1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * "splice": joining two ropes together by interweaving their strands. 4 * 5 * This is the "extended pipe" functionality, where a pipe is used as 6 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 7 * buffer that you can use to transfer data from one end to the other. 8 * 9 * The traditional unix read/write is extended with a "splice()" operation 10 * that transfers data buffers to or from a pipe buffer. 11 * 12 * Named by Larry McVoy, original implementation from Linus, extended by 13 * Jens to support splicing to files, network, direct splicing, etc and 14 * fixing lots of bugs. 15 * 16 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 17 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 18 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 19 * 20 */ 21 #include <linux/bvec.h> 22 #include <linux/fs.h> 23 #include <linux/file.h> 24 #include <linux/pagemap.h> 25 #include <linux/splice.h> 26 #include <linux/memcontrol.h> 27 #include <linux/mm_inline.h> 28 #include <linux/swap.h> 29 #include <linux/writeback.h> 30 #include <linux/export.h> 31 #include <linux/syscalls.h> 32 #include <linux/uio.h> 33 #include <linux/security.h> 34 #include <linux/gfp.h> 35 #include <linux/socket.h> 36 #include <linux/compat.h> 37 #include <linux/sched/signal.h> 38 39 #include "internal.h" 40 41 /* 42 * Attempt to steal a page from a pipe buffer. This should perhaps go into 43 * a vm helper function, it's already simplified quite a bit by the 44 * addition of remove_mapping(). If success is returned, the caller may 45 * attempt to reuse this page for another destination. 46 */ 47 static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe, 48 struct pipe_buffer *buf) 49 { 50 struct page *page = buf->page; 51 struct address_space *mapping; 52 53 lock_page(page); 54 55 mapping = page_mapping(page); 56 if (mapping) { 57 WARN_ON(!PageUptodate(page)); 58 59 /* 60 * At least for ext2 with nobh option, we need to wait on 61 * writeback completing on this page, since we'll remove it 62 * from the pagecache. Otherwise truncate wont wait on the 63 * page, allowing the disk blocks to be reused by someone else 64 * before we actually wrote our data to them. fs corruption 65 * ensues. 66 */ 67 wait_on_page_writeback(page); 68 69 if (page_has_private(page) && 70 !try_to_release_page(page, GFP_KERNEL)) 71 goto out_unlock; 72 73 /* 74 * If we succeeded in removing the mapping, set LRU flag 75 * and return good. 76 */ 77 if (remove_mapping(mapping, page)) { 78 buf->flags |= PIPE_BUF_FLAG_LRU; 79 return true; 80 } 81 } 82 83 /* 84 * Raced with truncate or failed to remove page from current 85 * address space, unlock and return failure. 86 */ 87 out_unlock: 88 unlock_page(page); 89 return false; 90 } 91 92 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 93 struct pipe_buffer *buf) 94 { 95 put_page(buf->page); 96 buf->flags &= ~PIPE_BUF_FLAG_LRU; 97 } 98 99 /* 100 * Check whether the contents of buf is OK to access. Since the content 101 * is a page cache page, IO may be in flight. 102 */ 103 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 104 struct pipe_buffer *buf) 105 { 106 struct page *page = buf->page; 107 int err; 108 109 if (!PageUptodate(page)) { 110 lock_page(page); 111 112 /* 113 * Page got truncated/unhashed. This will cause a 0-byte 114 * splice, if this is the first page. 115 */ 116 if (!page->mapping) { 117 err = -ENODATA; 118 goto error; 119 } 120 121 /* 122 * Uh oh, read-error from disk. 123 */ 124 if (!PageUptodate(page)) { 125 err = -EIO; 126 goto error; 127 } 128 129 /* 130 * Page is ok afterall, we are done. 131 */ 132 unlock_page(page); 133 } 134 135 return 0; 136 error: 137 unlock_page(page); 138 return err; 139 } 140 141 const struct pipe_buf_operations page_cache_pipe_buf_ops = { 142 .confirm = page_cache_pipe_buf_confirm, 143 .release = page_cache_pipe_buf_release, 144 .try_steal = page_cache_pipe_buf_try_steal, 145 .get = generic_pipe_buf_get, 146 }; 147 148 static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe, 149 struct pipe_buffer *buf) 150 { 151 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 152 return false; 153 154 buf->flags |= PIPE_BUF_FLAG_LRU; 155 return generic_pipe_buf_try_steal(pipe, buf); 156 } 157 158 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 159 .release = page_cache_pipe_buf_release, 160 .try_steal = user_page_pipe_buf_try_steal, 161 .get = generic_pipe_buf_get, 162 }; 163 164 static void wakeup_pipe_readers(struct pipe_inode_info *pipe) 165 { 166 smp_mb(); 167 if (waitqueue_active(&pipe->rd_wait)) 168 wake_up_interruptible(&pipe->rd_wait); 169 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 170 } 171 172 /** 173 * splice_to_pipe - fill passed data into a pipe 174 * @pipe: pipe to fill 175 * @spd: data to fill 176 * 177 * Description: 178 * @spd contains a map of pages and len/offset tuples, along with 179 * the struct pipe_buf_operations associated with these pages. This 180 * function will link that data to the pipe. 181 * 182 */ 183 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 184 struct splice_pipe_desc *spd) 185 { 186 unsigned int spd_pages = spd->nr_pages; 187 unsigned int tail = pipe->tail; 188 unsigned int head = pipe->head; 189 unsigned int mask = pipe->ring_size - 1; 190 int ret = 0, page_nr = 0; 191 192 if (!spd_pages) 193 return 0; 194 195 if (unlikely(!pipe->readers)) { 196 send_sig(SIGPIPE, current, 0); 197 ret = -EPIPE; 198 goto out; 199 } 200 201 while (!pipe_full(head, tail, pipe->max_usage)) { 202 struct pipe_buffer *buf = &pipe->bufs[head & mask]; 203 204 buf->page = spd->pages[page_nr]; 205 buf->offset = spd->partial[page_nr].offset; 206 buf->len = spd->partial[page_nr].len; 207 buf->private = spd->partial[page_nr].private; 208 buf->ops = spd->ops; 209 buf->flags = 0; 210 211 head++; 212 pipe->head = head; 213 page_nr++; 214 ret += buf->len; 215 216 if (!