xref: /openbmc/linux/fs/splice.c (revision e71383fb9cd15a28d6c01d2c165a96f1c0bcf418)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * "splice": joining two ropes together by interweaving their strands.
4  *
5  * This is the "extended pipe" functionality, where a pipe is used as
6  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
7  * buffer that you can use to transfer data from one end to the other.
8  *
9  * The traditional unix read/write is extended with a "splice()" operation
10  * that transfers data buffers to or from a pipe buffer.
11  *
12  * Named by Larry McVoy, original implementation from Linus, extended by
13  * Jens to support splicing to files, network, direct splicing, etc and
14  * fixing lots of bugs.
15  *
16  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
17  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
18  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
19  *
20  */
21 #include <linux/bvec.h>
22 #include <linux/fs.h>
23 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/splice.h>
26 #include <linux/memcontrol.h>
27 #include <linux/mm_inline.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/export.h>
31 #include <linux/syscalls.h>
32 #include <linux/uio.h>
33 #include <linux/fsnotify.h>
34 #include <linux/security.h>
35 #include <linux/gfp.h>
36 #include <linux/net.h>
37 #include <linux/socket.h>
38 #include <linux/sched/signal.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Splice doesn't support FMODE_NOWAIT. Since pipes may set this flag to
44  * indicate they support non-blocking reads or writes, we must clear it
45  * here if set to avoid blocking other users of this pipe if splice is
46  * being done on it.
47  */
48 static noinline void noinline pipe_clear_nowait(struct file *file)
49 {
50 	fmode_t fmode = READ_ONCE(file->f_mode);
51 
52 	do {
53 		if (!(fmode & FMODE_NOWAIT))
54 			break;
55 	} while (!try_cmpxchg(&file->f_mode, &fmode, fmode & ~FMODE_NOWAIT));
56 }
57 
58 /*
59  * Attempt to steal a page from a pipe buffer. This should perhaps go into
60  * a vm helper function, it's already simplified quite a bit by the
61  * addition of remove_mapping(). If success is returned, the caller may
62  * attempt to reuse this page for another destination.
63  */
64 static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe,
65 		struct pipe_buffer *buf)
66 {
67 	struct folio *folio = page_folio(buf->page);
68 	struct address_space *mapping;
69 
70 	folio_lock(folio);
71 
72 	mapping = folio_mapping(folio);
73 	if (mapping) {
74 		WARN_ON(!folio_test_uptodate(folio));
75 
76 		/*
77 		 * At least for ext2 with nobh option, we need to wait on
78 		 * writeback completing on this folio, since we'll remove it
79 		 * from the pagecache.  Otherwise truncate wont wait on the
80 		 * folio, allowing the disk blocks to be reused by someone else
81 		 * before we actually wrote our data to them. fs corruption
82 		 * ensues.
83 		 */
84 		folio_wait_writeback(folio);
85 
86 		if (folio_has_private(folio) &&
87 		    !filemap_release_folio(folio, GFP_KERNEL))
88 			goto out_unlock;
89 
90 		/*
91 		 * If we succeeded in removing the mapping, set LRU flag
92 		 * and return good.
93 		 */
94 		if (remove_mapping(mapping, folio)) {
95 			buf->flags |= PIPE_BUF_FLAG_LRU;
96 			return true;
97 		}
98 	}
99 
100 	/*
101 	 * Raced with truncate or failed to remove folio from current
102 	 * address space, unlock and return failure.
103 	 */
104 out_unlock:
105 	folio_unlock(folio);
106 	return false;
107 }
108 
109 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
110 					struct pipe_buffer *buf)
111 {
112 	put_page(buf->page);
113 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
114 }
115 
116 /*
117  * Check whether the contents of buf is OK to access. Since the content
118  * is a page cache page, IO may be in flight.
119  */
120 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
121 				       struct pipe_buffer *buf)
122 {
123 	struct page *page = buf->page;
124 	int err;
125 
126 	if (!PageUptodate(page)) {
127 		lock_page(page);
128 
129 		/*
130 		 * Page got truncated/unhashed. This will cause a 0-byte
131 		 * splice, if this is the first page.
132 		 */
133 		if (!page->mapping) {
134 			err = -ENODATA;
135 			goto error;
136 		}
137 
138 		/*
139 		 * Uh oh, read-error from disk.
140 		 */
141 		if (!PageUptodate(page)) {
142 			err = -EIO;
143 			goto error;
144 		}
145 
146 		/*
147 		 * Page is ok afterall, we are done.
148 		 */
149 		unlock_page(page);
150 	}
151 
152 	return 0;
153 error:
154 	unlock_page(page);
155 	return err;
156 }
157 
158 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
159 	.confirm	= page_cache_pipe_buf_confirm,
160 	.release	= page_cache_pipe_buf_release,
161 	.try_steal	= page_cache_pipe_buf_try_steal,
162 	.get		= generic_pipe_buf_get,
163 };
164 
165 static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe,
166 		struct pipe_buffer *buf)
167 {
168 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
169 		return false;
170 
171 	buf->flags |= PIPE_BUF_FLAG_LRU;
172 	return generic_pipe_buf_try_steal(pipe, buf);
173 }
174 
175 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
176 	.release	= page_cache_pipe_buf_release,
177 	.try_steal	= user_page_pipe_buf_try_steal,
178 	.get		= generic_pipe_buf_get,
179 };
180 
181 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
182 {
183 	smp_mb();
184 	if (waitqueue_active(&pipe->rd_wait))
185 		wake_up_interruptible(&pipe->rd_wait);
186 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
187 }
188 
189 /**
190  * splice_to_pipe - fill passed data into a pipe
191  * @pipe:	pipe to fill
192  * @spd:	data to fill
193  *
194  * Description:
195  *    @spd contains a map of pages and len/offset tuples, along with
196  *    the struct pipe_buf_operations associated with these pages. This
197  *    function will link that data to the pipe.
198  *
199  */
200 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
201 		       struct splice_pipe_desc *spd)
202 {
203 	unsigned int spd_pages = spd->nr_pages;
204 	unsigned int tail = pipe->tail;
205 	unsigned int head = pipe->head;
206 	unsigned int mask = pipe->ring_size - 1;
207 	int ret = 0, page_nr = 0;
208 
209 	if (!spd_pages)
210 		return 0;
211 
212 	if (unlikely(!pipe->readers)) {
213 		send_sig(SIGPIPE, current, 0);
214 		ret = -EPIPE;
215 		goto out;
216 	}
217 
218 	while (!pipe_full(head, tail, pipe->max_usage)) {
219 		struct pipe_buffer *buf = &pipe->bufs[head & mask];
220 
221 		buf->page = spd->pages[page_nr];
222 		buf->offset = spd->partial[page_nr].offset;
223 		buf->len = spd->partial[page_nr].len;
224 		buf->private = spd->partial[page_nr].private;
225 		buf->ops = spd->ops;
226 		buf->flags = 0;
227 
228 		head++;
229 		pipe->head = head;
230 		page_nr++;
231 		ret += buf->len;
232 
233 		if (!--spd->nr_pages)
234 			break;
235 	}
236 
237 	if (!ret)
238 		ret = -EAGAIN;
239 
240 out:
241 	while (page_nr < spd_pages)
242 		spd->spd_release(spd, page_nr++);
243 
244 	return ret;
245 }
246 EXPORT_SYMBOL_GPL(splice_to_pipe);
247 
248 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
249 {
250 	unsigned int head = pipe->head;
251 	unsigned int tail = pipe->tail;
252 	unsigned int mask = pipe->ring_size - 1;
253 	int ret;
254 
255 	if (unlikely(!pipe->readers)) {
256 		send_sig(SIGPIPE, current, 0);
257 		ret = -EPIPE;
258 	} else if (pipe_full(head, tail, pipe->max_usage)) {
259 		ret = -EAGAIN;
260 	} else {
261 		pipe->bufs[head & mask] = *buf;
262 		pipe->head = head + 1;
263 		return buf->len;
264 	}
265 	pipe_buf_release(pipe, buf);
266 	return ret;
267 }
268 EXPORT_SYMBOL(add_to_pipe);
269 
270 /*
271  * Check if we need to grow the arrays holding pages and partial page
272  * descriptions.
