1 /* 2 * "splice": joining two ropes together by interweaving their strands. 3 * 4 * This is the "extended pipe" functionality, where a pipe is used as 5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 6 * buffer that you can use to transfer data from one end to the other. 7 * 8 * The traditional unix read/write is extended with a "splice()" operation 9 * that transfers data buffers to or from a pipe buffer. 10 * 11 * Named by Larry McVoy, original implementation from Linus, extended by 12 * Jens to support splicing to files, network, direct splicing, etc and 13 * fixing lots of bugs. 14 * 15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 18 * 19 */ 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/pagemap.h> 23 #include <linux/splice.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm_inline.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/buffer_head.h> 29 #include <linux/module.h> 30 #include <linux/syscalls.h> 31 #include <linux/uio.h> 32 #include <linux/security.h> 33 #include <linux/gfp.h> 34 35 /* 36 * Attempt to steal a page from a pipe buffer. This should perhaps go into 37 * a vm helper function, it's already simplified quite a bit by the 38 * addition of remove_mapping(). If success is returned, the caller may 39 * attempt to reuse this page for another destination. 40 */ 41 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe, 42 struct pipe_buffer *buf) 43 { 44 struct page *page = buf->page; 45 struct address_space *mapping; 46 47 lock_page(page); 48 49 mapping = page_mapping(page); 50 if (mapping) { 51 WARN_ON(!PageUptodate(page)); 52 53 /* 54 * At least for ext2 with nobh option, we need to wait on 55 * writeback completing on this page, since we'll remove it 56 * from the pagecache. Otherwise truncate wont wait on the 57 * page, allowing the disk blocks to be reused by someone else 58 * before we actually wrote our data to them. fs corruption 59 * ensues. 60 */ 61 wait_on_page_writeback(page); 62 63 if (page_has_private(page) && 64 !try_to_release_page(page, GFP_KERNEL)) 65 goto out_unlock; 66 67 /* 68 * If we succeeded in removing the mapping, set LRU flag 69 * and return good. 70 */ 71 if (remove_mapping(mapping, page)) { 72 buf->flags |= PIPE_BUF_FLAG_LRU; 73 return 0; 74 } 75 } 76 77 /* 78 * Raced with truncate or failed to remove page from current 79 * address space, unlock and return failure. 80 */ 81 out_unlock: 82 unlock_page(page); 83 return 1; 84 } 85 86 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 87 struct pipe_buffer *buf) 88 { 89 page_cache_release(buf->page); 90 buf->flags &= ~PIPE_BUF_FLAG_LRU; 91 } 92 93 /* 94 * Check whether the contents of buf is OK to access. Since the content 95 * is a page cache page, IO may be in flight. 96 */ 97 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 98 struct pipe_buffer *buf) 99 { 100 struct page *page = buf->page; 101 int err; 102 103 if (!PageUptodate(page)) { 104 lock_page(page); 105 106 /* 107 * Page got truncated/unhashed. This will cause a 0-byte 108 * splice, if this is the first page. 109 */ 110 if (!page->mapping) { 111 err = -ENODATA; 112 goto error; 113 } 114 115 /* 116 * Uh oh, read-error from disk. 117 */ 118 if (!PageUptodate(page)) { 119 err = -EIO; 120 goto error; 121 } 122 123 /* 124 * Page is ok afterall, we are done. 125 */ 126 unlock_page(page); 127 } 128 129 return 0; 130 error: 131 unlock_page(page); 132 return err; 133 } 134 135 const struct pipe_buf_operations page_cache_pipe_buf_ops = { 136 .can_merge = 0, 137 .map = generic_pipe_buf_map, 138 .unmap = generic_pipe_buf_unmap, 139 .confirm = page_cache_pipe_buf_confirm, 140 .release = page_cache_pipe_buf_release, 141 .steal = page_cache_pipe_buf_steal, 142 .get = generic_pipe_buf_get, 143 }; 144 145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe, 146 struct pipe_buffer *buf) 147 { 148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 149 return 1; 150 151 buf->flags |= PIPE_BUF_FLAG_LRU; 152 return generic_pipe_buf_steal(pipe, buf); 153 } 154 155 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 156 .can_merge = 0, 157 .map = generic_pipe_buf_map, 158 .unmap = generic_pipe_buf_unmap, 159 .confirm = generic_pipe_buf_confirm, 160 .release = page_cache_pipe_buf_release, 161 .steal = user_page_pipe_buf_steal, 162 .get = generic_pipe_buf_get, 163 }; 164 165 static void wakeup_pipe_readers(struct pipe_inode_info *pipe) 166 { 167 smp_mb(); 168 if (waitqueue_active(&pipe->wait)) 169 wake_up_interruptible(&pipe->wait); 170 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 171 } 172 173 /** 174 * splice_to_pipe - fill passed data into a pipe 175 * @pipe: pipe to fill 176 * @spd: data to fill 177 * 178 * Description: 179 * @spd contains a map of pages and len/offset tuples, along with 180 * the struct pipe_buf_operations associated with these pages. This 181 * function will link that data to the pipe. 182 * 183 */ 184 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 185 struct splice_pipe_desc *spd) 186 { 187 unsigned int spd_pages = spd->nr_pages; 188 int ret, do_wakeup, page_nr; 189 190 ret = 0; 191 do_wakeup = 0; 192 page_nr = 0; 193 194 pipe_lock(pipe); 195 196 for (;;) { 197 if (!pipe->readers) { 198 send_sig(SIGPIPE, current, 0); 199 if (!ret) 200 ret = -EPIPE; 201 break; 202 } 203 204 if (pipe->nrbufs < pipe->buffers) { 205 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1); 206 struct pipe_buffer *buf = pipe->bufs + newbuf; 207 208 buf->page = spd->pages[page_nr]; 209 buf->offset = spd->partial[page_nr].offset; 210 buf->len = spd->partial[page_nr].len; 211 buf->private = spd->partial[page_nr].private; 212 buf->ops = spd->ops; 213 if (spd->flags & SPLICE_F_GIFT) 214 buf->flags |= PIPE_BUF_FLAG_GIFT; 215 216 pipe->nrbufs++; 217 page_nr++; 218 ret += buf->len; 219 220 if (pipe->inode) 221 do_wakeup = 1; 222 223 if (!--spd->nr_pages) 224 break; 225 if (pipe->nrbufs < pipe->buffers) 226 continue; 227 228 break; 229 } 230 231 if (spd->flags & SPLICE_F_NONBLOCK) { 232 if (!ret) 233 ret = -EAGAIN; 234 break; 235 } 236 237 if (signal_pending(current)) { 238 if (!ret) 239 ret = -ERESTARTSYS; 240 break; 241 } 242 243 if (do_wakeup) { 244 smp_mb(); 245 if (waitqueue_active(&pipe->wait)) 246 wake_up_interruptible_sync(&pipe->wait); 247 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 248 do_wakeup = 0; 249 } 250 251 pipe->waiting_writers++; 252 pipe_wait(pipe); 253 pipe->waiting_writers--; 254 } 255 256 pipe_unlock(pipe); 257 258 if (do_wakeup) 259 wakeup_pipe_readers(pipe); 260 261 while (page_nr < spd_pages) 262 spd->spd_release(spd, page_nr++); 263 264 return ret; 265 } 266 267 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i) 268 { 269 page_cache_release(spd->pages[i]); 270 } 271 272 /* 273 * Check if we need to grow the arrays holding pages and partial page 274 * descriptions. 