		     size_t len, unsigned int flags)
1622 {
1623 	struct pipe_buffer *ibuf, *obuf;
1624 	int ret = 0, i = 0, nbuf;
1625 
1626 	/*
1627 	 * Potential ABBA deadlock, work around it by ordering lock
1628 	 * grabbing by pipe info address. Otherwise two different processes
1629 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1630 	 */
1631 	pipe_double_lock(ipipe, opipe);
1632 
1633 	do {
1634 		if (!opipe->readers) {
1635 			send_sig(SIGPIPE, current, 0);
1636 			if (!ret)
1637 				ret = -EPIPE;
1638 			break;
1639 		}
1640 
1641 		/*
1642 		 * If we have iterated all input buffers or ran out of
1643 		 * output room, break.
1644 		 */
1645 		if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1646 			break;
1647 
1648 		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1649 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1650 
1651 		/*
1652 		 * Get a reference to this pipe buffer,
1653 		 * so we can copy the contents over.
1654 		 */
1655 		pipe_buf_get(ipipe, ibuf);
1656 
1657 		obuf = opipe->bufs + nbuf;
1658 		*obuf = *ibuf;
1659 
1660 		/*
1661 		 * Don't inherit the gift flag, we need to
1662 		 * prevent multiple steals of this page.
1663 		 */
1664 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1665 
1666 		if (obuf->len > len)
1667 			obuf->len = len;
1668 
1669 		opipe->nrbufs++;
1670 		ret += obuf->len;
1671 		len -= obuf->len;
1672 		i++;
1673 	} while (len);
1674 
1675 	/*
1676 	 * return EAGAIN if we have the potential of some data in the
1677 	 * future, otherwise just return 0
1678 	 */
1679 	if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1680 		ret = -EAGAIN;
1681 
1682 	pipe_unlock(ipipe);
1683 	pipe_unlock(opipe);
1684 
1685 	/*
1686 	 * If we put data in the output pipe, wakeup any potential readers.
1687 	 */
1688 	if (ret > 0)
1689 		wakeup_pipe_readers(opipe);
1690 
1691 	return ret;
1692 }
1693 
1694 /*
1695  * This is a tee(1) implementation that works on pipes. It doesn't copy
1696  * any data, it simply references the 'in' pages on the 'out' pipe.
1697  * The 'flags' used are the SPLICE_F_* variants, currently the only
1698  * applicable one is SPLICE_F_NONBLOCK.
1699  */
1700 static long do_tee(struct file *in, struct file *out, size_t len,
1701 		   unsigned int flags)
1702 {
1703 	struct pipe_inode_info *ipipe = get_pipe_info(in);
1704 	struct pipe_inode_info *opipe = get_pipe_info(out);
1705 	int ret = -EINVAL;
1706 
1707 	/*
1708 	 * Duplicate the contents of ipipe to opipe without actually
1709 	 * copying the data.
1710 	 */
1711 	if (ipipe && opipe && ipipe != opipe) {
1712 		/*
1713 		 * Keep going, unless we encounter an error. The ipipe/opipe
1714 		 * ordering doesn't really matter.
1715 		 */
1716 		ret = ipipe_prep(ipipe, flags);
1717 		if (!ret) {
1718 			ret = opipe_prep(opipe, flags);
1719 			if (!ret)
1720 				ret = link_pipe(ipipe, opipe, len, flags);
1721 		}
1722 	}
1723 
1724 	return ret;
1725 }
1726 
1727 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1728 {
1729 	struct fd in;
1730 	int error;
1731 
1732 	if (unlikely(!len))
1733 		return 0;
1734 
1735 	error = -EBADF;
1736 	in = fdget(fdin);
1737 	if (in.file) {
1738 		if (in.file->f_mode & FMODE_READ) {
1739 			struct fd out = fdget(fdout);
1740 			if (out.file) {
1741 				if (out.file->f_mode & FMODE_WRITE)
1742 					error = do_tee(in.file, out.file,
1743 							len, flags);
1744 				fdput(out);
1745 			}
1746 		}
1747  		fdput(in);
1748  	}
1749 
1750 	return error;
1751 }
1752