273  */
274 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
275 {
276 	unsigned int max_usage = READ_ONCE(pipe->max_usage);
277 
278 	spd->nr_pages_max = max_usage;
279 	if (max_usage <= PIPE_DEF_BUFFERS)
280 		return 0;
281 
282 	spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL);
283 	spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page),
284 				     GFP_KERNEL);
285 
286 	if (spd->pages && spd->partial)
287 		return 0;
288 
289 	kfree(spd->pages);
290 	kfree(spd->partial);
291 	return -ENOMEM;
292 }
293 
294 void splice_shrink_spd(struct splice_pipe_desc *spd)
295 {
296 	if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
297 		return;
298 
299 	kfree(spd->pages);
300 	kfree(spd->partial);
301 }
302 
303 /*
304  * Splice data from an O_DIRECT file into pages and then add them to the output
305  * pipe.
306  */
307 ssize_t direct_splice_read(struct file *in, loff_t *ppos,
308 			   struct pipe_inode_info *pipe,
309 			   size_t len, unsigned int flags)
310 {
311 	struct iov_iter to;
312 	struct bio_vec *bv;
313 	struct kiocb kiocb;
314 	struct page **pages;
315 	ssize_t ret;
316 	size_t used, npages, chunk, remain, reclaim;
317 	int i;
318 
319 	/* Work out how much data we can actually add into the pipe */
320 	used = pipe_occupancy(pipe->head, pipe->tail);
321 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
322 	len = min_t(size_t, len, npages * PAGE_SIZE);
323 	npages = DIV_ROUND_UP(len, PAGE_SIZE);
324 
325 	bv = kzalloc(array_size(npages, sizeof(bv[0])) +
326 		     array_size(npages, sizeof(struct page *)), GFP_KERNEL);
327 	if (!bv)
328 		return -ENOMEM;
329 
330 	pages = (void *)(bv + npages);
331 	npages = alloc_pages_bulk_array(GFP_USER, npages, pages);
332 	if (!npages) {
333 		kfree(bv);
334 		return -ENOMEM;
335 	}
336 
337 	remain = len = min_t(size_t, len, npages * PAGE_SIZE);
338 
339 	for (i = 0; i < npages; i++) {
340 		chunk = min_t(size_t, PAGE_SIZE, remain);
341 		bv[i].bv_page = pages[i];
342 		bv[i].bv_offset = 0;
343 		bv[i].bv_len = chunk;
344 		remain -= chunk;
345 	}
346 
347 	/* Do the I/O */
348 	iov_iter_bvec(&to, ITER_DEST, bv, npages, len);
349 	init_sync_kiocb(&kiocb, in);
350 	kiocb.ki_pos = *ppos;
351 	ret = call_read_iter(in, &kiocb, &to);
352 
353 	reclaim = npages * PAGE_SIZE;
354 	remain = 0;
355 	if (ret > 0) {
356 		reclaim -= ret;
357 		remain = ret;
358 		*ppos = kiocb.ki_pos;
359 		file_accessed(in);
360 	} else if (ret < 0) {
361 		/*
362 		 * callers of ->splice_read() expect -EAGAIN on
363 		 * "can't put anything in there", rather than -EFAULT.
364 		 */
365 		if (ret == -EFAULT)
366 			ret = -EAGAIN;
367 	}
368 
369 	/* Free any pages that didn't get touched at all. */
370 	reclaim /= PAGE_SIZE;
371 	if (reclaim) {
372 		npages -= reclaim;
373 		release_pages(pages + npages, reclaim);
374 	}
375 
376 	/* Push the remaining pages into the pipe. */
377 	for (i = 0; i < npages; i++) {
378 		struct pipe_buffer *buf = pipe_head_buf(pipe);
379 
380 		chunk = min_t(size_t, remain, PAGE_SIZE);
381 		*buf = (struct pipe_buffer) {
382 			.ops	= &default_pipe_buf_ops,
383 			.page	= bv[i].bv_page,
384 			.offset	= 0,
385 			.len	= chunk,
386 		};
387 		pipe->head++;
388 		remain -= chunk;
389 	}
390 
391 	kfree(bv);
392 	return ret;
393 }
394 EXPORT_SYMBOL(direct_splice_read);
395 
396 /**
397  * generic_file_splice_read - splice data from file to a pipe
398  * @in:		file to splice from
399  * @ppos:	position in @in
400  * @pipe:	pipe to splice to
401  * @len:	number of bytes to splice
402  * @flags:	splice modifier flags
403  *
404  * Description:
405  *    Will read pages from given file and fill them into a pipe. Can be
406  *    used as long as it has more or less sane ->read_iter().
407  *
408  */
409 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
410 				 struct pipe_inode_info *pipe, size_t len,
411 				 unsigned int flags)
412 {
413 	struct iov_iter to;
414 	struct kiocb kiocb;
415 	int ret;
416 
417 	iov_iter_pipe(&to, ITER_DEST, pipe, len);
418 	init_sync_kiocb(&kiocb, in);
419 	kiocb.ki_pos = *ppos;
420 	ret = call_read_iter(in, &kiocb, &to);
421 	if (ret > 0) {
422 		*ppos = kiocb.ki_pos;
423 		file_accessed(in);
424 	} else if (ret < 0) {
425 		/* free what was emitted */
426 		pipe_discard_from(pipe, to.start_head);
427 		/*
428 		 * callers of ->splice_read() expect -EAGAIN on
429 		 * "can't put anything in there", rather than -EFAULT.
430 		 */
431 		if (ret == -EFAULT)
432 			ret = -EAGAIN;
433 	}
434 
435 	return ret;
436 }
437 EXPORT_SYMBOL(generic_file_splice_read);
438 
439 const struct pipe_buf_operations default_pipe_buf_ops = {
440 	.release	= generic_pipe_buf_release,
441 	.try_steal	= generic_pipe_buf_try_steal,
442 	.get		= generic_pipe_buf_get,
443 };
444 
445 /* Pipe buffer operations for a socket and similar. */
446 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
447 	.release	= generic_pipe_buf_release,
448 	.get		= generic_pipe_buf_get,
449 };
450 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
451 
452 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
453 {
454 	smp_mb();
455 	if (waitqueue_active(&pipe->wr_wait))
456 		wake_up_interruptible(&pipe->wr_wait);
457 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
458 }
459 
460 /**
461  * splice_from_pipe_feed - feed available data from a pipe to a file
462  * @pipe:	pipe to splice from
463  * @sd:		information to @actor
464  * @actor:	handler that splices the data
465  *
466  * Description:
467  *    This function loops over the pipe and calls @actor to do the
468  *    actual moving of a single struct pipe_buffer to the desired
469  *    destination.  It returns when there's no more buffers left in
470  *    the pipe or if the requested number of bytes (@sd->total_len)
471  *    have been copied.  It returns a positive number (one) if the
472  *    pipe needs to be filled with more data, zero if the required
473  *    number of bytes have been copied and -errno on error.
474  *
475  *    This, together with splice_from_pipe_{begin,end,next}, may be
476  *    used to implement the functionality of __splice_from_pipe() when
477  *    locking is required around copying the pipe buffers to the
478  *    destination.