275 */ 276 int splice_grow_spd(struct pipe_inode_info *pipe, struct splice_pipe_desc *spd) 277 { 278 if (pipe->buffers <= PIPE_DEF_BUFFERS) 279 return 0; 280 281 spd->pages = kmalloc(pipe->buffers * sizeof(struct page *), GFP_KERNEL); 282 spd->partial = kmalloc(pipe->buffers * sizeof(struct partial_page), GFP_KERNEL); 283 284 if (spd->pages && spd->partial) 285 return 0; 286 287 kfree(spd->pages); 288 kfree(spd->partial); 289 return -ENOMEM; 290 } 291 292 void splice_shrink_spd(struct pipe_inode_info *pipe, 293 struct splice_pipe_desc *spd) 294 { 295 if (pipe->buffers <= PIPE_DEF_BUFFERS) 296 return; 297 298 kfree(spd->pages); 299 kfree(spd->partial); 300 } 301 302 static int 303 __generic_file_splice_read(struct file *in, loff_t *ppos, 304 struct pipe_inode_info *pipe, size_t len, 305 unsigned int flags) 306 { 307 struct address_space *mapping = in->f_mapping; 308 unsigned int loff, nr_pages, req_pages; 309 struct page *pages[PIPE_DEF_BUFFERS]; 310 struct partial_page partial[PIPE_DEF_BUFFERS]; 311 struct page *page; 312 pgoff_t index, end_index; 313 loff_t isize; 314 int error, page_nr; 315 struct splice_pipe_desc spd = { 316 .pages = pages, 317 .partial = partial, 318 .flags = flags, 319 .ops = &page_cache_pipe_buf_ops, 320 .spd_release = spd_release_page, 321 }; 322 323 if (splice_grow_spd(pipe, &spd)) 324 return -ENOMEM; 325 326 index = *ppos >> PAGE_CACHE_SHIFT; 327 loff = *ppos & ~PAGE_CACHE_MASK; 328 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 329 nr_pages = min(req_pages, pipe->buffers); 330 331 /* 332 * Lookup the (hopefully) full range of pages we need. 333 */ 334 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages); 335 index += spd.nr_pages; 336 337 /* 338 * If find_get_pages_contig() returned fewer pages than we needed, 339 * readahead/allocate the rest and fill in the holes. 340 */ 341 if (spd.nr_pages < nr_pages) 342 page_cache_sync_readahead(mapping, &in->f_ra, in, 343 index, req_pages - spd.nr_pages); 344 345 error = 0; 346 while (spd.nr_pages < nr_pages) { 347 /* 348 * Page could be there, find_get_pages_contig() breaks on 349 * the first hole. 350 */ 351 page = find_get_page(mapping, index); 352 if (!page) { 353 /* 354 * page didn't exist, allocate one. 355 */ 356 page = page_cache_alloc_cold(mapping); 357 if (!page) 358 break; 359 360 error = add_to_page_cache_lru(page, mapping, index, 361 GFP_KERNEL); 362 if (unlikely(error)) { 363 page_cache_release(page); 364 if (error == -EEXIST) 365 continue; 366 break; 367 } 368 /* 369 * add_to_page_cache() locks the page, unlock it 370 * to avoid convoluting the logic below even more. 371 */ 372 unlock_page(page); 373 } 374 375 spd.pages[spd.nr_pages++] = page; 376 index++; 377 } 378 379 /* 380 * Now loop over the map and see if we need to start IO on any 381 * pages, fill in the partial map, etc. 382 */ 383 index = *ppos >> PAGE_CACHE_SHIFT; 384 nr_pages = spd.nr_pages; 385 spd.nr_pages = 0; 386 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 387 unsigned int this_len; 388 389 if (!len) 390 break; 391 392 /* 393 * this_len is the max we'll use from this page 394 */ 395 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 396 page = spd.pages[page_nr]; 397 398 if (PageReadahead(page)) 399 page_cache_async_readahead(mapping, &in->f_ra, in, 400 page, index, req_pages - page_nr); 401 402 /* 403 * If the page isn't uptodate, we may need to start io on it 404 */ 405 if (!PageUptodate(page)) { 406 lock_page(page); 407 408 /* 409 * Page was truncated, or invalidated by the 410 * filesystem. Redo the find/create, but this time the 411 * page is kept locked, so there's no chance of another 412 * race with truncate/invalidate. 413 */ 414 if (!page->mapping) { 415 unlock_page(page); 416 page = find_or_create_page(mapping, index, 417 mapping_gfp_mask(mapping)); 418 419 if (!page) { 420 error = -ENOMEM; 421 break; 422 } 423 page_cache_release(spd.pages[page_nr]); 424 spd.pages[page_nr] = page; 425 } 426 /* 427 * page was already under io and is now done, great 428 */ 429 if (PageUptodate(page)) { 430 unlock_page(page); 431 goto fill_it; 432 } 433 434 /* 435 * need to read in the page 436 */ 437 error = mapping->a_ops->readpage(in, page); 438 if (unlikely(error)) { 439 /* 440 * We really should re-lookup the page here, 441 * but it complicates things a lot. Instead 442 * lets just do what we already stored, and 443 * we'll get it the next time we are called. 444 */ 445 if (error == AOP_TRUNCATED_PAGE) 446 error = 0; 447 448 break; 449 } 450 } 451 fill_it: 452 /* 453 * i_size must be checked after PageUptodate. 454 */ 455 isize = i_size_read(mapping->host); 456 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 457 if (unlikely(!isize || index > end_index)) 458 break; 459 460 /* 461 * if this is the last page, see if we need to shrink 462 * the length and stop 463 */ 464 if (end_index == index) { 465 unsigned int plen; 466 467 /* 468 * max good bytes in this page 469 */ 470 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 471 if (plen <= loff) 472 break; 473 474 /* 475 * force quit after adding this page 476 */ 477 this_len = min(this_len, plen - loff); 478 len = this_len; 479 } 480 481 spd.partial[page_nr].offset = loff; 482 spd.partial[page_nr].len = this_len; 483 len -= this_len; 484 loff = 0; 485 spd.nr_pages++; 486 index++; 487 } 488 489 /* 490 * Release any pages at the end, if we quit early. 