1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * "splice": joining two ropes together by interweaving their strands. 4 * 5 * This is the "extended pipe" functionality, where a pipe is used as 6 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 7 * buffer that you can use to transfer data from one end to the other. 8 * 9 * The traditional unix read/write is extended with a "splice()" operation 10 * that transfers data buffers to or from a pipe buffer. 11 * 12 * Named by Larry McVoy, original implementation from Linus, extended by 13 * Jens to support splicing to files, network, direct splicing, etc and 14 * fixing lots of bugs. 15 * 16 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 17 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 18 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 19 * 20 */ 21 #include <linux/bvec.h> 22 #include <linux/fs.h> 23 #include <linux/file.h> 24 #include <linux/pagemap.h> 25 #include <linux/splice.h> 26 #include <linux/memcontrol.h> 27 #include <linux/mm_inline.h> 28 #include <linux/swap.h> 29 #include <linux/writeback.h> 30 #include <linux/export.h> 31 #include <linux/syscalls.h> 32 #include <linux/uio.h> 33 #include <linux/fsnotify.h> 34 #include <linux/security.h> 35 #include <linux/gfp.h> 36 #include <linux/net.h> 37 #include <linux/socket.h> 38 #include <linux/sched/signal.h> 39 40 #include "internal.h" 41 42 /* 43 * Splice doesn't support FMODE_NOWAIT. Since pipes may set this flag to 44 * indicate they support non-blocking reads or writes, we must clear it 45 * here if set to avoid blocking other users of this pipe if splice is 46 * being done on it. 47 */ 48 static noinline void noinline pipe_clear_nowait(struct file *file) 49 { 50 fmode_t fmode = READ_ONCE(file->f_mode); 51 52 do { 53 if (!(fmode & FMODE_NOWAIT)) 54 break; 55 } while (!try_cmpxchg(&file->f_mode, &fmode, fmode & ~FMODE_NOWAIT)); 56 } 57 58 /* 59 * Attempt to steal a page from a pipe buffer. This should perhaps go into 60 * a vm helper function, it's already simplified quite a bit by the 61 * addition of remove_mapping(). If success is returned, the caller may 62 * attempt to reuse this page for another destination. 63 */ 64 static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe, 65 struct pipe_buffer *buf) 66 { 67 struct folio *folio = page_folio(buf->page); 68 struct address_space *mapping; 69 70 folio_lock(folio); 71 72 mapping = folio_mapping(folio); 73 if (mapping) { 74 WARN_ON(!folio_test_uptodate(folio)); 75 76 /* 77 * At least for ext2 with nobh option, we need to wait on 78 * writeback completing on this folio, since we'll remove it 79 * from the pagecache. Otherwise truncate wont wait on the 80 * folio, allowing the disk blocks to be reused by someone else 81 * before we actually wrote our data to them. fs corruption 82 * ensues. 83 */ 84 folio_wait_writeback(folio); 85 86 if (folio_has_private(folio) && 87 !filemap_release_folio(folio, GFP_KERNEL)) 88 goto out_unlock; 89 90 /* 91 * If we succeeded in removing the mapping, set LRU flag 92 * and return good. 93 */ 94 if (remove_mapping(mapping, folio)) { 95 buf->flags |= PIPE_BUF_FLAG_LRU; 96 return true; 97 } 98 } 99 100 /* 101 * Raced with truncate or failed to remove folio from current 102 * address space, unlock and return failure. 103 */ 104 out_unlock: 105 folio_unlock(folio); 106 return false; 107 } 108 109 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 110 struct pipe_buffer *buf) 111 { 112 put_page(buf->page); 113 buf->flags &= ~PIPE_BUF_FLAG_LRU; 114 } 115 116 /* 117 * Check whether the contents of buf is OK to access. Since the content 118 * is a page cache page, IO may be in flight. 119 */ 120 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 121 struct pipe_buffer *buf) 122 { 123 struct page *page = buf->page; 124 int err; 125 126 if (!PageUptodate(page)) { 127 lock_page(page); 128 129 /* 130 * Page got truncated/unhashed. This will cause a 0-byte 131 * splice, if this is the first page. 132 */ 133 if (!page->mapping) { 134 err = -ENODATA; 135 goto error; 136 } 137 138 /* 139 * Uh oh, read-error from disk. 140 */ 141 if (!PageUptodate(page)) { 142 err = -EIO; 143 goto error; 144 } 145 146 /* 147 * Page is ok afterall, we are done. 148 */ 149 unlock_page(page); 150 } 151 152 return 0; 153 error: 154 unlock_page(page); 155 return err; 156 } 157 158 const struct pipe_buf_operations page_cache_pipe_buf_ops = { 159 .confirm = page_cache_pipe_buf_confirm, 160 .release = page_cache_pipe_buf_release, 161 .try_steal = page_cache_pipe_buf_try_steal, 162 .get = generic_pipe_buf_get, 163 }; 164 165 static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe, 166 struct pipe_buffer *buf) 167 { 168 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 169 return false; 170 171 buf->flags |= PIPE_BUF_FLAG_LRU; 172 return generic_pipe_buf_try_steal(pipe, buf); 173 } 174 175 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 176 .release = page_cache_pipe_buf_release, 177 .try_steal = user_page_pipe_buf_try_steal, 178 .get = generic_pipe_buf_get, 179 }; 180 181 static void wakeup_pipe_readers(struct pipe_inode_info *pipe) 182 { 183 smp_mb(); 184 if (waitqueue_active(&pipe->rd_wait)) 185 wake_up_interruptible(&pipe->rd_wait); 186 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 187 } 188 189 /** 190 * splice_to_pipe - fill passed data into a pipe 191 * @pipe: pipe to fill 192 * @spd: data to fill 193 * 194 * Description: 195 * @spd contains a map of pages and len/offset tuples, along with 196 * the struct pipe_buf_operations associated with these pages. This 197 * function will link that data to the pipe. 198 * 199 */ 200 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 201 struct splice_pipe_desc *spd) 202 { 203 unsigned int spd_pages = spd->nr_pages; 204 unsigned int tail = pipe->tail; 205 unsigned int head = pipe->head; 206 unsigned int mask = pipe->ring_size - 1; 207 int ret = 0, page_nr = 0; 208 209 if (!spd_pages) 210 return 0; 211 212 if (unlikely(!pipe->readers)) { 213 send_sig(SIGPIPE, current, 0); 214 ret = -EPIPE; 215 goto out; 216 } 217 218 while (!pipe_full(head, tail, pipe->max_usage)) { 219 struct pipe_buffer *buf = &pipe->bufs[head & mask]; 220 221 buf->page = spd->pages[page_nr]; 222 buf->offset = spd->partial[page_nr].offset; 223 buf->len = spd->partial[page_nr].len; 224 buf->private = spd->partial[page_nr].private; 225 buf->ops = spd->ops; 226 buf->flags = 0; 227 228 head++; 229 pipe->head = head; 230 page_nr++; 231 ret += buf->len; 232 233 if (!