xref: /openbmc/linux/fs/splice.c (revision e290ed81)
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33 #include <linux/gfp.h>
34 
35 /*
36  * Attempt to steal a page from a pipe buffer. This should perhaps go into
37  * a vm helper function, it's already simplified quite a bit by the
38  * addition of remove_mapping(). If success is returned, the caller may
39  * attempt to reuse this page for another destination.
40  */
41 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
42 				     struct pipe_buffer *buf)
43 {
44 	struct page *page = buf->page;
45 	struct address_space *mapping;
46 
47 	lock_page(page);
48 
49 	mapping = page_mapping(page);
50 	if (mapping) {
51 		WARN_ON(!PageUptodate(page));
52 
53 		/*
54 		 * At least for ext2 with nobh option, we need to wait on
55 		 * writeback completing on this page, since we'll remove it
56 		 * from the pagecache.  Otherwise truncate wont wait on the
57 		 * page, allowing the disk blocks to be reused by someone else
58 		 * before we actually wrote our data to them. fs corruption
59 		 * ensues.
60 		 */
61 		wait_on_page_writeback(page);
62 
63 		if (page_has_private(page) &&
64 		    !try_to_release_page(page, GFP_KERNEL))
65 			goto out_unlock;
66 
67 		/*
68 		 * If we succeeded in removing the mapping, set LRU flag
69 		 * and return good.
70 		 */
71 		if (remove_mapping(mapping, page)) {
72 			buf->flags |= PIPE_BUF_FLAG_LRU;
73 			return 0;
74 		}
75 	}
76 
77 	/*
78 	 * Raced with truncate or failed to remove page from current
79 	 * address space, unlock and return failure.
80 	 */
81 out_unlock:
82 	unlock_page(page);
83 	return 1;
84 }
85 
86 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
87 					struct pipe_buffer *buf)
88 {
89 	page_cache_release(buf->page);
90 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
91 }
92 
93 /*
94  * Check whether the contents of buf is OK to access. Since the content
95  * is a page cache page, IO may be in flight.
96  */
97 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
98 				       struct pipe_buffer *buf)
99 {
100 	struct page *page = buf->page;
101 	int err;
102 
103 	if (!PageUptodate(page)) {
104 		lock_page(page);
105 
106 		/*
107 		 * Page got truncated/unhashed. This will cause a 0-byte
108 		 * splice, if this is the first page.
109 		 */
110 		if (!page->mapping) {
111 			err = -ENODATA;
112 			goto error;
113 		}
114 
115 		/*
116 		 * Uh oh, read-error from disk.
117 		 */
118 		if (!PageUptodate(page)) {
119 			err = -EIO;
120 			goto error;
121 		}
122 
123 		/*
124 		 * Page is ok afterall, we are done.
125 		 */
126 		unlock_page(page);
127 	}
128 
129 	return 0;
130 error:
131 	unlock_page(page);
132 	return err;
133 }
134 
135 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
136 	.can_merge = 0,
137 	.map = generic_pipe_buf_map,
138 	.unmap = generic_pipe_buf_unmap,
139 	.confirm = page_cache_pipe_buf_confirm,
140 	.release = page_cache_pipe_buf_release,
141 	.steal = page_cache_pipe_buf_steal,
142 	.get = generic_pipe_buf_get,
143 };
144 
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 				    struct pipe_buffer *buf)
147 {
148 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 		return 1;
150 
151 	buf->flags |= PIPE_BUF_FLAG_LRU;
152 	return generic_pipe_buf_steal(pipe, buf);
153 }
154 
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 	.can_merge = 0,
157 	.map = generic_pipe_buf_map,
158 	.unmap = generic_pipe_buf_unmap,
159 	.confirm = generic_pipe_buf_confirm,
160 	.release = page_cache_pipe_buf_release,
161 	.steal = user_page_pipe_buf_steal,
162 	.get = generic_pipe_buf_get,
163 };
164 
165 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
166 {
167 	smp_mb();
168 	if (waitqueue_active(&pipe->wait))
169 		wake_up_interruptible(&pipe->wait);
170 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
171 }
172 
173 /**
174  * splice_to_pipe - fill passed data into a pipe
175  * @pipe:	pipe to fill
176  * @spd:	data to fill
177  *
178  * Description:
179  *    @spd contains a map of pages and len/offset tuples, along with
180  *    the struct pipe_buf_operations associated with these pages. This
181  *    function will link that data to the pipe.
182  *
183  */
184 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
185 		       struct splice_pipe_desc *spd)
186 {
187 	unsigned int spd_pages = spd->nr_pages;
188 	int ret, do_wakeup, page_nr;
189 
190 	ret = 0;
191 	do_wakeup = 0;
192 	page_nr = 0;
193 
194 	pipe_lock(pipe);
195 
196 	for (;;) {
197 		if (!pipe->readers) {
198 			send_sig(SIGPIPE, current, 0);
199 			if (!ret)
200 				ret = -EPIPE;
201 			break;
202 		}
203 
204 		if (pipe->nrbufs < pipe->buffers) {
205 			int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
206 			struct pipe_buffer *buf = pipe->bufs + newbuf;
207 
208 			buf->page = spd->pages[page_nr];
209 			buf->offset = spd->partial[page_nr].offset;
210 			buf->len = spd->partial[page_nr].len;
211 			buf->private = spd->partial[page_nr].private;
212 			buf->ops = spd->ops;
213 			if (spd->flags & SPLICE_F_GIFT)
214 				buf->flags |= PIPE_BUF_FLAG_GIFT;
215 
216 			pipe->nrbufs++;
217 			page_nr++;
218 			ret += buf->len;
219 
220 			if (pipe->inode)
221 				do_wakeup = 1;
222 
223 			if (!--spd->nr_pages)
224 				break;
225 			if (pipe->nrbufs < pipe->buffers)
226 				continue;
227 
228 			break;
229 		}
230 
231 		if (spd->flags & SPLICE_F_NONBLOCK) {
232 			if (!ret)
233 				ret = -EAGAIN;
234 			break;
235 		}
236 
237 		if (signal_pending(current)) {
238 			if (!ret)
239 				ret = -ERESTARTSYS;
240 			break;
241 		}
242 
243 		if (do_wakeup) {
244 			smp_mb();
245 			if (waitqueue_active(&pipe->wait))
246 				wake_up_interruptible_sync(&pipe->wait);
247 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
248 			do_wakeup = 0;
249 		}
250 
251 		pipe->waiting_writers++;
252 		pipe_wait(pipe);
253 		pipe->waiting_writers--;
254 	}
255 
256 	pipe_unlock(pipe);
257 
258 	if (do_wakeup)
259 		wakeup_pipe_readers(pipe);
260 
261 	while (page_nr < spd_pages)
262 		spd->spd_release(spd, page_nr++);
263 
264 	return ret;
265 }
266 
267 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
268 {
269 	page_cache_release(spd->pages[i]);
270 }
271 
272 /*
273  * Check if we need to grow the arrays holding pages and partial page
274  * descriptions.