--spd->nr_pages) 217 break; 218 } 219 220 if (!ret) 221 ret = -EAGAIN; 222 223 out: 224 while (page_nr < spd_pages) 225 spd->spd_release(spd, page_nr++); 226 227 return ret; 228 } 229 EXPORT_SYMBOL_GPL(splice_to_pipe); 230 231 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 232 { 233 unsigned int head = pipe->head; 234 unsigned int tail = pipe->tail; 235 unsigned int mask = pipe->ring_size - 1; 236 int ret; 237 238 if (unlikely(!pipe->readers)) { 239 send_sig(SIGPIPE, current, 0); 240 ret = -EPIPE; 241 } else if (pipe_full(head, tail, pipe->max_usage)) { 242 ret = -EAGAIN; 243 } else { 244 pipe->bufs[head & mask] = *buf; 245 pipe->head = head + 1; 246 return buf->len; 247 } 248 pipe_buf_release(pipe, buf); 249 return ret; 250 } 251 EXPORT_SYMBOL(add_to_pipe); 252 253 /* 254 * Check if we need to grow the arrays holding pages and partial page 255 * descriptions. 256 */ 257 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd) 258 { 259 unsigned int max_usage = READ_ONCE(pipe->max_usage); 260 261 spd->nr_pages_max = max_usage; 262 if (max_usage <= PIPE_DEF_BUFFERS) 263 return 0; 264 265 spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL); 266 spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page), 267 GFP_KERNEL); 268 269 if (spd->pages && spd->partial) 270 return 0; 271 272 kfree(spd->pages); 273 kfree(spd->partial); 274 return -ENOMEM; 275 } 276 277 void splice_shrink_spd(struct splice_pipe_desc *spd) 278 { 279 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS) 280 return; 281 282 kfree(spd->pages); 283 kfree(spd->partial); 284 } 285 286 /** 287 * generic_file_splice_read - splice data from file to a pipe 288 * @in: file to splice from 289 * @ppos: position in @in 290 * @pipe: pipe to splice to 291 * @len: number of bytes to splice 292 * @flags: splice modifier flags 293 * 294 * Description: 295 * Will read pages from given file and fill them into a pipe. Can be 296 * used as long as it has more or less sane ->read_iter(). 297 * 298 */ 299 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos, 300 struct pipe_inode_info *pipe, size_t len, 301 unsigned int flags) 302 { 303 struct iov_iter to; 304 struct kiocb kiocb; 305 unsigned int i_head; 306 int ret; 307 308 iov_iter_pipe(&to, READ, pipe, len); 309 i_head = to.head; 310 init_sync_kiocb(&kiocb, in); 311 kiocb.ki_pos = *ppos; 312 ret = call_read_iter(in, &kiocb, &to); 313 if (ret > 0) { 314 *ppos = kiocb.ki_pos; 315 file_accessed(in); 316 } else if (ret < 0) { 317 to.head = i_head; 318 to.iov_offset = 0; 319 iov_iter_advance(&to, 0); /* to free what was emitted */ 320 /* 321 * callers of ->splice_read() expect -EAGAIN on 322 * "can't put anything in there", rather than -EFAULT. 323 */ 324 if (ret == -EFAULT) 325 ret = -EAGAIN; 326 } 327 328 return ret; 329 } 330 EXPORT_SYMBOL(generic_file_splice_read); 331 332 const struct pipe_buf_operations default_pipe_buf_ops = { 333 .release = generic_pipe_buf_release, 334 .try_steal = generic_pipe_buf_try_steal, 335 .get = generic_pipe_buf_get, 336 }; 337 338 /* Pipe buffer operations for a socket and similar. */ 339 const struct pipe_buf_operations nosteal_pipe_buf_ops = { 340 .release = generic_pipe_buf_release, 341 .get = generic_pipe_buf_get, 342 }; 343 EXPORT_SYMBOL(nosteal_pipe_buf_ops); 344 345 static ssize_t kernel_readv(struct file *file, const struct kvec *vec, 346 unsigned long vlen, loff_t offset) 347 { 348 mm_segment_t old_fs; 349 loff_t pos = offset; 350 ssize_t res; 351 352 old_fs = get_fs(); 353 set_fs(KERNEL_DS); 354 /* The cast to a user pointer is valid due to the set_fs() */ 355 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos, 0); 356 set_fs(old_fs); 357 358 return res; 359 } 360 361 static ssize_t default_file_splice_read(struct file *in, loff_t *ppos, 362 struct pipe_inode_info *pipe, size_t len, 363 unsigned int flags) 364 { 365 struct kvec *vec, __vec[PIPE_DEF_BUFFERS]; 366 struct iov_iter to; 367 struct page **pages; 368 unsigned int nr_pages; 369 unsigned int mask; 370 size_t offset, base, copied = 0; 371 ssize_t res; 372 int i; 373 374 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 375 return -EAGAIN; 376 377 /* 378 * Try to keep page boundaries matching to source pagecache ones - 379 * it probably won't be much help, but... 380 */ 381 offset = *ppos & ~PAGE_MASK; 382 383 iov_iter_pipe(&to, READ, pipe, len + offset); 384 385 res = iov_iter_get_pages_alloc(&to, &pages, len + offset, &base); 386 if (res <= 0) 387 return -ENOMEM; 388 389 nr_pages = DIV_ROUND_UP(res + base, PAGE_SIZE); 390 391 vec = __vec; 392 if (nr_pages > PIPE_DEF_BUFFERS) { 393 vec = kmalloc_array(nr_pages, sizeof(struct kvec), GFP_KERNEL); 394 if (unlikely(!vec)) { 395 res = -ENOMEM; 396 goto out; 397 } 398 } 399 400 mask = pipe->ring_size - 1; 401 pipe->bufs[to.head & mask].offset = offset; 402 pipe->bufs[to.head & mask].len -= offset; 403 404 for (i = 0; i < nr_pages; i++) { 405 size_t this_len = min_t(size_t, len, PAGE_SIZE - offset); 406 vec[i].iov_base = page_address(pages[i]) + offset; 407 vec[i].iov_len = this_len; 408 len -= this_len; 409 offset = 0; 410 } 411 412 res = kernel_readv(in, vec, nr_pages, *ppos); 413 if (res > 0) { 414 copied = res; 415 *ppos += res; 416 } 417 418 if (vec != __vec) 419 kfree(vec); 420 out: 421 for (i = 0; i < nr_pages; i++) 422 put_page(pages[i]); 423 kvfree(pages); 424 iov_iter_advance(&to, copied); /* truncates and discards */ 425 return res; 426 } 427 428 /* 429 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos' 430 * using sendpage(). Return the number of bytes sent. 431 */ 432 static int pipe_to_sendpage(struct pipe_inode_info *pipe, 433 struct pipe_buffer *buf, struct splice_desc *sd) 