'page_nr' is how far 491 * we got, 'nr_pages' is how many pages are in the map. 492 */ 493 while (page_nr < nr_pages) 494 page_cache_release(spd.pages[page_nr++]); 495 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT; 496 497 if (spd.nr_pages) 498 error = splice_to_pipe(pipe, &spd); 499 500 splice_shrink_spd(pipe, &spd); 501 return error; 502 } 503 504 /** 505 * generic_file_splice_read - splice data from file to a pipe 506 * @in: file to splice from 507 * @ppos: position in @in 508 * @pipe: pipe to splice to 509 * @len: number of bytes to splice 510 * @flags: splice modifier flags 511 * 512 * Description: 513 * Will read pages from given file and fill them into a pipe. Can be 514 * used as long as the address_space operations for the source implements 515 * a readpage() hook. 516 * 517 */ 518 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos, 519 struct pipe_inode_info *pipe, size_t len, 520 unsigned int flags) 521 { 522 loff_t isize, left; 523 int ret; 524 525 isize = i_size_read(in->f_mapping->host); 526 if (unlikely(*ppos >= isize)) 527 return 0; 528 529 left = isize - *ppos; 530 if (unlikely(left < len)) 531 len = left; 532 533 ret = __generic_file_splice_read(in, ppos, pipe, len, flags); 534 if (ret > 0) { 535 *ppos += ret; 536 file_accessed(in); 537 } 538 539 return ret; 540 } 541 EXPORT_SYMBOL(generic_file_splice_read); 542 543 static const struct pipe_buf_operations default_pipe_buf_ops = { 544 .can_merge = 0, 545 .map = generic_pipe_buf_map, 546 .unmap = generic_pipe_buf_unmap, 547 .confirm = generic_pipe_buf_confirm, 548 .release = generic_pipe_buf_release, 549 .steal = generic_pipe_buf_steal, 550 .get = generic_pipe_buf_get, 551 }; 552 553 static ssize_t kernel_readv(struct file *file, const struct iovec *vec, 554 unsigned long vlen, loff_t offset) 555 { 556 mm_segment_t old_fs; 557 loff_t pos = offset; 558 ssize_t res; 559 560 old_fs = get_fs(); 561 set_fs(get_ds()); 562 /* The cast to a user pointer is valid due to the set_fs() */ 563 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos); 564 set_fs(old_fs); 565 566 return res; 567 } 568 569 static ssize_t kernel_write(struct file *file, const char *buf, size_t count, 570 loff_t pos) 571 { 572 mm_segment_t old_fs; 573 ssize_t res; 574 575 old_fs = get_fs(); 576 set_fs(get_ds()); 577 /* The cast to a user pointer is valid due to the set_fs() */ 578 res = vfs_write(file, (const char __user *)buf, count, &pos); 579 set_fs(old_fs); 580 581 return res; 582 } 583 584 ssize_t default_file_splice_read(struct file *in, loff_t *ppos, 585 struct pipe_inode_info *pipe, size_t len, 586 unsigned int flags) 587 { 588 unsigned int nr_pages; 589 unsigned int nr_freed; 590 size_t offset; 591 struct page *pages[PIPE_DEF_BUFFERS]; 592 struct partial_page partial[PIPE_DEF_BUFFERS]; 593 struct iovec *vec, __vec[PIPE_DEF_BUFFERS]; 594 ssize_t res; 595 size_t this_len; 596 int error; 597 int i; 598 struct splice_pipe_desc spd = { 599 .pages = pages, 600 .partial = partial, 601 .flags = flags, 602 .ops = &default_pipe_buf_ops, 603 .spd_release = spd_release_page, 604 }; 605 606 if (splice_grow_spd(pipe, &spd)) 607 return -ENOMEM; 608 609 res = -ENOMEM; 610 vec = __vec; 611 if (pipe->buffers > PIPE_DEF_BUFFERS) { 612 vec = kmalloc(pipe->buffers * sizeof(struct iovec), GFP_KERNEL); 613 if (!vec) 614 goto shrink_ret; 615 } 616 617 offset = *ppos & ~PAGE_CACHE_MASK; 618 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 619 620 for (i = 0; i < nr_pages && i < pipe->buffers && len; i++) { 621 struct page *page; 622 623 page = alloc_page(GFP_USER); 624 error = -ENOMEM; 625 if (!page) 626 goto err; 627 628 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset); 629 vec[i].iov_base = (void __user *) page_address(page); 630 vec[i].iov_len = this_len; 631 spd.pages[i] = page; 632 spd.nr_pages++; 633 len -= this_len; 634 offset = 0; 635 } 636 637 res = kernel_readv(in, vec, spd.nr_pages, *ppos); 638 if (res < 0) { 639 error = res; 640 goto err; 641 } 642 643 error = 0; 644 if (!res) 645 goto err; 646 647 nr_freed = 0; 648 for (i = 0; i < spd.nr_pages; i++) { 649 this_len = min_t(size_t, vec[i].iov_len, res); 650 spd.partial[i].offset = 0; 651 spd.partial[i].len = this_len; 652 if (!this_len) { 653 __free_page(spd.pages[i]); 654 spd.pages[i] = NULL; 655 nr_freed++; 656 } 657 res -= this_len; 658 } 659 spd.nr_pages -= nr_freed; 660 661 res = splice_to_pipe(pipe, &spd); 662 if (res > 0) 663 *ppos += res; 664 665 shrink_ret: 666 if (vec != __vec) 667 kfree(vec); 668 splice_shrink_spd(pipe, &spd); 669 return res; 670 671 err: 672 for (i = 0; i < spd.nr_pages; i++) 673 __free_page(spd.pages[i]); 674 675 res = error; 676 goto shrink_ret; 677 } 678 EXPORT_SYMBOL(default_file_splice_read); 679 680 /* 681 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos' 682 * using sendpage(). Return the number of bytes sent. 683 */ 684 static int pipe_to_sendpage(struct pipe_inode_info *pipe, 685 struct pipe_buffer *buf, struct splice_desc *sd) 686 { 687 struct file *file = sd->u.file; 688 loff_t pos = sd->pos; 689 int more; 690 691 if (!likely(file->f_op && file->f_op->sendpage)) 692 return -EINVAL; 693 694 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len; 695 return file->f_op->sendpage(file, buf->page, buf->offset, 696 sd->len, &pos, more); 697 } 698 699 /* 700 * This is a little more tricky than the file -> pipe splicing. There are 701 * basically three cases: 702 * 703 * - Destination page already exists in the address space and there 704 * are users of it. For that case we have no other option that 705 * copying the data. Tough luck. 706 * - Destination page already exists in the address space, but there 707 * are no users of it. Make sure it's uptodate, then drop it. Fall 708 * through to last case. 709 * - Destination page does not exist, we can add the pipe page to 710 * the page cache and avoid the copy. 711 * 712 * If asked to move pages to the output file (SPLICE_F_MOVE is set in 713 * sd->flags), we attempt to migrate pages from the pipe to the output 714 * file address space page cache. This is possible if no one else has 715 * the pipe page referenced outside of the pipe and page cache. If 716 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create 717 * a new page in the output file page cache and fill/dirty that. 718 */ 719 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 720 struct splice_desc *sd) 721 { 722 struct file *file = sd->u.file; 723 struct address_space *mapping = file->f_mapping; 724 unsigned int offset, this_len; 725 struct page *page; 726 void *fsdata; 727 int ret; 728 729 offset = sd->pos & ~PAGE_CACHE_MASK; 730 731 this_len = sd->len; 732 if (this_len + offset > PAGE_CACHE_SIZE) 733 this_len = PAGE_CACHE_SIZE - offset; 734 735 ret = pagecache_write_begin(file, mapping, sd->pos, this_len, 736 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 737 if (unlikely(ret)) 738 goto out; 739 740 if (buf->page != page) { 741 /* 742 * Careful, ->map() uses KM_USER0! 