--spd->nr_pages) 234 break; 235 } 236 237 if (!ret) 238 ret = -EAGAIN; 239 240 out: 241 while (page_nr < spd_pages) 242 spd->spd_release(spd, page_nr++); 243 244 return ret; 245 } 246 EXPORT_SYMBOL_GPL(splice_to_pipe); 247 248 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 249 { 250 unsigned int head = pipe->head; 251 unsigned int tail = pipe->tail; 252 unsigned int mask = pipe->ring_size - 1; 253 int ret; 254 255 if (unlikely(!pipe->readers)) { 256 send_sig(SIGPIPE, current, 0); 257 ret = -EPIPE; 258 } else if (pipe_full(head, tail, pipe->max_usage)) { 259 ret = -EAGAIN; 260 } else { 261 pipe->bufs[head & mask] = *buf; 262 pipe->head = head + 1; 263 return buf->len; 264 } 265 pipe_buf_release(pipe, buf); 266 return ret; 267 } 268 EXPORT_SYMBOL(add_to_pipe); 269 270 /* 271 * Check if we need to grow the arrays holding pages and partial page 272 * descriptions. 273 */ 274 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd) 275 { 276 unsigned int max_usage = READ_ONCE(pipe->max_usage); 277 278 spd->nr_pages_max = max_usage; 279 if (max_usage <= PIPE_DEF_BUFFERS) 280 return 0; 281 282 spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL); 283 spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page), 284 GFP_KERNEL); 285 286 if (spd->pages && spd->partial) 287 return 0; 288 289 kfree(spd->pages); 290 kfree(spd->partial); 291 return -ENOMEM; 292 } 293 294 void splice_shrink_spd(struct splice_pipe_desc *spd) 295 { 296 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS) 297 return; 298 299 kfree(spd->pages); 300 kfree(spd->partial); 301 } 302 303 /** 304 * copy_splice_read - Copy data from a file and splice the copy into a pipe 305 * @in: The file to read from 306 * @ppos: Pointer to the file position to read from 307 * @pipe: The pipe to splice into 308 * @len: The amount to splice 309 * @flags: The SPLICE_F_* flags 310 * 311 * This function allocates a bunch of pages sufficient to hold the requested 312 * amount of data (but limited by the remaining pipe capacity), passes it to 313 * the file's ->read_iter() to read into and then splices the used pages into 314 * the pipe. 315 * 316 * Return: On success, the number of bytes read will be returned and *@ppos 317 * will be updated if appropriate; 0 will be returned if there is no more data 318 * to be read; -EAGAIN will be returned if the pipe had no space, and some 319 * other negative error code will be returned on error. A short read may occur 320 * if the pipe has insufficient space, we reach the end of the data or we hit a 321 * hole. 322 */ 323 ssize_t copy_splice_read(struct file *in, loff_t *ppos, 324 struct pipe_inode_info *pipe, 325 size_t len, unsigned int flags) 326 { 327 struct iov_iter to; 328 struct bio_vec *bv; 329 struct kiocb kiocb; 330 struct page **pages; 331 ssize_t ret; 332 size_t used, npages, chunk, remain, keep = 0; 333 int i; 334 335 /* Work out how much data we can actually add into the pipe */ 336 used = pipe_occupancy(pipe->head, pipe->tail); 337 npages = max_t(ssize_t, pipe->max_usage - used, 0); 338 len = min_t(size_t, len, npages * PAGE_SIZE); 339 npages = DIV_ROUND_UP(len, PAGE_SIZE); 340 341 bv = kzalloc(array_size(npages, sizeof(bv[0])) + 342 array_size(npages, sizeof(struct page *)), GFP_KERNEL); 343 if (!bv) 344 return -ENOMEM; 345 346 pages = (struct page **)(bv + npages); 347 npages = alloc_pages_bulk_array(GFP_USER, npages, pages); 348 if (!npages) { 349 kfree(bv); 350 return -ENOMEM; 351 } 352 353 remain = len = min_t(size_t, len, npages * PAGE_SIZE); 354 355 for (i = 0; i < npages; i++) { 356 chunk = min_t(size_t, PAGE_SIZE, remain); 357 bv[i].bv_page = pages[i]; 358 bv[i].bv_offset = 0; 359 bv[i].bv_len = chunk; 360 remain -= chunk; 361 } 362 363 /* Do the I/O */ 364 iov_iter_bvec(&to, ITER_DEST, bv, npages, len); 365 init_sync_kiocb(&kiocb, in); 366 kiocb.ki_pos = *ppos; 367 ret = call_read_iter(in, &kiocb, &to); 368 369 if (ret > 0) { 370 keep = DIV_ROUND_UP(ret, PAGE_SIZE); 371 *ppos = kiocb.ki_pos; 372 } 373 374 /* 375 * Callers of ->splice_read() expect -EAGAIN on "can't put anything in 376 * there", rather than -EFAULT. 377 */ 378 if (ret == -EFAULT) 379 ret = -EAGAIN; 380 381 /* Free any pages that didn't get touched at all. */ 382 if (keep < npages) 383 release_pages(pages + keep, npages - keep); 384 385 /* Push the remaining pages into the pipe. */ 386 remain = ret; 387 for (i = 0; i < keep; i++) { 388 struct pipe_buffer *buf = pipe_head_buf(pipe); 389 390 chunk = min_t(size_t, remain, PAGE_SIZE); 391 *buf = (struct pipe_buffer) { 392 .ops = &default_pipe_buf_ops, 393 .page = bv[i].bv_page, 394 .offset = 0, 395 .len = chunk, 396 }; 397 pipe->head++; 398 remain -= chunk; 399 } 400 401 kfree(bv); 402 return ret; 403 } 404 EXPORT_SYMBOL(copy_splice_read); 405 406 const struct pipe_buf_operations default_pipe_buf_ops = { 407 .release = generic_pipe_buf_release, 408 .try_steal = generic_pipe_buf_try_steal, 409 .get = generic_pipe_buf_get, 410 }; 411 412 /* Pipe buffer operations for a socket and similar. */ 413 const struct pipe_buf_operations nosteal_pipe_buf_ops = { 414 .release = generic_pipe_buf_release, 415 .get = generic_pipe_buf_get, 416 }; 417 EXPORT_SYMBOL(nosteal_pipe_buf_ops); 418 419 static void wakeup_pipe_writers(struct pipe_inode_info *pipe) 420 { 421 smp_mb(); 422 if (waitqueue_active(&pipe->wr_wait)) 423 wake_up_interruptible(&pipe->wr_wait); 424 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 425 } 426 427 /** 428 * splice_from_pipe_feed - feed available data from a pipe to a file 429 * @pipe: pipe to splice from 430 * @sd: information to @actor 431 * @actor: handler that splices the data 432 * 433 * Description: 434 * This function loops over the pipe and calls @actor to do the 435 * actual moving of a single struct pipe_buffer to the desired 436 * destination. It returns when there's no more buffers left in 437 * the pipe or if the requested number of bytes (@sd->total_len) 438 * have been copied. It returns a positive number (one) if the 439 * pipe needs to be filled with more data, zero if the required 440 * number of bytes have been copied and -errno on error. 