xref: /openbmc/linux/fs/splice.c (revision e2ad626f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * "splice": joining two ropes together by interweaving their strands.
4  *
5  * This is the "extended pipe" functionality, where a pipe is used as
6  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
7  * buffer that you can use to transfer data from one end to the other.
8  *
9  * The traditional unix read/write is extended with a "splice()" operation
10  * that transfers data buffers to or from a pipe buffer.
11  *
12  * Named by Larry McVoy, original implementation from Linus, extended by
13  * Jens to support splicing to files, network, direct splicing, etc and
14  * fixing lots of bugs.
15  *
16  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
17  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
18  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
19  *
20  */
21 #include <linux/bvec.h>
22 #include <linux/fs.h>
23 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/splice.h>
26 #include <linux/memcontrol.h>
27 #include <linux/mm_inline.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/export.h>
31 #include <linux/syscalls.h>
32 #include <linux/uio.h>
33 #include <linux/fsnotify.h>
34 #include <linux/security.h>
35 #include <linux/gfp.h>
36 #include <linux/net.h>
37 #include <linux/socket.h>
38 #include <linux/sched/signal.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Splice doesn't support FMODE_NOWAIT. Since pipes may set this flag to
44  * indicate they support non-blocking reads or writes, we must clear it
45  * here if set to avoid blocking other users of this pipe if splice is
46  * being done on it.
47  */
48 static noinline void noinline pipe_clear_nowait(struct file *file)
49 {
50 	fmode_t fmode = READ_ONCE(file->f_mode);
51 
52 	do {
53 		if (!(fmode & FMODE_NOWAIT))
54 			break;
55 	} while (!try_cmpxchg(&file->f_mode, &fmode, fmode & ~FMODE_NOWAIT));
56 }
57 
58 /*
59  * Attempt to steal a page from a pipe buffer. This should perhaps go into
60  * a vm helper function, it's already simplified quite a bit by the
61  * addition of remove_mapping(). If success is returned, the caller may
62  * attempt to reuse this page for another destination.
63  */
64 static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe,
65 		struct pipe_buffer *buf)
66 {
67 	struct folio *folio = page_folio(buf->page);
68 	struct address_space *mapping;
69 
70 	folio_lock(folio);
71 
72 	mapping = folio_mapping(folio);
73 	if (mapping) {
74 		WARN_ON(!folio_test_uptodate(folio));
75 
76 		/*
77 		 * At least for ext2 with nobh option, we need to wait on
78 		 * writeback completing on this folio, since we'll remove it
79 		 * from the pagecache.  Otherwise truncate wont wait on the
80 		 * folio, allowing the disk blocks to be reused by someone else
81 		 * before we actually wrote our data to them. fs corruption
82 		 * ensues.
83 		 */
84 		folio_wait_writeback(folio);
85 
86 		if (!filemap_release_folio(folio, GFP_KERNEL))
87 			goto out_unlock;
88 
89 		/*
90 		 * If we succeeded in removing the mapping, set LRU flag
91 		 * and return good.
92 		 */
93 		if (remove_mapping(mapping, folio)) {
94 			buf->flags |= PIPE_BUF_FLAG_LRU;
95 			return true;
96 		}
97 	}
98 
99 	/*
100 	 * Raced with truncate or failed to remove folio from current
101 	 * address space, unlock and return failure.
102 	 */
103 out_unlock:
104 	folio_unlock(folio);
105 	return false;
106 }
107 
108 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
109 					struct pipe_buffer *buf)
110 {
111 	put_page(buf->page);
112 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
113 }
114 
115 /*
116  * Check whether the contents of buf is OK to access. Since the content
117  * is a page cache page, IO may be in flight.
118  */
119 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
120 				       struct pipe_buffer *buf)
121 {
122 	struct folio *folio = page_folio(buf->page);
123 	int err;
124 
125 	if (!folio_test_uptodate(folio)) {
126 		folio_lock(folio);
127 
128 		/*
129 		 * Folio got truncated/unhashed. This will cause a 0-byte
130 		 * splice, if this is the first page.
131 		 */
132 		if (!folio->mapping) {
133 			err = -ENODATA;
134 			goto error;
135 		}
136 
137 		/*
138 		 * Uh oh, read-error from disk.
139 		 */
140 		if (!folio_test_uptodate(folio)) {
141 			err = -EIO;
142 			goto error;
143 		}
144 
145 		/* Folio is ok after all, we are done */
146 		folio_unlock(folio);
147 	}
148 
149 	return 0;
150 error:
151 	folio_unlock(folio);
152 	return err;
153 }
154 
155 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
156 	.confirm	= page_cache_pipe_buf_confirm,
157 	.release	= page_cache_pipe_buf_release,
158 	.try_steal	= page_cache_pipe_buf_try_steal,
159 	.get		= generic_pipe_buf_get,
160 };
161 
162 static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe,
163 		struct pipe_buffer *buf)
164 {
165 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
166 		return false;
167 
168 	buf->flags |= PIPE_BUF_FLAG_LRU;
169 	return generic_pipe_buf_try_steal(pipe, buf);
170 }
171 
172 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
173 	.release	= page_cache_pipe_buf_release,
174 	.try_steal	= user_page_pipe_buf_try_steal,
175 	.get		= generic_pipe_buf_get,
176 };
177 
178 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
179 {
180 	smp_mb();
181 	if (waitqueue_active(&pipe->rd_wait))
182 		wake_up_interruptible(&pipe->rd_wait);
183 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
184 }
185 
186 /**
187  * splice_to_pipe - fill passed data into a pipe
188  * @pipe:	pipe to fill
189  * @spd:	data to fill
190  *
191  * Description:
192  *    @spd contains a map of pages and len/offset tuples, along with
193  *    the struct pipe_buf_operations associated with these pages. This
194  *    function will link that data to the pipe.
195  *
196  */
197 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
198 		       struct splice_pipe_desc *spd)
199 {
200 	unsigned int spd_pages = spd->nr_pages;
201 	unsigned int tail = pipe->tail;
202 	unsigned int head = pipe->head;
203 	unsigned int mask = pipe->ring_size - 1;
204 	int ret = 0, page_nr = 0;
205 
206 	if (!spd_pages)
207 		return 0;
208 
209 	if (unlikely(!pipe->readers)) {
210 		send_sig(SIGPIPE, current, 0);
211 		ret = -EPIPE;
212 		goto out;
213 	}
214 
215 	while (!pipe_full(head, tail, pipe->max_usage)) {
216 		struct pipe_buffer *buf = &pipe->bufs[head & mask];
217 
218 		buf->page = spd->pages[page_nr];
219 		buf->offset = spd->partial[page_nr].offset;
220 		buf->len = spd->partial[page_nr].len;
221 		buf->private = spd->partial[page_nr].private;
222 		buf->ops = spd->ops;
223 		buf->flags = 0;
224 
225 		head++;
226 		pipe->head = head;
227 		page_nr++;
228 		ret += buf->len;
229 
230 		if (!--spd->nr_pages)
231 			break;
232 	}
233 
234 	if (!ret)
235 		ret = -EAGAIN;
236 
237 out:
238 	while (page_nr < spd_pages)
239 		spd->spd_release(spd, page_nr++);
240 
241 	return ret;
242 }
243 EXPORT_SYMBOL_GPL(splice_to_pipe);
244 
245 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
246 {
247 	unsigned int head = pipe->head;
248 	unsigned int tail = pipe->tail;
249 	unsigned int mask = pipe->ring_size - 1;
250 	int ret;
251 
252 	if (unlikely(!pipe->readers)) {
253 		send_sig(SIGPIPE, current, 0);
254 		ret = -EPIPE;
255 	} else if (pipe_full(head, tail, pipe->max_usage)) {
256 		ret = -EAGAIN;
257 	} else {
258 		pipe->bufs[head & mask] = *buf;
259 		pipe->head = head + 1;
260 		return buf->len;
261 	}
262 	pipe_buf_release(pipe, buf);
263 	return ret;
264 }
265 EXPORT_SYMBOL(add_to_pipe);
266 
267 /*
268  * Check if we need to grow the arrays holding pages and partial page
269  * descriptions.