434 { 435 struct file *file = sd->u.file; 436 loff_t pos = sd->pos; 437 int more; 438 439 if (!likely(file->f_op->sendpage)) 440 return -EINVAL; 441 442 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0; 443 444 if (sd->len < sd->total_len && 445 pipe_occupancy(pipe->head, pipe->tail) > 1) 446 more |= MSG_SENDPAGE_NOTLAST; 447 448 return file->f_op->sendpage(file, buf->page, buf->offset, 449 sd->len, &pos, more); 450 } 451 452 static void wakeup_pipe_writers(struct pipe_inode_info *pipe) 453 { 454 smp_mb(); 455 if (waitqueue_active(&pipe->wr_wait)) 456 wake_up_interruptible(&pipe->wr_wait); 457 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 458 } 459 460 /** 461 * splice_from_pipe_feed - feed available data from a pipe to a file 462 * @pipe: pipe to splice from 463 * @sd: information to @actor 464 * @actor: handler that splices the data 465 * 466 * Description: 467 * This function loops over the pipe and calls @actor to do the 468 * actual moving of a single struct pipe_buffer to the desired 469 * destination. It returns when there's no more buffers left in 470 * the pipe or if the requested number of bytes (@sd->total_len) 471 * have been copied. It returns a positive number (one) if the 472 * pipe needs to be filled with more data, zero if the required 473 * number of bytes have been copied and -errno on error. 474 * 475 * This, together with splice_from_pipe_{begin,end,next}, may be 476 * used to implement the functionality of __splice_from_pipe() when 477 * locking is required around copying the pipe buffers to the 478 * destination. 479 */ 480 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd, 481 splice_actor *actor) 482 { 483 unsigned int head = pipe->head; 484 unsigned int tail = pipe->tail; 485 unsigned int mask = pipe->ring_size - 1; 486 int ret; 487 488 while (!pipe_empty(head, tail)) { 489 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 490 491 sd->len = buf->len; 492 if (sd->len > sd->total_len) 493 sd->len = sd->total_len; 494 495 ret = pipe_buf_confirm(pipe, buf); 496 if (unlikely(ret)) { 497 if (ret == -ENODATA) 498 ret = 0; 499 return ret; 500 } 501 502 ret = actor(pipe, buf, sd); 503 if (ret <= 0) 504 return ret; 505 506 buf->offset += ret; 507 buf->len -= ret; 508 509 sd->num_spliced += ret; 510 sd->len -= ret; 511 sd->pos += ret; 512 sd->total_len -= ret; 513 514 if (!buf->len) { 515 pipe_buf_release(pipe, buf); 516 tail++; 517 pipe->tail = tail; 518 if (pipe->files) 519 sd->need_wakeup = true; 520 } 521 522 if (!sd->total_len) 523 return 0; 524 } 525 526 return 1; 527 } 528 529 /* We know we have a pipe buffer, but maybe it's empty? */ 530 static inline bool eat_empty_buffer(struct pipe_inode_info *pipe) 531 { 532 unsigned int tail = pipe->tail; 533 unsigned int mask = pipe->ring_size - 1; 534 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 535 536 if (unlikely(!buf->len)) { 537 pipe_buf_release(pipe, buf); 538 pipe->tail = tail+1; 539 return true; 540 } 541 542 return false; 543 } 544 545 /** 546 * splice_from_pipe_next - wait for some data to splice from 547 * @pipe: pipe to splice from 548 * @sd: information about the splice operation 549 * 550 * Description: 551 * This function will wait for some data and return a positive 552 * value (one) if pipe buffers are available. It will return zero 553 * or -errno if no more data needs to be spliced. 554 */ 555 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd) 556 { 557 /* 558 * Check for signal early to make process killable when there are 559 * always buffers available 560 */ 561 if (signal_pending(current)) 562 return -ERESTARTSYS; 563 564 repeat: 565 while (pipe_empty(pipe->head, pipe->tail)) { 566 if (!pipe->writers) 567 return 0; 568 569 if (sd->num_spliced) 570 return 0; 571 572 if (sd->flags & SPLICE_F_NONBLOCK) 573 return -EAGAIN; 574 575 if (signal_pending(current)) 576 return -ERESTARTSYS; 577 578 if (sd->need_wakeup) { 579 wakeup_pipe_writers(pipe); 580 sd->need_wakeup = false; 581 } 582 583 pipe_wait_readable(pipe); 584 } 585 586 if (eat_empty_buffer(pipe)) 587 goto repeat; 588 589 return 1; 590 } 591 592 /** 593 * splice_from_pipe_begin - start splicing from pipe 594 * @sd: information about the splice operation 595 * 596 * Description: 597 * This function should be called before a loop containing 598 * splice_from_pipe_next() and splice_from_pipe_feed() to 599 * initialize the necessary fields of @sd. 600 */ 601 static void splice_from_pipe_begin(struct splice_desc *sd) 602 { 603 sd->num_spliced = 0; 604 sd->need_wakeup = false; 605 } 606 607 /** 608 * splice_from_pipe_end - finish splicing from pipe 609 * @pipe: pipe to splice from 610 * @sd: information about the splice operation 611 * 612 * Description: 613 * This function will wake up pipe writers if necessary. It should 614 * be called after a loop containing splice_from_pipe_next() and 615 * splice_from_pipe_feed(). 616 */ 617 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd) 618 { 619 if (sd->need_wakeup) 620 wakeup_pipe_writers(pipe); 621 } 622 623 /** 624 * __splice_from_pipe - splice data from a pipe to given actor 625 * @pipe: pipe to splice from 626 * @sd: information to @actor 627 * @actor: handler that splices the data 628 * 629 * Description: 630 * This function does little more than loop over the pipe and call 631 * @actor to do the actual moving of a single struct pipe_buffer to 632 * the desired destination. See pipe_to_file, pipe_to_sendpage, or 633 * pipe_to_user. 634 * 635 */ 636 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 637 splice_actor *actor) 638 { 639 int ret; 640 641 splice_from_pipe_begin(sd); 642 do { 643 cond_resched(); 644 ret = splice_from_pipe_next(pipe, sd); 645 if (ret > 0) 646 ret = splice_from_pipe_feed(pipe, sd, actor); 647 } while (ret > 0); 648 splice_from_pipe_end(pipe, sd); 649 650 return sd->num_spliced ? sd->num_spliced : ret; 651 } 652 EXPORT_SYMBOL(__splice_from_pipe); 653 654 /** 655 * splice_from_pipe - splice data from a pipe to a file 656 * @pipe: pipe to splice from 657 * @out: file to splice to 658 * @ppos: position in @out 659 * @len: how many bytes to splice 660 * @flags: splice modifier flags 661 * @actor: handler that splices the data 662 * 663 * Description: 664 * See __splice_from_pipe. This function locks the pipe inode, 665 * otherwise it's identical to __splice_from_pipe(). 