441 * 442 * This, together with splice_from_pipe_{begin,end,next}, may be 443 * used to implement the functionality of __splice_from_pipe() when 444 * locking is required around copying the pipe buffers to the 445 * destination. 446 */ 447 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd, 448 splice_actor *actor) 449 { 450 unsigned int head = pipe->head; 451 unsigned int tail = pipe->tail; 452 unsigned int mask = pipe->ring_size - 1; 453 int ret; 454 455 while (!pipe_empty(head, tail)) { 456 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 457 458 sd->len = buf->len; 459 if (sd->len > sd->total_len) 460 sd->len = sd->total_len; 461 462 ret = pipe_buf_confirm(pipe, buf); 463 if (unlikely(ret)) { 464 if (ret == -ENODATA) 465 ret = 0; 466 return ret; 467 } 468 469 ret = actor(pipe, buf, sd); 470 if (ret <= 0) 471 return ret; 472 473 buf->offset += ret; 474 buf->len -= ret; 475 476 sd->num_spliced += ret; 477 sd->len -= ret; 478 sd->pos += ret; 479 sd->total_len -= ret; 480 481 if (!buf->len) { 482 pipe_buf_release(pipe, buf); 483 tail++; 484 pipe->tail = tail; 485 if (pipe->files) 486 sd->need_wakeup = true; 487 } 488 489 if (!sd->total_len) 490 return 0; 491 } 492 493 return 1; 494 } 495 496 /* We know we have a pipe buffer, but maybe it's empty? */ 497 static inline bool eat_empty_buffer(struct pipe_inode_info *pipe) 498 { 499 unsigned int tail = pipe->tail; 500 unsigned int mask = pipe->ring_size - 1; 501 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 502 503 if (unlikely(!buf->len)) { 504 pipe_buf_release(pipe, buf); 505 pipe->tail = tail+1; 506 return true; 507 } 508 509 return false; 510 } 511 512 /** 513 * splice_from_pipe_next - wait for some data to splice from 514 * @pipe: pipe to splice from 515 * @sd: information about the splice operation 516 * 517 * Description: 518 * This function will wait for some data and return a positive 519 * value (one) if pipe buffers are available. It will return zero 520 * or -errno if no more data needs to be spliced. 521 */ 522 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd) 523 { 524 /* 525 * Check for signal early to make process killable when there are 526 * always buffers available 527 */ 528 if (signal_pending(current)) 529 return -ERESTARTSYS; 530 531 repeat: 532 while (pipe_empty(pipe->head, pipe->tail)) { 533 if (!pipe->writers) 534 return 0; 535 536 if (sd->num_spliced) 537 return 0; 538 539 if (sd->flags & SPLICE_F_NONBLOCK) 540 return -EAGAIN; 541 542 if (signal_pending(current)) 543 return -ERESTARTSYS; 544 545 if (sd->need_wakeup) { 546 wakeup_pipe_writers(pipe); 547 sd->need_wakeup = false; 548 } 549 550 pipe_wait_readable(pipe); 551 } 552 553 if (eat_empty_buffer(pipe)) 554 goto repeat; 555 556 return 1; 557 } 558 559 /** 560 * splice_from_pipe_begin - start splicing from pipe 561 * @sd: information about the splice operation 562 * 563 * Description: 564 * This function should be called before a loop containing 565 * splice_from_pipe_next() and splice_from_pipe_feed() to 566 * initialize the necessary fields of @sd. 567 */ 568 static void splice_from_pipe_begin(struct splice_desc *sd) 569 { 570 sd->num_spliced = 0; 571 sd->need_wakeup = false; 572 } 573 574 /** 575 * splice_from_pipe_end - finish splicing from pipe 576 * @pipe: pipe to splice from 577 * @sd: information about the splice operation 578 * 579 * Description: 580 * This function will wake up pipe writers if necessary. It should 581 * be called after a loop containing splice_from_pipe_next() and 582 * splice_from_pipe_feed(). 583 */ 584 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd) 585 { 586 if (sd->need_wakeup) 587 wakeup_pipe_writers(pipe); 588 } 589 590 /** 591 * __splice_from_pipe - splice data from a pipe to given actor 592 * @pipe: pipe to splice from 593 * @sd: information to @actor 594 * @actor: handler that splices the data 595 * 596 * Description: 597 * This function does little more than loop over the pipe and call 598 * @actor to do the actual moving of a single struct pipe_buffer to 599 * the desired destination. See pipe_to_file, pipe_to_sendmsg, or 600 * pipe_to_user. 601 * 602 */ 603 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 604 splice_actor *actor) 605 { 606 int ret; 607 608 splice_from_pipe_begin(sd); 609 do { 610 cond_resched(); 611 ret = splice_from_pipe_next(pipe, sd); 612 if (ret > 0) 613 ret = splice_from_pipe_feed(pipe, sd, actor); 614 } while (ret > 0); 615 splice_from_pipe_end(pipe, sd); 616 617 return sd->num_spliced ? sd->num_spliced : ret; 618 } 619 EXPORT_SYMBOL(__splice_from_pipe); 620 621 /** 622 * splice_from_pipe - splice data from a pipe to a file 623 * @pipe: pipe to splice from 624 * @out: file to splice to 625 * @ppos: position in @out 626 * @len: how many bytes to splice 627 * @flags: splice modifier flags 628 * @actor: handler that splices the data 629 * 630 * Description: 631 * See __splice_from_pipe. This function locks the pipe inode, 632 * otherwise it's identical to __splice_from_pipe(). 633 * 634 */ 635 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 636 loff_t *ppos, size_t len, unsigned int flags, 637 splice_actor *actor) 638 { 639 ssize_t ret; 640 struct splice_desc sd = { 641 .total_len = len, 642 .flags = flags, 643 .pos = *ppos, 644 .u.file = out, 645 }; 646 647 pipe_lock(pipe); 648 ret = __splice_from_pipe(pipe, &sd, actor); 649 pipe_unlock(pipe); 650 651 return ret; 652 } 653 654 /** 655 * iter_file_splice_write - splice data from a pipe to a file 656 * @pipe: pipe info 657 * @out: file to write to 658 * @ppos: position in @out 659 * @len: number of bytes to splice 660 * @flags: splice modifier flags 661 * 662 * Description: 663 * Will either move or copy pages (determined by @flags options) from 664 * the given pipe inode to the given file. 665 * This one is ->write_iter-based. 