270  */
271 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
272 {
273 	unsigned int max_usage = READ_ONCE(pipe->max_usage);
274 
275 	spd->nr_pages_max = max_usage;
276 	if (max_usage <= PIPE_DEF_BUFFERS)
277 		return 0;
278 
279 	spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL);
280 	spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page),
281 				     GFP_KERNEL);
282 
283 	if (spd->pages && spd->partial)
284 		return 0;
285 
286 	kfree(spd->pages);
287 	kfree(spd->partial);
288 	return -ENOMEM;
289 }
290 
291 void splice_shrink_spd(struct splice_pipe_desc *spd)
292 {
293 	if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
294 		return;
295 
296 	kfree(spd->pages);
297 	kfree(spd->partial);
298 }
299 
300 /**
301  * copy_splice_read -  Copy data from a file and splice the copy into a pipe
302  * @in: The file to read from
303  * @ppos: Pointer to the file position to read from
304  * @pipe: The pipe to splice into
305  * @len: The amount to splice
306  * @flags: The SPLICE_F_* flags
307  *
308  * This function allocates a bunch of pages sufficient to hold the requested
309  * amount of data (but limited by the remaining pipe capacity), passes it to
310  * the file's ->read_iter() to read into and then splices the used pages into
311  * the pipe.
312  *
313  * Return: On success, the number of bytes read will be returned and *@ppos
314  * will be updated if appropriate; 0 will be returned if there is no more data
315  * to be read; -EAGAIN will be returned if the pipe had no space, and some
316  * other negative error code will be returned on error.  A short read may occur
317  * if the pipe has insufficient space, we reach the end of the data or we hit a
318  * hole.
319  */
320 ssize_t copy_splice_read(struct file *in, loff_t *ppos,
321 			 struct pipe_inode_info *pipe,
322 			 size_t len, unsigned int flags)
323 {
324 	struct iov_iter to;
325 	struct bio_vec *bv;
326 	struct kiocb kiocb;
327 	struct page **pages;
328 	ssize_t ret;
329 	size_t used, npages, chunk, remain, keep = 0;
330 	int i;
331 
332 	/* Work out how much data we can actually add into the pipe */
333 	used = pipe_occupancy(pipe->head, pipe->tail);
334 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
335 	len = min_t(size_t, len, npages * PAGE_SIZE);
336 	npages = DIV_ROUND_UP(len, PAGE_SIZE);
337 
338 	bv = kzalloc(array_size(npages, sizeof(bv[0])) +
339 		     array_size(npages, sizeof(struct page *)), GFP_KERNEL);
340 	if (!bv)
341 		return -ENOMEM;
342 
343 	pages = (struct page **)(bv + npages);
344 	npages = alloc_pages_bulk_array(GFP_USER, npages, pages);
345 	if (!npages) {
346 		kfree(bv);
347 		return -ENOMEM;
348 	}
349 
350 	remain = len = min_t(size_t, len, npages * PAGE_SIZE);
351 
352 	for (i = 0; i < npages; i++) {
353 		chunk = min_t(size_t, PAGE_SIZE, remain);
354 		bv[i].bv_page = pages[i];
355 		bv[i].bv_offset = 0;
356 		bv[i].bv_len = chunk;
357 		remain -= chunk;
358 	}
359 
360 	/* Do the I/O */
361 	iov_iter_bvec(&to, ITER_DEST, bv, npages, len);
362 	init_sync_kiocb(&kiocb, in);
363 	kiocb.ki_pos = *ppos;
364 	ret = call_read_iter(in, &kiocb, &to);
365 
366 	if (ret > 0) {
367 		keep = DIV_ROUND_UP(ret, PAGE_SIZE);
368 		*ppos = kiocb.ki_pos;
369 	}
370 
371 	/*
372 	 * Callers of ->splice_read() expect -EAGAIN on "can't put anything in
373 	 * there", rather than -EFAULT.
374 	 */
375 	if (ret == -EFAULT)
376 		ret = -EAGAIN;
377 
378 	/* Free any pages that didn't get touched at all. */
379 	if (keep < npages)
380 		release_pages(pages + keep, npages - keep);
381 
382 	/* Push the remaining pages into the pipe. */
383 	remain = ret;
384 	for (i = 0; i < keep; i++) {
385 		struct pipe_buffer *buf = pipe_head_buf(pipe);
386 
387 		chunk = min_t(size_t, remain, PAGE_SIZE);
388 		*buf = (struct pipe_buffer) {
389 			.ops	= &default_pipe_buf_ops,
390 			.page	= bv[i].bv_page,
391 			.offset	= 0,
392 			.len	= chunk,
393 		};
394 		pipe->head++;
395 		remain -= chunk;
396 	}
397 
398 	kfree(bv);
399 	return ret;
400 }
401 EXPORT_SYMBOL(copy_splice_read);
402 
403 const struct pipe_buf_operations default_pipe_buf_ops = {
404 	.release	= generic_pipe_buf_release,
405 	.try_steal	= generic_pipe_buf_try_steal,
406 	.get		= generic_pipe_buf_get,
407 };
408 
409 /* Pipe buffer operations for a socket and similar. */
410 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
411 	.release	= generic_pipe_buf_release,
412 	.get		= generic_pipe_buf_get,
413 };
414 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
415 
416 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
417 {
418 	smp_mb();
419 	if (waitqueue_active(&pipe->wr_wait))
420 		wake_up_interruptible(&pipe->wr_wait);
421 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
422 }
423 
424 /**
425  * splice_from_pipe_feed - feed available data from a pipe to a file
426  * @pipe:	pipe to splice from
427  * @sd:		information to @actor
428  * @actor:	handler that splices the data
429  *
430  * Description:
431  *    This function loops over the pipe and calls @actor to do the
432  *    actual moving of a single struct pipe_buffer to the desired
433  *    destination.  It returns when there's no more buffers left in
434  *    the pipe or if the requested number of bytes (@sd->total_len)
435  *    have been copied.  It returns a positive number (one) if the
436  *    pipe needs to be filled with more data, zero if the required
437  *    number of bytes have been copied and -errno on error.
438  *
439  *    This, together with splice_from_pipe_{begin,end,next}, may be
440  *    used to implement the functionality of __splice_from_pipe() when
441  *    locking is required around copying the pipe buffers to the
442  *    destination.
443  */
444 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
445 			  splice_actor *actor)
446 {
447 	unsigned int head = pipe->head;
448 	unsigned int tail = pipe->tail;
449 	unsigned int mask = pipe->ring_size - 1;
450 	int ret;
451 
452 	while (!pipe_empty(head, tail)) {
453 		struct pipe_buffer *buf = &pipe->bufs[tail & mask];
454 
455 		sd->len = buf->len;
456 		if (sd->len > sd->total_len)
457 			sd->len = sd->total_len;
458 
459 		ret = pipe_buf_confirm(pipe, buf);
460 		if (unlikely(ret)) {
461 			if (ret == -ENODATA)
462 				ret = 0;
463 			return ret;
464 		}
465 
466 		ret = actor(pipe, buf, sd);
467 		if (ret <= 0)
468 			return ret;
469 
470 		buf->offset += ret;
471 		buf->len -= ret;
472 
473 		sd->num_spliced += ret;
474 		sd->len -= ret;
475 		sd->pos += ret;
476 		sd->total_len -= ret;
477 
478 		if (!buf->len) {
479 			pipe_buf_release(pipe, buf);
480 			tail++;
481 			pipe->tail = tail;
482 			if (pipe->files)
483 				sd->need_wakeup = true;
484 		}
485 
486 		if (!sd->total_len)
487 			return 0;
488 	}
489 
490 	return 1;
491 }
492 
493 /* We know we have a pipe buffer, but maybe it's empty? */
494 static inline bool eat_empty_buffer(struct pipe_inode_info *pipe)
495 {
496 	unsigned int tail = pipe->tail;
497 	unsigned int mask = pipe->ring_size - 1;
498 	struct pipe_buffer *buf = &pipe->bufs[tail & mask];
499 
500 	if (unlikely(!buf->len)) {
501 		pipe_buf_release(pipe, buf);
502 		pipe->tail = tail+1;
503 		return true;
504 	}
505 
506 	return false;
507 }
508 
509 /**
510  * splice_from_pipe_next - wait for some data to splice from
511  * @pipe:	pipe to splice from
512  * @sd:		information about the splice operation
513  *
514  * Description:
515  *    This function will wait for some data and return a positive
516  *    value (one) if pipe buffers are available.  It will return zero
517  *    or -errno if no more data needs to be spliced.