666 * 667 */ 668 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 669 loff_t *ppos, size_t len, unsigned int flags, 670 splice_actor *actor) 671 { 672 ssize_t ret; 673 struct splice_desc sd = { 674 .total_len = len, 675 .flags = flags, 676 .pos = *ppos, 677 .u.file = out, 678 }; 679 680 pipe_lock(pipe); 681 ret = __splice_from_pipe(pipe, &sd, actor); 682 pipe_unlock(pipe); 683 684 return ret; 685 } 686 687 /** 688 * iter_file_splice_write - splice data from a pipe to a file 689 * @pipe: pipe info 690 * @out: file to write to 691 * @ppos: position in @out 692 * @len: number of bytes to splice 693 * @flags: splice modifier flags 694 * 695 * Description: 696 * Will either move or copy pages (determined by @flags options) from 697 * the given pipe inode to the given file. 698 * This one is ->write_iter-based. 699 * 700 */ 701 ssize_t 702 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 703 loff_t *ppos, size_t len, unsigned int flags) 704 { 705 struct splice_desc sd = { 706 .total_len = len, 707 .flags = flags, 708 .pos = *ppos, 709 .u.file = out, 710 }; 711 int nbufs = pipe->max_usage; 712 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec), 713 GFP_KERNEL); 714 ssize_t ret; 715 716 if (unlikely(!array)) 717 return -ENOMEM; 718 719 pipe_lock(pipe); 720 721 splice_from_pipe_begin(&sd); 722 while (sd.total_len) { 723 struct iov_iter from; 724 unsigned int head, tail, mask; 725 size_t left; 726 int n; 727 728 ret = splice_from_pipe_next(pipe, &sd); 729 if (ret <= 0) 730 break; 731 732 if (unlikely(nbufs < pipe->max_usage)) { 733 kfree(array); 734 nbufs = pipe->max_usage; 735 array = kcalloc(nbufs, sizeof(struct bio_vec), 736 GFP_KERNEL); 737 if (!array) { 738 ret = -ENOMEM; 739 break; 740 } 741 } 742 743 head = pipe->head; 744 tail = pipe->tail; 745 mask = pipe->ring_size - 1; 746 747 /* build the vector */ 748 left = sd.total_len; 749 for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++, n++) { 750 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 751 size_t this_len = buf->len; 752 753 if (this_len > left) 754 this_len = left; 755 756 ret = pipe_buf_confirm(pipe, buf); 757 if (unlikely(ret)) { 758 if (ret == -ENODATA) 759 ret = 0; 760 goto done; 761 } 762 763 array[n].bv_page = buf->page; 764 array[n].bv_len = this_len; 765 array[n].bv_offset = buf->offset; 766 left -= this_len; 767 } 768 769 iov_iter_bvec(&from, WRITE, array, n, sd.total_len - left); 770 ret = vfs_iter_write(out, &from, &sd.pos, 0); 771 if (ret <= 0) 772 break; 773 774 sd.num_spliced += ret; 775 sd.total_len -= ret; 776 *ppos = sd.pos; 777 778 /* dismiss the fully eaten buffers, adjust the partial one */ 779 tail = pipe->tail; 780 while (ret) { 781 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 782 if (ret >= buf->len) { 783 ret -= buf->len; 784 buf->len = 0; 785 pipe_buf_release(pipe, buf); 786 tail++; 787 pipe->tail = tail; 788 if (pipe->files) 789 sd.need_wakeup = true; 790 } else { 791 buf->offset += ret; 792 buf->len -= ret; 793 ret = 0; 794 } 795 } 796 } 797 done: 798 kfree(array); 799 splice_from_pipe_end(pipe, &sd); 800 801 pipe_unlock(pipe); 802 803 if (sd.num_spliced) 804 ret = sd.num_spliced; 805 806 return ret; 807 } 808 809 EXPORT_SYMBOL(iter_file_splice_write); 810 811 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 812 struct splice_desc *sd) 813 { 814 int ret; 815 void *data; 816 loff_t tmp = sd->pos; 817 818 data = kmap(buf->page); 819 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp); 820 kunmap(buf->page); 821 822 return ret; 823 } 824 825 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe, 826 struct file *out, loff_t *ppos, 827 size_t len, unsigned int flags) 828 { 829 ssize_t ret; 830 831 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf); 832 if (ret > 0) 833 *ppos += ret; 834 835 return ret; 836 } 837 838 /** 839 * generic_splice_sendpage - splice data from a pipe to a socket 840 * @pipe: pipe to splice from 841 * @out: socket to write to 842 * @ppos: position in @out 843 * @len: number of bytes to splice 844 * @flags: splice modifier flags 845 * 846 * Description: 847 * Will send @len bytes from the pipe to a network socket. No data copying 848 * is involved. 849 * 850 */ 851 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, 852 loff_t *ppos, size_t len, unsigned int flags) 853 { 854 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage); 855 } 856 857 EXPORT_SYMBOL(generic_splice_sendpage); 858 859 /* 860 * Attempt to initiate a splice from pipe to file. 861 */ 862 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 863 loff_t *ppos, size_t len, unsigned int flags) 864 { 865 if (out->f_op->splice_write) 866 return out->f_op->splice_write(pipe, out, ppos, len, flags); 867 return default_file_splice_write(pipe, out, ppos, len, flags); 868 } 869 870 /* 871 * Attempt to initiate a splice from a file to a pipe. 872 */ 873 static long do_splice_to(struct file *in, loff_t *ppos, 874 struct pipe_inode_info *pipe, size_t len, 875 unsigned int flags) 876 { 877 int ret; 878 879 if (unlikely(!