666 * 667 */ 668 ssize_t 669 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 670 loff_t *ppos, size_t len, unsigned int flags) 671 { 672 struct splice_desc sd = { 673 .total_len = len, 674 .flags = flags, 675 .pos = *ppos, 676 .u.file = out, 677 }; 678 int nbufs = pipe->max_usage; 679 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec), 680 GFP_KERNEL); 681 ssize_t ret; 682 683 if (unlikely(!array)) 684 return -ENOMEM; 685 686 pipe_lock(pipe); 687 688 splice_from_pipe_begin(&sd); 689 while (sd.total_len) { 690 struct iov_iter from; 691 unsigned int head, tail, mask; 692 size_t left; 693 int n; 694 695 ret = splice_from_pipe_next(pipe, &sd); 696 if (ret <= 0) 697 break; 698 699 if (unlikely(nbufs < pipe->max_usage)) { 700 kfree(array); 701 nbufs = pipe->max_usage; 702 array = kcalloc(nbufs, sizeof(struct bio_vec), 703 GFP_KERNEL); 704 if (!array) { 705 ret = -ENOMEM; 706 break; 707 } 708 } 709 710 head = pipe->head; 711 tail = pipe->tail; 712 mask = pipe->ring_size - 1; 713 714 /* build the vector */ 715 left = sd.total_len; 716 for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) { 717 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 718 size_t this_len = buf->len; 719 720 /* zero-length bvecs are not supported, skip them */ 721 if (!this_len) 722 continue; 723 this_len = min(this_len, left); 724 725 ret = pipe_buf_confirm(pipe, buf); 726 if (unlikely(ret)) { 727 if (ret == -ENODATA) 728 ret = 0; 729 goto done; 730 } 731 732 bvec_set_page(&array[n], buf->page, this_len, 733 buf->offset); 734 left -= this_len; 735 n++; 736 } 737 738 iov_iter_bvec(&from, ITER_SOURCE, array, n, sd.total_len - left); 739 ret = vfs_iter_write(out, &from, &sd.pos, 0); 740 if (ret <= 0) 741 break; 742 743 sd.num_spliced += ret; 744 sd.total_len -= ret; 745 *ppos = sd.pos; 746 747 /* dismiss the fully eaten buffers, adjust the partial one */ 748 tail = pipe->tail; 749 while (ret) { 750 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 751 if (ret >= buf->len) { 752 ret -= buf->len; 753 buf->len = 0; 754 pipe_buf_release(pipe, buf); 755 tail++; 756 pipe->tail = tail; 757 if (pipe->files) 758 sd.need_wakeup = true; 759 } else { 760 buf->offset += ret; 761 buf->len -= ret; 762 ret = 0; 763 } 764 } 765 } 766 done: 767 kfree(array); 768 splice_from_pipe_end(pipe, &sd); 769 770 pipe_unlock(pipe); 771 772 if (sd.num_spliced) 773 ret = sd.num_spliced; 774 775 return ret; 776 } 777 778 EXPORT_SYMBOL(iter_file_splice_write); 779 780 #ifdef CONFIG_NET 781 /** 782 * splice_to_socket - splice data from a pipe to a socket 783 * @pipe: pipe to splice from 784 * @out: socket to write to 785 * @ppos: position in @out 786 * @len: number of bytes to splice 787 * @flags: splice modifier flags 788 * 789 * Description: 790 * Will send @len bytes from the pipe to a network socket. No data copying 791 * is involved. 792 * 793 */ 794 ssize_t splice_to_socket(struct pipe_inode_info *pipe, struct file *out, 795 loff_t *ppos, size_t len, unsigned int flags) 796 { 797 struct socket *sock = sock_from_file(out); 798 struct bio_vec bvec[16]; 799 struct msghdr msg = {}; 800 ssize_t ret = 0; 801 size_t spliced = 0; 802 bool need_wakeup = false; 803 804 pipe_lock(pipe); 805 806 while (len > 0) { 807 unsigned int head, tail, mask, bc = 0; 808 size_t remain = len; 809 810 /* 811 * Check for signal early to make process killable when there 812 * are always buffers available 813 */ 814 ret = -ERESTARTSYS; 815 if (signal_pending(current)) 816 break; 817 818 while (pipe_empty(pipe->head, pipe->tail)) { 819 ret = 0; 820 if (!pipe->writers) 821 goto out; 822 823 if (spliced) 824 goto out; 825 826 ret = -EAGAIN; 827 if (flags & SPLICE_F_NONBLOCK) 828 goto out; 829 830 ret = -ERESTARTSYS; 831 if (signal_pending(current)) 832 goto out; 833 834 if (need_wakeup) { 835 wakeup_pipe_writers(pipe); 836 need_wakeup = false; 837 } 838 839 pipe_wait_readable(pipe); 840 } 841 842 head = pipe->head; 843 tail = pipe->tail; 844 mask = pipe->ring_size - 1; 845 846 while (!pipe_empty(head, tail)) { 847 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 848 size_t seg; 849 850 if (!buf->len) { 851 tail++; 852 continue; 853 } 854 855 seg = min_t(size_t, remain, buf->len); 856 857 ret = pipe_buf_confirm(pipe, buf); 858 if (unlikely(ret)) { 859 if (ret == -ENODATA) 860 ret = 0; 861 break; 862 } 863 864 bvec_set_page(&bvec[bc++], buf->page, seg, buf->offset); 865 remain -= seg; 866 if (remain == 0 || bc >= ARRAY_SIZE(bvec)) 867 break; 868 tail++; 869 } 870 871 if (!bc) 872 break; 873 874 msg.msg_flags = MSG_SPLICE_PAGES; 875 if (flags & SPLICE_F_MORE) 876 msg.msg_flags |= MSG_MORE; 877 if (remain && pipe_occupancy(pipe->head, tail) > 0) 878 msg.msg_flags |= MSG_MORE; 879 if (out->f_flags & O_NONBLOCK) 880 msg.msg_flags |= MSG_DONTWAIT; 881 882 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, bvec, bc, 883 len - remain); 884 ret = sock_sendmsg(sock, &msg); 885 if (ret <= 0) 886 break; 887 888 spliced += ret; 889 len -= ret; 890 tail = pipe->tail; 891 while (ret > 0) { 892 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 893 size_t seg = min_t(size_t, ret, buf->len); 894 895 buf->offset += seg; 896 buf->len -= seg; 897 ret -= seg; 898 899 if (!buf->len) { 900 pipe_buf_release(pipe, buf); 901 tail++; 902 } 903 } 904 905 if (tail != pipe->tail) { 906 pipe->tail = tail; 907 if (pipe->files) 908 need_wakeup = true; 909 } 910 } 911 912 out: 913 pipe_unlock(pipe); 914 if (need_wakeup) 915 wakeup_pipe_writers(pipe); 916 return spliced ?: ret; 917 } 918 #endif 919 920 static int warn_unsupported(struct file *file, const char *op) 921 { 922 pr_debug_ratelimited( 923 "splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n", 924 op, file, current->pid, current->comm); 925 return -EINVAL; 926 } 927 928 /* 929 * Attempt to initiate a splice from pipe to file. 930 */ 931 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 932 loff_t *ppos, size_t len, unsigned int flags) 933 { 934 if (unlikely(!out->f_op->splice_write)) 935 return warn_unsupported(out, "write"); 936 return out->f_op->splice_write(pipe, out, ppos, len, flags); 937 } 938 939 /* 940 * Indicate to the caller that there was a premature EOF when reading from the 941 * source and the caller didn't indicate they would be sending more data after 942 * this. 943 */ 944 static void do_splice_eof(struct splice_desc *sd) 945 { 946 if (sd->splice_eof) 947 sd->splice_eof(sd); 948 } 949 950 /** 951 * vfs_splice_read - Read data from a file and splice it into a pipe 952 * @in: File to splice from 953 * @ppos: Input file offset 954 * @pipe: Pipe to splice to 955 * @len: Number of bytes to splice 956 * @flags: Splice modifier flags (SPLICE_F_*) 957 * 958 * Splice the requested amount of data from the input file to the pipe. This 959 * is synchronous as the caller must hold the pipe lock across the entire 960 * operation. 