479  */
480 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
481 			  splice_actor *actor)
482 {
483 	unsigned int head = pipe->head;
484 	unsigned int tail = pipe->tail;
485 	unsigned int mask = pipe->ring_size - 1;
486 	int ret;
487 
488 	while (!pipe_empty(head, tail)) {
489 		struct pipe_buffer *buf = &pipe->bufs[tail & mask];
490 
491 		sd->len = buf->len;
492 		if (sd->len > sd->total_len)
493 			sd->len = sd->total_len;
494 
495 		ret = pipe_buf_confirm(pipe, buf);
496 		if (unlikely(ret)) {
497 			if (ret == -ENODATA)
498 				ret = 0;
499 			return ret;
500 		}
501 
502 		ret = actor(pipe, buf, sd);
503 		if (ret <= 0)
504 			return ret;
505 
506 		buf->offset += ret;
507 		buf->len -= ret;
508 
509 		sd->num_spliced += ret;
510 		sd->len -= ret;
511 		sd->pos += ret;
512 		sd->total_len -= ret;
513 
514 		if (!buf->len) {
515 			pipe_buf_release(pipe, buf);
516 			tail++;
517 			pipe->tail = tail;
518 			if (pipe->files)
519 				sd->need_wakeup = true;
520 		}
521 
522 		if (!sd->total_len)
523 			return 0;
524 	}
525 
526 	return 1;
527 }
528 
529 /* We know we have a pipe buffer, but maybe it's empty? */
530 static inline bool eat_empty_buffer(struct pipe_inode_info *pipe)
531 {
532 	unsigned int tail = pipe->tail;
533 	unsigned int mask = pipe->ring_size - 1;
534 	struct pipe_buffer *buf = &pipe->bufs[tail & mask];
535 
536 	if (unlikely(!buf->len)) {
537 		pipe_buf_release(pipe, buf);
538 		pipe->tail = tail+1;
539 		return true;
540 	}
541 
542 	return false;
543 }
544 
545 /**
546  * splice_from_pipe_next - wait for some data to splice from
547  * @pipe:	pipe to splice from
548  * @sd:		information about the splice operation
549  *
550  * Description:
551  *    This function will wait for some data and return a positive
552  *    value (one) if pipe buffers are available.  It will return zero
553  *    or -errno if no more data needs to be spliced.
554  */
555 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
556 {
557 	/*
558 	 * Check for signal early to make process killable when there are
559 	 * always buffers available
560 	 */
561 	if (signal_pending(current))
562 		return -ERESTARTSYS;
563 
564 repeat:
565 	while (pipe_empty(pipe->head, pipe->tail)) {
566 		if (!pipe->writers)
567 			return 0;
568 
569 		if (sd->num_spliced)
570 			return 0;
571 
572 		if (sd->flags & SPLICE_F_NONBLOCK)
573 			return -EAGAIN;
574 
575 		if (signal_pending(current))
576 			return -ERESTARTSYS;
577 
578 		if (sd->need_wakeup) {
579 			wakeup_pipe_writers(pipe);
580 			sd->need_wakeup = false;
581 		}
582 
583 		pipe_wait_readable(pipe);
584 	}
585 
586 	if (eat_empty_buffer(pipe))
587 		goto repeat;
588 
589 	return 1;
590 }
591 
592 /**
593  * splice_from_pipe_begin - start splicing from pipe
594  * @sd:		information about the splice operation
595  *
596  * Description:
597  *    This function should be called before a loop containing
598  *    splice_from_pipe_next() and splice_from_pipe_feed() to
599  *    initialize the necessary fields of @sd.
600  */
601 static void splice_from_pipe_begin(struct splice_desc *sd)
602 {
603 	sd->num_spliced = 0;
604 	sd->need_wakeup = false;
605 }
606 
607 /**
608  * splice_from_pipe_end - finish splicing from pipe
609  * @pipe:	pipe to splice from
610  * @sd:		information about the splice operation
611  *
612  * Description:
613  *    This function will wake up pipe writers if necessary.  It should
614  *    be called after a loop containing splice_from_pipe_next() and
615  *    splice_from_pipe_feed().
616  */
617 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
618 {
619 	if (sd->need_wakeup)
620 		wakeup_pipe_writers(pipe);
621 }
622 
623 /**
624  * __splice_from_pipe - splice data from a pipe to given actor
625  * @pipe:	pipe to splice from
626  * @sd:		information to @actor
627  * @actor:	handler that splices the data
628  *
629  * Description:
630  *    This function does little more than loop over the pipe and call
631  *    @actor to do the actual moving of a single struct pipe_buffer to
632  *    the desired destination. See pipe_to_file, pipe_to_sendmsg, or
633  *    pipe_to_user.
634  *
635  */
636 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
637 			   splice_actor *actor)
638 {
639 	int ret;
640 
641 	splice_from_pipe_begin(sd);
642 	do {
643 		cond_resched();
644 		ret = splice_from_pipe_next(pipe, sd);
645 		if (ret > 0)
646 			ret = splice_from_pipe_feed(pipe, sd, actor);
647 	} while (ret > 0);
648 	splice_from_pipe_end(pipe, sd);
649 
650 	return sd->num_spliced ? sd->num_spliced : ret;
651 }
652 EXPORT_SYMBOL(__splice_from_pipe);
653 
654 /**
655  * splice_from_pipe - splice data from a pipe to a file
656  * @pipe:	pipe to splice from
657  * @out:	file to splice to
658  * @ppos:	position in @out
659  * @len:	how many bytes to splice
660  * @flags:	splice modifier flags
661  * @actor:	handler that splices the data
662  *
663  * Description:
664  *    See __splice_from_pipe. This function locks the pipe inode,
665  *    otherwise it's identical to __splice_from_pipe().
666  *
667  */
668 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
669 			 loff_t *ppos, size_t len, unsigned int flags,
670 			 splice_actor *actor)
671 {
672 	ssize_t ret;
673 	struct splice_desc sd = {
674 		.total_len = len,
675 		.flags = flags,
676 		.pos = *ppos,
677 		.u.file = out,
678 	};
679 
680 	pipe_lock(pipe);
681 	ret = __splice_from_pipe(pipe, &sd, actor);
682 	pipe_unlock(pipe);
683 
684 	return ret;
685 }
686 
687 /**
688  * iter_file_splice_write - splice data from a pipe to a file
689  * @pipe:	pipe info
690  * @out:	file to write to
691  * @ppos:	position in @out
692  * @len:	number of bytes to splice
693  * @flags:	splice modifier flags
694  *
695  * Description:
696  *    Will either move or copy pages (determined by @flags options) from
697  *    the given pipe inode to the given file.
698  *    This one is ->write_iter-based.