518  */
519 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
520 {
521 	/*
522 	 * Check for signal early to make process killable when there are
523 	 * always buffers available
524 	 */
525 	if (signal_pending(current))
526 		return -ERESTARTSYS;
527 
528 repeat:
529 	while (pipe_empty(pipe->head, pipe->tail)) {
530 		if (!pipe->writers)
531 			return 0;
532 
533 		if (sd->num_spliced)
534 			return 0;
535 
536 		if (sd->flags & SPLICE_F_NONBLOCK)
537 			return -EAGAIN;
538 
539 		if (signal_pending(current))
540 			return -ERESTARTSYS;
541 
542 		if (sd->need_wakeup) {
543 			wakeup_pipe_writers(pipe);
544 			sd->need_wakeup = false;
545 		}
546 
547 		pipe_wait_readable(pipe);
548 	}
549 
550 	if (eat_empty_buffer(pipe))
551 		goto repeat;
552 
553 	return 1;
554 }
555 
556 /**
557  * splice_from_pipe_begin - start splicing from pipe
558  * @sd:		information about the splice operation
559  *
560  * Description:
561  *    This function should be called before a loop containing
562  *    splice_from_pipe_next() and splice_from_pipe_feed() to
563  *    initialize the necessary fields of @sd.
564  */
565 static void splice_from_pipe_begin(struct splice_desc *sd)
566 {
567 	sd->num_spliced = 0;
568 	sd->need_wakeup = false;
569 }
570 
571 /**
572  * splice_from_pipe_end - finish splicing from pipe
573  * @pipe:	pipe to splice from
574  * @sd:		information about the splice operation
575  *
576  * Description:
577  *    This function will wake up pipe writers if necessary.  It should
578  *    be called after a loop containing splice_from_pipe_next() and
579  *    splice_from_pipe_feed().
580  */
581 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
582 {
583 	if (sd->need_wakeup)
584 		wakeup_pipe_writers(pipe);
585 }
586 
587 /**
588  * __splice_from_pipe - splice data from a pipe to given actor
589  * @pipe:	pipe to splice from
590  * @sd:		information to @actor
591  * @actor:	handler that splices the data
592  *
593  * Description:
594  *    This function does little more than loop over the pipe and call
595  *    @actor to do the actual moving of a single struct pipe_buffer to
596  *    the desired destination. See pipe_to_file, pipe_to_sendmsg, or
597  *    pipe_to_user.
598  *
599  */
600 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
601 			   splice_actor *actor)
602 {
603 	int ret;
604 
605 	splice_from_pipe_begin(sd);
606 	do {
607 		cond_resched();
608 		ret = splice_from_pipe_next(pipe, sd);
609 		if (ret > 0)
610 			ret = splice_from_pipe_feed(pipe, sd, actor);
611 	} while (ret > 0);
612 	splice_from_pipe_end(pipe, sd);
613 
614 	return sd->num_spliced ? sd->num_spliced : ret;
615 }
616 EXPORT_SYMBOL(__splice_from_pipe);
617 
618 /**
619  * splice_from_pipe - splice data from a pipe to a file
620  * @pipe:	pipe to splice from
621  * @out:	file to splice to
622  * @ppos:	position in @out
623  * @len:	how many bytes to splice
624  * @flags:	splice modifier flags
625  * @actor:	handler that splices the data
626  *
627  * Description:
628  *    See __splice_from_pipe. This function locks the pipe inode,
629  *    otherwise it's identical to __splice_from_pipe().
630  *
631  */
632 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
633 			 loff_t *ppos, size_t len, unsigned int flags,
634 			 splice_actor *actor)
635 {
636 	ssize_t ret;
637 	struct splice_desc sd = {
638 		.total_len = len,
639 		.flags = flags,
640 		.pos = *ppos,
641 		.u.file = out,
642 	};
643 
644 	pipe_lock(pipe);
645 	ret = __splice_from_pipe(pipe, &sd, actor);
646 	pipe_unlock(pipe);
647 
648 	return ret;
649 }
650 
651 /**
652  * iter_file_splice_write - splice data from a pipe to a file
653  * @pipe:	pipe info
654  * @out:	file to write to
655  * @ppos:	position in @out
656  * @len:	number of bytes to splice
657  * @flags:	splice modifier flags
658  *
659  * Description:
660  *    Will either move or copy pages (determined by @flags options) from
661  *    the given pipe inode to the given file.
662  *    This one is ->write_iter-based.
663  *
664  */
665 ssize_t
666 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
667 			  loff_t *ppos, size_t len, unsigned int flags)
668 {
669 	struct splice_desc sd = {
670 		.total_len = len,
671 		.flags = flags,
672 		.pos = *ppos,
673 		.u.file = out,
674 	};
675 	int nbufs = pipe->max_usage;
676 	struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
677 					GFP_KERNEL);
678 	ssize_t ret;
679 
680 	if (unlikely(!array))
681 		return -ENOMEM;
682 
683 	pipe_lock(pipe);
684 
685 	splice_from_pipe_begin(&sd);
686 	while (sd.total_len) {
687 		struct iov_iter from;
688 		unsigned int head, tail, mask;
689 		size_t left;
690 		int n;
691 
692 		ret = splice_from_pipe_next(pipe, &sd);
693 		if (ret <= 0)
694 			break;
695 
696 		if (unlikely(nbufs < pipe->max_usage)) {
697 			kfree(array);
698 			nbufs = pipe->max_usage;
699 			array = kcalloc(nbufs, sizeof(struct bio_vec),
700 					GFP_KERNEL);
701 			if (!array) {
702 				ret = -ENOMEM;
703 				break;
704 			}
705 		}
706 
707 		head = pipe->head;
708 		tail = pipe->tail;
709 		mask = pipe->ring_size - 1;
710 
711 		/* build the vector */
712 		left = sd.total_len;
713 		for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) {
714 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
715 			size_t this_len = buf->len;
716 
717 			/* zero-length bvecs are not supported, skip them */
718 			if (!this_len)
719 				continue;
720 			this_len = min(this_len, left);
721 
722 			ret = pipe_buf_confirm(pipe, buf);
723 			if (unlikely(ret)) {
724 				if (ret == -ENODATA)
725 					ret = 0;
726 				goto done;
727 			}
728 
729 			bvec_set_page(&array[n], buf->page, this_len,
730 				      buf->offset);
731 			left -= this_len;
732 			n++;
733 		}
734 
735 		iov_iter_bvec(&from, ITER_SOURCE, array, n, sd.total_len - left);
736 		ret = vfs_iter_write(out, &from, &sd.pos, 0);
737 		if (ret <= 0)
738 			break;
739 
740 		sd.num_spliced += ret;
741 		sd.total_len -= ret;
742 		*ppos = sd.pos;
743 
744 		/* dismiss the fully eaten buffers, adjust the partial one */
745 		tail = pipe->tail;
746 		while (ret) {
747 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
748 			if (ret >= buf->len) {
749 				ret -= buf->len;
750 				buf->len = 0;
751 				pipe_buf_release(pipe, buf);
752 				tail++;
753 				pipe->tail = tail;
754 				if (pipe->files)
755 					sd.need_wakeup = true;
756 			} else {
757 				buf->offset += ret;
758 				buf->len -= ret;
759 				ret = 0;
760 			}
761 		}
762 	}
763 done:
764 	kfree(array);
765 	splice_from_pipe_end(pipe, &sd);
766 
767 	pipe_unlock(pipe);
768 
769 	if (sd.num_spliced)
770 		ret = sd.num_spliced;
771 
772 	return ret;
773 }
774 
775 EXPORT_SYMBOL(iter_file_splice_write);
776 
777 #ifdef CONFIG_NET
778 /**
779  * splice_to_socket - splice data from a pipe to a socket
780  * @pipe:	pipe to splice from
781  * @out:	socket to write to
782  * @ppos:	position in @out
783  * @len:	number of bytes to splice
784  * @flags:	splice modifier flags
785  *
786  * Description:
787  *    Will send @len bytes from the pipe to a network socket. No data copying
788  *    is involved.