275  */
276 int splice_grow_spd(struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
277 {
278 	if (pipe->buffers <= PIPE_DEF_BUFFERS)
279 		return 0;
280 
281 	spd->pages = kmalloc(pipe->buffers * sizeof(struct page *), GFP_KERNEL);
282 	spd->partial = kmalloc(pipe->buffers * sizeof(struct partial_page), GFP_KERNEL);
283 
284 	if (spd->pages && spd->partial)
285 		return 0;
286 
287 	kfree(spd->pages);
288 	kfree(spd->partial);
289 	return -ENOMEM;
290 }
291 
292 void splice_shrink_spd(struct pipe_inode_info *pipe,
293 		       struct splice_pipe_desc *spd)
294 {
295 	if (pipe->buffers <= PIPE_DEF_BUFFERS)
296 		return;
297 
298 	kfree(spd->pages);
299 	kfree(spd->partial);
300 }
301 
302 static int
303 __generic_file_splice_read(struct file *in, loff_t *ppos,
304 			   struct pipe_inode_info *pipe, size_t len,
305 			   unsigned int flags)
306 {
307 	struct address_space *mapping = in->f_mapping;
308 	unsigned int loff, nr_pages, req_pages;
309 	struct page *pages[PIPE_DEF_BUFFERS];
310 	struct partial_page partial[PIPE_DEF_BUFFERS];
311 	struct page *page;
312 	pgoff_t index, end_index;
313 	loff_t isize;
314 	int error, page_nr;
315 	struct splice_pipe_desc spd = {
316 		.pages = pages,
317 		.partial = partial,
318 		.flags = flags,
319 		.ops = &page_cache_pipe_buf_ops,
320 		.spd_release = spd_release_page,
321 	};
322 
323 	if (splice_grow_spd(pipe, &spd))
324 		return -ENOMEM;
325 
326 	index = *ppos >> PAGE_CACHE_SHIFT;
327 	loff = *ppos & ~PAGE_CACHE_MASK;
328 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
329 	nr_pages = min(req_pages, pipe->buffers);
330 
331 	/*
332 	 * Lookup the (hopefully) full range of pages we need.
333 	 */
334 	spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
335 	index += spd.nr_pages;
336 
337 	/*
338 	 * If find_get_pages_contig() returned fewer pages than we needed,
339 	 * readahead/allocate the rest and fill in the holes.
340 	 */
341 	if (spd.nr_pages < nr_pages)
342 		page_cache_sync_readahead(mapping, &in->f_ra, in,
343 				index, req_pages - spd.nr_pages);
344 
345 	error = 0;
346 	while (spd.nr_pages < nr_pages) {
347 		/*
348 		 * Page could be there, find_get_pages_contig() breaks on
349 		 * the first hole.
350 		 */
351 		page = find_get_page(mapping, index);
352 		if (!page) {
353 			/*
354 			 * page didn't exist, allocate one.
355 			 */
356 			page = page_cache_alloc_cold(mapping);
357 			if (!page)
358 				break;
359 
360 			error = add_to_page_cache_lru(page, mapping, index,
361 						GFP_KERNEL);
362 			if (unlikely(error)) {
363 				page_cache_release(page);
364 				if (error == -EEXIST)
365 					continue;
366 				break;
367 			}
368 			/*
369 			 * add_to_page_cache() locks the page, unlock it
370 			 * to avoid convoluting the logic below even more.
371 			 */
372 			unlock_page(page);
373 		}
374 
375 		spd.pages[spd.nr_pages++] = page;
376 		index++;
377 	}
378 
379 	/*
380 	 * Now loop over the map and see if we need to start IO on any
381 	 * pages, fill in the partial map, etc.
382 	 */
383 	index = *ppos >> PAGE_CACHE_SHIFT;
384 	nr_pages = spd.nr_pages;
385 	spd.nr_pages = 0;
386 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
387 		unsigned int this_len;
388 
389 		if (!len)
390 			break;
391 
392 		/*
393 		 * this_len is the max we'll use from this page
394 		 */
395 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
396 		page = spd.pages[page_nr];
397 
398 		if (PageReadahead(page))
399 			page_cache_async_readahead(mapping, &in->f_ra, in,
400 					page, index, req_pages - page_nr);
401 
402 		/*
403 		 * If the page isn't uptodate, we may need to start io on it
404 		 */
405 		if (!PageUptodate(page)) {
406 			lock_page(page);
407 
408 			/*
409 			 * Page was truncated, or invalidated by the
410 			 * filesystem.  Redo the find/create, but this time the
411 			 * page is kept locked, so there's no chance of another
412 			 * race with truncate/invalidate.
413 			 */
414 			if (!page->mapping) {
415 				unlock_page(page);
416 				page = find_or_create_page(mapping, index,
417 						mapping_gfp_mask(mapping));
418 
419 				if (!page) {
420 					error = -ENOMEM;
421 					break;
422 				}
423 				page_cache_release(spd.pages[page_nr]);
424 				spd.pages[page_nr] = page;
425 			}
426 			/*
427 			 * page was already under io and is now done, great
428 			 */
429 			if (PageUptodate(page)) {
430 				unlock_page(page);
431 				goto fill_it;
432 			}
433 
434 			/*
435 			 * need to read in the page
436 			 */
437 			error = mapping->a_ops->readpage(in, page);
438 			if (unlikely(error)) {
439 				/*
440 				 * We really should re-lookup the page here,
441 				 * but it complicates things a lot. Instead
442 				 * lets just do what we already stored, and
443 				 * we'll get it the next time we are called.
444 				 */
445 				if (error == AOP_TRUNCATED_PAGE)
446 					error = 0;
447 
448 				break;
449 			}
450 		}
451 fill_it:
452 		/*
453 		 * i_size must be checked after PageUptodate.
454 		 */
455 		isize = i_size_read(mapping->host);
456 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
457 		if (unlikely(!isize || index > end_index))
458 			break;
459 
460 		/*
461 		 * if this is the last page, see if we need to shrink
462 		 * the length and stop
463 		 */
464 		if (end_index == index) {
465 			unsigned int plen;
466 
467 			/*
468 			 * max good bytes in this page
469 			 */
470 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
471 			if (plen <= loff)
472 				break;
473 
474 			/*
475 			 * force quit after adding this page
476 			 */
477 			this_len = min(this_len, plen - loff);
478 			len = this_len;
479 		}
480 
481 		spd.partial[page_nr].offset = loff;
482 		spd.partial[page_nr].len = this_len;
483 		len -= this_len;
484 		loff = 0;
485 		spd.nr_pages++;
486 		index++;
487 	}
488 
489 	/*
490 	 * Release any pages at the end, if we quit early. 'page_nr' is how far
491 	 * we got, 'nr_pages' is how many pages are in the map.
492 	 */
493 	while (page_nr < nr_pages)
494 		page_cache_release(spd.pages[page_nr++]);
495 	in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
496 
497 	if (spd.nr_pages)
498 		error = splice_to_pipe(pipe, &spd);
499 
500 	splice_shrink_spd(pipe, &spd);
501 	return error;
502 }
503 
504 /**
505  * generic_file_splice_read - splice data from file to a pipe
506  * @in:		file to splice from
507  * @ppos:	position in @in
508  * @pipe:	pipe to splice to
509  * @len:	number of bytes to splice
510  * @flags:	splice modifier flags
511  *
512  * Description:
513  *    Will read pages from given file and fill them into a pipe. Can be
514  *    used as long as the address_space operations for the source implements
515  *    a readpage() hook.