743 */ 744 char *src = buf->ops->map(pipe, buf, 1); 745 char *dst = kmap_atomic(page, KM_USER1); 746 747 memcpy(dst + offset, src + buf->offset, this_len); 748 flush_dcache_page(page); 749 kunmap_atomic(dst, KM_USER1); 750 buf->ops->unmap(pipe, buf, src); 751 } 752 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len, 753 page, fsdata); 754 out: 755 return ret; 756 } 757 EXPORT_SYMBOL(pipe_to_file); 758 759 static void wakeup_pipe_writers(struct pipe_inode_info *pipe) 760 { 761 smp_mb(); 762 if (waitqueue_active(&pipe->wait)) 763 wake_up_interruptible(&pipe->wait); 764 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 765 } 766 767 /** 768 * splice_from_pipe_feed - feed available data from a pipe to a file 769 * @pipe: pipe to splice from 770 * @sd: information to @actor 771 * @actor: handler that splices the data 772 * 773 * Description: 774 * This function loops over the pipe and calls @actor to do the 775 * actual moving of a single struct pipe_buffer to the desired 776 * destination. It returns when there's no more buffers left in 777 * the pipe or if the requested number of bytes (@sd->total_len) 778 * have been copied. It returns a positive number (one) if the 779 * pipe needs to be filled with more data, zero if the required 780 * number of bytes have been copied and -errno on error. 781 * 782 * This, together with splice_from_pipe_{begin,end,next}, may be 783 * used to implement the functionality of __splice_from_pipe() when 784 * locking is required around copying the pipe buffers to the 785 * destination. 786 */ 787 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd, 788 splice_actor *actor) 789 { 790 int ret; 791 792 while (pipe->nrbufs) { 793 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 794 const struct pipe_buf_operations *ops = buf->ops; 795 796 sd->len = buf->len; 797 if (sd->len > sd->total_len) 798 sd->len = sd->total_len; 799 800 ret = buf->ops->confirm(pipe, buf); 801 if (unlikely(ret)) { 802 if (ret == -ENODATA) 803 ret = 0; 804 return ret; 805 } 806 807 ret = actor(pipe, buf, sd); 808 if (ret <= 0) 809 return ret; 810 811 buf->offset += ret; 812 buf->len -= ret; 813 814 sd->num_spliced += ret; 815 sd->len -= ret; 816 sd->pos += ret; 817 sd->total_len -= ret; 818 819 if (!buf->len) { 820 buf->ops = NULL; 821 ops->release(pipe, buf); 822 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1); 823 pipe->nrbufs--; 824 if (pipe->inode) 825 sd->need_wakeup = true; 826 } 827 828 if (!sd->total_len) 829 return 0; 830 } 831 832 return 1; 833 } 834 EXPORT_SYMBOL(splice_from_pipe_feed); 835 836 /** 837 * splice_from_pipe_next - wait for some data to splice from 838 * @pipe: pipe to splice from 839 * @sd: information about the splice operation 840 * 841 * Description: 842 * This function will wait for some data and return a positive 843 * value (one) if pipe buffers are available. It will return zero 844 * or -errno if no more data needs to be spliced. 845 */ 846 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd) 847 { 848 while (!pipe->nrbufs) { 849 if (!pipe->writers) 850 return 0; 851 852 if (!pipe->waiting_writers && sd->num_spliced) 853 return 0; 854 855 if (sd->flags & SPLICE_F_NONBLOCK) 856 return -EAGAIN; 857 858 if (signal_pending(current)) 859 return -ERESTARTSYS; 860 861 if (sd->need_wakeup) { 862 wakeup_pipe_writers(pipe); 863 sd->need_wakeup = false; 864 } 865 866 pipe_wait(pipe); 867 } 868 869 return 1; 870 } 871 EXPORT_SYMBOL(splice_from_pipe_next); 872 873 /** 874 * splice_from_pipe_begin - start splicing from pipe 875 * @sd: information about the splice operation 876 * 877 * Description: 878 * This function should be called before a loop containing 879 * splice_from_pipe_next() and splice_from_pipe_feed() to 880 * initialize the necessary fields of @sd. 881 */ 882 void splice_from_pipe_begin(struct splice_desc *sd) 883 { 884 sd->num_spliced = 0; 885 sd->need_wakeup = false; 886 } 887 EXPORT_SYMBOL(splice_from_pipe_begin); 888 889 /** 890 * splice_from_pipe_end - finish splicing from pipe 891 * @pipe: pipe to splice from 892 * @sd: information about the splice operation 893 * 894 * Description: 895 * This function will wake up pipe writers if necessary. It should 896 * be called after a loop containing splice_from_pipe_next() and 897 * splice_from_pipe_feed(). 898 */ 899 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd) 900 { 901 if (sd->need_wakeup) 902 wakeup_pipe_writers(pipe); 903 } 904 EXPORT_SYMBOL(splice_from_pipe_end); 905 906 /** 907 * __splice_from_pipe - splice data from a pipe to given actor 908 * @pipe: pipe to splice from 909 * @sd: information to @actor 910 * @actor: handler that splices the data 911 * 912 * Description: 913 * This function does little more than loop over the pipe and call 914 * @actor to do the actual moving of a single struct pipe_buffer to 915 * the desired destination. See pipe_to_file, pipe_to_sendpage, or 916 * pipe_to_user. 917 * 918 */ 919 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 920 splice_actor *actor) 921 { 922 int ret; 923 924 splice_from_pipe_begin(sd); 925 do { 926 ret = splice_from_pipe_next(pipe, sd); 927 if (ret > 0) 928 ret = splice_from_pipe_feed(pipe, sd, actor); 929 } while (ret > 0); 930 splice_from_pipe_end(pipe, sd); 931 932 return sd->num_spliced ? sd->num_spliced : ret; 933 } 934 EXPORT_SYMBOL(__splice_from_pipe); 935 936 /** 937 * splice_from_pipe - splice data from a pipe to a file 938 * @pipe: pipe to splice from 939 * @out: file to splice to 940 * @ppos: position in @out 941 * @len: how many bytes to splice 942 * @flags: splice modifier flags 943 * @actor: handler that splices the data 944 * 945 * Description: 946 * See __splice_from_pipe. This function locks the pipe inode, 947 * otherwise it's identical to __splice_from_pipe(). 948 * 949 */ 950 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 951 loff_t *ppos, size_t len, unsigned int flags, 952 splice_actor *actor) 953 { 954 ssize_t ret; 955 struct splice_desc sd = { 956 .total_len = len, 957 .flags = flags, 958 .pos = *ppos, 959 .u.file = out, 960 }; 961 962 pipe_lock(pipe); 963 ret = __splice_from_pipe(pipe, &sd, actor); 964 pipe_unlock(pipe); 965 966 return ret; 967 } 968 969 /** 970 * generic_file_splice_write - splice data from a pipe to a file 971 * @pipe: pipe info 972 * @out: file to write to 973 * @ppos: position in @out 974 * @len: number of bytes to splice 975 * @flags: splice modifier flags 976 * 977 * Description: 978 * Will either move or copy pages (determined by @flags options) from 979 * the given pipe inode to the given file. 980 * 981 */ 982 ssize_t 983 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 984 loff_t *ppos, size_t len, unsigned int flags) 985 { 986 struct address_space *mapping = out->f_mapping; 987 struct inode *inode = mapping->host; 988 struct splice_desc sd = { 989 .total_len = len, 990 .flags = flags, 991 .pos = *ppos, 992 .u.file = out, 