789  *
790  */
791 ssize_t splice_to_socket(struct pipe_inode_info *pipe, struct file *out,
792 			 loff_t *ppos, size_t len, unsigned int flags)
793 {
794 	struct socket *sock = sock_from_file(out);
795 	struct bio_vec bvec[16];
796 	struct msghdr msg = {};
797 	ssize_t ret = 0;
798 	size_t spliced = 0;
799 	bool need_wakeup = false;
800 
801 	pipe_lock(pipe);
802 
803 	while (len > 0) {
804 		unsigned int head, tail, mask, bc = 0;
805 		size_t remain = len;
806 
807 		/*
808 		 * Check for signal early to make process killable when there
809 		 * are always buffers available
810 		 */
811 		ret = -ERESTARTSYS;
812 		if (signal_pending(current))
813 			break;
814 
815 		while (pipe_empty(pipe->head, pipe->tail)) {
816 			ret = 0;
817 			if (!pipe->writers)
818 				goto out;
819 
820 			if (spliced)
821 				goto out;
822 
823 			ret = -EAGAIN;
824 			if (flags & SPLICE_F_NONBLOCK)
825 				goto out;
826 
827 			ret = -ERESTARTSYS;
828 			if (signal_pending(current))
829 				goto out;
830 
831 			if (need_wakeup) {
832 				wakeup_pipe_writers(pipe);
833 				need_wakeup = false;
834 			}
835 
836 			pipe_wait_readable(pipe);
837 		}
838 
839 		head = pipe->head;
840 		tail = pipe->tail;
841 		mask = pipe->ring_size - 1;
842 
843 		while (!pipe_empty(head, tail)) {
844 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
845 			size_t seg;
846 
847 			if (!buf->len) {
848 				tail++;
849 				continue;
850 			}
851 
852 			seg = min_t(size_t, remain, buf->len);
853 
854 			ret = pipe_buf_confirm(pipe, buf);
855 			if (unlikely(ret)) {
856 				if (ret == -ENODATA)
857 					ret = 0;
858 				break;
859 			}
860 
861 			bvec_set_page(&bvec[bc++], buf->page, seg, buf->offset);
862 			remain -= seg;
863 			if (remain == 0 || bc >= ARRAY_SIZE(bvec))
864 				break;
865 			tail++;
866 		}
867 
868 		if (!bc)
869 			break;
870 
871 		msg.msg_flags = MSG_SPLICE_PAGES;
872 		if (flags & SPLICE_F_MORE)
873 			msg.msg_flags |= MSG_MORE;
874 		if (remain && pipe_occupancy(pipe->head, tail) > 0)
875 			msg.msg_flags |= MSG_MORE;
876 		if (out->f_flags & O_NONBLOCK)
877 			msg.msg_flags |= MSG_DONTWAIT;
878 
879 		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, bvec, bc,
880 			      len - remain);
881 		ret = sock_sendmsg(sock, &msg);
882 		if (ret <= 0)
883 			break;
884 
885 		spliced += ret;
886 		len -= ret;
887 		tail = pipe->tail;
888 		while (ret > 0) {
889 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
890 			size_t seg = min_t(size_t, ret, buf->len);
891 
892 			buf->offset += seg;
893 			buf->len -= seg;
894 			ret -= seg;
895 
896 			if (!buf->len) {
897 				pipe_buf_release(pipe, buf);
898 				tail++;
899 			}
900 		}
901 
902 		if (tail != pipe->tail) {
903 			pipe->tail = tail;
904 			if (pipe->files)
905 				need_wakeup = true;
906 		}
907 	}
908 
909 out:
910 	pipe_unlock(pipe);
911 	if (need_wakeup)
912 		wakeup_pipe_writers(pipe);
913 	return spliced ?: ret;
914 }
915 #endif
916 
917 static int warn_unsupported(struct file *file, const char *op)
918 {
919 	pr_debug_ratelimited(
920 		"splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n",
921 		op, file, current->pid, current->comm);
922 	return -EINVAL;
923 }
924 
925 /*
926  * Attempt to initiate a splice from pipe to file.
927  */
928 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
929 			   loff_t *ppos, size_t len, unsigned int flags)
930 {
931 	if (unlikely(!out->f_op->splice_write))
932 		return warn_unsupported(out, "write");
933 	return out->f_op->splice_write(pipe, out, ppos, len, flags);
934 }
935 
936 /*
937  * Indicate to the caller that there was a premature EOF when reading from the
938  * source and the caller didn't indicate they would be sending more data after
939  * this.
940  */
941 static void do_splice_eof(struct splice_desc *sd)
942 {
943 	if (sd->splice_eof)
944 		sd->splice_eof(sd);
945 }
946 
947 /**
948  * vfs_splice_read - Read data from a file and splice it into a pipe
949  * @in:		File to splice from
950  * @ppos:	Input file offset
951  * @pipe:	Pipe to splice to
952  * @len:	Number of bytes to splice
953  * @flags:	Splice modifier flags (SPLICE_F_*)
954  *
955  * Splice the requested amount of data from the input file to the pipe.  This
956  * is synchronous as the caller must hold the pipe lock across the entire
957  * operation.
958  *
959  * If successful, it returns the amount of data spliced, 0 if it hit the EOF or
960  * a hole and a negative error code otherwise.
961  */
962 long vfs_splice_read(struct file *in, loff_t *ppos,
963 		     struct pipe_inode_info *pipe, size_t len,
964 		     unsigned int flags)
965 {
966 	unsigned int p_space;
967 	int ret;
968 
969 	if (unlikely(!(in->f_mode & FMODE_READ)))
970 		return -EBADF;
971 	if (!len)
972 		return 0;
973 
974 	/* Don't try to read more the pipe has space for. */
975 	p_space = pipe->max_usage - pipe_occupancy(pipe->head, pipe->tail);
976 	len = min_t(size_t, len, p_space << PAGE_SHIFT);
977 
978 	ret = rw_verify_area(READ, in, ppos, len);
979 	if (unlikely(ret < 0))
980 		return ret;
981 
982 	if (unlikely(len > MAX_RW_COUNT))
983 		len = MAX_RW_COUNT;
984 
985 	if (unlikely(!in->f_op->splice_read))
986 		return warn_unsupported(in, "read");
987 	/*
988 	 * O_DIRECT and DAX don't deal with the pagecache, so we allocate a
989 	 * buffer, copy into it and splice that into the pipe.