699  *
700  */
701 ssize_t
702 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
703 			  loff_t *ppos, size_t len, unsigned int flags)
704 {
705 	struct splice_desc sd = {
706 		.total_len = len,
707 		.flags = flags,
708 		.pos = *ppos,
709 		.u.file = out,
710 	};
711 	int nbufs = pipe->max_usage;
712 	struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
713 					GFP_KERNEL);
714 	ssize_t ret;
715 
716 	if (unlikely(!array))
717 		return -ENOMEM;
718 
719 	pipe_lock(pipe);
720 
721 	splice_from_pipe_begin(&sd);
722 	while (sd.total_len) {
723 		struct iov_iter from;
724 		unsigned int head, tail, mask;
725 		size_t left;
726 		int n;
727 
728 		ret = splice_from_pipe_next(pipe, &sd);
729 		if (ret <= 0)
730 			break;
731 
732 		if (unlikely(nbufs < pipe->max_usage)) {
733 			kfree(array);
734 			nbufs = pipe->max_usage;
735 			array = kcalloc(nbufs, sizeof(struct bio_vec),
736 					GFP_KERNEL);
737 			if (!array) {
738 				ret = -ENOMEM;
739 				break;
740 			}
741 		}
742 
743 		head = pipe->head;
744 		tail = pipe->tail;
745 		mask = pipe->ring_size - 1;
746 
747 		/* build the vector */
748 		left = sd.total_len;
749 		for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) {
750 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
751 			size_t this_len = buf->len;
752 
753 			/* zero-length bvecs are not supported, skip them */
754 			if (!this_len)
755 				continue;
756 			this_len = min(this_len, left);
757 
758 			ret = pipe_buf_confirm(pipe, buf);
759 			if (unlikely(ret)) {
760 				if (ret == -ENODATA)
761 					ret = 0;
762 				goto done;
763 			}
764 
765 			bvec_set_page(&array[n], buf->page, this_len,
766 				      buf->offset);
767 			left -= this_len;
768 			n++;
769 		}
770 
771 		iov_iter_bvec(&from, ITER_SOURCE, array, n, sd.total_len - left);
772 		ret = vfs_iter_write(out, &from, &sd.pos, 0);
773 		if (ret <= 0)
774 			break;
775 
776 		sd.num_spliced += ret;
777 		sd.total_len -= ret;
778 		*ppos = sd.pos;
779 
780 		/* dismiss the fully eaten buffers, adjust the partial one */
781 		tail = pipe->tail;
782 		while (ret) {
783 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
784 			if (ret >= buf->len) {
785 				ret -= buf->len;
786 				buf->len = 0;
787 				pipe_buf_release(pipe, buf);
788 				tail++;
789 				pipe->tail = tail;
790 				if (pipe->files)
791 					sd.need_wakeup = true;
792 			} else {
793 				buf->offset += ret;
794 				buf->len -= ret;
795 				ret = 0;
796 			}
797 		}
798 	}
799 done:
800 	kfree(array);
801 	splice_from_pipe_end(pipe, &sd);
802 
803 	pipe_unlock(pipe);
804 
805 	if (sd.num_spliced)
806 		ret = sd.num_spliced;
807 
808 	return ret;
809 }
810 
811 EXPORT_SYMBOL(iter_file_splice_write);
812 
813 #ifdef CONFIG_NET
814 /**
815  * splice_to_socket - splice data from a pipe to a socket
816  * @pipe:	pipe to splice from
817  * @out:	socket to write to
818  * @ppos:	position in @out
819  * @len:	number of bytes to splice
820  * @flags:	splice modifier flags
821  *
822  * Description:
823  *    Will send @len bytes from the pipe to a network socket. No data copying
824  *    is involved.
825  *
826  */
827 ssize_t splice_to_socket(struct pipe_inode_info *pipe, struct file *out,
828 			 loff_t *ppos, size_t len, unsigned int flags)
829 {
830 	struct socket *sock = sock_from_file(out);
831 	struct bio_vec bvec[16];
832 	struct msghdr msg = {};
833 	ssize_t ret = 0;
834 	size_t spliced = 0;
835 	bool need_wakeup = false;
836 
837 	pipe_lock(pipe);
838 
839 	while (len > 0) {
840 		unsigned int head, tail, mask, bc = 0;
841 		size_t remain = len;
842 
843 		/*
844 		 * Check for signal early to make process killable when there
845 		 * are always buffers available
846 		 */
847 		ret = -ERESTARTSYS;
848 		if (signal_pending(current))
849 			break;
850 
851 		while (pipe_empty(pipe->head, pipe->tail)) {
852 			ret = 0;
853 			if (!pipe->writers)
854 				goto out;
855 
856 			if (spliced)
857 				goto out;
858 
859 			ret = -EAGAIN;
860 			if (flags & SPLICE_F_NONBLOCK)
861 				goto out;
862 
863 			ret = -ERESTARTSYS;
864 			if (signal_pending(current))
865 				goto out;
866 
867 			if (need_wakeup) {
868 				wakeup_pipe_writers(pipe);
869 				need_wakeup = false;
870 			}
871 
872 			pipe_wait_readable(pipe);
873 		}
874 
875 		head = pipe->head;
876 		tail = pipe->tail;
877 		mask = pipe->ring_size - 1;
878 
879 		while (!pipe_empty(head, tail)) {
880 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
881 			size_t seg;
882 
883 			if (!buf->len) {
884 				tail++;
885 				continue;
886 			}
887 
888 			seg = min_t(size_t, remain, buf->len);
889 			seg = min_t(size_t, seg, PAGE_SIZE);
890 
891 			ret = pipe_buf_confirm(pipe, buf);
892 			if (unlikely(ret)) {
893 				if (ret == -ENODATA)
894 					ret = 0;
895 				break;
896 			}
897 
898 			bvec_set_page(&bvec[bc++], buf->page, seg, buf->offset);
899 			remain -= seg;
900 			if (seg >= buf->len)
901 				tail++;
902 			if (bc >= ARRAY_SIZE(bvec))
903 				break;
904 		}
905 
906 		if (!bc)
907 			break;
908 
909 		msg.msg_flags = MSG_SPLICE_PAGES;
910 		if (flags & SPLICE_F_MORE)
911 			msg.msg_flags |= MSG_MORE;
912 		if (remain && pipe_occupancy(pipe->head, tail) > 0)
913 			msg.msg_flags |= MSG_MORE;
914 
915 		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, bvec, bc,
916 			      len - remain);
917 		ret = sock_sendmsg(sock, &msg);
918 		if (ret <= 0)
919 			break;
920 
921 		spliced += ret;
922 		len -= ret;
923 		tail = pipe->tail;
924 		while (ret > 0) {
925 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
926 			size_t seg = min_t(size_t, ret, buf->len);
927 
928 			buf->offset += seg;
929 			buf->len -= seg;
930 			ret -= seg;
931 
932 			if (!buf->len) {
933 				pipe_buf_release(pipe, buf);
934 				tail++;
935 			}
936 		}
937 
938 		if (tail != pipe->tail) {
939 			pipe->tail = tail;
940 			if (pipe->files)
941 				need_wakeup = true;
942 		}
943 	}
944 
945 out:
946 	pipe_unlock(pipe);
947 	if (need_wakeup)
948 		wakeup_pipe_writers(pipe);
949 	return spliced ?: ret;
950 }
951 #endif
952 
953 static int warn_unsupported(struct file *file, const char *op)
954 {
955 	pr_debug_ratelimited(
956 		"splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n",
957 		op, file, current->pid, current->comm);
958 	return -EINVAL;
959 }
960 
961 /*
962  * Attempt to initiate a splice from pipe to file.
963  */
964 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
965 			   loff_t *ppos, size_t len, unsigned int flags)
966 {
967 	if (unlikely(!out->f_op->splice_write))
968 		return warn_unsupported(out, "write");
969 	return out->f_op->splice_write(pipe, out, ppos, len, flags);
970 }
971 
972 /*
973  * Indicate to the caller that there was a premature EOF when reading from the
974  * source and the caller didn't indicate they would be sending more data after
975  * this.
976  */
977 static void do_splice_eof(struct splice_desc *sd)
978 {
979 	if (sd->splice_eof)
980 		sd->splice_eof(sd);
981 }
982 
983 /*
984  * Attempt to initiate a splice from a file to a pipe.
985  */
986 static long do_splice_to(struct file *in, loff_t *ppos,
987 			 struct pipe_inode_info *pipe, size_t len,
988 			 unsigned int flags)
989 {
990 	unsigned int p_space;
991 	int ret;
992 
993 	if (unlikely(!(in->f_mode & FMODE_READ)))
994 		return -EBADF;
995 
996 	/* Don't try to read more the pipe has space for. */
997 	p_space = pipe->max_usage - pipe_occupancy(pipe->head, pipe->tail);
998 	len = min_t(size_t, len, p_space << PAGE_SHIFT);
999 
1000 	ret = rw_verify_area(READ, in, ppos, len);
1001 	if (unlikely(ret < 0))
1002 		return ret;
1003 
1004 	if (unlikely(len > MAX_RW_COUNT))
1005 		len = MAX_RW_COUNT;
1006 
1007 	if (unlikely(!in->f_op->splice_read))
1008 		return warn_unsupported(in, "read");
1009 	return in->f_op->splice_read(in, ppos, pipe, len, flags);
1010 }
1011 
1012 /**
1013  * splice_direct_to_actor - splices data directly between two non-pipes
1014  * @in:		file to splice from
1015  * @sd:		actor information on where to splice to
1016  * @actor:	handles the data splicing
1017  *
1018  * Description:
1019  *    This is a special case helper to splice directly between two
1020  *    points, without requiring an explicit pipe. Internally an allocated
1021  *    pipe is cached in the process, and reused during the lifetime of
1022  *    that process.