993 }; 994 ssize_t ret; 995 996 pipe_lock(pipe); 997 998 splice_from_pipe_begin(&sd); 999 do { 1000 ret = splice_from_pipe_next(pipe, &sd); 1001 if (ret <= 0) 1002 break; 1003 1004 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); 1005 ret = file_remove_suid(out); 1006 if (!ret) { 1007 file_update_time(out); 1008 ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file); 1009 } 1010 mutex_unlock(&inode->i_mutex); 1011 } while (ret > 0); 1012 splice_from_pipe_end(pipe, &sd); 1013 1014 pipe_unlock(pipe); 1015 1016 if (sd.num_spliced) 1017 ret = sd.num_spliced; 1018 1019 if (ret > 0) { 1020 unsigned long nr_pages; 1021 int err; 1022 1023 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1024 1025 err = generic_write_sync(out, *ppos, ret); 1026 if (err) 1027 ret = err; 1028 else 1029 *ppos += ret; 1030 balance_dirty_pages_ratelimited_nr(mapping, nr_pages); 1031 } 1032 1033 return ret; 1034 } 1035 1036 EXPORT_SYMBOL(generic_file_splice_write); 1037 1038 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1039 struct splice_desc *sd) 1040 { 1041 int ret; 1042 void *data; 1043 1044 data = buf->ops->map(pipe, buf, 0); 1045 ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos); 1046 buf->ops->unmap(pipe, buf, data); 1047 1048 return ret; 1049 } 1050 1051 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe, 1052 struct file *out, loff_t *ppos, 1053 size_t len, unsigned int flags) 1054 { 1055 ssize_t ret; 1056 1057 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf); 1058 if (ret > 0) 1059 *ppos += ret; 1060 1061 return ret; 1062 } 1063 1064 /** 1065 * generic_splice_sendpage - splice data from a pipe to a socket 1066 * @pipe: pipe to splice from 1067 * @out: socket to write to 1068 * @ppos: position in @out 1069 * @len: number of bytes to splice 1070 * @flags: splice modifier flags 1071 * 1072 * Description: 1073 * Will send @len bytes from the pipe to a network socket. No data copying 1074 * is involved. 1075 * 1076 */ 1077 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, 1078 loff_t *ppos, size_t len, unsigned int flags) 1079 { 1080 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage); 1081 } 1082 1083 EXPORT_SYMBOL(generic_splice_sendpage); 1084 1085 /* 1086 * Attempt to initiate a splice from pipe to file. 1087 */ 1088 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 1089 loff_t *ppos, size_t len, unsigned int flags) 1090 { 1091 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, 1092 loff_t *, size_t, unsigned int); 1093 int ret; 1094 1095 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1096 return -EBADF; 1097 1098 if (unlikely(out->f_flags & O_APPEND)) 1099 return -EINVAL; 1100 1101 ret = rw_verify_area(WRITE, out, ppos, len); 1102 if (unlikely(ret < 0)) 1103 return ret; 1104 1105 if (out->f_op && out->f_op->splice_write) 1106 splice_write = out->f_op->splice_write; 1107 else 1108 splice_write = default_file_splice_write; 1109 1110 return splice_write(pipe, out, ppos, len, flags); 1111 } 1112 1113 /* 1114 * Attempt to initiate a splice from a file to a pipe. 1115 */ 1116 static long do_splice_to(struct file *in, loff_t *ppos, 1117 struct pipe_inode_info *pipe, size_t len, 1118 unsigned int flags) 1119 { 1120 ssize_t (*splice_read)(struct file *, loff_t *, 1121 struct pipe_inode_info *, size_t, unsigned int); 1122 int ret; 1123 1124 if (unlikely(!(in->f_mode & FMODE_READ))) 1125 return -EBADF; 1126 1127 ret = rw_verify_area(READ, in, ppos, len); 1128 if (unlikely(ret < 0)) 1129 return ret; 1130 1131 if (in->f_op && in->f_op->splice_read) 1132 splice_read = in->f_op->splice_read; 1133 else 1134 splice_read = default_file_splice_read; 1135 1136 return splice_read(in, ppos, pipe, len, flags); 1137 } 1138 1139 /** 1140 * splice_direct_to_actor - splices data directly between two non-pipes 1141 * @in: file to splice from 1142 * @sd: actor information on where to splice to 1143 * @actor: handles the data splicing 1144 * 1145 * Description: 1146 * This is a special case helper to splice directly between two 1147 * points, without requiring an explicit pipe. Internally an allocated 1148 * pipe is cached in the process, and reused during the lifetime of 1149 * that process. 1150 * 1151 */ 1152 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 1153 splice_direct_actor *actor) 1154 { 1155 struct pipe_inode_info *pipe; 1156 long ret, bytes; 1157 umode_t i_mode; 1158 size_t len; 1159 int i, flags; 1160 1161 /* 1162 * We require the input being a regular file, as we don't want to 1163 * randomly drop data for eg socket -> socket splicing. Use the 1164 * piped splicing for that! 1165 */ 1166 i_mode = in->f_path.dentry->d_inode->i_mode; 1167 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode))) 1168 return -EINVAL; 1169 1170 /* 1171 * neither in nor out is a pipe, setup an internal pipe attached to 1172 * 'out' and transfer the wanted data from 'in' to 'out' through that 1173 */ 1174 pipe = current->splice_pipe; 1175 if (unlikely(!pipe)) { 1176 pipe = alloc_pipe_info(NULL); 1177 if (!pipe) 1178 return -ENOMEM; 1179 1180 /* 1181 * We don't have an immediate reader, but we'll read the stuff 1182 * out of the pipe right after the splice_to_pipe(). So set 1183 * PIPE_READERS appropriately. 1184 */ 1185 pipe->readers = 1; 1186 1187 current->splice_pipe = pipe; 1188 } 1189 1190 /* 1191 * Do the splice. 1192 */ 1193 ret = 0; 1194 bytes = 0; 1195 len = sd->total_len; 1196 flags = sd->flags; 1197 1198 /* 1199 * Don't block on output, we have to drain the direct pipe. 1200 */ 1201 sd->flags &= ~SPLICE_F_NONBLOCK; 1202 1203 while (len) { 1204 size_t read_len; 1205 loff_t pos = sd->pos, prev_pos = pos; 1206 1207 ret = do_splice_to(in, &pos, pipe, len, flags); 1208 if (unlikely(ret <= 0)) 1209 goto out_release; 1210 1211 read_len = ret; 1212 sd->total_len = read_len; 1213 1214 /* 1215 * NOTE: nonblocking mode only applies to the input. We 1216 * must not do the output in nonblocking mode as then we 1217 * could get stuck data in the internal pipe: 1218 */ 1219 ret = actor(pipe, sd); 1220 if (unlikely(ret <= 0)) { 1221 sd->pos = prev_pos; 1222 goto out_release; 1223 } 1224 1225 bytes += ret; 1226 len -= ret; 1227 sd->pos = pos; 1228 1229 if (ret < read_len) { 1230 sd->pos = prev_pos + ret; 1231 goto out_release; 1232 } 1233 } 1234 1235 done: 1236 pipe->nrbufs = pipe->curbuf = 0; 1237 file_accessed(in); 1238 return bytes; 1239 1240 out_release: 1241 /* 1242 * If we did an incomplete transfer we must release 1243 * the pipe buffers in question: 1244 */ 1245 for (i = 0; i < pipe->buffers; i++) { 1246 struct pipe_buffer *buf = pipe->bufs + i; 1247 1248 if (buf->ops) { 1249 buf->ops->release(pipe, buf); 1250 buf->ops = NULL; 1251 } 1252 } 1253 1254 if (!bytes) 1255 bytes = ret; 1256 1257 goto done; 1258 } 1259 EXPORT_SYMBOL(splice_direct_to_actor); 1260 1261 static int direct_splice_actor(struct pipe_inode_info *pipe, 1262 struct splice_desc *sd) 1263 { 1264 struct file *file = sd->u.file; 1265 1266 return do_splice_from(pipe, file, &file->f_pos, sd->total_len, 1267 sd->flags); 1268 } 1269 1270 /** 1271 * do_splice_direct - splices data directly between two files 1272 * @in: file to splice from 1273 * @ppos: input file offset 1274 * @out: file to splice to 1275 * @len: number of bytes to splice 1276 * @flags: splice modifier flags 1277 * 1278 * Description: 1279 * For use by do_sendfile(). splice can easily emulate sendfile, but 1280 * doing it in the application would incur an extra system call 1281 * (splice in + splice out, as compared to just sendfile()). So this helper 1282 * can splice directly through a process-private pipe. 1283 * 1284 */ 1285 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1286 size_t len, unsigned int flags) 1287 { 1288 struct splice_desc sd = { 1289 .len = len, 1290 .total_len = len, 1291 .flags = flags, 1292 .pos = *ppos, 1293 .u.file = out, 1294 }; 1295 long ret; 1296 1297 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 1298 if (ret > 0) 1299 *ppos = sd.pos; 1300 1301 return ret; 1302 } 1303 1304 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1305 struct pipe_inode_info *opipe, 1306 size_t len, unsigned int flags); 1307 1308 /* 1309 * Determine where to splice to/from. 1310 */ 1311 static long do_splice(struct file *in, loff_t __user *off_in, 1312 struct file *out, loff_t __user *off_out, 1313 size_t len, unsigned int flags) 1314 { 1315 struct pipe_inode_info *ipipe; 1316 struct pipe_inode_info *opipe; 1317 loff_t offset, *off; 1318 long ret; 1319 1320 ipipe = get_pipe_info(in); 1321 opipe = get_pipe_info(out); 1322 1323 if (ipipe && opipe) { 1324 if (off_in || off_out) 1325 return -ESPIPE; 1326 1327 if (!(in->f_mode & FMODE_READ)) 1328 return -EBADF; 1329 1330 if (!(out->f_mode & FMODE_WRITE)) 1331 return -EBADF; 1332 1333 /* Splicing to self would be fun, but... */ 1334 if (ipipe == opipe) 1335 return -EINVAL; 1336 1337 return splice_pipe_to_pipe(ipipe, opipe, len, flags); 1338 } 1339 1340 if (ipipe) { 1341 if (off_in) 1342 return -ESPIPE; 1343 if (off_out) { 1344 if (!(out->f_mode & FMODE_PWRITE)) 1345 return -EINVAL; 1346 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1347 return -EFAULT; 1348 off = &offset; 1349 } else 1350 off = &out->f_pos; 1351 1352 ret = do_splice_from(ipipe, out, off, len, flags); 1353 1354 if (off_out && copy_to_user(off_out, off, sizeof(loff_t))) 1355 ret = -EFAULT; 1356 1357 return ret; 1358 } 1359 1360 if (opipe) { 1361 if (off_out) 1362 return -ESPIPE; 1363 if (off_in) { 1364 if (!(in->f_mode & FMODE_PREAD)) 1365 return -EINVAL; 1366 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1367 return -EFAULT; 1368 off = &offset; 1369 } else 1370 off = &in->f_pos; 1371 1372 ret = do_splice_to(in, off, opipe, len, flags); 1373 1374 if (off_in && copy_to_user(off_in, off, sizeof(loff_t))) 1375 ret = -EFAULT; 1376 1377 return ret; 1378 } 1379 1380 return -EINVAL; 1381 } 1382 1383 /* 1384 * Map an iov into an array of pages and offset/length tupples. With the 1385 * partial_page structure, we can map several non-contiguous ranges into 1386 * our ones pages[] map instead of splitting that operation into pieces. 1387 * Could easily be exported as a generic helper for other users, in which 1388 * case one would probably want to add a 'max_nr_pages' parameter as well. 1389 */ 1390 static int get_iovec_page_array(const struct iovec __user *iov, 1391 unsigned int nr_vecs, struct page **pages, 1392 struct partial_page *partial, int aligned, 1393 unsigned int pipe_buffers) 1394 { 1395 int buffers = 0, error = 0; 1396 1397 while (nr_vecs) { 1398 unsigned long off, npages; 1399 struct iovec entry; 1400 void __user *base; 1401 size_t len; 1402 int i; 1403 1404 error = -EFAULT; 1405 if (copy_from_user(&entry, iov, sizeof(entry))) 1406 break; 1407 1408 base = entry.iov_base; 1409 len = entry.iov_len; 1410 1411 /* 1412 * Sanity check this iovec. 0 read succeeds. 1413 */ 1414 error = 0; 1415 if (unlikely(!len)) 1416 break; 1417 error = -EFAULT; 1418 if (!access_ok(VERIFY_READ, base, len)) 1419 break; 1420 1421 /* 1422 * Get this base offset and number of pages, then map 1423 * in the user pages. 1424 */ 1425 off = (unsigned long) base & ~PAGE_MASK; 1426 1427 /* 1428 * If asked for alignment, the offset must be zero and the 1429 * length a multiple of the PAGE_SIZE. 1430 */ 1431 error = -EINVAL; 1432 if (aligned && (off || len & ~PAGE_MASK)) 1433 break; 1434 1435 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1436 if (npages > pipe_buffers - buffers) 1437 npages = pipe_buffers - buffers; 1438 1439 error = get_user_pages_fast((unsigned long)base, npages, 1440 0, &pages[buffers]); 1441 1442 if (unlikely(error <= 0)) 1443 break; 1444 1445 /* 1446 * Fill this contiguous range into the partial page map. 1447 */ 1448 for (i = 0; i < error; i++) { 1449 const int plen = min_t(size_t, len, PAGE_SIZE - off); 1450 1451 partial[buffers].offset = off; 1452 partial[buffers].len = plen; 1453 1454 off = 0; 1455 len -= plen; 1456 buffers++; 1457 } 1458 1459 /* 1460 * We didn't complete this iov, stop here since it probably 1461 * means we have to move some of this into a pipe to 1462 * be able to continue. 