516  *
517  */
518 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
519 				 struct pipe_inode_info *pipe, size_t len,
520 				 unsigned int flags)
521 {
522 	loff_t isize, left;
523 	int ret;
524 
525 	isize = i_size_read(in->f_mapping->host);
526 	if (unlikely(*ppos >= isize))
527 		return 0;
528 
529 	left = isize - *ppos;
530 	if (unlikely(left < len))
531 		len = left;
532 
533 	ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
534 	if (ret > 0) {
535 		*ppos += ret;
536 		file_accessed(in);
537 	}
538 
539 	return ret;
540 }
541 EXPORT_SYMBOL(generic_file_splice_read);
542 
543 static const struct pipe_buf_operations default_pipe_buf_ops = {
544 	.can_merge = 0,
545 	.map = generic_pipe_buf_map,
546 	.unmap = generic_pipe_buf_unmap,
547 	.confirm = generic_pipe_buf_confirm,
548 	.release = generic_pipe_buf_release,
549 	.steal = generic_pipe_buf_steal,
550 	.get = generic_pipe_buf_get,
551 };
552 
553 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
554 			    unsigned long vlen, loff_t offset)
555 {
556 	mm_segment_t old_fs;
557 	loff_t pos = offset;
558 	ssize_t res;
559 
560 	old_fs = get_fs();
561 	set_fs(get_ds());
562 	/* The cast to a user pointer is valid due to the set_fs() */
563 	res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
564 	set_fs(old_fs);
565 
566 	return res;
567 }
568 
569 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
570 			    loff_t pos)
571 {
572 	mm_segment_t old_fs;
573 	ssize_t res;
574 
575 	old_fs = get_fs();
576 	set_fs(get_ds());
577 	/* The cast to a user pointer is valid due to the set_fs() */
578 	res = vfs_write(file, (const char __user *)buf, count, &pos);
579 	set_fs(old_fs);
580 
581 	return res;
582 }
583 
584 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
585 				 struct pipe_inode_info *pipe, size_t len,
586 				 unsigned int flags)
587 {
588 	unsigned int nr_pages;
589 	unsigned int nr_freed;
590 	size_t offset;
591 	struct page *pages[PIPE_DEF_BUFFERS];
592 	struct partial_page partial[PIPE_DEF_BUFFERS];
593 	struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
594 	ssize_t res;
595 	size_t this_len;
596 	int error;
597 	int i;
598 	struct splice_pipe_desc spd = {
599 		.pages = pages,
600 		.partial = partial,
601 		.flags = flags,
602 		.ops = &default_pipe_buf_ops,
603 		.spd_release = spd_release_page,
604 	};
605 
606 	if (splice_grow_spd(pipe, &spd))
607 		return -ENOMEM;
608 
609 	res = -ENOMEM;
610 	vec = __vec;
611 	if (pipe->buffers > PIPE_DEF_BUFFERS) {
612 		vec = kmalloc(pipe->buffers * sizeof(struct iovec), GFP_KERNEL);
613 		if (!vec)
614 			goto shrink_ret;
615 	}
616 
617 	offset = *ppos & ~PAGE_CACHE_MASK;
618 	nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
619 
620 	for (i = 0; i < nr_pages && i < pipe->buffers && len; i++) {
621 		struct page *page;
622 
623 		page = alloc_page(GFP_USER);
624 		error = -ENOMEM;
625 		if (!page)
626 			goto err;
627 
628 		this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
629 		vec[i].iov_base = (void __user *) page_address(page);
630 		vec[i].iov_len = this_len;
631 		spd.pages[i] = page;
632 		spd.nr_pages++;
633 		len -= this_len;
634 		offset = 0;
635 	}
636 
637 	res = kernel_readv(in, vec, spd.nr_pages, *ppos);
638 	if (res < 0) {
639 		error = res;
640 		goto err;
641 	}
642 
643 	error = 0;
644 	if (!res)
645 		goto err;
646 
647 	nr_freed = 0;
648 	for (i = 0; i < spd.nr_pages; i++) {
649 		this_len = min_t(size_t, vec[i].iov_len, res);
650 		spd.partial[i].offset = 0;
651 		spd.partial[i].len = this_len;
652 		if (!this_len) {
653 			__free_page(spd.pages[i]);
654 			spd.pages[i] = NULL;
655 			nr_freed++;
656 		}
657 		res -= this_len;
658 	}
659 	spd.nr_pages -= nr_freed;
660 
661 	res = splice_to_pipe(pipe, &spd);
662 	if (res > 0)
663 		*ppos += res;
664 
665 shrink_ret:
666 	if (vec != __vec)
667 		kfree(vec);
668 	splice_shrink_spd(pipe, &spd);
669 	return res;
670 
671 err:
672 	for (i = 0; i < spd.nr_pages; i++)
673 		__free_page(spd.pages[i]);
674 
675 	res = error;
676 	goto shrink_ret;
677 }
678 EXPORT_SYMBOL(default_file_splice_read);
679 
680 /*
681  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
682  * using sendpage(). Return the number of bytes sent.
683  */
684 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
685 			    struct pipe_buffer *buf, struct splice_desc *sd)
686 {
687 	struct file *file = sd->u.file;
688 	loff_t pos = sd->pos;
689 	int more;
690 
691 	if (!likely(file->f_op && file->f_op->sendpage))
692 		return -EINVAL;
693 
694 	more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
695 	return file->f_op->sendpage(file, buf->page, buf->offset,
696 				    sd->len, &pos, more);
697 }
698 
699 /*
700  * This is a little more tricky than the file -> pipe splicing. There are
701  * basically three cases:
702  *
703  *	- Destination page already exists in the address space and there
704  *	  are users of it. For that case we have no other option that
705  *	  copying the data. Tough luck.
706  *	- Destination page already exists in the address space, but there
707  *	  are no users of it. Make sure it's uptodate, then drop it. Fall
708  *	  through to last case.
709  *	- Destination page does not exist, we can add the pipe page to
710  *	  the page cache and avoid the copy.
711  *
712  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
713  * sd->flags), we attempt to migrate pages from the pipe to the output
714  * file address space page cache. This is possible if no one else has
715  * the pipe page referenced outside of the pipe and page cache. If
716  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
717  * a new page in the output file page cache and fill/dirty that.
718  */
719 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
720 		 struct splice_desc *sd)
721 {
722 	struct file *file = sd->u.file;
723 	struct address_space *mapping = file->f_mapping;
724 	unsigned int offset, this_len;
725 	struct page *page;
726 	void *fsdata;
727 	int ret;
728 
729 	offset = sd->pos & ~PAGE_CACHE_MASK;
730 
731 	this_len = sd->len;
732 	if (this_len + offset > PAGE_CACHE_SIZE)
733 		this_len = PAGE_CACHE_SIZE - offset;
734 
735 	ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
736 				AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
737 	if (unlikely(ret))
738 		goto out;
739 
740 	if (buf->page != page) {
741 		/*
742 		 * Careful, ->map() uses KM_USER0!
743 		 */
744 		char *src = buf->ops->map(pipe, buf, 1);
745 		char *dst = kmap_atomic(page, KM_USER1);
746 
747 		memcpy(dst + offset, src + buf->offset, this_len);
748 		flush_dcache_page(page);
749 		kunmap_atomic(dst, KM_USER1);
750 		buf->ops->unmap(pipe, buf, src);
751 	}
752 	ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
753 				page, fsdata);
754 out:
755 	return ret;
756 }
757 EXPORT_SYMBOL(pipe_to_file);
758 
759 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
760 {
761 	smp_mb();
762 	if (waitqueue_active(&pipe->wait))
763 		wake_up_interruptible(&pipe->wait);
764 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
765 }
766 
767 /**
768  * splice_from_pipe_feed - feed available data from a pipe to a file
769  * @pipe:	pipe to splice from
770  * @sd:		information to @actor
771  * @actor:	handler that splices the data
772  *
773  * Description:
774  *    This function loops over the pipe and calls @actor to do the
775  *    actual moving of a single struct pipe_buffer to the desired
776  *    destination.  It returns when there's no more buffers left in
777  *    the pipe or if the requested number of bytes (@sd->total_len)
778  *    have been copied.  It returns a positive number (one) if the
779  *    pipe needs to be filled with more data, zero if the required
780  *    number of bytes have been copied and -errno on error.
781  *
782  *    This, together with splice_from_pipe_{begin,end,next}, may be
783  *    used to implement the functionality of __splice_from_pipe() when
784  *    locking is required around copying the pipe buffers to the
785  *    destination.