961 * 962 * If successful, it returns the amount of data spliced, 0 if it hit the EOF or 963 * a hole and a negative error code otherwise. 964 */ 965 long vfs_splice_read(struct file *in, loff_t *ppos, 966 struct pipe_inode_info *pipe, size_t len, 967 unsigned int flags) 968 { 969 unsigned int p_space; 970 int ret; 971 972 if (unlikely(!(in->f_mode & FMODE_READ))) 973 return -EBADF; 974 if (!len) 975 return 0; 976 977 /* Don't try to read more the pipe has space for. */ 978 p_space = pipe->max_usage - pipe_occupancy(pipe->head, pipe->tail); 979 len = min_t(size_t, len, p_space << PAGE_SHIFT); 980 981 ret = rw_verify_area(READ, in, ppos, len); 982 if (unlikely(ret < 0)) 983 return ret; 984 985 if (unlikely(len > MAX_RW_COUNT)) 986 len = MAX_RW_COUNT; 987 988 if (unlikely(!in->f_op->splice_read)) 989 return warn_unsupported(in, "read"); 990 /* 991 * O_DIRECT and DAX don't deal with the pagecache, so we allocate a 992 * buffer, copy into it and splice that into the pipe. 993 */ 994 if ((in->f_flags & O_DIRECT) || IS_DAX(in->f_mapping->host)) 995 return copy_splice_read(in, ppos, pipe, len, flags); 996 return in->f_op->splice_read(in, ppos, pipe, len, flags); 997 } 998 EXPORT_SYMBOL_GPL(vfs_splice_read); 999 1000 /** 1001 * splice_direct_to_actor - splices data directly between two non-pipes 1002 * @in: file to splice from 1003 * @sd: actor information on where to splice to 1004 * @actor: handles the data splicing 1005 * 1006 * Description: 1007 * This is a special case helper to splice directly between two 1008 * points, without requiring an explicit pipe. Internally an allocated 1009 * pipe is cached in the process, and reused during the lifetime of 1010 * that process. 1011 * 1012 */ 1013 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 1014 splice_direct_actor *actor) 1015 { 1016 struct pipe_inode_info *pipe; 1017 long ret, bytes; 1018 size_t len; 1019 int i, flags, more; 1020 1021 /* 1022 * We require the input to be seekable, as we don't want to randomly 1023 * drop data for eg socket -> socket splicing. Use the piped splicing 1024 * for that! 1025 */ 1026 if (unlikely(!(in->f_mode & FMODE_LSEEK))) 1027 return -EINVAL; 1028 1029 /* 1030 * neither in nor out is a pipe, setup an internal pipe attached to 1031 * 'out' and transfer the wanted data from 'in' to 'out' through that 1032 */ 1033 pipe = current->splice_pipe; 1034 if (unlikely(!pipe)) { 1035 pipe = alloc_pipe_info(); 1036 if (!pipe) 1037 return -ENOMEM; 1038 1039 /* 1040 * We don't have an immediate reader, but we'll read the stuff 1041 * out of the pipe right after the splice_to_pipe(). So set 1042 * PIPE_READERS appropriately. 1043 */ 1044 pipe->readers = 1; 1045 1046 current->splice_pipe = pipe; 1047 } 1048 1049 /* 1050 * Do the splice. 1051 */ 1052 bytes = 0; 1053 len = sd->total_len; 1054 1055 /* Don't block on output, we have to drain the direct pipe. */ 1056 flags = sd->flags; 1057 sd->flags &= ~SPLICE_F_NONBLOCK; 1058 1059 /* 1060 * We signal MORE until we've read sufficient data to fulfill the 1061 * request and we keep signalling it if the caller set it. 1062 */ 1063 more = sd->flags & SPLICE_F_MORE; 1064 sd->flags |= SPLICE_F_MORE; 1065 1066 WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail)); 1067 1068 while (len) { 1069 size_t read_len; 1070 loff_t pos = sd->pos, prev_pos = pos; 1071 1072 ret = vfs_splice_read(in, &pos, pipe, len, flags); 1073 if (unlikely(ret <= 0)) 1074 goto read_failure; 1075 1076 read_len = ret; 1077 sd->total_len = read_len; 1078 1079 /* 1080 * If we now have sufficient data to fulfill the request then 1081 * we clear SPLICE_F_MORE if it was not set initially. 1082 */ 1083 if (read_len >= len && !more) 1084 sd->flags &= ~SPLICE_F_MORE; 1085 1086 /* 1087 * NOTE: nonblocking mode only applies to the input. We 1088 * must not do the output in nonblocking mode as then we 1089 * could get stuck data in the internal pipe: 1090 */ 1091 ret = actor(pipe, sd); 1092 if (unlikely(ret <= 0)) { 1093 sd->pos = prev_pos; 1094 goto out_release; 1095 } 1096 1097 bytes += ret; 1098 len -= ret; 1099 sd->pos = pos; 1100 1101 if (ret < read_len) { 1102 sd->pos = prev_pos + ret; 1103 goto out_release; 1104 } 1105 } 1106 1107 done: 1108 pipe->tail = pipe->head = 0; 1109 file_accessed(in); 1110 return bytes; 1111 1112 read_failure: 1113 /* 1114 * If the user did *not* set SPLICE_F_MORE *and* we didn't hit that 1115 * "use all of len" case that cleared SPLICE_F_MORE, *and* we did a 1116 * "->splice_in()" that returned EOF (ie zero) *and* we have sent at 1117 * least 1 byte *then* we will also do the ->splice_eof() call. 1118 */ 1119 if (ret == 0 && !more && len > 0 && bytes) 1120 do_splice_eof(sd); 1121 out_release: 1122 /* 1123 * If we did an incomplete transfer we must release 1124 * the pipe buffers in question: 1125 */ 1126 for (i = 0; i < pipe->ring_size; i++) { 1127 struct pipe_buffer *buf = &pipe->bufs[i]; 1128 1129 if (buf->ops) 1130 pipe_buf_release(pipe, buf); 1131 } 1132 1133 if (!bytes) 1134 bytes = ret; 1135 1136 goto done; 1137 } 1138 EXPORT_SYMBOL(splice_direct_to_actor); 1139 1140 static int direct_splice_actor(struct pipe_inode_info *pipe, 1141 struct splice_desc *sd) 1142 { 1143 struct file *file = sd->u.file; 1144 1145 return do_splice_from(pipe, file, sd->opos, sd->total_len, 1146 sd->flags); 1147 } 1148 1149 static void direct_file_splice_eof(struct splice_desc *sd) 1150 { 1151 struct file *file = sd->u.file; 1152 1153 if (file->f_op->splice_eof) 1154 file->f_op->splice_eof(file); 1155 } 1156 1157 /** 1158 * do_splice_direct - splices data directly between two files 1159 * @in: file to splice from 1160 * @ppos: input file offset 1161 * @out: file to splice to 1162 * @opos: output file offset 1163 * @len: number of bytes to splice 1164 * @flags: splice modifier flags 1165 * 1166 * Description: 1167 * For use by do_sendfile(). splice can easily emulate sendfile, but 1168 * doing it in the application would incur an extra system call 1169 * (splice in + splice out, as compared to just sendfile()). So this helper 1170 * can splice directly through a process-private pipe. 1171 * 1172 */ 1173 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1174 loff_t *opos, size_t len, unsigned int flags) 1175 { 1176 struct splice_desc sd = { 