(in->f_mode & FMODE_READ))) 880 return -EBADF; 881 882 ret = rw_verify_area(READ, in, ppos, len); 883 if (unlikely(ret < 0)) 884 return ret; 885 886 if (unlikely(len > MAX_RW_COUNT)) 887 len = MAX_RW_COUNT; 888 889 if (in->f_op->splice_read) 890 return in->f_op->splice_read(in, ppos, pipe, len, flags); 891 return default_file_splice_read(in, ppos, pipe, len, flags); 892 } 893 894 /** 895 * splice_direct_to_actor - splices data directly between two non-pipes 896 * @in: file to splice from 897 * @sd: actor information on where to splice to 898 * @actor: handles the data splicing 899 * 900 * Description: 901 * This is a special case helper to splice directly between two 902 * points, without requiring an explicit pipe. Internally an allocated 903 * pipe is cached in the process, and reused during the lifetime of 904 * that process. 905 * 906 */ 907 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 908 splice_direct_actor *actor) 909 { 910 struct pipe_inode_info *pipe; 911 long ret, bytes; 912 umode_t i_mode; 913 size_t len; 914 int i, flags, more; 915 916 /* 917 * We require the input being a regular file, as we don't want to 918 * randomly drop data for eg socket -> socket splicing. Use the 919 * piped splicing for that! 920 */ 921 i_mode = file_inode(in)->i_mode; 922 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode))) 923 return -EINVAL; 924 925 /* 926 * neither in nor out is a pipe, setup an internal pipe attached to 927 * 'out' and transfer the wanted data from 'in' to 'out' through that 928 */ 929 pipe = current->splice_pipe; 930 if (unlikely(!pipe)) { 931 pipe = alloc_pipe_info(); 932 if (!pipe) 933 return -ENOMEM; 934 935 /* 936 * We don't have an immediate reader, but we'll read the stuff 937 * out of the pipe right after the splice_to_pipe(). So set 938 * PIPE_READERS appropriately. 939 */ 940 pipe->readers = 1; 941 942 current->splice_pipe = pipe; 943 } 944 945 /* 946 * Do the splice. 947 */ 948 ret = 0; 949 bytes = 0; 950 len = sd->total_len; 951 flags = sd->flags; 952 953 /* 954 * Don't block on output, we have to drain the direct pipe. 955 */ 956 sd->flags &= ~SPLICE_F_NONBLOCK; 957 more = sd->flags & SPLICE_F_MORE; 958 959 WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail)); 960 961 while (len) { 962 unsigned int p_space; 963 size_t read_len; 964 loff_t pos = sd->pos, prev_pos = pos; 965 966 /* Don't try to read more the pipe has space for. */ 967 p_space = pipe->max_usage - 968 pipe_occupancy(pipe->head, pipe->tail); 969 read_len = min_t(size_t, len, p_space << PAGE_SHIFT); 970 ret = do_splice_to(in, &pos, pipe, read_len, flags); 971 if (unlikely(ret <= 0)) 972 goto out_release; 973 974 read_len = ret; 975 sd->total_len = read_len; 976 977 /* 978 * If more data is pending, set SPLICE_F_MORE 979 * If this is the last data and SPLICE_F_MORE was not set 980 * initially, clears it. 981 */ 982 if (read_len < len) 983 sd->flags |= SPLICE_F_MORE; 984 else if (!more) 985 sd->flags &= ~SPLICE_F_MORE; 986 /* 987 * NOTE: nonblocking mode only applies to the input. We 988 * must not do the output in nonblocking mode as then we 989 * could get stuck data in the internal pipe: 990 */ 991 ret = actor(pipe, sd); 992 if (unlikely(ret <= 0)) { 993 sd->pos = prev_pos; 994 goto out_release; 995 } 996 997 bytes += ret; 998 len -= ret; 999 sd->pos = pos; 1000 1001 if (ret < read_len) { 1002 sd->pos = prev_pos + ret; 1003 goto out_release; 1004 } 1005 } 1006 1007 done: 1008 pipe->tail = pipe->head = 0; 1009 file_accessed(in); 1010 return bytes; 1011 1012 out_release: 1013 /* 1014 * If we did an incomplete transfer we must release 1015 * the pipe buffers in question: 1016 */ 1017 for (i = 0; i < pipe->ring_size; i++) { 1018 struct pipe_buffer *buf = &pipe->bufs[i]; 1019 1020 if (buf->ops) 1021 pipe_buf_release(pipe, buf); 1022 } 1023 1024 if (!bytes) 1025 bytes = ret; 1026 1027 goto done; 1028 } 1029 EXPORT_SYMBOL(splice_direct_to_actor); 1030 1031 static int direct_splice_actor(struct pipe_inode_info *pipe, 1032 struct splice_desc *sd) 1033 { 1034 struct file *file = sd->u.file; 1035 1036 return do_splice_from(pipe, file, sd->opos, sd->total_len, 1037 sd->flags); 1038 } 1039 1040 /** 1041 * do_splice_direct - splices data directly between two files 1042 * @in: file to splice from 1043 * @ppos: input file offset 1044 * @out: file to splice to 1045 * @opos: output file offset 1046 * @len: number of bytes to splice 1047 * @flags: splice modifier flags 1048 * 1049 * Description: 1050 * For use by do_sendfile(). splice can easily emulate sendfile, but 1051 * doing it in the application would incur an extra system call 1052 * (splice in + splice out, as compared to just sendfile()). So this helper 1053 * can splice directly through a process-private pipe. 1054 * 1055 */ 1056 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1057 loff_t *opos, size_t len, unsigned int flags) 1058 { 1059 struct splice_desc sd = { 1060 .len = len, 1061 .total_len = len, 1062 .flags = flags, 1063 .pos = *ppos, 1064 .u.file = out, 1065 .opos = opos, 1066 }; 1067 long ret; 1068 1069 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1070 return -EBADF; 1071 1072 if (unlikely(out->f_flags & O_APPEND)) 1073 return -EINVAL; 1074 1075 ret = rw_verify_area(WRITE, out, opos, len); 1076 if (unlikely(ret < 0)) 1077 return ret; 1078 1079 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 1080 if (ret > 0) 1081 *ppos = sd.pos; 1082 1083 return ret; 1084 } 1085 EXPORT_SYMBOL(do_splice_direct); 1086 1087 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags) 1088 { 1089 for (;;) { 1090 if (unlikely(!pipe->readers)) { 1091 send_sig(SIGPIPE, current, 0); 1092 return -EPIPE; 1093 } 1094 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 1095 return 0; 1096 if (flags & SPLICE_F_NONBLOCK) 1097 return -EAGAIN; 1098 if (signal_pending(current)) 1099 return -ERESTARTSYS; 1100 pipe_wait_writable(pipe); 1101 } 1102 } 1103 1104 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1105 struct pipe_inode_info *opipe, 1106 size_t len, unsigned int flags); 1107 1108 /* 1109 * Determine where to splice to/from. 1110 */ 1111 long do_splice(struct file *in, loff_t __user *off_in, 1112 struct file *out, loff_t __user *off_out, 1113 size_t len, unsigned int flags) 1114 { 1115 struct pipe_inode_info *ipipe; 1116 struct pipe_inode_info *opipe; 1117 loff_t offset; 1118 long ret; 1119 1120 if (unlikely(!