990 	 */
991 	if ((in->f_flags & O_DIRECT) || IS_DAX(in->f_mapping->host))
992 		return copy_splice_read(in, ppos, pipe, len, flags);
993 	return in->f_op->splice_read(in, ppos, pipe, len, flags);
994 }
995 EXPORT_SYMBOL_GPL(vfs_splice_read);
996 
997 /**
998  * splice_direct_to_actor - splices data directly between two non-pipes
999  * @in:		file to splice from
1000  * @sd:		actor information on where to splice to
1001  * @actor:	handles the data splicing
1002  *
1003  * Description:
1004  *    This is a special case helper to splice directly between two
1005  *    points, without requiring an explicit pipe. Internally an allocated
1006  *    pipe is cached in the process, and reused during the lifetime of
1007  *    that process.
1008  *
1009  */
1010 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1011 			       splice_direct_actor *actor)
1012 {
1013 	struct pipe_inode_info *pipe;
1014 	long ret, bytes;
1015 	size_t len;
1016 	int i, flags, more;
1017 
1018 	/*
1019 	 * We require the input to be seekable, as we don't want to randomly
1020 	 * drop data for eg socket -> socket splicing. Use the piped splicing
1021 	 * for that!
1022 	 */
1023 	if (unlikely(!(in->f_mode & FMODE_LSEEK)))
1024 		return -EINVAL;
1025 
1026 	/*
1027 	 * neither in nor out is a pipe, setup an internal pipe attached to
1028 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
1029 	 */
1030 	pipe = current->splice_pipe;
1031 	if (unlikely(!pipe)) {
1032 		pipe = alloc_pipe_info();
1033 		if (!pipe)
1034 			return -ENOMEM;
1035 
1036 		/*
1037 		 * We don't have an immediate reader, but we'll read the stuff
1038 		 * out of the pipe right after the splice_to_pipe(). So set
1039 		 * PIPE_READERS appropriately.
1040 		 */
1041 		pipe->readers = 1;
1042 
1043 		current->splice_pipe = pipe;
1044 	}
1045 
1046 	/*
1047 	 * Do the splice.
1048 	 */
1049 	bytes = 0;
1050 	len = sd->total_len;
1051 
1052 	/* Don't block on output, we have to drain the direct pipe. */
1053 	flags = sd->flags;
1054 	sd->flags &= ~SPLICE_F_NONBLOCK;
1055 
1056 	/*
1057 	 * We signal MORE until we've read sufficient data to fulfill the
1058 	 * request and we keep signalling it if the caller set it.
1059 	 */
1060 	more = sd->flags & SPLICE_F_MORE;
1061 	sd->flags |= SPLICE_F_MORE;
1062 
1063 	WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail));
1064 
1065 	while (len) {
1066 		size_t read_len;
1067 		loff_t pos = sd->pos, prev_pos = pos;
1068 
1069 		ret = vfs_splice_read(in, &pos, pipe, len, flags);
1070 		if (unlikely(ret <= 0))
1071 			goto read_failure;
1072 
1073 		read_len = ret;
1074 		sd->total_len = read_len;
1075 
1076 		/*
1077 		 * If we now have sufficient data to fulfill the request then
1078 		 * we clear SPLICE_F_MORE if it was not set initially.
1079 		 */
1080 		if (read_len >= len && !more)
1081 			sd->flags &= ~SPLICE_F_MORE;
1082 
1083 		/*
1084 		 * NOTE: nonblocking mode only applies to the input. We
1085 		 * must not do the output in nonblocking mode as then we
1086 		 * could get stuck data in the internal pipe:
1087 		 */
1088 		ret = actor(pipe, sd);
1089 		if (unlikely(ret <= 0)) {
1090 			sd->pos = prev_pos;
1091 			goto out_release;
1092 		}
1093 
1094 		bytes += ret;
1095 		len -= ret;
1096 		sd->pos = pos;
1097 
1098 		if (ret < read_len) {
1099 			sd->pos = prev_pos + ret;
1100 			goto out_release;
1101 		}
1102 	}
1103 
1104 done:
1105 	pipe->tail = pipe->head = 0;
1106 	file_accessed(in);
1107 	return bytes;
1108 
1109 read_failure:
1110 	/*
1111 	 * If the user did *not* set SPLICE_F_MORE *and* we didn't hit that
1112 	 * "use all of len" case that cleared SPLICE_F_MORE, *and* we did a
1113 	 * "->splice_in()" that returned EOF (ie zero) *and* we have sent at
1114 	 * least 1 byte *then* we will also do the ->splice_eof() call.
1115 	 */
1116 	if (ret == 0 && !more && len > 0 && bytes)
1117 		do_splice_eof(sd);
1118 out_release:
1119 	/*
1120 	 * If we did an incomplete transfer we must release
1121 	 * the pipe buffers in question:
1122 	 */
1123 	for (i = 0; i < pipe->ring_size; i++) {
1124 		struct pipe_buffer *buf = &pipe->bufs[i];
1125 
1126 		if (buf->ops)
1127 			pipe_buf_release(pipe, buf);
1128 	}
1129 
1130 	if (!bytes)
1131 		bytes = ret;
1132 
1133 	goto done;
1134 }
1135 EXPORT_SYMBOL(splice_direct_to_actor);
1136 
1137 static int direct_splice_actor(struct pipe_inode_info *pipe,
1138 			       struct splice_desc *sd)
1139 {
1140 	struct file *file = sd->u.file;
1141 
1142 	return do_splice_from(pipe, file, sd->opos, sd->total_len,
1143 			      sd->flags);
1144 }
1145 
1146 static void direct_file_splice_eof(struct splice_desc *sd)
1147 {
1148 	struct file *file = sd->u.file;
1149 
1150 	if (file->f_op->splice_eof)
1151 		file->f_op->splice_eof(file);
1152 }
1153 
1154 /**
1155  * do_splice_direct - splices data directly between two files
1156  * @in:		file to splice from
1157  * @ppos:	input file offset
1158  * @out:	file to splice to
1159  * @opos:	output file offset
1160  * @len:	number of bytes to splice
1161  * @flags:	splice modifier flags
1162  *
1163  * Description:
1164  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1165  *    doing it in the application would incur an extra system call
1166  *    (splice in + splice out, as compared to just sendfile()). So this helper
1167  *    can splice directly through a process-private pipe.
1168  *
1169  */
1170 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1171 		      loff_t *opos, size_t len, unsigned int flags)
1172 {
1173 	struct splice_desc sd = {
1174 		.len		= len,
1175 		.total_len	= len,
1176 		.flags		= flags,
1177 		.pos		= *ppos,
1178 		.u.file		= out,
1179 		.splice_eof	= direct_file_splice_eof,
1180 		.opos		= opos,
1181 	};
1182 	long ret;
1183 
1184 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1185 		return -EBADF;
1186 
1187 	if (unlikely(out->f_flags & O_APPEND))
1188 		return -EINVAL;
1189 
1190 	ret = rw_verify_area(WRITE, out, opos, len);
1191 	if (unlikely(ret < 0))
1192 		return ret;
1193 
1194 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1195 	if (ret > 0)
1196 		*ppos = sd.pos;
1197 
1198 	return ret;
1199 }
1200 EXPORT_SYMBOL(do_splice_direct);
1201 
1202 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1203 {
1204 	for (;;) {
1205 		if (unlikely(!pipe->readers)) {
1206 			send_sig(SIGPIPE, current, 0);
1207 			return -EPIPE;
1208 		}
1209 		if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1210 			return 0;
1211 		if (flags & SPLICE_F_NONBLOCK)
1212 			return -EAGAIN;
1213 		if (signal_pending(current))
1214 			return -ERESTARTSYS;
1215 		pipe_wait_writable(pipe);
1216 	}
1217 }
1218 
1219 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1220 			       struct pipe_inode_info *opipe,
1221 			       size_t len, unsigned int flags);
1222 
1223 long splice_file_to_pipe(struct file *in,
1224 			 struct pipe_inode_info *opipe,
1225 			 loff_t *offset,
1226 			 size_t len, unsigned int flags)
1227 {
1228 	long ret;
1229 
1230 	pipe_lock(opipe);
1231 	ret = wait_for_space(opipe, flags);
1232 	if (!ret)
1233 		ret = vfs_splice_read(in, offset, opipe, len, flags);
1234 	pipe_unlock(opipe);
1235 	if (ret > 0)
1236 		wakeup_pipe_readers(opipe);
1237 	return ret;
1238 }
1239 
1240 /*
1241  * Determine where to splice to/from.