1177 .len = len, 1178 .total_len = len, 1179 .flags = flags, 1180 .pos = *ppos, 1181 .u.file = out, 1182 .splice_eof = direct_file_splice_eof, 1183 .opos = opos, 1184 }; 1185 long ret; 1186 1187 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1188 return -EBADF; 1189 1190 if (unlikely(out->f_flags & O_APPEND)) 1191 return -EINVAL; 1192 1193 ret = rw_verify_area(WRITE, out, opos, len); 1194 if (unlikely(ret < 0)) 1195 return ret; 1196 1197 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 1198 if (ret > 0) 1199 *ppos = sd.pos; 1200 1201 return ret; 1202 } 1203 EXPORT_SYMBOL(do_splice_direct); 1204 1205 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags) 1206 { 1207 for (;;) { 1208 if (unlikely(!pipe->readers)) { 1209 send_sig(SIGPIPE, current, 0); 1210 return -EPIPE; 1211 } 1212 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 1213 return 0; 1214 if (flags & SPLICE_F_NONBLOCK) 1215 return -EAGAIN; 1216 if (signal_pending(current)) 1217 return -ERESTARTSYS; 1218 pipe_wait_writable(pipe); 1219 } 1220 } 1221 1222 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1223 struct pipe_inode_info *opipe, 1224 size_t len, unsigned int flags); 1225 1226 long splice_file_to_pipe(struct file *in, 1227 struct pipe_inode_info *opipe, 1228 loff_t *offset, 1229 size_t len, unsigned int flags) 1230 { 1231 long ret; 1232 1233 pipe_lock(opipe); 1234 ret = wait_for_space(opipe, flags); 1235 if (!ret) 1236 ret = vfs_splice_read(in, offset, opipe, len, flags); 1237 pipe_unlock(opipe); 1238 if (ret > 0) 1239 wakeup_pipe_readers(opipe); 1240 return ret; 1241 } 1242 1243 /* 1244 * Determine where to splice to/from. 1245 */ 1246 long do_splice(struct file *in, loff_t *off_in, struct file *out, 1247 loff_t *off_out, size_t len, unsigned int flags) 1248 { 1249 struct pipe_inode_info *ipipe; 1250 struct pipe_inode_info *opipe; 1251 loff_t offset; 1252 long ret; 1253 1254 if (unlikely(!(in->f_mode & FMODE_READ) || 1255 !(out->f_mode & FMODE_WRITE))) 1256 return -EBADF; 1257 1258 ipipe = get_pipe_info(in, true); 1259 opipe = get_pipe_info(out, true); 1260 1261 if (ipipe && opipe) { 1262 if (off_in || off_out) 1263 return -ESPIPE; 1264 1265 /* Splicing to self would be fun, but... */ 1266 if (ipipe == opipe) 1267 return -EINVAL; 1268 1269 if ((in->f_flags | out->f_flags) & O_NONBLOCK) 1270 flags |= SPLICE_F_NONBLOCK; 1271 1272 return splice_pipe_to_pipe(ipipe, opipe, len, flags); 1273 } 1274 1275 if (ipipe) { 1276 if (off_in) 1277 return -ESPIPE; 1278 if (off_out) { 1279 if (!(out->f_mode & FMODE_PWRITE)) 1280 return -EINVAL; 1281 offset = *off_out; 1282 } else { 1283 offset = out->f_pos; 1284 } 1285 1286 if (unlikely(out->f_flags & O_APPEND)) 1287 return -EINVAL; 1288 1289 ret = rw_verify_area(WRITE, out, &offset, len); 1290 if (unlikely(ret < 0)) 1291 return ret; 1292 1293 if (in->f_flags & O_NONBLOCK) 1294 flags |= SPLICE_F_NONBLOCK; 1295 1296 file_start_write(out); 1297 ret = do_splice_from(ipipe, out, &offset, len, flags); 1298 file_end_write(out); 1299 1300 if (ret > 0) 1301 fsnotify_modify(out); 1302 1303 if (!off_out) 1304 out->f_pos = offset; 1305 else 1306 *off_out = offset; 1307 1308 return ret; 1309 } 1310 1311 if (opipe) { 1312 if (off_out) 1313 return -ESPIPE; 1314 if (off_in) { 1315 if (!(in->f_mode & FMODE_PREAD)) 1316 return -EINVAL; 1317 offset = *off_in; 1318 } else { 1319 offset = in->f_pos; 1320 } 1321 1322 if (out->f_flags & O_NONBLOCK) 1323 flags |= SPLICE_F_NONBLOCK; 1324 1325 ret = splice_file_to_pipe(in, opipe, &offset, len, flags); 1326 1327 if (ret > 0) 1328 fsnotify_access(in); 1329 1330 if (!off_in) 1331 in->f_pos = offset; 1332 else 1333 *off_in = offset; 1334 1335 return ret; 1336 } 1337 1338 return -EINVAL; 1339 } 1340 1341 static long __do_splice(struct file *in, loff_t __user *off_in, 1342 struct file *out, loff_t __user *off_out, 1343 size_t len, unsigned int flags) 1344 { 1345 struct pipe_inode_info *ipipe; 1346 struct pipe_inode_info *opipe; 1347 loff_t offset, *__off_in = NULL, *__off_out = NULL; 1348 long ret; 1349 1350 ipipe = get_pipe_info(in, true); 1351 opipe = get_pipe_info(out, true); 1352 1353 if (ipipe) { 1354 if (off_in) 1355 return -ESPIPE; 1356 pipe_clear_nowait(in); 1357 } 1358 if (opipe) { 1359 if (off_out) 1360 return -ESPIPE; 1361 pipe_clear_nowait(out); 1362 } 1363 1364 if (off_out) { 1365 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1366 return -EFAULT; 1367 __off_out = &offset; 1368 } 1369 if (off_in) { 1370 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1371 return -EFAULT; 1372 __off_in = &offset; 1373 } 1374 1375 ret = do_splice(in, __off_in, out, __off_out, len, flags); 1376 if (ret < 0) 1377 return ret; 1378 1379 if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t))) 1380 return -EFAULT; 1381 if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t))) 1382 return -EFAULT; 1383 1384 return ret; 1385 } 1386 1387 static int iter_to_pipe(struct iov_iter *from, 1388 struct pipe_inode_info *pipe, 1389 unsigned flags) 1390 { 1391 struct pipe_buffer buf = { 1392 .ops = &user_page_pipe_buf_ops, 1393 .flags = flags 1394 }; 1395 size_t total = 0; 1396 int ret = 0; 1397 1398 while (iov_iter_count(from)) { 1399 struct page *pages[16]; 1400 ssize_t left; 1401 size_t start; 1402 int i, n; 1403 1404 left = iov_iter_get_pages2(from, pages, ~0UL, 16, &start); 1405 if (left <= 0) { 1406 ret = left; 1407 break; 1408 } 1409 1410 n = DIV_ROUND_UP(left + start, PAGE_SIZE); 1411 for (i = 0; i < n; i++) { 1412 int size = min_t(int, left, PAGE_SIZE - start); 1413 1414 buf.page = pages[i]; 1415 buf.offset = start; 1416 buf.len = size; 1417 ret = add_to_pipe(pipe, &buf); 1418 if (unlikely(ret < 0)) { 1419 iov_iter_revert(from, left); 1420 // this one got dropped by add_to_pipe() 1421 while (++i < n) 1422 put_page(pages[i]); 1423 goto out; 1424 } 1425 total += ret; 1426 left -= size; 1427 start = 0; 1428 } 1429 } 1430 out: 1431 return total ? total : ret; 1432 } 1433 1434 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1435 struct splice_desc *sd) 1436 { 1437 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data); 1438 return n == sd->len ? n : -EFAULT; 1439 } 1440 1441 /* 1442 * For lack of a better implementation, implement vmsplice() to userspace 1443 * as a simple copy of the pipes pages to the user iov. 1444 */ 1445 static long vmsplice_to_user(struct file *file, struct iov_iter *iter, 1446 unsigned int flags) 1447 { 1448 struct pipe_inode_info *pipe = get_pipe_info(file, true); 1449 struct splice_desc sd = { 1450 .total_len = iov_iter_count(iter), 1451 .flags = flags, 1452 .u.data = iter 1453 }; 1454 long ret = 0; 1455 1456 if (!pipe) 1457 return -EBADF; 1458 1459 pipe_clear_nowait(file); 1460 1461 if (sd.total_len) { 1462 pipe_lock(pipe); 1463 ret = __splice_from_pipe(pipe, &sd, pipe_to_user); 1464 pipe_unlock(pipe); 1465 } 1466 1467 return ret; 1468 } 1469 1470 /* 1471 * vmsplice splices a user address range into a pipe. It can be thought of 1472 * as splice-from-memory, where the regular splice is splice-from-file (or 1473 * to file). In both cases the output is a pipe, naturally. 