1023  *
1024  */
1025 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1026 			       splice_direct_actor *actor)
1027 {
1028 	struct pipe_inode_info *pipe;
1029 	long ret, bytes;
1030 	size_t len;
1031 	int i, flags, more;
1032 
1033 	/*
1034 	 * We require the input to be seekable, as we don't want to randomly
1035 	 * drop data for eg socket -> socket splicing. Use the piped splicing
1036 	 * for that!
1037 	 */
1038 	if (unlikely(!(in->f_mode & FMODE_LSEEK)))
1039 		return -EINVAL;
1040 
1041 	/*
1042 	 * neither in nor out is a pipe, setup an internal pipe attached to
1043 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
1044 	 */
1045 	pipe = current->splice_pipe;
1046 	if (unlikely(!pipe)) {
1047 		pipe = alloc_pipe_info();
1048 		if (!pipe)
1049 			return -ENOMEM;
1050 
1051 		/*
1052 		 * We don't have an immediate reader, but we'll read the stuff
1053 		 * out of the pipe right after the splice_to_pipe(). So set
1054 		 * PIPE_READERS appropriately.
1055 		 */
1056 		pipe->readers = 1;
1057 
1058 		current->splice_pipe = pipe;
1059 	}
1060 
1061 	/*
1062 	 * Do the splice.
1063 	 */
1064 	bytes = 0;
1065 	len = sd->total_len;
1066 
1067 	/* Don't block on output, we have to drain the direct pipe. */
1068 	flags = sd->flags;
1069 	sd->flags &= ~SPLICE_F_NONBLOCK;
1070 
1071 	/*
1072 	 * We signal MORE until we've read sufficient data to fulfill the
1073 	 * request and we keep signalling it if the caller set it.
1074 	 */
1075 	more = sd->flags & SPLICE_F_MORE;
1076 	sd->flags |= SPLICE_F_MORE;
1077 
1078 	WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail));
1079 
1080 	while (len) {
1081 		size_t read_len;
1082 		loff_t pos = sd->pos, prev_pos = pos;
1083 
1084 		ret = do_splice_to(in, &pos, pipe, len, flags);
1085 		if (unlikely(ret <= 0))
1086 			goto read_failure;
1087 
1088 		read_len = ret;
1089 		sd->total_len = read_len;
1090 
1091 		/*
1092 		 * If we now have sufficient data to fulfill the request then
1093 		 * we clear SPLICE_F_MORE if it was not set initially.
1094 		 */
1095 		if (read_len >= len && !more)
1096 			sd->flags &= ~SPLICE_F_MORE;
1097 
1098 		/*
1099 		 * NOTE: nonblocking mode only applies to the input. We
1100 		 * must not do the output in nonblocking mode as then we
1101 		 * could get stuck data in the internal pipe:
1102 		 */
1103 		ret = actor(pipe, sd);
1104 		if (unlikely(ret <= 0)) {
1105 			sd->pos = prev_pos;
1106 			goto out_release;
1107 		}
1108 
1109 		bytes += ret;
1110 		len -= ret;
1111 		sd->pos = pos;
1112 
1113 		if (ret < read_len) {
1114 			sd->pos = prev_pos + ret;
1115 			goto out_release;
1116 		}
1117 	}
1118 
1119 done:
1120 	pipe->tail = pipe->head = 0;
1121 	file_accessed(in);
1122 	return bytes;
1123 
1124 read_failure:
1125 	/*
1126 	 * If the user did *not* set SPLICE_F_MORE *and* we didn't hit that
1127 	 * "use all of len" case that cleared SPLICE_F_MORE, *and* we did a
1128 	 * "->splice_in()" that returned EOF (ie zero) *and* we have sent at
1129 	 * least 1 byte *then* we will also do the ->splice_eof() call.
1130 	 */
1131 	if (ret == 0 && !more && len > 0 && bytes)
1132 		do_splice_eof(sd);
1133 out_release:
1134 	/*
1135 	 * If we did an incomplete transfer we must release
1136 	 * the pipe buffers in question:
1137 	 */
1138 	for (i = 0; i < pipe->ring_size; i++) {
1139 		struct pipe_buffer *buf = &pipe->bufs[i];
1140 
1141 		if (buf->ops)
1142 			pipe_buf_release(pipe, buf);
1143 	}
1144 
1145 	if (!bytes)
1146 		bytes = ret;
1147 
1148 	goto done;
1149 }
1150 EXPORT_SYMBOL(splice_direct_to_actor);
1151 
1152 static int direct_splice_actor(struct pipe_inode_info *pipe,
1153 			       struct splice_desc *sd)
1154 {
1155 	struct file *file = sd->u.file;
1156 
1157 	return do_splice_from(pipe, file, sd->opos, sd->total_len,
1158 			      sd->flags);
1159 }
1160 
1161 static void direct_file_splice_eof(struct splice_desc *sd)
1162 {
1163 	struct file *file = sd->u.file;
1164 
1165 	if (file->f_op->splice_eof)
1166 		file->f_op->splice_eof(file);
1167 }
1168 
1169 /**
1170  * do_splice_direct - splices data directly between two files
1171  * @in:		file to splice from
1172  * @ppos:	input file offset
1173  * @out:	file to splice to
1174  * @opos:	output file offset
1175  * @len:	number of bytes to splice
1176  * @flags:	splice modifier flags
1177  *
1178  * Description:
1179  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1180  *    doing it in the application would incur an extra system call
1181  *    (splice in + splice out, as compared to just sendfile()). So this helper
1182  *    can splice directly through a process-private pipe.
1183  *
1184  */
1185 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1186 		      loff_t *opos, size_t len, unsigned int flags)
1187 {
1188 	struct splice_desc sd = {
1189 		.len		= len,
1190 		.total_len	= len,
1191 		.flags		= flags,
1192 		.pos		= *ppos,
1193 		.u.file		= out,
1194 		.splice_eof	= direct_file_splice_eof,
1195 		.opos		= opos,
1196 	};
1197 	long ret;
1198 
1199 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1200 		return -EBADF;
1201 
1202 	if (unlikely(out->f_flags & O_APPEND))
1203 		return -EINVAL;
1204 
1205 	ret = rw_verify_area(WRITE, out, opos, len);
1206 	if (unlikely(ret < 0))
1207 		return ret;
1208 
1209 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1210 	if (ret > 0)
1211 		*ppos = sd.pos;
1212 
1213 	return ret;
1214 }
1215 EXPORT_SYMBOL(do_splice_direct);
1216 
1217 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1218 {
1219 	for (;;) {
1220 		if (unlikely(!pipe->readers)) {
1221 			send_sig(SIGPIPE, current, 0);
1222 			return -EPIPE;
1223 		}
1224 		if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1225 			return 0;
1226 		if (flags & SPLICE_F_NONBLOCK)
1227 			return -EAGAIN;
1228 		if (signal_pending(current))
1229 			return -ERESTARTSYS;
1230 		pipe_wait_writable(pipe);
1231 	}
1232 }
1233 
1234 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1235 			       struct pipe_inode_info *opipe,
1236 			       size_t len, unsigned int flags);
1237 
1238 long splice_file_to_pipe(struct file *in,
1239 			 struct pipe_inode_info *opipe,
1240 			 loff_t *offset,
1241 			 size_t len, unsigned int flags)
1242 {
1243 	long ret;
1244 
1245 	pipe_lock(opipe);
1246 	ret = wait_for_space(opipe, flags);
1247 	if (!ret)
1248 		ret = do_splice_to(in, offset, opipe, len, flags);
1249 	pipe_unlock(opipe);
1250 	if (ret > 0)
1251 		wakeup_pipe_readers(opipe);
1252 	return ret;
1253 }
1254 
1255 /*
1256  * Determine where to splice to/from.