1242  */
1243 long do_splice(struct file *in, loff_t *off_in, struct file *out,
1244 	       loff_t *off_out, size_t len, unsigned int flags)
1245 {
1246 	struct pipe_inode_info *ipipe;
1247 	struct pipe_inode_info *opipe;
1248 	loff_t offset;
1249 	long ret;
1250 
1251 	if (unlikely(!(in->f_mode & FMODE_READ) ||
1252 		     !(out->f_mode & FMODE_WRITE)))
1253 		return -EBADF;
1254 
1255 	ipipe = get_pipe_info(in, true);
1256 	opipe = get_pipe_info(out, true);
1257 
1258 	if (ipipe && opipe) {
1259 		if (off_in || off_out)
1260 			return -ESPIPE;
1261 
1262 		/* Splicing to self would be fun, but... */
1263 		if (ipipe == opipe)
1264 			return -EINVAL;
1265 
1266 		if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1267 			flags |= SPLICE_F_NONBLOCK;
1268 
1269 		ret = splice_pipe_to_pipe(ipipe, opipe, len, flags);
1270 	} else if (ipipe) {
1271 		if (off_in)
1272 			return -ESPIPE;
1273 		if (off_out) {
1274 			if (!(out->f_mode & FMODE_PWRITE))
1275 				return -EINVAL;
1276 			offset = *off_out;
1277 		} else {
1278 			offset = out->f_pos;
1279 		}
1280 
1281 		if (unlikely(out->f_flags & O_APPEND))
1282 			return -EINVAL;
1283 
1284 		ret = rw_verify_area(WRITE, out, &offset, len);
1285 		if (unlikely(ret < 0))
1286 			return ret;
1287 
1288 		if (in->f_flags & O_NONBLOCK)
1289 			flags |= SPLICE_F_NONBLOCK;
1290 
1291 		file_start_write(out);
1292 		ret = do_splice_from(ipipe, out, &offset, len, flags);
1293 		file_end_write(out);
1294 
1295 		if (!off_out)
1296 			out->f_pos = offset;
1297 		else
1298 			*off_out = offset;
1299 	} else if (opipe) {
1300 		if (off_out)
1301 			return -ESPIPE;
1302 		if (off_in) {
1303 			if (!(in->f_mode & FMODE_PREAD))
1304 				return -EINVAL;
1305 			offset = *off_in;
1306 		} else {
1307 			offset = in->f_pos;
1308 		}
1309 
1310 		if (out->f_flags & O_NONBLOCK)
1311 			flags |= SPLICE_F_NONBLOCK;
1312 
1313 		ret = splice_file_to_pipe(in, opipe, &offset, len, flags);
1314 
1315 		if (!off_in)
1316 			in->f_pos = offset;
1317 		else
1318 			*off_in = offset;
1319 	} else {
1320 		ret = -EINVAL;
1321 	}
1322 
1323 	if (ret > 0) {
1324 		/*
1325 		 * Generate modify out before access in:
1326 		 * do_splice_from() may've already sent modify out,
1327 		 * and this ensures the events get merged.
1328 		 */
1329 		fsnotify_modify(out);
1330 		fsnotify_access(in);
1331 	}
1332 
1333 	return ret;
1334 }
1335 
1336 static long __do_splice(struct file *in, loff_t __user *off_in,
1337 			struct file *out, loff_t __user *off_out,
1338 			size_t len, unsigned int flags)
1339 {
1340 	struct pipe_inode_info *ipipe;
1341 	struct pipe_inode_info *opipe;
1342 	loff_t offset, *__off_in = NULL, *__off_out = NULL;
1343 	long ret;
1344 
1345 	ipipe = get_pipe_info(in, true);
1346 	opipe = get_pipe_info(out, true);
1347 
1348 	if (ipipe) {
1349 		if (off_in)
1350 			return -ESPIPE;
1351 		pipe_clear_nowait(in);
1352 	}
1353 	if (opipe) {
1354 		if (off_out)
1355 			return -ESPIPE;
1356 		pipe_clear_nowait(out);
1357 	}
1358 
1359 	if (off_out) {
1360 		if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1361 			return -EFAULT;
1362 		__off_out = &offset;
1363 	}
1364 	if (off_in) {
1365 		if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1366 			return -EFAULT;
1367 		__off_in = &offset;
1368 	}
1369 
1370 	ret = do_splice(in, __off_in, out, __off_out, len, flags);
1371 	if (ret < 0)
1372 		return ret;
1373 
1374 	if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t)))
1375 		return -EFAULT;
1376 	if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t)))
1377 		return -EFAULT;
1378 
1379 	return ret;
1380 }
1381 
1382 static int iter_to_pipe(struct iov_iter *from,
1383 			struct pipe_inode_info *pipe,
1384 			unsigned flags)
1385 {
1386 	struct pipe_buffer buf = {
1387 		.ops = &user_page_pipe_buf_ops,
1388 		.flags = flags
1389 	};
1390 	size_t total = 0;
1391 	int ret = 0;
1392 
1393 	while (iov_iter_count(from)) {
1394 		struct page *pages[16];
1395 		ssize_t left;
1396 		size_t start;
1397 		int i, n;
1398 
1399 		left = iov_iter_get_pages2(from, pages, ~0UL, 16, &start);
1400 		if (left <= 0) {
1401 			ret = left;
1402 			break;
1403 		}
1404 
1405 		n = DIV_ROUND_UP(left + start, PAGE_SIZE);
1406 		for (i = 0; i < n; i++) {
1407 			int size = min_t(int, left, PAGE_SIZE - start);
1408 
1409 			buf.page = pages[i];
1410 			buf.offset = start;
1411 			buf.len = size;
1412 			ret = add_to_pipe(pipe, &buf);
1413 			if (unlikely(ret < 0)) {
1414 				iov_iter_revert(from, left);
1415 				// this one got dropped by add_to_pipe()
1416 				while (++i < n)
1417 					put_page(pages[i]);
1418 				goto out;
1419 			}
1420 			total += ret;
1421 			left -= size;
1422 			start = 0;
1423 		}
1424 	}
1425 out:
1426 	return total ? total : ret;
1427 }
1428 
1429 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1430 			struct splice_desc *sd)
1431 {
1432 	int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1433 	return n == sd->len ? n : -EFAULT;
1434 }
1435 
1436 /*
1437  * For lack of a better implementation, implement vmsplice() to userspace
1438  * as a simple copy of the pipes pages to the user iov.
1439  */
1440 static long vmsplice_to_user(struct file *file, struct iov_iter *iter,
1441 			     unsigned int flags)
1442 {
1443 	struct pipe_inode_info *pipe = get_pipe_info(file, true);
1444 	struct splice_desc sd = {
1445 		.total_len = iov_iter_count(iter),
1446 		.flags = flags,
1447 		.u.data = iter
1448 	};
1449 	long ret = 0;
1450 
1451 	if (!pipe)
1452 		return -EBADF;
1453 
1454 	pipe_clear_nowait(file);
1455 
1456 	if (sd.total_len) {
1457 		pipe_lock(pipe);
1458 		ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1459 		pipe_unlock(pipe);
1460 	}
1461 
1462 	if (ret > 0)
1463 		fsnotify_access(file);
1464 
1465 	return ret;
1466 }
1467 
1468 /*
1469  * vmsplice splices a user address range into a pipe. It can be thought of
1470  * as splice-from-memory, where the regular splice is splice-from-file (or
1471  * to file). In both cases the output is a pipe, naturally.