786  */
787 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
788 			  splice_actor *actor)
789 {
790 	int ret;
791 
792 	while (pipe->nrbufs) {
793 		struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
794 		const struct pipe_buf_operations *ops = buf->ops;
795 
796 		sd->len = buf->len;
797 		if (sd->len > sd->total_len)
798 			sd->len = sd->total_len;
799 
800 		ret = buf->ops->confirm(pipe, buf);
801 		if (unlikely(ret)) {
802 			if (ret == -ENODATA)
803 				ret = 0;
804 			return ret;
805 		}
806 
807 		ret = actor(pipe, buf, sd);
808 		if (ret <= 0)
809 			return ret;
810 
811 		buf->offset += ret;
812 		buf->len -= ret;
813 
814 		sd->num_spliced += ret;
815 		sd->len -= ret;
816 		sd->pos += ret;
817 		sd->total_len -= ret;
818 
819 		if (!buf->len) {
820 			buf->ops = NULL;
821 			ops->release(pipe, buf);
822 			pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
823 			pipe->nrbufs--;
824 			if (pipe->inode)
825 				sd->need_wakeup = true;
826 		}
827 
828 		if (!sd->total_len)
829 			return 0;
830 	}
831 
832 	return 1;
833 }
834 EXPORT_SYMBOL(splice_from_pipe_feed);
835 
836 /**
837  * splice_from_pipe_next - wait for some data to splice from
838  * @pipe:	pipe to splice from
839  * @sd:		information about the splice operation
840  *
841  * Description:
842  *    This function will wait for some data and return a positive
843  *    value (one) if pipe buffers are available.  It will return zero
844  *    or -errno if no more data needs to be spliced.
845  */
846 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
847 {
848 	while (!pipe->nrbufs) {
849 		if (!pipe->writers)
850 			return 0;
851 
852 		if (!pipe->waiting_writers && sd->num_spliced)
853 			return 0;
854 
855 		if (sd->flags & SPLICE_F_NONBLOCK)
856 			return -EAGAIN;
857 
858 		if (signal_pending(current))
859 			return -ERESTARTSYS;
860 
861 		if (sd->need_wakeup) {
862 			wakeup_pipe_writers(pipe);
863 			sd->need_wakeup = false;
864 		}
865 
866 		pipe_wait(pipe);
867 	}
868 
869 	return 1;
870 }
871 EXPORT_SYMBOL(splice_from_pipe_next);
872 
873 /**
874  * splice_from_pipe_begin - start splicing from pipe
875  * @sd:		information about the splice operation
876  *
877  * Description:
878  *    This function should be called before a loop containing
879  *    splice_from_pipe_next() and splice_from_pipe_feed() to
880  *    initialize the necessary fields of @sd.
881  */
882 void splice_from_pipe_begin(struct splice_desc *sd)
883 {
884 	sd->num_spliced = 0;
885 	sd->need_wakeup = false;
886 }
887 EXPORT_SYMBOL(splice_from_pipe_begin);
888 
889 /**
890  * splice_from_pipe_end - finish splicing from pipe
891  * @pipe:	pipe to splice from
892  * @sd:		information about the splice operation
893  *
894  * Description:
895  *    This function will wake up pipe writers if necessary.  It should
896  *    be called after a loop containing splice_from_pipe_next() and
897  *    splice_from_pipe_feed().
898  */
899 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
900 {
901 	if (sd->need_wakeup)
902 		wakeup_pipe_writers(pipe);
903 }
904 EXPORT_SYMBOL(splice_from_pipe_end);
905 
906 /**
907  * __splice_from_pipe - splice data from a pipe to given actor
908  * @pipe:	pipe to splice from
909  * @sd:		information to @actor
910  * @actor:	handler that splices the data
911  *
912  * Description:
913  *    This function does little more than loop over the pipe and call
914  *    @actor to do the actual moving of a single struct pipe_buffer to
915  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
916  *    pipe_to_user.
917  *
918  */
919 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
920 			   splice_actor *actor)
921 {
922 	int ret;
923 
924 	splice_from_pipe_begin(sd);
925 	do {
926 		ret = splice_from_pipe_next(pipe, sd);
927 		if (ret > 0)
928 			ret = splice_from_pipe_feed(pipe, sd, actor);
929 	} while (ret > 0);
930 	splice_from_pipe_end(pipe, sd);
931 
932 	return sd->num_spliced ? sd->num_spliced : ret;
933 }
934 EXPORT_SYMBOL(__splice_from_pipe);
935 
936 /**
937  * splice_from_pipe - splice data from a pipe to a file
938  * @pipe:	pipe to splice from
939  * @out:	file to splice to
940  * @ppos:	position in @out
941  * @len:	how many bytes to splice
942  * @flags:	splice modifier flags
943  * @actor:	handler that splices the data
944  *
945  * Description:
946  *    See __splice_from_pipe. This function locks the pipe inode,
947  *    otherwise it's identical to __splice_from_pipe().
948  *
949  */
950 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
951 			 loff_t *ppos, size_t len, unsigned int flags,
952 			 splice_actor *actor)
953 {
954 	ssize_t ret;
955 	struct splice_desc sd = {
956 		.total_len = len,
957 		.flags = flags,
958 		.pos = *ppos,
959 		.u.file = out,
960 	};
961 
962 	pipe_lock(pipe);
963 	ret = __splice_from_pipe(pipe, &sd, actor);
964 	pipe_unlock(pipe);
965 
966 	return ret;
967 }
968 
969 /**
970  * generic_file_splice_write - splice data from a pipe to a file
971  * @pipe:	pipe info
972  * @out:	file to write to
973  * @ppos:	position in @out
974  * @len:	number of bytes to splice
975  * @flags:	splice modifier flags
976  *
977  * Description:
978  *    Will either move or copy pages (determined by @flags options) from
979  *    the given pipe inode to the given file.
980  *
981  */
982 ssize_t
983 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
984 			  loff_t *ppos, size_t len, unsigned int flags)
985 {
986 	struct address_space *mapping = out->f_mapping;
987 	struct inode *inode = mapping->host;
988 	struct splice_desc sd = {
989 		.total_len = len,
990 		.flags = flags,
991 		.pos = *ppos,
992 		.u.file = out,
993 	};
994 	ssize_t ret;
995 
996 	pipe_lock(pipe);
997 
998 	splice_from_pipe_begin(&sd);
999 	do {
1000 		ret = splice_from_pipe_next(pipe, &sd);
1001 		if (ret <= 0)
1002 			break;
1003 
1004 		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1005 		ret = file_remove_suid(out);
1006 		if (!ret) {
1007 			file_update_time(out);
1008 			ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
1009 		}
1010 		mutex_unlock(&inode->i_mutex);
1011 	} while (ret > 0);
1012 	splice_from_pipe_end(pipe, &sd);
1013 
1014 	pipe_unlock(pipe);
1015 
1016 	if (sd.num_spliced)
1017 		ret = sd.num_spliced;
1018 
1019 	if (ret > 0) {
1020 		unsigned long nr_pages;
1021 		int err;
1022 
1023 		nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1024 
1025 		err = generic_write_sync(out, *ppos, ret);
1026 		if (err)
1027 			ret = err;
1028 		else
1029 			*ppos += ret;
1030 		balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
1031 	}
1032 
1033 	return ret;
1034 }
1035 
1036 EXPORT_SYMBOL(generic_file_splice_write);
1037 
1038 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1039 			  struct splice_desc *sd)
1040 {
1041 	int ret;
1042 	void *data;
1043 
1044 	data = buf->ops->map(pipe, buf, 0);
1045 	ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1046 	buf->ops->unmap(pipe, buf, data);
1047 
1048 	return ret;
1049 }
1050 
1051 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1052 					 struct file *out, loff_t *ppos,
1053 					 size_t len, unsigned int flags)
1054 {
1055 	ssize_t ret;
1056 
1057 	ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1058 	if (ret > 0)
1059 		*ppos += ret;
1060 
1061 	return ret;
1062 }
1063 
1064 /**
1065  * generic_splice_sendpage - splice data from a pipe to a socket
1066  * @pipe:	pipe to splice from
1067  * @out:	socket to write to
1068  * @ppos:	position in @out
1069  * @len:	number of bytes to splice
1070  * @flags:	splice modifier flags
1071  *
1072  * Description:
1073  *    Will send @len bytes from the pipe to a network socket. No data copying
1074  *    is involved.