1463 */ 1464 if (len) 1465 break; 1466 1467 /* 1468 * Don't continue if we mapped fewer pages than we asked for, 1469 * or if we mapped the max number of pages that we have 1470 * room for. 1471 */ 1472 if (error < npages || buffers == pipe_buffers) 1473 break; 1474 1475 nr_vecs--; 1476 iov++; 1477 } 1478 1479 if (buffers) 1480 return buffers; 1481 1482 return error; 1483 } 1484 1485 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1486 struct splice_desc *sd) 1487 { 1488 char *src; 1489 int ret; 1490 1491 /* 1492 * See if we can use the atomic maps, by prefaulting in the 1493 * pages and doing an atomic copy 1494 */ 1495 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) { 1496 src = buf->ops->map(pipe, buf, 1); 1497 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset, 1498 sd->len); 1499 buf->ops->unmap(pipe, buf, src); 1500 if (!ret) { 1501 ret = sd->len; 1502 goto out; 1503 } 1504 } 1505 1506 /* 1507 * No dice, use slow non-atomic map and copy 1508 */ 1509 src = buf->ops->map(pipe, buf, 0); 1510 1511 ret = sd->len; 1512 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len)) 1513 ret = -EFAULT; 1514 1515 buf->ops->unmap(pipe, buf, src); 1516 out: 1517 if (ret > 0) 1518 sd->u.userptr += ret; 1519 return ret; 1520 } 1521 1522 /* 1523 * For lack of a better implementation, implement vmsplice() to userspace 1524 * as a simple copy of the pipes pages to the user iov. 1525 */ 1526 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov, 1527 unsigned long nr_segs, unsigned int flags) 1528 { 1529 struct pipe_inode_info *pipe; 1530 struct splice_desc sd; 1531 ssize_t size; 1532 int error; 1533 long ret; 1534 1535 pipe = get_pipe_info(file); 1536 if (!pipe) 1537 return -EBADF; 1538 1539 pipe_lock(pipe); 1540 1541 error = ret = 0; 1542 while (nr_segs) { 1543 void __user *base; 1544 size_t len; 1545 1546 /* 1547 * Get user address base and length for this iovec. 1548 */ 1549 error = get_user(base, &iov->iov_base); 1550 if (unlikely(error)) 1551 break; 1552 error = get_user(len, &iov->iov_len); 1553 if (unlikely(error)) 1554 break; 1555 1556 /* 1557 * Sanity check this iovec. 0 read succeeds. 1558 */ 1559 if (unlikely(!len)) 1560 break; 1561 if (unlikely(!base)) { 1562 error = -EFAULT; 1563 break; 1564 } 1565 1566 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) { 1567 error = -EFAULT; 1568 break; 1569 } 1570 1571 sd.len = 0; 1572 sd.total_len = len; 1573 sd.flags = flags; 1574 sd.u.userptr = base; 1575 sd.pos = 0; 1576 1577 size = __splice_from_pipe(pipe, &sd, pipe_to_user); 1578 if (size < 0) { 1579 if (!ret) 1580 ret = size; 1581 1582 break; 1583 } 1584 1585 ret += size; 1586 1587 if (size < len) 1588 break; 1589 1590 nr_segs--; 1591 iov++; 1592 } 1593 1594 pipe_unlock(pipe); 1595 1596 if (!ret) 1597 ret = error; 1598 1599 return ret; 1600 } 1601 1602 /* 1603 * vmsplice splices a user address range into a pipe. It can be thought of 1604 * as splice-from-memory, where the regular splice is splice-from-file (or 1605 * to file). In both cases the output is a pipe, naturally. 1606 */ 1607 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov, 1608 unsigned long nr_segs, unsigned int flags) 1609 { 1610 struct pipe_inode_info *pipe; 1611 struct page *pages[PIPE_DEF_BUFFERS]; 1612 struct partial_page partial[PIPE_DEF_BUFFERS]; 1613 struct splice_pipe_desc spd = { 1614 .pages = pages, 1615 .partial = partial, 1616 .flags = flags, 1617 .ops = &user_page_pipe_buf_ops, 1618 .spd_release = spd_release_page, 1619 }; 1620 long ret; 1621 1622 pipe = get_pipe_info(file); 1623 if (!pipe) 1624 return -EBADF; 1625 1626 if (splice_grow_spd(pipe, &spd)) 1627 return -ENOMEM; 1628 1629 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages, 1630 spd.partial, flags & SPLICE_F_GIFT, 1631 pipe->buffers); 1632 if (spd.nr_pages <= 0) 1633 ret = spd.nr_pages; 1634 else 1635 ret = splice_to_pipe(pipe, &spd); 1636 1637 splice_shrink_spd(pipe, &spd); 1638 return ret; 1639 } 1640 1641 /* 1642 * Note that vmsplice only really supports true splicing _from_ user memory 1643 * to a pipe, not the other way around. Splicing from user memory is a simple 1644 * operation that can be supported without any funky alignment restrictions 1645 * or nasty vm tricks. We simply map in the user memory and fill them into 1646 * a pipe. The reverse isn't quite as easy, though. There are two possible 1647 * solutions for that: 1648 * 1649 * - memcpy() the data internally, at which point we might as well just 1650 * do a regular read() on the buffer anyway. 1651 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1652 * has restriction limitations on both ends of the pipe). 1653 * 1654 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1655 * 1656 */ 1657 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov, 1658 unsigned long, nr_segs, unsigned int, flags) 1659 { 1660 struct file *file; 1661 long error; 1662 int fput; 1663 1664 if (unlikely(nr_segs > UIO_MAXIOV)) 1665 return -EINVAL; 1666 else if (unlikely(!nr_segs)) 1667 return 0; 1668 1669 error = -EBADF; 1670 file = fget_light(fd, &fput); 1671 if (file) { 1672 if (file->f_mode & FMODE_WRITE) 1673 error = vmsplice_to_pipe(file, iov, nr_segs, flags); 1674 else if (file->f_mode & FMODE_READ) 1675 error = vmsplice_to_user(file, iov, nr_segs, flags); 1676 1677 fput_light(file, fput); 1678 } 1679 1680 return error; 1681 } 1682 1683 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in, 1684 int, fd_out, loff_t __user *, off_out, 1685 size_t, len, unsigned int, flags) 1686 { 1687 long error; 1688 struct file *in, *out; 1689 int fput_in, fput_out; 1690 1691 if (unlikely(!len)) 1692 return 0; 1693 1694 error = -EBADF; 1695 in = fget_light(fd_in, &fput_in); 1696 if (in) { 1697 if (in->f_mode & FMODE_READ) { 1698 out = fget_light(fd_out, &fput_out); 1699 if (out) { 1700 if (out->f_mode & FMODE_WRITE) 1701 error = do_splice(in, off_in, 1702 out, off_out, 1703 len, flags); 1704 fput_light(out, fput_out); 1705 } 1706 } 1707 1708 fput_light(in, fput_in); 1709 } 1710 1711 return error; 1712 } 1713 1714 /* 1715 * Make sure there's data to read. Wait for input if we can, otherwise 1716 * return an appropriate error. 1717 */ 1718 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1719 { 1720 int ret; 1721 1722 /* 1723 * Check ->nrbufs without the inode lock first. This function 1724 * is speculative anyways, so missing one is ok. 1725 */ 1726 if (pipe->nrbufs) 1727 return 0; 1728 1729 ret = 0; 1730 pipe_lock(pipe); 1731 1732 while (!pipe->nrbufs) { 1733 if (signal_pending(current)) { 1734 ret = -ERESTARTSYS; 1735 break; 1736 } 1737 if (!pipe->writers) 1738 break; 1739 if (!pipe->waiting_writers) { 1740 if (flags & SPLICE_F_NONBLOCK) { 1741 ret = -EAGAIN; 1742 break; 1743 } 1744 } 1745 pipe_wait(pipe); 1746 } 1747 1748 pipe_unlock(pipe); 1749 return ret; 1750 } 1751 1752 /* 1753 * Make sure there's writeable room. Wait for room if we can, otherwise 1754 * return an appropriate error. 1755 */ 1756 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1757 { 1758 int ret; 1759 1760 /* 1761 * Check ->nrbufs without the inode lock first. This function 1762 * is speculative anyways, so missing one is ok. 1763 */ 1764 if (pipe->nrbufs < pipe->buffers) 1765 return 0; 1766 1767 ret = 0; 1768 pipe_lock(pipe); 1769 1770 while (pipe->nrbufs >= pipe->buffers) { 1771 if (!pipe->readers) { 1772 send_sig(SIGPIPE, current, 0); 1773 ret = -EPIPE; 1774 break; 1775 } 1776 if (flags & SPLICE_F_NONBLOCK) { 1777 ret = -EAGAIN; 1778 break; 1779 } 1780 if (signal_pending(current)) { 1781 ret = -ERESTARTSYS; 1782 break; 1783 } 1784 pipe->waiting_writers++; 1785 pipe_wait(pipe); 1786 pipe->waiting_writers--; 1787 } 1788 1789 pipe_unlock(pipe); 1790 return ret; 1791 } 1792 1793 /* 1794 * Splice contents of ipipe to opipe. 