1257  */
1258 long do_splice(struct file *in, loff_t *off_in, struct file *out,
1259 	       loff_t *off_out, size_t len, unsigned int flags)
1260 {
1261 	struct pipe_inode_info *ipipe;
1262 	struct pipe_inode_info *opipe;
1263 	loff_t offset;
1264 	long ret;
1265 
1266 	if (unlikely(!(in->f_mode & FMODE_READ) ||
1267 		     !(out->f_mode & FMODE_WRITE)))
1268 		return -EBADF;
1269 
1270 	ipipe = get_pipe_info(in, true);
1271 	opipe = get_pipe_info(out, true);
1272 
1273 	if (ipipe && opipe) {
1274 		if (off_in || off_out)
1275 			return -ESPIPE;
1276 
1277 		/* Splicing to self would be fun, but... */
1278 		if (ipipe == opipe)
1279 			return -EINVAL;
1280 
1281 		if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1282 			flags |= SPLICE_F_NONBLOCK;
1283 
1284 		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1285 	}
1286 
1287 	if (ipipe) {
1288 		if (off_in)
1289 			return -ESPIPE;
1290 		if (off_out) {
1291 			if (!(out->f_mode & FMODE_PWRITE))
1292 				return -EINVAL;
1293 			offset = *off_out;
1294 		} else {
1295 			offset = out->f_pos;
1296 		}
1297 
1298 		if (unlikely(out->f_flags & O_APPEND))
1299 			return -EINVAL;
1300 
1301 		ret = rw_verify_area(WRITE, out, &offset, len);
1302 		if (unlikely(ret < 0))
1303 			return ret;
1304 
1305 		if (in->f_flags & O_NONBLOCK)
1306 			flags |= SPLICE_F_NONBLOCK;
1307 
1308 		file_start_write(out);
1309 		ret = do_splice_from(ipipe, out, &offset, len, flags);
1310 		file_end_write(out);
1311 
1312 		if (ret > 0)
1313 			fsnotify_modify(out);
1314 
1315 		if (!off_out)
1316 			out->f_pos = offset;
1317 		else
1318 			*off_out = offset;
1319 
1320 		return ret;
1321 	}
1322 
1323 	if (opipe) {
1324 		if (off_out)
1325 			return -ESPIPE;
1326 		if (off_in) {
1327 			if (!(in->f_mode & FMODE_PREAD))
1328 				return -EINVAL;
1329 			offset = *off_in;
1330 		} else {
1331 			offset = in->f_pos;
1332 		}
1333 
1334 		if (out->f_flags & O_NONBLOCK)
1335 			flags |= SPLICE_F_NONBLOCK;
1336 
1337 		ret = splice_file_to_pipe(in, opipe, &offset, len, flags);
1338 
1339 		if (ret > 0)
1340 			fsnotify_access(in);
1341 
1342 		if (!off_in)
1343 			in->f_pos = offset;
1344 		else
1345 			*off_in = offset;
1346 
1347 		return ret;
1348 	}
1349 
1350 	return -EINVAL;
1351 }
1352 
1353 static long __do_splice(struct file *in, loff_t __user *off_in,
1354 			struct file *out, loff_t __user *off_out,
1355 			size_t len, unsigned int flags)
1356 {
1357 	struct pipe_inode_info *ipipe;
1358 	struct pipe_inode_info *opipe;
1359 	loff_t offset, *__off_in = NULL, *__off_out = NULL;
1360 	long ret;
1361 
1362 	ipipe = get_pipe_info(in, true);
1363 	opipe = get_pipe_info(out, true);
1364 
1365 	if (ipipe) {
1366 		if (off_in)
1367 			return -ESPIPE;
1368 		pipe_clear_nowait(in);
1369 	}
1370 	if (opipe) {
1371 		if (off_out)
1372 			return -ESPIPE;
1373 		pipe_clear_nowait(out);
1374 	}
1375 
1376 	if (off_out) {
1377 		if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1378 			return -EFAULT;
1379 		__off_out = &offset;
1380 	}
1381 	if (off_in) {
1382 		if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1383 			return -EFAULT;
1384 		__off_in = &offset;
1385 	}
1386 
1387 	ret = do_splice(in, __off_in, out, __off_out, len, flags);
1388 	if (ret < 0)
1389 		return ret;
1390 
1391 	if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t)))
1392 		return -EFAULT;
1393 	if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t)))
1394 		return -EFAULT;
1395 
1396 	return ret;
1397 }
1398 
1399 static int iter_to_pipe(struct iov_iter *from,
1400 			struct pipe_inode_info *pipe,
1401 			unsigned flags)
1402 {
1403 	struct pipe_buffer buf = {
1404 		.ops = &user_page_pipe_buf_ops,
1405 		.flags = flags
1406 	};
1407 	size_t total = 0;
1408 	int ret = 0;
1409 
1410 	while (iov_iter_count(from)) {
1411 		struct page *pages[16];
1412 		ssize_t left;
1413 		size_t start;
1414 		int i, n;
1415 
1416 		left = iov_iter_get_pages2(from, pages, ~0UL, 16, &start);
1417 		if (left <= 0) {
1418 			ret = left;
1419 			break;
1420 		}
1421 
1422 		n = DIV_ROUND_UP(left + start, PAGE_SIZE);
1423 		for (i = 0; i < n; i++) {
1424 			int size = min_t(int, left, PAGE_SIZE - start);
1425 
1426 			buf.page = pages[i];
1427 			buf.offset = start;
1428 			buf.len = size;
1429 			ret = add_to_pipe(pipe, &buf);
1430 			if (unlikely(ret < 0)) {
1431 				iov_iter_revert(from, left);
1432 				// this one got dropped by add_to_pipe()
1433 				while (++i < n)
1434 					put_page(pages[i]);
1435 				goto out;
1436 			}
1437 			total += ret;
1438 			left -= size;
1439 			start = 0;
1440 		}
1441 	}
1442 out:
1443 	return total ? total : ret;
1444 }
1445 
1446 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1447 			struct splice_desc *sd)
1448 {
1449 	int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1450 	return n == sd->len ? n : -EFAULT;
1451 }
1452 
1453 /*
1454  * For lack of a better implementation, implement vmsplice() to userspace
1455  * as a simple copy of the pipes pages to the user iov.
1456  */
1457 static long vmsplice_to_user(struct file *file, struct iov_iter *iter,
1458 			     unsigned int flags)
1459 {
1460 	struct pipe_inode_info *pipe = get_pipe_info(file, true);
1461 	struct splice_desc sd = {
1462 		.total_len = iov_iter_count(iter),
1463 		.flags = flags,
1464 		.u.data = iter
1465 	};
1466 	long ret = 0;
1467 
1468 	if (!pipe)
1469 		return -EBADF;
1470 
1471 	pipe_clear_nowait(file);
1472 
1473 	if (sd.total_len) {
1474 		pipe_lock(pipe);
1475 		ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1476 		pipe_unlock(pipe);
1477 	}
1478 
1479 	return ret;
1480 }
1481 
1482 /*
1483  * vmsplice splices a user address range into a pipe. It can be thought of
1484  * as splice-from-memory, where the regular splice is splice-from-file (or
1485  * to file). In both cases the output is a pipe, naturally.