1075  *
1076  */
1077 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1078 				loff_t *ppos, size_t len, unsigned int flags)
1079 {
1080 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1081 }
1082 
1083 EXPORT_SYMBOL(generic_splice_sendpage);
1084 
1085 /*
1086  * Attempt to initiate a splice from pipe to file.
1087  */
1088 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1089 			   loff_t *ppos, size_t len, unsigned int flags)
1090 {
1091 	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1092 				loff_t *, size_t, unsigned int);
1093 	int ret;
1094 
1095 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1096 		return -EBADF;
1097 
1098 	if (unlikely(out->f_flags & O_APPEND))
1099 		return -EINVAL;
1100 
1101 	ret = rw_verify_area(WRITE, out, ppos, len);
1102 	if (unlikely(ret < 0))
1103 		return ret;
1104 
1105 	if (out->f_op && out->f_op->splice_write)
1106 		splice_write = out->f_op->splice_write;
1107 	else
1108 		splice_write = default_file_splice_write;
1109 
1110 	return splice_write(pipe, out, ppos, len, flags);
1111 }
1112 
1113 /*
1114  * Attempt to initiate a splice from a file to a pipe.
1115  */
1116 static long do_splice_to(struct file *in, loff_t *ppos,
1117 			 struct pipe_inode_info *pipe, size_t len,
1118 			 unsigned int flags)
1119 {
1120 	ssize_t (*splice_read)(struct file *, loff_t *,
1121 			       struct pipe_inode_info *, size_t, unsigned int);
1122 	int ret;
1123 
1124 	if (unlikely(!(in->f_mode & FMODE_READ)))
1125 		return -EBADF;
1126 
1127 	ret = rw_verify_area(READ, in, ppos, len);
1128 	if (unlikely(ret < 0))
1129 		return ret;
1130 
1131 	if (in->f_op && in->f_op->splice_read)
1132 		splice_read = in->f_op->splice_read;
1133 	else
1134 		splice_read = default_file_splice_read;
1135 
1136 	return splice_read(in, ppos, pipe, len, flags);
1137 }
1138 
1139 /**
1140  * splice_direct_to_actor - splices data directly between two non-pipes
1141  * @in:		file to splice from
1142  * @sd:		actor information on where to splice to
1143  * @actor:	handles the data splicing
1144  *
1145  * Description:
1146  *    This is a special case helper to splice directly between two
1147  *    points, without requiring an explicit pipe. Internally an allocated
1148  *    pipe is cached in the process, and reused during the lifetime of
1149  *    that process.
1150  *
1151  */
1152 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1153 			       splice_direct_actor *actor)
1154 {
1155 	struct pipe_inode_info *pipe;
1156 	long ret, bytes;
1157 	umode_t i_mode;
1158 	size_t len;
1159 	int i, flags;
1160 
1161 	/*
1162 	 * We require the input being a regular file, as we don't want to
1163 	 * randomly drop data for eg socket -> socket splicing. Use the
1164 	 * piped splicing for that!
1165 	 */
1166 	i_mode = in->f_path.dentry->d_inode->i_mode;
1167 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1168 		return -EINVAL;
1169 
1170 	/*
1171 	 * neither in nor out is a pipe, setup an internal pipe attached to
1172 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
1173 	 */
1174 	pipe = current->splice_pipe;
1175 	if (unlikely(!pipe)) {
1176 		pipe = alloc_pipe_info(NULL);
1177 		if (!pipe)
1178 			return -ENOMEM;
1179 
1180 		/*
1181 		 * We don't have an immediate reader, but we'll read the stuff
1182 		 * out of the pipe right after the splice_to_pipe(). So set
1183 		 * PIPE_READERS appropriately.
1184 		 */
1185 		pipe->readers = 1;
1186 
1187 		current->splice_pipe = pipe;
1188 	}
1189 
1190 	/*
1191 	 * Do the splice.
1192 	 */
1193 	ret = 0;
1194 	bytes = 0;
1195 	len = sd->total_len;
1196 	flags = sd->flags;
1197 
1198 	/*
1199 	 * Don't block on output, we have to drain the direct pipe.
1200 	 */
1201 	sd->flags &= ~SPLICE_F_NONBLOCK;
1202 
1203 	while (len) {
1204 		size_t read_len;
1205 		loff_t pos = sd->pos, prev_pos = pos;
1206 
1207 		ret = do_splice_to(in, &pos, pipe, len, flags);
1208 		if (unlikely(ret <= 0))
1209 			goto out_release;
1210 
1211 		read_len = ret;
1212 		sd->total_len = read_len;
1213 
1214 		/*
1215 		 * NOTE: nonblocking mode only applies to the input. We
1216 		 * must not do the output in nonblocking mode as then we
1217 		 * could get stuck data in the internal pipe:
1218 		 */
1219 		ret = actor(pipe, sd);
1220 		if (unlikely(ret <= 0)) {
1221 			sd->pos = prev_pos;
1222 			goto out_release;
1223 		}
1224 
1225 		bytes += ret;
1226 		len -= ret;
1227 		sd->pos = pos;
1228 
1229 		if (ret < read_len) {
1230 			sd->pos = prev_pos + ret;
1231 			goto out_release;
1232 		}
1233 	}
1234 
1235 done:
1236 	pipe->nrbufs = pipe->curbuf = 0;
1237 	file_accessed(in);
1238 	return bytes;
1239 
1240 out_release:
1241 	/*
1242 	 * If we did an incomplete transfer we must release
1243 	 * the pipe buffers in question:
1244 	 */
1245 	for (i = 0; i < pipe->buffers; i++) {
1246 		struct pipe_buffer *buf = pipe->bufs + i;
1247 
1248 		if (buf->ops) {
1249 			buf->ops->release(pipe, buf);
1250 			buf->ops = NULL;
1251 		}
1252 	}
1253 
1254 	if (!bytes)
1255 		bytes = ret;
1256 
1257 	goto done;
1258 }
1259 EXPORT_SYMBOL(splice_direct_to_actor);
1260 
1261 static int direct_splice_actor(struct pipe_inode_info *pipe,
1262 			       struct splice_desc *sd)
1263 {
1264 	struct file *file = sd->u.file;
1265 
1266 	return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1267 			      sd->flags);
1268 }
1269 
1270 /**
1271  * do_splice_direct - splices data directly between two files
1272  * @in:		file to splice from
1273  * @ppos:	input file offset
1274  * @out:	file to splice to
1275  * @len:	number of bytes to splice
1276  * @flags:	splice modifier flags
1277  *
1278  * Description:
1279  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1280  *    doing it in the application would incur an extra system call
1281  *    (splice in + splice out, as compared to just sendfile()). So this helper
1282  *    can splice directly through a process-private pipe.