1474 */ 1475 static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter, 1476 unsigned int flags) 1477 { 1478 struct pipe_inode_info *pipe; 1479 long ret = 0; 1480 unsigned buf_flag = 0; 1481 1482 if (flags & SPLICE_F_GIFT) 1483 buf_flag = PIPE_BUF_FLAG_GIFT; 1484 1485 pipe = get_pipe_info(file, true); 1486 if (!pipe) 1487 return -EBADF; 1488 1489 pipe_clear_nowait(file); 1490 1491 pipe_lock(pipe); 1492 ret = wait_for_space(pipe, flags); 1493 if (!ret) 1494 ret = iter_to_pipe(iter, pipe, buf_flag); 1495 pipe_unlock(pipe); 1496 if (ret > 0) 1497 wakeup_pipe_readers(pipe); 1498 return ret; 1499 } 1500 1501 static int vmsplice_type(struct fd f, int *type) 1502 { 1503 if (!f.file) 1504 return -EBADF; 1505 if (f.file->f_mode & FMODE_WRITE) { 1506 *type = ITER_SOURCE; 1507 } else if (f.file->f_mode & FMODE_READ) { 1508 *type = ITER_DEST; 1509 } else { 1510 fdput(f); 1511 return -EBADF; 1512 } 1513 return 0; 1514 } 1515 1516 /* 1517 * Note that vmsplice only really supports true splicing _from_ user memory 1518 * to a pipe, not the other way around. Splicing from user memory is a simple 1519 * operation that can be supported without any funky alignment restrictions 1520 * or nasty vm tricks. We simply map in the user memory and fill them into 1521 * a pipe. The reverse isn't quite as easy, though. There are two possible 1522 * solutions for that: 1523 * 1524 * - memcpy() the data internally, at which point we might as well just 1525 * do a regular read() on the buffer anyway. 1526 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1527 * has restriction limitations on both ends of the pipe). 1528 * 1529 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1530 * 1531 */ 1532 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov, 1533 unsigned long, nr_segs, unsigned int, flags) 1534 { 1535 struct iovec iovstack[UIO_FASTIOV]; 1536 struct iovec *iov = iovstack; 1537 struct iov_iter iter; 1538 ssize_t error; 1539 struct fd f; 1540 int type; 1541 1542 if (unlikely(flags & ~SPLICE_F_ALL)) 1543 return -EINVAL; 1544 1545 f = fdget(fd); 1546 error = vmsplice_type(f, &type); 1547 if (error) 1548 return error; 1549 1550 error = import_iovec(type, uiov, nr_segs, 1551 ARRAY_SIZE(iovstack), &iov, &iter); 1552 if (error < 0) 1553 goto out_fdput; 1554 1555 if (!iov_iter_count(&iter)) 1556 error = 0; 1557 else if (type == ITER_SOURCE) 1558 error = vmsplice_to_pipe(f.file, &iter, flags); 1559 else 1560 error = vmsplice_to_user(f.file, &iter, flags); 1561 1562 kfree(iov); 1563 out_fdput: 1564 fdput(f); 1565 return error; 1566 } 1567 1568 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in, 1569 int, fd_out, loff_t __user *, off_out, 1570 size_t, len, unsigned int, flags) 1571 { 1572 struct fd in, out; 1573 long error; 1574 1575 if (unlikely(!len)) 1576 return 0; 1577 1578 if (unlikely(flags & ~SPLICE_F_ALL)) 1579 return -EINVAL; 1580 1581 error = -EBADF; 1582 in = fdget(fd_in); 1583 if (in.file) { 1584 out = fdget(fd_out); 1585 if (out.file) { 1586 error = __do_splice(in.file, off_in, out.file, off_out, 1587 len, flags); 1588 fdput(out); 1589 } 1590 fdput(in); 1591 } 1592 return error; 1593 } 1594 1595 /* 1596 * Make sure there's data to read. Wait for input if we can, otherwise 1597 * return an appropriate error. 1598 */ 1599 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1600 { 1601 int ret; 1602 1603 /* 1604 * Check the pipe occupancy without the inode lock first. This function 1605 * is speculative anyways, so missing one is ok. 1606 */ 1607 if (!pipe_empty(pipe->head, pipe->tail)) 1608 return 0; 1609 1610 ret = 0; 1611 pipe_lock(pipe); 1612 1613 while (pipe_empty(pipe->head, pipe->tail)) { 1614 if (signal_pending(current)) { 1615 ret = -ERESTARTSYS; 1616 break; 1617 } 1618 if (!pipe->writers) 1619 break; 1620 if (flags & SPLICE_F_NONBLOCK) { 1621 ret = -EAGAIN; 1622 break; 1623 } 1624 pipe_wait_readable(pipe); 1625 } 1626 1627 pipe_unlock(pipe); 1628 return ret; 1629 } 1630 1631 /* 1632 * Make sure there's writeable room. Wait for room if we can, otherwise 1633 * return an appropriate error. 1634 */ 1635 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1636 { 1637 int ret; 1638 1639 /* 1640 * Check pipe occupancy without the inode lock first. This function 1641 * is speculative anyways, so missing one is ok. 1642 */ 1643 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 1644 return 0; 1645 1646 ret = 0; 1647 pipe_lock(pipe); 1648 1649 while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 1650 if (!pipe->readers) { 1651 send_sig(SIGPIPE, current, 0); 1652 ret = -EPIPE; 1653 break; 1654 } 1655 if (flags & SPLICE_F_NONBLOCK) { 1656 ret = -EAGAIN; 1657 break; 1658 } 1659 if (signal_pending(current)) { 1660 ret = -ERESTARTSYS; 1661 break; 1662 } 1663 pipe_wait_writable(pipe); 1664 } 1665 1666 pipe_unlock(pipe); 1667 return ret; 1668 } 1669 1670 /* 1671 * Splice contents of ipipe to opipe. 1672 */ 1673 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1674 struct pipe_inode_info *opipe, 1675 size_t len, unsigned int flags) 1676 { 1677 struct pipe_buffer *ibuf, *obuf; 1678 unsigned int i_head, o_head; 1679 unsigned int i_tail, o_tail; 1680 unsigned int i_mask, o_mask; 1681 int ret = 0; 1682 bool input_wakeup = false; 1683 1684 1685 retry: 1686 ret = ipipe_prep(ipipe, flags); 1687 if (ret) 1688 return ret; 1689 1690 ret = opipe_prep(opipe, flags); 1691 if (ret) 1692 return ret; 1693 1694 /* 1695 * Potential ABBA deadlock, work around it by ordering lock 1696 * grabbing by pipe info address. Otherwise two different processes 1697 * could deadlock (one doing tee from A -> B, the other from B -> A). 