1486  */
1487 static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter,
1488 			     unsigned int flags)
1489 {
1490 	struct pipe_inode_info *pipe;
1491 	long ret = 0;
1492 	unsigned buf_flag = 0;
1493 
1494 	if (flags & SPLICE_F_GIFT)
1495 		buf_flag = PIPE_BUF_FLAG_GIFT;
1496 
1497 	pipe = get_pipe_info(file, true);
1498 	if (!pipe)
1499 		return -EBADF;
1500 
1501 	pipe_clear_nowait(file);
1502 
1503 	pipe_lock(pipe);
1504 	ret = wait_for_space(pipe, flags);
1505 	if (!ret)
1506 		ret = iter_to_pipe(iter, pipe, buf_flag);
1507 	pipe_unlock(pipe);
1508 	if (ret > 0)
1509 		wakeup_pipe_readers(pipe);
1510 	return ret;
1511 }
1512 
1513 static int vmsplice_type(struct fd f, int *type)
1514 {
1515 	if (!f.file)
1516 		return -EBADF;
1517 	if (f.file->f_mode & FMODE_WRITE) {
1518 		*type = ITER_SOURCE;
1519 	} else if (f.file->f_mode & FMODE_READ) {
1520 		*type = ITER_DEST;
1521 	} else {
1522 		fdput(f);
1523 		return -EBADF;
1524 	}
1525 	return 0;
1526 }
1527 
1528 /*
1529  * Note that vmsplice only really supports true splicing _from_ user memory
1530  * to a pipe, not the other way around. Splicing from user memory is a simple
1531  * operation that can be supported without any funky alignment restrictions
1532  * or nasty vm tricks. We simply map in the user memory and fill them into
1533  * a pipe. The reverse isn't quite as easy, though. There are two possible
1534  * solutions for that:
1535  *
1536  *	- memcpy() the data internally, at which point we might as well just
1537  *	  do a regular read() on the buffer anyway.
1538  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1539  *	  has restriction limitations on both ends of the pipe).
1540  *
1541  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1542  *
1543  */
1544 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov,
1545 		unsigned long, nr_segs, unsigned int, flags)
1546 {
1547 	struct iovec iovstack[UIO_FASTIOV];
1548 	struct iovec *iov = iovstack;
1549 	struct iov_iter iter;
1550 	ssize_t error;
1551 	struct fd f;
1552 	int type;
1553 
1554 	if (unlikely(flags & ~SPLICE_F_ALL))
1555 		return -EINVAL;
1556 
1557 	f = fdget(fd);
1558 	error = vmsplice_type(f, &type);
1559 	if (error)
1560 		return error;
1561 
1562 	error = import_iovec(type, uiov, nr_segs,
1563 			     ARRAY_SIZE(iovstack), &iov, &iter);
1564 	if (error < 0)
1565 		goto out_fdput;
1566 
1567 	if (!iov_iter_count(&iter))
1568 		error = 0;
1569 	else if (type == ITER_SOURCE)
1570 		error = vmsplice_to_pipe(f.file, &iter, flags);
1571 	else
1572 		error = vmsplice_to_user(f.file, &iter, flags);
1573 
1574 	kfree(iov);
1575 out_fdput:
1576 	fdput(f);
1577 	return error;
1578 }
1579 
1580 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1581 		int, fd_out, loff_t __user *, off_out,
1582 		size_t, len, unsigned int, flags)
1583 {
1584 	struct fd in, out;
1585 	long error;
1586 
1587 	if (unlikely(!len))
1588 		return 0;
1589 
1590 	if (unlikely(flags & ~SPLICE_F_ALL))
1591 		return -EINVAL;
1592 
1593 	error = -EBADF;
1594 	in = fdget(fd_in);
1595 	if (in.file) {
1596 		out = fdget(fd_out);
1597 		if (out.file) {
1598 			error = __do_splice(in.file, off_in, out.file, off_out,
1599 						len, flags);
1600 			fdput(out);
1601 		}
1602 		fdput(in);
1603 	}
1604 	return error;
1605 }
1606 
1607 /*
1608  * Make sure there's data to read. Wait for input if we can, otherwise
1609  * return an appropriate error.
1610  */
1611 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1612 {
1613 	int ret;
1614 
1615 	/*
1616 	 * Check the pipe occupancy without the inode lock first. This function
1617 	 * is speculative anyways, so missing one is ok.
1618 	 */
1619 	if (!pipe_empty(pipe->head, pipe->tail))
1620 		return 0;
1621 
1622 	ret = 0;
1623 	pipe_lock(pipe);
1624 
1625 	while (pipe_empty(pipe->head, pipe->tail)) {
1626 		if (signal_pending(current)) {
1627 			ret = -ERESTARTSYS;
1628 			break;
1629 		}
1630 		if (!pipe->writers)
1631 			break;
1632 		if (flags & SPLICE_F_NONBLOCK) {
1633 			ret = -EAGAIN;
1634 			break;
1635 		}
1636 		pipe_wait_readable(pipe);
1637 	}
1638 
1639 	pipe_unlock(pipe);
1640 	return ret;
1641 }
1642 
1643 /*
1644  * Make sure there's writeable room. Wait for room if we can, otherwise
1645  * return an appropriate error.
1646  */
1647 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1648 {
1649 	int ret;
1650 
1651 	/*
1652 	 * Check pipe occupancy without the inode lock first. This function
1653 	 * is speculative anyways, so missing one is ok.
1654 	 */
1655 	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1656 		return 0;
1657 
1658 	ret = 0;
1659 	pipe_lock(pipe);
1660 
1661 	while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
1662 		if (!pipe->readers) {
1663 			send_sig(SIGPIPE, current, 0);
1664 			ret = -EPIPE;
1665 			break;
1666 		}
1667 		if (flags & SPLICE_F_NONBLOCK) {
1668 			ret = -EAGAIN;
1669 			break;
1670 		}
1671 		if (signal_pending(current)) {
1672 			ret = -ERESTARTSYS;
1673 			break;
1674 		}
1675 		pipe_wait_writable(pipe);
1676 	}
1677 
1678 	pipe_unlock(pipe);
1679 	return ret;
1680 }
1681 
1682 /*
1683  * Splice contents of ipipe to opipe.
1684  */
1685 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1686 			       struct pipe_inode_info *opipe,
1687 			       size_t len, unsigned int flags)
1688 {
1689 	struct pipe_buffer *ibuf, *obuf;
1690 	unsigned int i_head, o_head;
1691 	unsigned int i_tail, o_tail;
1692 	unsigned int i_mask, o_mask;
1693 	int ret = 0;
1694 	bool input_wakeup = false;
1695 
1696 
1697 retry:
1698 	ret = ipipe_prep(ipipe, flags);
1699 	if (ret)
1700 		return ret;
1701 
1702 	ret = opipe_prep(opipe, flags);
1703 	if (ret)
1704 		return ret;
1705 
1706 	/*
1707 	 * Potential ABBA deadlock, work around it by ordering lock
1708 	 * grabbing by pipe info address. Otherwise two different processes
1709 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1710 	 */
1711 	pipe_double_lock(ipipe, opipe);
1712 
1713 	i_tail = ipipe->tail;
1714 	i_mask = ipipe->ring_size - 1;
1715 	o_head = opipe->head;
1716 	o_mask = opipe->ring_size - 1;
1717 
1718 	do {
1719 		size_t o_len;
1720 
1721 		if (!opipe->readers) {
1722 			send_sig(SIGPIPE, current, 0);
1723 			if (!ret)
1724 				ret = -EPIPE;
1725 			break;
1726 		}
1727 
1728 		i_head = ipipe->head;
1729 		o_tail = opipe->tail;
1730 
1731 		if (pipe_empty(i_head, i_tail) && !ipipe->writers)
1732 			break;
1733 
1734 		/*
1735 		 * Cannot make any progress, because either the input
1736 		 * pipe is empty or the output pipe is full.