1283  *
1284  */
1285 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1286 		      size_t len, unsigned int flags)
1287 {
1288 	struct splice_desc sd = {
1289 		.len		= len,
1290 		.total_len	= len,
1291 		.flags		= flags,
1292 		.pos		= *ppos,
1293 		.u.file		= out,
1294 	};
1295 	long ret;
1296 
1297 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1298 	if (ret > 0)
1299 		*ppos = sd.pos;
1300 
1301 	return ret;
1302 }
1303 
1304 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1305 			       struct pipe_inode_info *opipe,
1306 			       size_t len, unsigned int flags);
1307 
1308 /*
1309  * Determine where to splice to/from.
1310  */
1311 static long do_splice(struct file *in, loff_t __user *off_in,
1312 		      struct file *out, loff_t __user *off_out,
1313 		      size_t len, unsigned int flags)
1314 {
1315 	struct pipe_inode_info *ipipe;
1316 	struct pipe_inode_info *opipe;
1317 	loff_t offset, *off;
1318 	long ret;
1319 
1320 	ipipe = get_pipe_info(in);
1321 	opipe = get_pipe_info(out);
1322 
1323 	if (ipipe && opipe) {
1324 		if (off_in || off_out)
1325 			return -ESPIPE;
1326 
1327 		if (!(in->f_mode & FMODE_READ))
1328 			return -EBADF;
1329 
1330 		if (!(out->f_mode & FMODE_WRITE))
1331 			return -EBADF;
1332 
1333 		/* Splicing to self would be fun, but... */
1334 		if (ipipe == opipe)
1335 			return -EINVAL;
1336 
1337 		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1338 	}
1339 
1340 	if (ipipe) {
1341 		if (off_in)
1342 			return -ESPIPE;
1343 		if (off_out) {
1344 			if (!(out->f_mode & FMODE_PWRITE))
1345 				return -EINVAL;
1346 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1347 				return -EFAULT;
1348 			off = &offset;
1349 		} else
1350 			off = &out->f_pos;
1351 
1352 		ret = do_splice_from(ipipe, out, off, len, flags);
1353 
1354 		if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1355 			ret = -EFAULT;
1356 
1357 		return ret;
1358 	}
1359 
1360 	if (opipe) {
1361 		if (off_out)
1362 			return -ESPIPE;
1363 		if (off_in) {
1364 			if (!(in->f_mode & FMODE_PREAD))
1365 				return -EINVAL;
1366 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1367 				return -EFAULT;
1368 			off = &offset;
1369 		} else
1370 			off = &in->f_pos;
1371 
1372 		ret = do_splice_to(in, off, opipe, len, flags);
1373 
1374 		if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1375 			ret = -EFAULT;
1376 
1377 		return ret;
1378 	}
1379 
1380 	return -EINVAL;
1381 }
1382 
1383 /*
1384  * Map an iov into an array of pages and offset/length tupples. With the
1385  * partial_page structure, we can map several non-contiguous ranges into
1386  * our ones pages[] map instead of splitting that operation into pieces.
1387  * Could easily be exported as a generic helper for other users, in which
1388  * case one would probably want to add a 'max_nr_pages' parameter as well.
1389  */
1390 static int get_iovec_page_array(const struct iovec __user *iov,
1391 				unsigned int nr_vecs, struct page **pages,
1392 				struct partial_page *partial, int aligned,
1393 				unsigned int pipe_buffers)
1394 {
1395 	int buffers = 0, error = 0;
1396 
1397 	while (nr_vecs) {
1398 		unsigned long off, npages;
1399 		struct iovec entry;
1400 		void __user *base;
1401 		size_t len;
1402 		int i;
1403 
1404 		error = -EFAULT;
1405 		if (copy_from_user(&entry, iov, sizeof(entry)))
1406 			break;
1407 
1408 		base = entry.iov_base;
1409 		len = entry.iov_len;
1410 
1411 		/*
1412 		 * Sanity check this iovec. 0 read succeeds.
1413 		 */
1414 		error = 0;
1415 		if (unlikely(!len))
1416 			break;
1417 		error = -EFAULT;
1418 		if (!access_ok(VERIFY_READ, base, len))
1419 			break;
1420 
1421 		/*
1422 		 * Get this base offset and number of pages, then map
1423 		 * in the user pages.
1424 		 */
1425 		off = (unsigned long) base & ~PAGE_MASK;
1426 
1427 		/*
1428 		 * If asked for alignment, the offset must be zero and the
1429 		 * length a multiple of the PAGE_SIZE.
1430 		 */
1431 		error = -EINVAL;
1432 		if (aligned && (off || len & ~PAGE_MASK))
1433 			break;
1434 
1435 		npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1436 		if (npages > pipe_buffers - buffers)
1437 			npages = pipe_buffers - buffers;
1438 
1439 		error = get_user_pages_fast((unsigned long)base, npages,
1440 					0, &pages[buffers]);
1441 
1442 		if (unlikely(error <= 0))
1443 			break;
1444 
1445 		/*
1446 		 * Fill this contiguous range into the partial page map.
1447 		 */
1448 		for (i = 0; i < error; i++) {
1449 			const int plen = min_t(size_t, len, PAGE_SIZE - off);
1450 
1451 			partial[buffers].offset = off;
1452 			partial[buffers].len = plen;
1453 
1454 			off = 0;
1455 			len -= plen;
1456 			buffers++;
1457 		}
1458 
1459 		/*
1460 		 * We didn't complete this iov, stop here since it probably
1461 		 * means we have to move some of this into a pipe to
1462 		 * be able to continue.
1463 		 */
1464 		if (len)
1465 			break;
1466 
1467 		/*
1468 		 * Don't continue if we mapped fewer pages than we asked for,
1469 		 * or if we mapped the max number of pages that we have
1470 		 * room for.
1471 		 */
1472 		if (error < npages || buffers == pipe_buffers)
1473 			break;
1474 
1475 		nr_vecs--;
1476 		iov++;
1477 	}
1478 
1479 	if (buffers)
1480 		return buffers;
1481 
1482 	return error;
1483 }
1484 
1485 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1486 			struct splice_desc *sd)
1487 {
1488 	char *src;
1489 	int ret;
1490 
1491 	/*
1492 	 * See if we can use the atomic maps, by prefaulting in the
1493 	 * pages and doing an atomic copy
1494 	 */
1495 	if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1496 		src = buf->ops->map(pipe, buf, 1);
1497 		ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1498 							sd->len);
1499 		buf->ops->unmap(pipe, buf, src);
1500 		if (!ret) {
1501 			ret = sd->len;
1502 			goto out;
1503 		}
1504 	}
1505 
1506 	/*
1507 	 * No dice, use slow non-atomic map and copy
1508  	 */
1509 	src = buf->ops->map(pipe, buf, 0);
1510 
1511 	ret = sd->len;
1512 	if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1513 		ret = -EFAULT;
1514 
1515 	buf->ops->unmap(pipe, buf, src);
1516 out:
1517 	if (ret > 0)
1518 		sd->u.userptr += ret;
1519 	return ret;
1520 }
1521 
1522 /*
1523  * For lack of a better implementation, implement vmsplice() to userspace
1524  * as a simple copy of the pipes pages to the user iov.
1525  */
1526 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1527 			     unsigned long nr_segs, unsigned int flags)
1528 {
1529 	struct pipe_inode_info *pipe;
1530 	struct splice_desc sd;
1531 	ssize_t size;
1532 	int error;
1533 	long ret;
1534 
1535 	pipe = get_pipe_info(file);
1536 	if (!pipe)
1537 		return -EBADF;
1538 
1539 	pipe_lock(pipe);
1540 
1541 	error = ret = 0;
1542 	while (nr_segs) {
1543 		void __user *base;
1544 		size_t len;
1545 
1546 		/*
1547 		 * Get user address base and length for this iovec.