(in->f_mode & FMODE_READ) || 1121 !(out->f_mode & FMODE_WRITE))) 1122 return -EBADF; 1123 1124 ipipe = get_pipe_info(in, true); 1125 opipe = get_pipe_info(out, true); 1126 1127 if (ipipe && opipe) { 1128 if (off_in || off_out) 1129 return -ESPIPE; 1130 1131 /* Splicing to self would be fun, but... */ 1132 if (ipipe == opipe) 1133 return -EINVAL; 1134 1135 if ((in->f_flags | out->f_flags) & O_NONBLOCK) 1136 flags |= SPLICE_F_NONBLOCK; 1137 1138 return splice_pipe_to_pipe(ipipe, opipe, len, flags); 1139 } 1140 1141 if (ipipe) { 1142 if (off_in) 1143 return -ESPIPE; 1144 if (off_out) { 1145 if (!(out->f_mode & FMODE_PWRITE)) 1146 return -EINVAL; 1147 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1148 return -EFAULT; 1149 } else { 1150 offset = out->f_pos; 1151 } 1152 1153 if (unlikely(out->f_flags & O_APPEND)) 1154 return -EINVAL; 1155 1156 ret = rw_verify_area(WRITE, out, &offset, len); 1157 if (unlikely(ret < 0)) 1158 return ret; 1159 1160 if (in->f_flags & O_NONBLOCK) 1161 flags |= SPLICE_F_NONBLOCK; 1162 1163 file_start_write(out); 1164 ret = do_splice_from(ipipe, out, &offset, len, flags); 1165 file_end_write(out); 1166 1167 if (!off_out) 1168 out->f_pos = offset; 1169 else if (copy_to_user(off_out, &offset, sizeof(loff_t))) 1170 ret = -EFAULT; 1171 1172 return ret; 1173 } 1174 1175 if (opipe) { 1176 if (off_out) 1177 return -ESPIPE; 1178 if (off_in) { 1179 if (!(in->f_mode & FMODE_PREAD)) 1180 return -EINVAL; 1181 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1182 return -EFAULT; 1183 } else { 1184 offset = in->f_pos; 1185 } 1186 1187 if (out->f_flags & O_NONBLOCK) 1188 flags |= SPLICE_F_NONBLOCK; 1189 1190 pipe_lock(opipe); 1191 ret = wait_for_space(opipe, flags); 1192 if (!ret) { 1193 unsigned int p_space; 1194 1195 /* Don't try to read more the pipe has space for. */ 1196 p_space = opipe->max_usage - pipe_occupancy(opipe->head, opipe->tail); 1197 len = min_t(size_t, len, p_space << PAGE_SHIFT); 1198 1199 ret = do_splice_to(in, &offset, opipe, len, flags); 1200 } 1201 pipe_unlock(opipe); 1202 if (ret > 0) 1203 wakeup_pipe_readers(opipe); 1204 if (!off_in) 1205 in->f_pos = offset; 1206 else if (copy_to_user(off_in, &offset, sizeof(loff_t))) 1207 ret = -EFAULT; 1208 1209 return ret; 1210 } 1211 1212 return -EINVAL; 1213 } 1214 1215 static int iter_to_pipe(struct iov_iter *from, 1216 struct pipe_inode_info *pipe, 1217 unsigned flags) 1218 { 1219 struct pipe_buffer buf = { 1220 .ops = &user_page_pipe_buf_ops, 1221 .flags = flags 1222 }; 1223 size_t total = 0; 1224 int ret = 0; 1225 bool failed = false; 1226 1227 while (iov_iter_count(from) && !failed) { 1228 struct page *pages[16]; 1229 ssize_t copied; 1230 size_t start; 1231 int n; 1232 1233 copied = iov_iter_get_pages(from, pages, ~0UL, 16, &start); 1234 if (copied <= 0) { 1235 ret = copied; 1236 break; 1237 } 1238 1239 for (n = 0; copied; n++, start = 0) { 1240 int size = min_t(int, copied, PAGE_SIZE - start); 1241 if (!failed) { 1242 buf.page = pages[n]; 1243 buf.offset = start; 1244 buf.len = size; 1245 ret = add_to_pipe(pipe, &buf); 1246 if (unlikely(ret < 0)) { 1247 failed = true; 1248 } else { 1249 iov_iter_advance(from, ret); 1250 total += ret; 1251 } 1252 } else { 1253 put_page(pages[n]); 1254 } 1255 copied -= size; 1256 } 1257 } 1258 return total ? total : ret; 1259 } 1260 1261 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1262 struct splice_desc *sd) 1263 { 1264 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data); 1265 return n == sd->len ? n : -EFAULT; 1266 } 1267 1268 /* 1269 * For lack of a better implementation, implement vmsplice() to userspace 1270 * as a simple copy of the pipes pages to the user iov. 1271 */ 1272 static long vmsplice_to_user(struct file *file, struct iov_iter *iter, 1273 unsigned int flags) 1274 { 1275 struct pipe_inode_info *pipe = get_pipe_info(file, true); 1276 struct splice_desc sd = { 1277 .total_len = iov_iter_count(iter), 1278 .flags = flags, 1279 .u.data = iter 1280 }; 1281 long ret = 0; 1282 1283 if (!pipe) 1284 return -EBADF; 1285 1286 if (sd.total_len) { 1287 pipe_lock(pipe); 1288 ret = __splice_from_pipe(pipe, &sd, pipe_to_user); 1289 pipe_unlock(pipe); 1290 } 1291 1292 return ret; 1293 } 1294 1295 /* 1296 * vmsplice splices a user address range into a pipe. It can be thought of 1297 * as splice-from-memory, where the regular splice is splice-from-file (or 1298 * to file). In both cases the output is a pipe, naturally. 1299 */ 1300 static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter, 1301 unsigned int flags) 1302 { 1303 struct pipe_inode_info *pipe; 1304 long ret = 0; 1305 unsigned buf_flag = 0; 1306 1307 if (flags & SPLICE_F_GIFT) 1308 buf_flag = PIPE_BUF_FLAG_GIFT; 1309 1310 pipe = get_pipe_info(file, true); 1311 if (!pipe) 1312 return -EBADF; 1313 1314 pipe_lock(pipe); 1315 ret = wait_for_space(pipe, flags); 1316 if (!ret) 1317 ret = iter_to_pipe(iter, pipe, buf_flag); 1318 pipe_unlock(pipe); 1319 if (ret > 0) 1320 wakeup_pipe_readers(pipe); 1321 return ret; 1322 } 1323 1324 static int vmsplice_type(struct fd f, int *type) 1325 { 1326 if (!f.file) 1327 return -EBADF; 1328 if (f.file->f_mode & FMODE_WRITE) { 1329 *type = WRITE; 1330 } else if (f.file->f_mode & FMODE_READ) { 1331 *type = READ; 1332 } else { 1333 fdput(f); 1334 return -EBADF; 1335 } 1336 return 0; 1337 } 1338 1339 /* 1340 * Note that vmsplice only really supports true splicing _from_ user memory 1341 * to a pipe, not the other way around. Splicing from user memory is a simple 1342 * operation that can be supported without any funky alignment restrictions 1343 * or nasty vm tricks. We simply map in the user memory and fill them into 1344 * a pipe. The reverse isn't quite as easy, though. There are two possible 1345 * solutions for that: 1346 * 1347 * - memcpy() the data internally, at which point we might as well just 1348 * do a regular read() on the buffer anyway. 