1737 		 */
1738 		if (pipe_empty(i_head, i_tail) ||
1739 		    pipe_full(o_head, o_tail, opipe->max_usage)) {
1740 			/* Already processed some buffers, break */
1741 			if (ret)
1742 				break;
1743 
1744 			if (flags & SPLICE_F_NONBLOCK) {
1745 				ret = -EAGAIN;
1746 				break;
1747 			}
1748 
1749 			/*
1750 			 * We raced with another reader/writer and haven't
1751 			 * managed to process any buffers.  A zero return
1752 			 * value means EOF, so retry instead.
1753 			 */
1754 			pipe_unlock(ipipe);
1755 			pipe_unlock(opipe);
1756 			goto retry;
1757 		}
1758 
1759 		ibuf = &ipipe->bufs[i_tail & i_mask];
1760 		obuf = &opipe->bufs[o_head & o_mask];
1761 
1762 		if (len >= ibuf->len) {
1763 			/*
1764 			 * Simply move the whole buffer from ipipe to opipe
1765 			 */
1766 			*obuf = *ibuf;
1767 			ibuf->ops = NULL;
1768 			i_tail++;
1769 			ipipe->tail = i_tail;
1770 			input_wakeup = true;
1771 			o_len = obuf->len;
1772 			o_head++;
1773 			opipe->head = o_head;
1774 		} else {
1775 			/*
1776 			 * Get a reference to this pipe buffer,
1777 			 * so we can copy the contents over.
1778 			 */
1779 			if (!pipe_buf_get(ipipe, ibuf)) {
1780 				if (ret == 0)
1781 					ret = -EFAULT;
1782 				break;
1783 			}
1784 			*obuf = *ibuf;
1785 
1786 			/*
1787 			 * Don't inherit the gift and merge flags, we need to
1788 			 * prevent multiple steals of this page.
1789 			 */
1790 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1791 			obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1792 
1793 			obuf->len = len;
1794 			ibuf->offset += len;
1795 			ibuf->len -= len;
1796 			o_len = len;
1797 			o_head++;
1798 			opipe->head = o_head;
1799 		}
1800 		ret += o_len;
1801 		len -= o_len;
1802 	} while (len);
1803 
1804 	pipe_unlock(ipipe);
1805 	pipe_unlock(opipe);
1806 
1807 	/*
1808 	 * If we put data in the output pipe, wakeup any potential readers.
1809 	 */
1810 	if (ret > 0)
1811 		wakeup_pipe_readers(opipe);
1812 
1813 	if (input_wakeup)
1814 		wakeup_pipe_writers(ipipe);
1815 
1816 	return ret;
1817 }
1818 
1819 /*
1820  * Link contents of ipipe to opipe.
1821  */
1822 static int link_pipe(struct pipe_inode_info *ipipe,
1823 		     struct pipe_inode_info *opipe,
1824 		     size_t len, unsigned int flags)
1825 {
1826 	struct pipe_buffer *ibuf, *obuf;
1827 	unsigned int i_head, o_head;
1828 	unsigned int i_tail, o_tail;
1829 	unsigned int i_mask, o_mask;
1830 	int ret = 0;
1831 
1832 	/*
1833 	 * Potential ABBA deadlock, work around it by ordering lock
1834 	 * grabbing by pipe info address. Otherwise two different processes
1835 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1836 	 */
1837 	pipe_double_lock(ipipe, opipe);
1838 
1839 	i_tail = ipipe->tail;
1840 	i_mask = ipipe->ring_size - 1;
1841 	o_head = opipe->head;
1842 	o_mask = opipe->ring_size - 1;
1843 
1844 	do {
1845 		if (!opipe->readers) {
1846 			send_sig(SIGPIPE, current, 0);
1847 			if (!ret)
1848 				ret = -EPIPE;
1849 			break;
1850 		}
1851 
1852 		i_head = ipipe->head;
1853 		o_tail = opipe->tail;
1854 
1855 		/*
1856 		 * If we have iterated all input buffers or run out of
1857 		 * output room, break.
1858 		 */
1859 		if (pipe_empty(i_head, i_tail) ||
1860 		    pipe_full(o_head, o_tail, opipe->max_usage))
1861 			break;
1862 
1863 		ibuf = &ipipe->bufs[i_tail & i_mask];
1864 		obuf = &opipe->bufs[o_head & o_mask];
1865 
1866 		/*
1867 		 * Get a reference to this pipe buffer,
1868 		 * so we can copy the contents over.
1869 		 */
1870 		if (!pipe_buf_get(ipipe, ibuf)) {
1871 			if (ret == 0)
1872 				ret = -EFAULT;
1873 			break;
1874 		}
1875 
1876 		*obuf = *ibuf;
1877 
1878 		/*
1879 		 * Don't inherit the gift and merge flag, we need to prevent
1880 		 * multiple steals of this page.
1881 		 */
1882 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1883 		obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1884 
1885 		if (obuf->len > len)
1886 			obuf->len = len;
1887 		ret += obuf->len;
1888 		len -= obuf->len;
1889 
1890 		o_head++;
1891 		opipe->head = o_head;
1892 		i_tail++;
1893 	} while (len);
1894 
1895 	pipe_unlock(ipipe);
1896 	pipe_unlock(opipe);
1897 
1898 	/*
1899 	 * If we put data in the output pipe, wakeup any potential readers.
1900 	 */
1901 	if (ret > 0)
1902 		wakeup_pipe_readers(opipe);
1903 
1904 	return ret;
1905 }
1906 
1907 /*
1908  * This is a tee(1) implementation that works on pipes. It doesn't copy
1909  * any data, it simply references the 'in' pages on the 'out' pipe.
1910  * The 'flags' used are the SPLICE_F_* variants, currently the only
1911  * applicable one is SPLICE_F_NONBLOCK.
1912  */
1913 long do_tee(struct file *in, struct file *out, size_t len, unsigned int flags)
1914 {
1915 	struct pipe_inode_info *ipipe = get_pipe_info(in, true);
1916 	struct pipe_inode_info *opipe = get_pipe_info(out, true);
1917 	int ret = -EINVAL;
1918 
1919 	if (unlikely(!(in->f_mode & FMODE_READ) ||
1920 		     !(out->f_mode & FMODE_WRITE)))
1921 		return -EBADF;
1922 
1923 	/*
1924 	 * Duplicate the contents of ipipe to opipe without actually
1925 	 * copying the data.
1926 	 */
1927 	if (ipipe && opipe && ipipe != opipe) {
1928 		if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1929 			flags |= SPLICE_F_NONBLOCK;
1930 
1931 		/*
1932 		 * Keep going, unless we encounter an error. The ipipe/opipe
1933 		 * ordering doesn't really matter.
1934 		 */
1935 		ret = ipipe_prep(ipipe, flags);
1936 		if (!ret) {
1937 			ret = opipe_prep(opipe, flags);
1938 			if (!ret)
1939 				ret = link_pipe(ipipe, opipe, len, flags);
1940 		}
1941 	}
1942 
1943 	return ret;
1944 }
1945 
1946 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1947 {
1948 	struct fd in, out;
1949 	int error;
1950 
1951 	if (unlikely(flags & ~SPLICE_F_ALL))
1952 		return -EINVAL;
1953 
1954 	if (unlikely(!len))
1955 		return 0;
1956 
1957 	error = -EBADF;
1958 	in = fdget(fdin);
1959 	if (in.file) {
1960 		out = fdget(fdout);
1961 		if (out.file) {
1962 			error = do_tee(in.file, out.file, len, flags);
1963 			fdput(out);
1964 		}
1965  		fdput(in);
1966  	}
1967 
1968 	return error;
1969 }
1970