1472  */
1473 static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter,
1474 			     unsigned int flags)
1475 {
1476 	struct pipe_inode_info *pipe;
1477 	long ret = 0;
1478 	unsigned buf_flag = 0;
1479 
1480 	if (flags & SPLICE_F_GIFT)
1481 		buf_flag = PIPE_BUF_FLAG_GIFT;
1482 
1483 	pipe = get_pipe_info(file, true);
1484 	if (!pipe)
1485 		return -EBADF;
1486 
1487 	pipe_clear_nowait(file);
1488 
1489 	pipe_lock(pipe);
1490 	ret = wait_for_space(pipe, flags);
1491 	if (!ret)
1492 		ret = iter_to_pipe(iter, pipe, buf_flag);
1493 	pipe_unlock(pipe);
1494 	if (ret > 0) {
1495 		wakeup_pipe_readers(pipe);
1496 		fsnotify_modify(file);
1497 	}
1498 	return ret;
1499 }
1500 
1501 static int vmsplice_type(struct fd f, int *type)
1502 {
1503 	if (!f.file)
1504 		return -EBADF;
1505 	if (f.file->f_mode & FMODE_WRITE) {
1506 		*type = ITER_SOURCE;
1507 	} else if (f.file->f_mode & FMODE_READ) {
1508 		*type = ITER_DEST;
1509 	} else {
1510 		fdput(f);
1511 		return -EBADF;
1512 	}
1513 	return 0;
1514 }
1515 
1516 /*
1517  * Note that vmsplice only really supports true splicing _from_ user memory
1518  * to a pipe, not the other way around. Splicing from user memory is a simple
1519  * operation that can be supported without any funky alignment restrictions
1520  * or nasty vm tricks. We simply map in the user memory and fill them into
1521  * a pipe. The reverse isn't quite as easy, though. There are two possible
1522  * solutions for that:
1523  *
1524  *	- memcpy() the data internally, at which point we might as well just
1525  *	  do a regular read() on the buffer anyway.
1526  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1527  *	  has restriction limitations on both ends of the pipe).
1528  *
1529  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1530  *
1531  */
1532 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov,
1533 		unsigned long, nr_segs, unsigned int, flags)
1534 {
1535 	struct iovec iovstack[UIO_FASTIOV];
1536 	struct iovec *iov = iovstack;
1537 	struct iov_iter iter;
1538 	ssize_t error;
1539 	struct fd f;
1540 	int type;
1541 
1542 	if (unlikely(flags & ~SPLICE_F_ALL))
1543 		return -EINVAL;
1544 
1545 	f = fdget(fd);
1546 	error = vmsplice_type(f, &type);
1547 	if (error)
1548 		return error;
1549 
1550 	error = import_iovec(type, uiov, nr_segs,
1551 			     ARRAY_SIZE(iovstack), &iov, &iter);
1552 	if (error < 0)
1553 		goto out_fdput;
1554 
1555 	if (!iov_iter_count(&iter))
1556 		error = 0;
1557 	else if (type == ITER_SOURCE)
1558 		error = vmsplice_to_pipe(f.file, &iter, flags);
1559 	else
1560 		error = vmsplice_to_user(f.file, &iter, flags);
1561 
1562 	kfree(iov);
1563 out_fdput:
1564 	fdput(f);
1565 	return error;
1566 }
1567 
1568 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1569 		int, fd_out, loff_t __user *, off_out,
1570 		size_t, len, unsigned int, flags)
1571 {
1572 	struct fd in, out;
1573 	long error;
1574 
1575 	if (unlikely(!len))
1576 		return 0;
1577 
1578 	if (unlikely(flags & ~SPLICE_F_ALL))
1579 		return -EINVAL;
1580 
1581 	error = -EBADF;
1582 	in = fdget(fd_in);
1583 	if (in.file) {
1584 		out = fdget(fd_out);
1585 		if (out.file) {
1586 			error = __do_splice(in.file, off_in, out.file, off_out,
1587 						len, flags);
1588 			fdput(out);
1589 		}
1590 		fdput(in);
1591 	}
1592 	return error;
1593 }
1594 
1595 /*
1596  * Make sure there's data to read. Wait for input if we can, otherwise
1597  * return an appropriate error.
1598  */
1599 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1600 {
1601 	int ret;
1602 
1603 	/*
1604 	 * Check the pipe occupancy without the inode lock first. This function
1605 	 * is speculative anyways, so missing one is ok.
1606 	 */
1607 	if (!pipe_empty(pipe->head, pipe->tail))
1608 		return 0;
1609 
1610 	ret = 0;
1611 	pipe_lock(pipe);
1612 
1613 	while (pipe_empty(pipe->head, pipe->tail)) {
1614 		if (signal_pending(current)) {
1615 			ret = -ERESTARTSYS;
1616 			break;
1617 		}
1618 		if (!pipe->writers)
1619 			break;
1620 		if (flags & SPLICE_F_NONBLOCK) {
1621 			ret = -EAGAIN;
1622 			break;
1623 		}
1624 		pipe_wait_readable(pipe);
1625 	}
1626 
1627 	pipe_unlock(pipe);
1628 	return ret;
1629 }
1630 
1631 /*
1632  * Make sure there's writeable room. Wait for room if we can, otherwise
1633  * return an appropriate error.
1634  */
1635 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1636 {
1637 	int ret;
1638 
1639 	/*
1640 	 * Check pipe occupancy without the inode lock first. This function
1641 	 * is speculative anyways, so missing one is ok.
1642 	 */
1643 	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1644 		return 0;
1645 
1646 	ret = 0;
1647 	pipe_lock(pipe);
1648 
1649 	while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
1650 		if (!pipe->readers) {
1651 			send_sig(SIGPIPE, current, 0);
1652 			ret = -EPIPE;
1653 			break;
1654 		}
1655 		if (flags & SPLICE_F_NONBLOCK) {
1656 			ret = -EAGAIN;
1657 			break;
1658 		}
1659 		if (signal_pending(current)) {
1660 			ret = -ERESTARTSYS;
1661 			break;
1662 		}
1663 		pipe_wait_writable(pipe);
1664 	}
1665 
1666 	pipe_unlock(pipe);
1667 	return ret;
1668 }
1669 
1670 /*
1671  * Splice contents of ipipe to opipe.
1672  */
1673 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1674 			       struct pipe_inode_info *opipe,
1675 			       size_t len, unsigned int flags)
1676 {
1677 	struct pipe_buffer *ibuf, *obuf;
1678 	unsigned int i_head, o_head;
1679 	unsigned int i_tail, o_tail;
1680 	unsigned int i_mask, o_mask;
1681 	int ret = 0;
1682 	bool input_wakeup = false;
1683 
1684 
1685 retry:
1686 	ret = ipipe_prep(ipipe, flags);
1687 	if (ret)
1688 		return ret;
1689 
1690 	ret = opipe_prep(opipe, flags);
1691 	if (ret)
1692 		return ret;
1693 
1694 	/*
1695 	 * Potential ABBA deadlock, work around it by ordering lock
1696 	 * grabbing by pipe info address. Otherwise two different processes
1697 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1698 	 */
1699 	pipe_double_lock(ipipe, opipe);
1700 
1701 	i_tail = ipipe->tail;
1702 	i_mask = ipipe->ring_size - 1;
1703 	o_head = opipe->head;
1704 	o_mask = opipe->ring_size - 1;
1705 
1706 	do {
1707 		size_t o_len;
1708 
1709 		if (!opipe->readers) {
1710 			send_sig(SIGPIPE, current, 0);
1711 			if (!ret)
1712 				ret = -EPIPE;
1713 			break;
1714 		}
1715 
1716 		i_head = ipipe->head;
1717 		o_tail = opipe->tail;
1718 
1719 		if (pipe_empty(i_head, i_tail) && !ipipe->writers)
1720 			break;
1721 
1722 		/*
1723 		 * Cannot make any progress, because either the input
1724 		 * pipe is empty or the output pipe is full.