1548 		 */
1549 		error = get_user(base, &iov->iov_base);
1550 		if (unlikely(error))
1551 			break;
1552 		error = get_user(len, &iov->iov_len);
1553 		if (unlikely(error))
1554 			break;
1555 
1556 		/*
1557 		 * Sanity check this iovec. 0 read succeeds.
1558 		 */
1559 		if (unlikely(!len))
1560 			break;
1561 		if (unlikely(!base)) {
1562 			error = -EFAULT;
1563 			break;
1564 		}
1565 
1566 		if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1567 			error = -EFAULT;
1568 			break;
1569 		}
1570 
1571 		sd.len = 0;
1572 		sd.total_len = len;
1573 		sd.flags = flags;
1574 		sd.u.userptr = base;
1575 		sd.pos = 0;
1576 
1577 		size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1578 		if (size < 0) {
1579 			if (!ret)
1580 				ret = size;
1581 
1582 			break;
1583 		}
1584 
1585 		ret += size;
1586 
1587 		if (size < len)
1588 			break;
1589 
1590 		nr_segs--;
1591 		iov++;
1592 	}
1593 
1594 	pipe_unlock(pipe);
1595 
1596 	if (!ret)
1597 		ret = error;
1598 
1599 	return ret;
1600 }
1601 
1602 /*
1603  * vmsplice splices a user address range into a pipe. It can be thought of
1604  * as splice-from-memory, where the regular splice is splice-from-file (or
1605  * to file). In both cases the output is a pipe, naturally.
1606  */
1607 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1608 			     unsigned long nr_segs, unsigned int flags)
1609 {
1610 	struct pipe_inode_info *pipe;
1611 	struct page *pages[PIPE_DEF_BUFFERS];
1612 	struct partial_page partial[PIPE_DEF_BUFFERS];
1613 	struct splice_pipe_desc spd = {
1614 		.pages = pages,
1615 		.partial = partial,
1616 		.flags = flags,
1617 		.ops = &user_page_pipe_buf_ops,
1618 		.spd_release = spd_release_page,
1619 	};
1620 	long ret;
1621 
1622 	pipe = get_pipe_info(file);
1623 	if (!pipe)
1624 		return -EBADF;
1625 
1626 	if (splice_grow_spd(pipe, &spd))
1627 		return -ENOMEM;
1628 
1629 	spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1630 					    spd.partial, flags & SPLICE_F_GIFT,
1631 					    pipe->buffers);
1632 	if (spd.nr_pages <= 0)
1633 		ret = spd.nr_pages;
1634 	else
1635 		ret = splice_to_pipe(pipe, &spd);
1636 
1637 	splice_shrink_spd(pipe, &spd);
1638 	return ret;
1639 }
1640 
1641 /*
1642  * Note that vmsplice only really supports true splicing _from_ user memory
1643  * to a pipe, not the other way around. Splicing from user memory is a simple
1644  * operation that can be supported without any funky alignment restrictions
1645  * or nasty vm tricks. We simply map in the user memory and fill them into
1646  * a pipe. The reverse isn't quite as easy, though. There are two possible
1647  * solutions for that:
1648  *
1649  *	- memcpy() the data internally, at which point we might as well just
1650  *	  do a regular read() on the buffer anyway.
1651  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1652  *	  has restriction limitations on both ends of the pipe).
1653  *
1654  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1655  *
1656  */
1657 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1658 		unsigned long, nr_segs, unsigned int, flags)
1659 {
1660 	struct file *file;
1661 	long error;
1662 	int fput;
1663 
1664 	if (unlikely(nr_segs > UIO_MAXIOV))
1665 		return -EINVAL;
1666 	else if (unlikely(!nr_segs))
1667 		return 0;
1668 
1669 	error = -EBADF;
1670 	file = fget_light(fd, &fput);
1671 	if (file) {
1672 		if (file->f_mode & FMODE_WRITE)
1673 			error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1674 		else if (file->f_mode & FMODE_READ)
1675 			error = vmsplice_to_user(file, iov, nr_segs, flags);
1676 
1677 		fput_light(file, fput);
1678 	}
1679 
1680 	return error;
1681 }
1682 
1683 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1684 		int, fd_out, loff_t __user *, off_out,
1685 		size_t, len, unsigned int, flags)
1686 {
1687 	long error;
1688 	struct file *in, *out;
1689 	int fput_in, fput_out;
1690 
1691 	if (unlikely(!len))
1692 		return 0;
1693 
1694 	error = -EBADF;
1695 	in = fget_light(fd_in, &fput_in);
1696 	if (in) {
1697 		if (in->f_mode & FMODE_READ) {
1698 			out = fget_light(fd_out, &fput_out);
1699 			if (out) {
1700 				if (out->f_mode & FMODE_WRITE)
1701 					error = do_splice(in, off_in,
1702 							  out, off_out,
1703 							  len, flags);
1704 				fput_light(out, fput_out);
1705 			}
1706 		}
1707 
1708 		fput_light(in, fput_in);
1709 	}
1710 
1711 	return error;
1712 }
1713 
1714 /*
1715  * Make sure there's data to read. Wait for input if we can, otherwise
1716  * return an appropriate error.
1717  */
1718 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1719 {
1720 	int ret;
1721 
1722 	/*
1723 	 * Check ->nrbufs without the inode lock first. This function
1724 	 * is speculative anyways, so missing one is ok.
1725 	 */
1726 	if (pipe->nrbufs)
1727 		return 0;
1728 
1729 	ret = 0;
1730 	pipe_lock(pipe);
1731 
1732 	while (!pipe->nrbufs) {
1733 		if (signal_pending(current)) {
1734 			ret = -ERESTARTSYS;
1735 			break;
1736 		}
1737 		if (!pipe->writers)
1738 			break;
1739 		if (!pipe->waiting_writers) {
1740 			if (flags & SPLICE_F_NONBLOCK) {
1741 				ret = -EAGAIN;
1742 				break;
1743 			}
1744 		}
1745 		pipe_wait(pipe);
1746 	}
1747 
1748 	pipe_unlock(pipe);
1749 	return ret;
1750 }
1751 
1752 /*
1753  * Make sure there's writeable room. Wait for room if we can, otherwise
1754  * return an appropriate error.
1755  */
1756 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1757 {
1758 	int ret;
1759 
1760 	/*
1761 	 * Check ->nrbufs without the inode lock first. This function
1762 	 * is speculative anyways, so missing one is ok.
1763 	 */
1764 	if (pipe->nrbufs < pipe->buffers)
1765 		return 0;
1766 
1767 	ret = 0;
1768 	pipe_lock(pipe);
1769 
1770 	while (pipe->nrbufs >= pipe->buffers) {
1771 		if (!pipe->readers) {
1772 			send_sig(SIGPIPE, current, 0);
1773 			ret = -EPIPE;
1774 			break;
1775 		}
1776 		if (flags & SPLICE_F_NONBLOCK) {
1777 			ret = -EAGAIN;
1778 			break;
1779 		}
1780 		if (signal_pending(current)) {
1781 			ret = -ERESTARTSYS;
1782 			break;
1783 		}
1784 		pipe->waiting_writers++;
1785 		pipe_wait(pipe);
1786 		pipe->waiting_writers--;
1787 	}
1788 
1789 	pipe_unlock(pipe);
1790 	return ret;
1791 }
1792 
1793 /*
1794  * Splice contents of ipipe to opipe.