1698 */ 1699 pipe_double_lock(ipipe, opipe); 1700 1701 i_tail = ipipe->tail; 1702 i_mask = ipipe->ring_size - 1; 1703 o_head = opipe->head; 1704 o_mask = opipe->ring_size - 1; 1705 1706 do { 1707 size_t o_len; 1708 1709 if (!opipe->readers) { 1710 send_sig(SIGPIPE, current, 0); 1711 if (!ret) 1712 ret = -EPIPE; 1713 break; 1714 } 1715 1716 i_head = ipipe->head; 1717 o_tail = opipe->tail; 1718 1719 if (pipe_empty(i_head, i_tail) && !ipipe->writers) 1720 break; 1721 1722 /* 1723 * Cannot make any progress, because either the input 1724 * pipe is empty or the output pipe is full. 1725 */ 1726 if (pipe_empty(i_head, i_tail) || 1727 pipe_full(o_head, o_tail, opipe->max_usage)) { 1728 /* Already processed some buffers, break */ 1729 if (ret) 1730 break; 1731 1732 if (flags & SPLICE_F_NONBLOCK) { 1733 ret = -EAGAIN; 1734 break; 1735 } 1736 1737 /* 1738 * We raced with another reader/writer and haven't 1739 * managed to process any buffers. A zero return 1740 * value means EOF, so retry instead. 1741 */ 1742 pipe_unlock(ipipe); 1743 pipe_unlock(opipe); 1744 goto retry; 1745 } 1746 1747 ibuf = &ipipe->bufs[i_tail & i_mask]; 1748 obuf = &opipe->bufs[o_head & o_mask]; 1749 1750 if (len >= ibuf->len) { 1751 /* 1752 * Simply move the whole buffer from ipipe to opipe 1753 */ 1754 *obuf = *ibuf; 1755 ibuf->ops = NULL; 1756 i_tail++; 1757 ipipe->tail = i_tail; 1758 input_wakeup = true; 1759 o_len = obuf->len; 1760 o_head++; 1761 opipe->head = o_head; 1762 } else { 1763 /* 1764 * Get a reference to this pipe buffer, 1765 * so we can copy the contents over. 1766 */ 1767 if (!pipe_buf_get(ipipe, ibuf)) { 1768 if (ret == 0) 1769 ret = -EFAULT; 1770 break; 1771 } 1772 *obuf = *ibuf; 1773 1774 /* 1775 * Don't inherit the gift and merge flags, we need to 1776 * prevent multiple steals of this page. 1777 */ 1778 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1779 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE; 1780 1781 obuf->len = len; 1782 ibuf->offset += len; 1783 ibuf->len -= len; 1784 o_len = len; 1785 o_head++; 1786 opipe->head = o_head; 1787 } 1788 ret += o_len; 1789 len -= o_len; 1790 } while (len); 1791 1792 pipe_unlock(ipipe); 1793 pipe_unlock(opipe); 1794 1795 /* 1796 * If we put data in the output pipe, wakeup any potential readers. 1797 */ 1798 if (ret > 0) 1799 wakeup_pipe_readers(opipe); 1800 1801 if (input_wakeup) 1802 wakeup_pipe_writers(ipipe); 1803 1804 return ret; 1805 } 1806 1807 /* 1808 * Link contents of ipipe to opipe. 1809 */ 1810 static int link_pipe(struct pipe_inode_info *ipipe, 1811 struct pipe_inode_info *opipe, 1812 size_t len, unsigned int flags) 1813 { 1814 struct pipe_buffer *ibuf, *obuf; 1815 unsigned int i_head, o_head; 1816 unsigned int i_tail, o_tail; 1817 unsigned int i_mask, o_mask; 1818 int ret = 0; 1819 1820 /* 1821 * Potential ABBA deadlock, work around it by ordering lock 1822 * grabbing by pipe info address. Otherwise two different processes 1823 * could deadlock (one doing tee from A -> B, the other from B -> A). 1824 */ 1825 pipe_double_lock(ipipe, opipe); 1826 1827 i_tail = ipipe->tail; 1828 i_mask = ipipe->ring_size - 1; 1829 o_head = opipe->head; 1830 o_mask = opipe->ring_size - 1; 1831 1832 do { 1833 if (!opipe->readers) { 1834 send_sig(SIGPIPE, current, 0); 1835 if (!ret) 1836 ret = -EPIPE; 1837 break; 1838 } 1839 1840 i_head = ipipe->head; 1841 o_tail = opipe->tail; 1842 1843 /* 1844 * If we have iterated all input buffers or run out of 1845 * output room, break. 1846 */ 1847 if (pipe_empty(i_head, i_tail) || 1848 pipe_full(o_head, o_tail, opipe->max_usage)) 1849 break; 1850 1851 ibuf = &ipipe->bufs[i_tail & i_mask]; 1852 obuf = &opipe->bufs[o_head & o_mask]; 1853 1854 /* 1855 * Get a reference to this pipe buffer, 1856 * so we can copy the contents over. 1857 */ 1858 if (!pipe_buf_get(ipipe, ibuf)) { 1859 if (ret == 0) 1860 ret = -EFAULT; 1861 break; 1862 } 1863 1864 *obuf = *ibuf; 1865 1866 /* 1867 * Don't inherit the gift and merge flag, we need to prevent 1868 * multiple steals of this page. 1869 */ 1870 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1871 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE; 1872 1873 if (obuf->len > len) 1874 obuf->len = len; 1875 ret += obuf->len; 1876 len -= obuf->len; 1877 1878 o_head++; 1879 opipe->head = o_head; 1880 i_tail++; 1881 } while (len); 1882 1883 pipe_unlock(ipipe); 1884 pipe_unlock(opipe); 1885 1886 /* 1887 * If we put data in the output pipe, wakeup any potential readers. 1888 */ 1889 if (ret > 0) 1890 wakeup_pipe_readers(opipe); 1891 1892 return ret; 1893 } 1894 1895 /* 1896 * This is a tee(1) implementation that works on pipes. It doesn't copy 1897 * any data, it simply references the 'in' pages on the 'out' pipe. 1898 * The 'flags' used are the SPLICE_F_* variants, currently the only 1899 * applicable one is SPLICE_F_NONBLOCK. 1900 */ 1901 long do_tee(struct file *in, struct file *out, size_t len, unsigned int flags) 1902 { 1903 struct pipe_inode_info *ipipe = get_pipe_info(in, true); 1904 struct pipe_inode_info *opipe = get_pipe_info(out, true); 1905 int ret = -EINVAL; 1906 1907 if (unlikely(!(in->f_mode & FMODE_READ) || 1908 !(out->f_mode & FMODE_WRITE))) 1909 return -EBADF; 1910 1911 /* 1912 * Duplicate the contents of ipipe to opipe without actually 1913 * copying the data. 1914 */ 1915 if (ipipe && opipe && ipipe != opipe) { 1916 if ((in->f_flags | out->f_flags) & O_NONBLOCK) 1917 flags |= SPLICE_F_NONBLOCK; 1918 1919 /* 1920 * Keep going, unless we encounter an error. The ipipe/opipe 1921 * ordering doesn't really matter. 1922 */ 1923 ret = ipipe_prep(ipipe, flags); 1924 if (!ret) { 1925 ret = opipe_prep(opipe, flags); 1926 if (!ret) 1927 ret = link_pipe(ipipe, opipe, len, flags); 1928 } 1929 } 1930 1931 return ret; 1932 } 1933 1934 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags) 1935 { 1936 struct fd in, out; 1937 int error; 1938 1939 if (unlikely(flags & ~SPLICE_F_ALL)) 1940 return -EINVAL; 1941 1942 if (unlikely(!len)) 1943 return 0; 1944 1945 error = -EBADF; 1946 in = fdget(fdin); 1947 if (in.file) { 1948 out = fdget(fdout); 1949 if (out.file) { 1950 error = do_tee(in.file, out.file, len, flags); 1951 fdput(out); 1952 } 1953 fdput(in); 1954 } 1955 1956 return error; 1957 } 1958