1725 		 */
1726 		if (pipe_empty(i_head, i_tail) ||
1727 		    pipe_full(o_head, o_tail, opipe->max_usage)) {
1728 			/* Already processed some buffers, break */
1729 			if (ret)
1730 				break;
1731 
1732 			if (flags & SPLICE_F_NONBLOCK) {
1733 				ret = -EAGAIN;
1734 				break;
1735 			}
1736 
1737 			/*
1738 			 * We raced with another reader/writer and haven't
1739 			 * managed to process any buffers.  A zero return
1740 			 * value means EOF, so retry instead.
1741 			 */
1742 			pipe_unlock(ipipe);
1743 			pipe_unlock(opipe);
1744 			goto retry;
1745 		}
1746 
1747 		ibuf = &ipipe->bufs[i_tail & i_mask];
1748 		obuf = &opipe->bufs[o_head & o_mask];
1749 
1750 		if (len >= ibuf->len) {
1751 			/*
1752 			 * Simply move the whole buffer from ipipe to opipe
1753 			 */
1754 			*obuf = *ibuf;
1755 			ibuf->ops = NULL;
1756 			i_tail++;
1757 			ipipe->tail = i_tail;
1758 			input_wakeup = true;
1759 			o_len = obuf->len;
1760 			o_head++;
1761 			opipe->head = o_head;
1762 		} else {
1763 			/*
1764 			 * Get a reference to this pipe buffer,
1765 			 * so we can copy the contents over.
1766 			 */
1767 			if (!pipe_buf_get(ipipe, ibuf)) {
1768 				if (ret == 0)
1769 					ret = -EFAULT;
1770 				break;
1771 			}
1772 			*obuf = *ibuf;
1773 
1774 			/*
1775 			 * Don't inherit the gift and merge flags, we need to
1776 			 * prevent multiple steals of this page.
1777 			 */
1778 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1779 			obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1780 
1781 			obuf->len = len;
1782 			ibuf->offset += len;
1783 			ibuf->len -= len;
1784 			o_len = len;
1785 			o_head++;
1786 			opipe->head = o_head;
1787 		}
1788 		ret += o_len;
1789 		len -= o_len;
1790 	} while (len);
1791 
1792 	pipe_unlock(ipipe);
1793 	pipe_unlock(opipe);
1794 
1795 	/*
1796 	 * If we put data in the output pipe, wakeup any potential readers.
1797 	 */
1798 	if (ret > 0)
1799 		wakeup_pipe_readers(opipe);
1800 
1801 	if (input_wakeup)
1802 		wakeup_pipe_writers(ipipe);
1803 
1804 	return ret;
1805 }
1806 
1807 /*
1808  * Link contents of ipipe to opipe.
1809  */
1810 static int link_pipe(struct pipe_inode_info *ipipe,
1811 		     struct pipe_inode_info *opipe,
1812 		     size_t len, unsigned int flags)
1813 {
1814 	struct pipe_buffer *ibuf, *obuf;
1815 	unsigned int i_head, o_head;
1816 	unsigned int i_tail, o_tail;
1817 	unsigned int i_mask, o_mask;
1818 	int ret = 0;
1819 
1820 	/*
1821 	 * Potential ABBA deadlock, work around it by ordering lock
1822 	 * grabbing by pipe info address. Otherwise two different processes
1823 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1824 	 */
1825 	pipe_double_lock(ipipe, opipe);
1826 
1827 	i_tail = ipipe->tail;
1828 	i_mask = ipipe->ring_size - 1;
1829 	o_head = opipe->head;
1830 	o_mask = opipe->ring_size - 1;
1831 
1832 	do {
1833 		if (!opipe->readers) {
1834 			send_sig(SIGPIPE, current, 0);
1835 			if (!ret)
1836 				ret = -EPIPE;
1837 			break;
1838 		}
1839 
1840 		i_head = ipipe->head;
1841 		o_tail = opipe->tail;
1842 
1843 		/*
1844 		 * If we have iterated all input buffers or run out of
1845 		 * output room, break.
1846 		 */
1847 		if (pipe_empty(i_head, i_tail) ||
1848 		    pipe_full(o_head, o_tail, opipe->max_usage))
1849 			break;
1850 
1851 		ibuf = &ipipe->bufs[i_tail & i_mask];
1852 		obuf = &opipe->bufs[o_head & o_mask];
1853 
1854 		/*
1855 		 * Get a reference to this pipe buffer,
1856 		 * so we can copy the contents over.
1857 		 */
1858 		if (!pipe_buf_get(ipipe, ibuf)) {
1859 			if (ret == 0)
1860 				ret = -EFAULT;
1861 			break;
1862 		}
1863 
1864 		*obuf = *ibuf;
1865 
1866 		/*
1867 		 * Don't inherit the gift and merge flag, we need to prevent
1868 		 * multiple steals of this page.
1869 		 */
1870 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1871 		obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1872 
1873 		if (obuf->len > len)
1874 			obuf->len = len;
1875 		ret += obuf->len;
1876 		len -= obuf->len;
1877 
1878 		o_head++;
1879 		opipe->head = o_head;
1880 		i_tail++;
1881 	} while (len);
1882 
1883 	pipe_unlock(ipipe);
1884 	pipe_unlock(opipe);
1885 
1886 	/*
1887 	 * If we put data in the output pipe, wakeup any potential readers.
1888 	 */
1889 	if (ret > 0)
1890 		wakeup_pipe_readers(opipe);
1891 
1892 	return ret;
1893 }
1894 
1895 /*
1896  * This is a tee(1) implementation that works on pipes. It doesn't copy
1897  * any data, it simply references the 'in' pages on the 'out' pipe.
1898  * The 'flags' used are the SPLICE_F_* variants, currently the only
1899  * applicable one is SPLICE_F_NONBLOCK.
1900  */
1901 long do_tee(struct file *in, struct file *out, size_t len, unsigned int flags)
1902 {
1903 	struct pipe_inode_info *ipipe = get_pipe_info(in, true);
1904 	struct pipe_inode_info *opipe = get_pipe_info(out, true);
1905 	int ret = -EINVAL;
1906 
1907 	if (unlikely(!(in->f_mode & FMODE_READ) ||
1908 		     !(out->f_mode & FMODE_WRITE)))
1909 		return -EBADF;
1910 
1911 	/*
1912 	 * Duplicate the contents of ipipe to opipe without actually
1913 	 * copying the data.
1914 	 */
1915 	if (ipipe && opipe && ipipe != opipe) {
1916 		if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1917 			flags |= SPLICE_F_NONBLOCK;
1918 
1919 		/*
1920 		 * Keep going, unless we encounter an error. The ipipe/opipe
1921 		 * ordering doesn't really matter.
1922 		 */
1923 		ret = ipipe_prep(ipipe, flags);
1924 		if (!ret) {
1925 			ret = opipe_prep(opipe, flags);
1926 			if (!ret)
1927 				ret = link_pipe(ipipe, opipe, len, flags);
1928 		}
1929 	}
1930 
1931 	if (ret > 0) {
1932 		fsnotify_access(in);
1933 		fsnotify_modify(out);
1934 	}
1935 
1936 	return ret;
1937 }
1938 
1939 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1940 {
1941 	struct fd in, out;
1942 	int error;
1943 
1944 	if (unlikely(flags & ~SPLICE_F_ALL))
1945 		return -EINVAL;
1946 
1947 	if (unlikely(!len))
1948 		return 0;
1949 
1950 	error = -EBADF;
1951 	in = fdget(fdin);
1952 	if (in.file) {
1953 		out = fdget(fdout);
1954 		if (out.file) {
1955 			error = do_tee(in.file, out.file, len, flags);
1956 			fdput(out);
1957 		}
1958  		fdput(in);
1959  	}
1960 
1961 	return error;
1962 }
1963