1349 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1350 * has restriction limitations on both ends of the pipe). 1351 * 1352 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1353 * 1354 */ 1355 static long do_vmsplice(struct file *f, struct iov_iter *iter, unsigned int flags) 1356 { 1357 if (unlikely(flags & ~SPLICE_F_ALL)) 1358 return -EINVAL; 1359 1360 if (!iov_iter_count(iter)) 1361 return 0; 1362 1363 if (iov_iter_rw(iter) == WRITE) 1364 return vmsplice_to_pipe(f, iter, flags); 1365 else 1366 return vmsplice_to_user(f, iter, flags); 1367 } 1368 1369 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov, 1370 unsigned long, nr_segs, unsigned int, flags) 1371 { 1372 struct iovec iovstack[UIO_FASTIOV]; 1373 struct iovec *iov = iovstack; 1374 struct iov_iter iter; 1375 ssize_t error; 1376 struct fd f; 1377 int type; 1378 1379 f = fdget(fd); 1380 error = vmsplice_type(f, &type); 1381 if (error) 1382 return error; 1383 1384 error = import_iovec(type, uiov, nr_segs, 1385 ARRAY_SIZE(iovstack), &iov, &iter); 1386 if (error >= 0) { 1387 error = do_vmsplice(f.file, &iter, flags); 1388 kfree(iov); 1389 } 1390 fdput(f); 1391 return error; 1392 } 1393 1394 #ifdef CONFIG_COMPAT 1395 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32, 1396 unsigned int, nr_segs, unsigned int, flags) 1397 { 1398 struct iovec iovstack[UIO_FASTIOV]; 1399 struct iovec *iov = iovstack; 1400 struct iov_iter iter; 1401 ssize_t error; 1402 struct fd f; 1403 int type; 1404 1405 f = fdget(fd); 1406 error = vmsplice_type(f, &type); 1407 if (error) 1408 return error; 1409 1410 error = compat_import_iovec(type, iov32, nr_segs, 1411 ARRAY_SIZE(iovstack), &iov, &iter); 1412 if (error >= 0) { 1413 error = do_vmsplice(f.file, &iter, flags); 1414 kfree(iov); 1415 } 1416 fdput(f); 1417 return error; 1418 } 1419 #endif 1420 1421 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in, 1422 int, fd_out, loff_t __user *, off_out, 1423 size_t, len, unsigned int, flags) 1424 { 1425 struct fd in, out; 1426 long error; 1427 1428 if (unlikely(!len)) 1429 return 0; 1430 1431 if (unlikely(flags & ~SPLICE_F_ALL)) 1432 return -EINVAL; 1433 1434 error = -EBADF; 1435 in = fdget(fd_in); 1436 if (in.file) { 1437 out = fdget(fd_out); 1438 if (out.file) { 1439 error = do_splice(in.file, off_in, out.file, off_out, 1440 len, flags); 1441 fdput(out); 1442 } 1443 fdput(in); 1444 } 1445 return error; 1446 } 1447 1448 /* 1449 * Make sure there's data to read. Wait for input if we can, otherwise 1450 * return an appropriate error. 1451 */ 1452 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1453 { 1454 int ret; 1455 1456 /* 1457 * Check the pipe occupancy without the inode lock first. This function 1458 * is speculative anyways, so missing one is ok. 1459 */ 1460 if (!pipe_empty(pipe->head, pipe->tail)) 1461 return 0; 1462 1463 ret = 0; 1464 pipe_lock(pipe); 1465 1466 while (pipe_empty(pipe->head, pipe->tail)) { 1467 if (signal_pending(current)) { 1468 ret = -ERESTARTSYS; 1469 break; 1470 } 1471 if (!pipe->writers) 1472 break; 1473 if (flags & SPLICE_F_NONBLOCK) { 1474 ret = -EAGAIN; 1475 break; 1476 } 1477 pipe_wait_readable(pipe); 1478 } 1479 1480 pipe_unlock(pipe); 1481 return ret; 1482 } 1483 1484 /* 1485 * Make sure there's writeable room. Wait for room if we can, otherwise 1486 * return an appropriate error. 1487 */ 1488 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1489 { 1490 int ret; 1491 1492 /* 1493 * Check pipe occupancy without the inode lock first. This function 1494 * is speculative anyways, so missing one is ok. 1495 */ 1496 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 1497 return 0; 1498 1499 ret = 0; 1500 pipe_lock(pipe); 1501 1502 while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 1503 if (!pipe->readers) { 1504 send_sig(SIGPIPE, current, 0); 1505 ret = -EPIPE; 1506 break; 1507 } 1508 if (flags & SPLICE_F_NONBLOCK) { 1509 ret = -EAGAIN; 1510 break; 1511 } 1512 if (signal_pending(current)) { 1513 ret = -ERESTARTSYS; 1514 break; 1515 } 1516 pipe_wait_writable(pipe); 1517 } 1518 1519 pipe_unlock(pipe); 1520 return ret; 1521 } 1522 1523 /* 1524 * Splice contents of ipipe to opipe. 1525 */ 1526 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1527 struct pipe_inode_info *opipe, 1528 size_t len, unsigned int flags) 1529 { 1530 struct pipe_buffer *ibuf, *obuf; 1531 unsigned int i_head, o_head; 1532 unsigned int i_tail, o_tail; 1533 unsigned int i_mask, o_mask; 1534 int ret = 0; 1535 bool input_wakeup = false; 1536 1537 1538 retry: 1539 ret = ipipe_prep(ipipe, flags); 1540 if (ret) 1541 return ret; 1542 1543 ret = opipe_prep(opipe, flags); 1544 if (ret) 1545 return ret; 1546 1547 /* 1548 * Potential ABBA deadlock, work around it by ordering lock 1549 * grabbing by pipe info address. Otherwise two different processes 1550 * could deadlock (one doing tee from A -> B, the other from B -> A). 