1795  */
1796 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1797 			       struct pipe_inode_info *opipe,
1798 			       size_t len, unsigned int flags)
1799 {
1800 	struct pipe_buffer *ibuf, *obuf;
1801 	int ret = 0, nbuf;
1802 	bool input_wakeup = false;
1803 
1804 
1805 retry:
1806 	ret = ipipe_prep(ipipe, flags);
1807 	if (ret)
1808 		return ret;
1809 
1810 	ret = opipe_prep(opipe, flags);
1811 	if (ret)
1812 		return ret;
1813 
1814 	/*
1815 	 * Potential ABBA deadlock, work around it by ordering lock
1816 	 * grabbing by pipe info address. Otherwise two different processes
1817 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1818 	 */
1819 	pipe_double_lock(ipipe, opipe);
1820 
1821 	do {
1822 		if (!opipe->readers) {
1823 			send_sig(SIGPIPE, current, 0);
1824 			if (!ret)
1825 				ret = -EPIPE;
1826 			break;
1827 		}
1828 
1829 		if (!ipipe->nrbufs && !ipipe->writers)
1830 			break;
1831 
1832 		/*
1833 		 * Cannot make any progress, because either the input
1834 		 * pipe is empty or the output pipe is full.
1835 		 */
1836 		if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1837 			/* Already processed some buffers, break */
1838 			if (ret)
1839 				break;
1840 
1841 			if (flags & SPLICE_F_NONBLOCK) {
1842 				ret = -EAGAIN;
1843 				break;
1844 			}
1845 
1846 			/*
1847 			 * We raced with another reader/writer and haven't
1848 			 * managed to process any buffers.  A zero return
1849 			 * value means EOF, so retry instead.
1850 			 */
1851 			pipe_unlock(ipipe);
1852 			pipe_unlock(opipe);
1853 			goto retry;
1854 		}
1855 
1856 		ibuf = ipipe->bufs + ipipe->curbuf;
1857 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1858 		obuf = opipe->bufs + nbuf;
1859 
1860 		if (len >= ibuf->len) {
1861 			/*
1862 			 * Simply move the whole buffer from ipipe to opipe
1863 			 */
1864 			*obuf = *ibuf;
1865 			ibuf->ops = NULL;
1866 			opipe->nrbufs++;
1867 			ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1868 			ipipe->nrbufs--;
1869 			input_wakeup = true;
1870 		} else {
1871 			/*
1872 			 * Get a reference to this pipe buffer,
1873 			 * so we can copy the contents over.
1874 			 */
1875 			ibuf->ops->get(ipipe, ibuf);
1876 			*obuf = *ibuf;
1877 
1878 			/*
1879 			 * Don't inherit the gift flag, we need to
1880 			 * prevent multiple steals of this page.
1881 			 */
1882 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1883 
1884 			obuf->len = len;
1885 			opipe->nrbufs++;
1886 			ibuf->offset += obuf->len;
1887 			ibuf->len -= obuf->len;
1888 		}
1889 		ret += obuf->len;
1890 		len -= obuf->len;
1891 	} while (len);
1892 
1893 	pipe_unlock(ipipe);
1894 	pipe_unlock(opipe);
1895 
1896 	/*
1897 	 * If we put data in the output pipe, wakeup any potential readers.
1898 	 */
1899 	if (ret > 0)
1900 		wakeup_pipe_readers(opipe);
1901 
1902 	if (input_wakeup)
1903 		wakeup_pipe_writers(ipipe);
1904 
1905 	return ret;
1906 }
1907 
1908 /*
1909  * Link contents of ipipe to opipe.
1910  */
1911 static int link_pipe(struct pipe_inode_info *ipipe,
1912 		     struct pipe_inode_info *opipe,
1913 		     size_t len, unsigned int flags)
1914 {
1915 	struct pipe_buffer *ibuf, *obuf;
1916 	int ret = 0, i = 0, nbuf;
1917 
1918 	/*
1919 	 * Potential ABBA deadlock, work around it by ordering lock
1920 	 * grabbing by pipe info address. Otherwise two different processes
1921 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1922 	 */
1923 	pipe_double_lock(ipipe, opipe);
1924 
1925 	do {
1926 		if (!opipe->readers) {
1927 			send_sig(SIGPIPE, current, 0);
1928 			if (!ret)
1929 				ret = -EPIPE;
1930 			break;
1931 		}
1932 
1933 		/*
1934 		 * If we have iterated all input buffers or ran out of
1935 		 * output room, break.
1936 		 */
1937 		if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1938 			break;
1939 
1940 		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1941 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1942 
1943 		/*
1944 		 * Get a reference to this pipe buffer,
1945 		 * so we can copy the contents over.
1946 		 */
1947 		ibuf->ops->get(ipipe, ibuf);
1948 
1949 		obuf = opipe->bufs + nbuf;
1950 		*obuf = *ibuf;
1951 
1952 		/*
1953 		 * Don't inherit the gift flag, we need to
1954 		 * prevent multiple steals of this page.
1955 		 */
1956 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1957 
1958 		if (obuf->len > len)
1959 			obuf->len = len;
1960 
1961 		opipe->nrbufs++;
1962 		ret += obuf->len;
1963 		len -= obuf->len;
1964 		i++;
1965 	} while (len);
1966 
1967 	/*
1968 	 * return EAGAIN if we have the potential of some data in the
1969 	 * future, otherwise just return 0
1970 	 */
1971 	if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1972 		ret = -EAGAIN;
1973 
1974 	pipe_unlock(ipipe);
1975 	pipe_unlock(opipe);
1976 
1977 	/*
1978 	 * If we put data in the output pipe, wakeup any potential readers.
1979 	 */
1980 	if (ret > 0)
1981 		wakeup_pipe_readers(opipe);
1982 
1983 	return ret;
1984 }
1985 
1986 /*
1987  * This is a tee(1) implementation that works on pipes. It doesn't copy
1988  * any data, it simply references the 'in' pages on the 'out' pipe.
1989  * The 'flags' used are the SPLICE_F_* variants, currently the only
1990  * applicable one is SPLICE_F_NONBLOCK.
1991  */
1992 static long do_tee(struct file *in, struct file *out, size_t len,
1993 		   unsigned int flags)
1994 {
1995 	struct pipe_inode_info *ipipe = get_pipe_info(in);
1996 	struct pipe_inode_info *opipe = get_pipe_info(out);
1997 	int ret = -EINVAL;
1998 
1999 	/*
2000 	 * Duplicate the contents of ipipe to opipe without actually
2001 	 * copying the data.
2002 	 */
2003 	if (ipipe && opipe && ipipe != opipe) {
2004 		/*
2005 		 * Keep going, unless we encounter an error. The ipipe/opipe
2006 		 * ordering doesn't really matter.
2007 		 */
2008 		ret = ipipe_prep(ipipe, flags);
2009 		if (!ret) {
2010 			ret = opipe_prep(opipe, flags);
2011 			if (!ret)
2012 				ret = link_pipe(ipipe, opipe, len, flags);
2013 		}
2014 	}
2015 
2016 	return ret;
2017 }
2018 
2019 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2020 {
2021 	struct file *in;
2022 	int error, fput_in;
2023 
2024 	if (unlikely(!len))
2025 		return 0;
2026 
2027 	error = -EBADF;
2028 	in = fget_light(fdin, &fput_in);
2029 	if (in) {
2030 		if (in->f_mode & FMODE_READ) {
2031 			int fput_out;
2032 			struct file *out = fget_light(fdout, &fput_out);
2033 
2034 			if (out) {
2035 				if (out->f_mode & FMODE_WRITE)
2036 					error = do_tee(in, out, len, flags);
2037 				fput_light(out, fput_out);
2038 			}
2039 		}
2040  		fput_light(in, fput_in);
2041  	}
2042 
2043 	return error;
2044 }
2045