1795 */ 1796 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1797 struct pipe_inode_info *opipe, 1798 size_t len, unsigned int flags) 1799 { 1800 struct pipe_buffer *ibuf, *obuf; 1801 int ret = 0, nbuf; 1802 bool input_wakeup = false; 1803 1804 1805 retry: 1806 ret = ipipe_prep(ipipe, flags); 1807 if (ret) 1808 return ret; 1809 1810 ret = opipe_prep(opipe, flags); 1811 if (ret) 1812 return ret; 1813 1814 /* 1815 * Potential ABBA deadlock, work around it by ordering lock 1816 * grabbing by pipe info address. Otherwise two different processes 1817 * could deadlock (one doing tee from A -> B, the other from B -> A). 1818 */ 1819 pipe_double_lock(ipipe, opipe); 1820 1821 do { 1822 if (!opipe->readers) { 1823 send_sig(SIGPIPE, current, 0); 1824 if (!ret) 1825 ret = -EPIPE; 1826 break; 1827 } 1828 1829 if (!ipipe->nrbufs && !ipipe->writers) 1830 break; 1831 1832 /* 1833 * Cannot make any progress, because either the input 1834 * pipe is empty or the output pipe is full. 1835 */ 1836 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) { 1837 /* Already processed some buffers, break */ 1838 if (ret) 1839 break; 1840 1841 if (flags & SPLICE_F_NONBLOCK) { 1842 ret = -EAGAIN; 1843 break; 1844 } 1845 1846 /* 1847 * We raced with another reader/writer and haven't 1848 * managed to process any buffers. A zero return 1849 * value means EOF, so retry instead. 1850 */ 1851 pipe_unlock(ipipe); 1852 pipe_unlock(opipe); 1853 goto retry; 1854 } 1855 1856 ibuf = ipipe->bufs + ipipe->curbuf; 1857 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1); 1858 obuf = opipe->bufs + nbuf; 1859 1860 if (len >= ibuf->len) { 1861 /* 1862 * Simply move the whole buffer from ipipe to opipe 1863 */ 1864 *obuf = *ibuf; 1865 ibuf->ops = NULL; 1866 opipe->nrbufs++; 1867 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1); 1868 ipipe->nrbufs--; 1869 input_wakeup = true; 1870 } else { 1871 /* 1872 * Get a reference to this pipe buffer, 1873 * so we can copy the contents over. 1874 */ 1875 ibuf->ops->get(ipipe, ibuf); 1876 *obuf = *ibuf; 1877 1878 /* 1879 * Don't inherit the gift flag, we need to 1880 * prevent multiple steals of this page. 1881 */ 1882 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1883 1884 obuf->len = len; 1885 opipe->nrbufs++; 1886 ibuf->offset += obuf->len; 1887 ibuf->len -= obuf->len; 1888 } 1889 ret += obuf->len; 1890 len -= obuf->len; 1891 } while (len); 1892 1893 pipe_unlock(ipipe); 1894 pipe_unlock(opipe); 1895 1896 /* 1897 * If we put data in the output pipe, wakeup any potential readers. 1898 */ 1899 if (ret > 0) 1900 wakeup_pipe_readers(opipe); 1901 1902 if (input_wakeup) 1903 wakeup_pipe_writers(ipipe); 1904 1905 return ret; 1906 } 1907 1908 /* 1909 * Link contents of ipipe to opipe. 1910 */ 1911 static int link_pipe(struct pipe_inode_info *ipipe, 1912 struct pipe_inode_info *opipe, 1913 size_t len, unsigned int flags) 1914 { 1915 struct pipe_buffer *ibuf, *obuf; 1916 int ret = 0, i = 0, nbuf; 1917 1918 /* 1919 * Potential ABBA deadlock, work around it by ordering lock 1920 * grabbing by pipe info address. Otherwise two different processes 1921 * could deadlock (one doing tee from A -> B, the other from B -> A). 1922 */ 1923 pipe_double_lock(ipipe, opipe); 1924 1925 do { 1926 if (!opipe->readers) { 1927 send_sig(SIGPIPE, current, 0); 1928 if (!ret) 1929 ret = -EPIPE; 1930 break; 1931 } 1932 1933 /* 1934 * If we have iterated all input buffers or ran out of 1935 * output room, break. 1936 */ 1937 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) 1938 break; 1939 1940 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1)); 1941 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1); 1942 1943 /* 1944 * Get a reference to this pipe buffer, 1945 * so we can copy the contents over. 1946 */ 1947 ibuf->ops->get(ipipe, ibuf); 1948 1949 obuf = opipe->bufs + nbuf; 1950 *obuf = *ibuf; 1951 1952 /* 1953 * Don't inherit the gift flag, we need to 1954 * prevent multiple steals of this page. 1955 */ 1956 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1957 1958 if (obuf->len > len) 1959 obuf->len = len; 1960 1961 opipe->nrbufs++; 1962 ret += obuf->len; 1963 len -= obuf->len; 1964 i++; 1965 } while (len); 1966 1967 /* 1968 * return EAGAIN if we have the potential of some data in the 1969 * future, otherwise just return 0 1970 */ 1971 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK)) 1972 ret = -EAGAIN; 1973 1974 pipe_unlock(ipipe); 1975 pipe_unlock(opipe); 1976 1977 /* 1978 * If we put data in the output pipe, wakeup any potential readers. 1979 */ 1980 if (ret > 0) 1981 wakeup_pipe_readers(opipe); 1982 1983 return ret; 1984 } 1985 1986 /* 1987 * This is a tee(1) implementation that works on pipes. It doesn't copy 1988 * any data, it simply references the 'in' pages on the 'out' pipe. 1989 * The 'flags' used are the SPLICE_F_* variants, currently the only 1990 * applicable one is SPLICE_F_NONBLOCK. 1991 */ 1992 static long do_tee(struct file *in, struct file *out, size_t len, 1993 unsigned int flags) 1994 { 1995 struct pipe_inode_info *ipipe = get_pipe_info(in); 1996 struct pipe_inode_info *opipe = get_pipe_info(out); 1997 int ret = -EINVAL; 1998 1999 /* 2000 * Duplicate the contents of ipipe to opipe without actually 2001 * copying the data. 2002 */ 2003 if (ipipe && opipe && ipipe != opipe) { 2004 /* 2005 * Keep going, unless we encounter an error. The ipipe/opipe 2006 * ordering doesn't really matter. 2007 */ 2008 ret = ipipe_prep(ipipe, flags); 2009 if (!ret) { 2010 ret = opipe_prep(opipe, flags); 2011 if (!ret) 2012 ret = link_pipe(ipipe, opipe, len, flags); 2013 } 2014 } 2015 2016 return ret; 2017 } 2018 2019 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags) 2020 { 2021 struct file *in; 2022 int error, fput_in; 2023 2024 if (unlikely(!len)) 2025 return 0; 2026 2027 error = -EBADF; 2028 in = fget_light(fdin, &fput_in); 2029 if (in) { 2030 if (in->f_mode & FMODE_READ) { 2031 int fput_out; 2032 struct file *out = fget_light(fdout, &fput_out); 2033 2034 if (out) { 2035 if (out->f_mode & FMODE_WRITE) 2036 error = do_tee(in, out, len, flags); 2037 fput_light(out, fput_out); 2038 } 2039 } 2040 fput_light(in, fput_in); 2041 } 2042 2043 return error; 2044 } 2045