1551 */ 1552 pipe_double_lock(ipipe, opipe); 1553 1554 i_tail = ipipe->tail; 1555 i_mask = ipipe->ring_size - 1; 1556 o_head = opipe->head; 1557 o_mask = opipe->ring_size - 1; 1558 1559 do { 1560 size_t o_len; 1561 1562 if (!opipe->readers) { 1563 send_sig(SIGPIPE, current, 0); 1564 if (!ret) 1565 ret = -EPIPE; 1566 break; 1567 } 1568 1569 i_head = ipipe->head; 1570 o_tail = opipe->tail; 1571 1572 if (pipe_empty(i_head, i_tail) && !ipipe->writers) 1573 break; 1574 1575 /* 1576 * Cannot make any progress, because either the input 1577 * pipe is empty or the output pipe is full. 1578 */ 1579 if (pipe_empty(i_head, i_tail) || 1580 pipe_full(o_head, o_tail, opipe->max_usage)) { 1581 /* Already processed some buffers, break */ 1582 if (ret) 1583 break; 1584 1585 if (flags & SPLICE_F_NONBLOCK) { 1586 ret = -EAGAIN; 1587 break; 1588 } 1589 1590 /* 1591 * We raced with another reader/writer and haven't 1592 * managed to process any buffers. A zero return 1593 * value means EOF, so retry instead. 1594 */ 1595 pipe_unlock(ipipe); 1596 pipe_unlock(opipe); 1597 goto retry; 1598 } 1599 1600 ibuf = &ipipe->bufs[i_tail & i_mask]; 1601 obuf = &opipe->bufs[o_head & o_mask]; 1602 1603 if (len >= ibuf->len) { 1604 /* 1605 * Simply move the whole buffer from ipipe to opipe 1606 */ 1607 *obuf = *ibuf; 1608 ibuf->ops = NULL; 1609 i_tail++; 1610 ipipe->tail = i_tail; 1611 input_wakeup = true; 1612 o_len = obuf->len; 1613 o_head++; 1614 opipe->head = o_head; 1615 } else { 1616 /* 1617 * Get a reference to this pipe buffer, 1618 * so we can copy the contents over. 1619 */ 1620 if (!pipe_buf_get(ipipe, ibuf)) { 1621 if (ret == 0) 1622 ret = -EFAULT; 1623 break; 1624 } 1625 *obuf = *ibuf; 1626 1627 /* 1628 * Don't inherit the gift and merge flags, we need to 1629 * prevent multiple steals of this page. 1630 */ 1631 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1632 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE; 1633 1634 obuf->len = len; 1635 ibuf->offset += len; 1636 ibuf->len -= len; 1637 o_len = len; 1638 o_head++; 1639 opipe->head = o_head; 1640 } 1641 ret += o_len; 1642 len -= o_len; 1643 } while (len); 1644 1645 pipe_unlock(ipipe); 1646 pipe_unlock(opipe); 1647 1648 /* 1649 * If we put data in the output pipe, wakeup any potential readers. 1650 */ 1651 if (ret > 0) 1652 wakeup_pipe_readers(opipe); 1653 1654 if (input_wakeup) 1655 wakeup_pipe_writers(ipipe); 1656 1657 return ret; 1658 } 1659 1660 /* 1661 * Link contents of ipipe to opipe. 1662 */ 1663 static int link_pipe(struct pipe_inode_info *ipipe, 1664 struct pipe_inode_info *opipe, 1665 size_t len, unsigned int flags) 1666 { 1667 struct pipe_buffer *ibuf, *obuf; 1668 unsigned int i_head, o_head; 1669 unsigned int i_tail, o_tail; 1670 unsigned int i_mask, o_mask; 1671 int ret = 0; 1672 1673 /* 1674 * Potential ABBA deadlock, work around it by ordering lock 1675 * grabbing by pipe info address. Otherwise two different processes 1676 * could deadlock (one doing tee from A -> B, the other from B -> A). 1677 */ 1678 pipe_double_lock(ipipe, opipe); 1679 1680 i_tail = ipipe->tail; 1681 i_mask = ipipe->ring_size - 1; 1682 o_head = opipe->head; 1683 o_mask = opipe->ring_size - 1; 1684 1685 do { 1686 if (!opipe->readers) { 1687 send_sig(SIGPIPE, current, 0); 1688 if (!ret) 1689 ret = -EPIPE; 1690 break; 1691 } 1692 1693 i_head = ipipe->head; 1694 o_tail = opipe->tail; 1695 1696 /* 1697 * If we have iterated all input buffers or run out of 1698 * output room, break. 1699 */ 1700 if (pipe_empty(i_head, i_tail) || 1701 pipe_full(o_head, o_tail, opipe->max_usage)) 1702 break; 1703 1704 ibuf = &ipipe->bufs[i_tail & i_mask]; 1705 obuf = &opipe->bufs[o_head & o_mask]; 1706 1707 /* 1708 * Get a reference to this pipe buffer, 1709 * so we can copy the contents over. 1710 */ 1711 if (!pipe_buf_get(ipipe, ibuf)) { 1712 if (ret == 0) 1713 ret = -EFAULT; 1714 break; 1715 } 1716 1717 *obuf = *ibuf; 1718 1719 /* 1720 * Don't inherit the gift and merge flag, we need to prevent 1721 * multiple steals of this page. 1722 */ 1723 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1724 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE; 1725 1726 if (obuf->len > len) 1727 obuf->len = len; 1728 ret += obuf->len; 1729 len -= obuf->len; 1730 1731 o_head++; 1732 opipe->head = o_head; 1733 i_tail++; 1734 } while (len); 1735 1736 pipe_unlock(ipipe); 1737 pipe_unlock(opipe); 1738 1739 /* 1740 * If we put data in the output pipe, wakeup any potential readers. 1741 */ 1742 if (ret > 0) 1743 wakeup_pipe_readers(opipe); 1744 1745 return ret; 1746 } 1747 1748 /* 1749 * This is a tee(1) implementation that works on pipes. It doesn't copy 1750 * any data, it simply references the 'in' pages on the 'out' pipe. 1751 * The 'flags' used are the SPLICE_F_* variants, currently the only 1752 * applicable one is SPLICE_F_NONBLOCK. 1753 */ 1754 long do_tee(struct file *in, struct file *out, size_t len, unsigned int flags) 1755 { 1756 struct pipe_inode_info *ipipe = get_pipe_info(in, true); 1757 struct pipe_inode_info *opipe = get_pipe_info(out, true); 1758 int ret = -EINVAL; 1759 1760 if (unlikely(!(in->f_mode & FMODE_READ) || 1761 !(out->f_mode & FMODE_WRITE))) 1762 return -EBADF; 1763 1764 /* 1765 * Duplicate the contents of ipipe to opipe without actually 1766 * copying the data. 1767 */ 1768 if (ipipe && opipe && ipipe != opipe) { 1769 if ((in->f_flags | out->f_flags) & O_NONBLOCK) 1770 flags |= SPLICE_F_NONBLOCK; 1771 1772 /* 1773 * Keep going, unless we encounter an error. The ipipe/opipe 1774 * ordering doesn't really matter. 1775 */ 1776 ret = ipipe_prep(ipipe, flags); 1777 if (!ret) { 1778 ret = opipe_prep(opipe, flags); 1779 if (!ret) 1780 ret = link_pipe(ipipe, opipe, len, flags); 1781 } 1782 } 1783 1784 return ret; 1785 } 1786 1787 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags) 1788 { 1789 struct fd in, out; 1790 int error; 1791 1792 if (unlikely(flags & ~SPLICE_F_ALL)) 1793 return -EINVAL; 1794 1795 if (unlikely(!len)) 1796 return 0; 1797 1798 error = -EBADF; 1799 in = fdget(fdin); 1800 if (in.file) { 1801 out = fdget(fdout); 1802 if (out.file) { 1803 error = do_tee(in.file, out.file, len, flags); 1804 fdput(out); 1805 } 1806 fdput(in); 1807 } 1808 1809 return error; 1810 } 1811