xref: /openbmc/linux/fs/splice.c (revision dbf563ee)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * "splice": joining two ropes together by interweaving their strands.
4  *
5  * This is the "extended pipe" functionality, where a pipe is used as
6  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
7  * buffer that you can use to transfer data from one end to the other.
8  *
9  * The traditional unix read/write is extended with a "splice()" operation
10  * that transfers data buffers to or from a pipe buffer.
11  *
12  * Named by Larry McVoy, original implementation from Linus, extended by
13  * Jens to support splicing to files, network, direct splicing, etc and
14  * fixing lots of bugs.
15  *
16  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
17  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
18  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
19  *
20  */
21 #include <linux/bvec.h>
22 #include <linux/fs.h>
23 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/splice.h>
26 #include <linux/memcontrol.h>
27 #include <linux/mm_inline.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/export.h>
31 #include <linux/syscalls.h>
32 #include <linux/uio.h>
33 #include <linux/security.h>
34 #include <linux/gfp.h>
35 #include <linux/socket.h>
36 #include <linux/compat.h>
37 #include <linux/sched/signal.h>
38 
39 #include "internal.h"
40 
41 /*
42  * Attempt to steal a page from a pipe buffer. This should perhaps go into
43  * a vm helper function, it's already simplified quite a bit by the
44  * addition of remove_mapping(). If success is returned, the caller may
45  * attempt to reuse this page for another destination.
46  */
47 static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe,
48 		struct pipe_buffer *buf)
49 {
50 	struct page *page = buf->page;
51 	struct address_space *mapping;
52 
53 	lock_page(page);
54 
55 	mapping = page_mapping(page);
56 	if (mapping) {
57 		WARN_ON(!PageUptodate(page));
58 
59 		/*
60 		 * At least for ext2 with nobh option, we need to wait on
61 		 * writeback completing on this page, since we'll remove it
62 		 * from the pagecache.  Otherwise truncate wont wait on the
63 		 * page, allowing the disk blocks to be reused by someone else
64 		 * before we actually wrote our data to them. fs corruption
65 		 * ensues.
66 		 */
67 		wait_on_page_writeback(page);
68 
69 		if (page_has_private(page) &&
70 		    !try_to_release_page(page, GFP_KERNEL))
71 			goto out_unlock;
72 
73 		/*
74 		 * If we succeeded in removing the mapping, set LRU flag
75 		 * and return good.
76 		 */
77 		if (remove_mapping(mapping, page)) {
78 			buf->flags |= PIPE_BUF_FLAG_LRU;
79 			return true;
80 		}
81 	}
82 
83 	/*
84 	 * Raced with truncate or failed to remove page from current
85 	 * address space, unlock and return failure.
86 	 */
87 out_unlock:
88 	unlock_page(page);
89 	return false;
90 }
91 
92 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
93 					struct pipe_buffer *buf)
94 {
95 	put_page(buf->page);
96 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
97 }
98 
99 /*
100  * Check whether the contents of buf is OK to access. Since the content
101  * is a page cache page, IO may be in flight.
102  */
103 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
104 				       struct pipe_buffer *buf)
105 {
106 	struct page *page = buf->page;
107 	int err;
108 
109 	if (!PageUptodate(page)) {
110 		lock_page(page);
111 
112 		/*
113 		 * Page got truncated/unhashed. This will cause a 0-byte
114 		 * splice, if this is the first page.
115 		 */
116 		if (!page->mapping) {
117 			err = -ENODATA;
118 			goto error;
119 		}
120 
121 		/*
122 		 * Uh oh, read-error from disk.
123 		 */
124 		if (!PageUptodate(page)) {
125 			err = -EIO;
126 			goto error;
127 		}
128 
129 		/*
130 		 * Page is ok afterall, we are done.
131 		 */
132 		unlock_page(page);
133 	}
134 
135 	return 0;
136 error:
137 	unlock_page(page);
138 	return err;
139 }
140 
141 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
142 	.confirm	= page_cache_pipe_buf_confirm,
143 	.release	= page_cache_pipe_buf_release,
144 	.try_steal	= page_cache_pipe_buf_try_steal,
145 	.get		= generic_pipe_buf_get,
146 };
147 
148 static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe,
149 		struct pipe_buffer *buf)
150 {
151 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
152 		return false;
153 
154 	buf->flags |= PIPE_BUF_FLAG_LRU;
155 	return generic_pipe_buf_try_steal(pipe, buf);
156 }
157 
158 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
159 	.release	= page_cache_pipe_buf_release,
160 	.try_steal	= user_page_pipe_buf_try_steal,
161 	.get		= generic_pipe_buf_get,
162 };
163 
164 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
165 {
166 	smp_mb();
167 	if (waitqueue_active(&pipe->rd_wait))
168 		wake_up_interruptible(&pipe->rd_wait);
169 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
170 }
171 
172 /**
173  * splice_to_pipe - fill passed data into a pipe
174  * @pipe:	pipe to fill
175  * @spd:	data to fill
176  *
177  * Description:
178  *    @spd contains a map of pages and len/offset tuples, along with
179  *    the struct pipe_buf_operations associated with these pages. This
180  *    function will link that data to the pipe.
181  *
182  */
183 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
184 		       struct splice_pipe_desc *spd)
185 {
186 	unsigned int spd_pages = spd->nr_pages;
187 	unsigned int tail = pipe->tail;
188 	unsigned int head = pipe->head;
189 	unsigned int mask = pipe->ring_size - 1;
190 	int ret = 0, page_nr = 0;
191 
192 	if (!spd_pages)
193 		return 0;
194 
195 	if (unlikely(!pipe->readers)) {
196 		send_sig(SIGPIPE, current, 0);
197 		ret = -EPIPE;
198 		goto out;
199 	}
200 
201 	while (!pipe_full(head, tail, pipe->max_usage)) {
202 		struct pipe_buffer *buf = &pipe->bufs[head & mask];
203 
204 		buf->page = spd->pages[page_nr];
205 		buf->offset = spd->partial[page_nr].offset;
206 		buf->len = spd->partial[page_nr].len;
207 		buf->private = spd->partial[page_nr].private;
208 		buf->ops = spd->ops;
209 		buf->flags = 0;
210 
211 		head++;
212 		pipe->head = head;
213 		page_nr++;
214 		ret += buf->len;
215 
216 		if (!--spd->nr_pages)
217 			break;
218 	}
219 
220 	if (!ret)
221 		ret = -EAGAIN;
222 
223 out:
224 	while (page_nr < spd_pages)
225 		spd->spd_release(spd, page_nr++);
226 
227 	return ret;
228 }
229 EXPORT_SYMBOL_GPL(splice_to_pipe);
230 
231 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
232 {
233 	unsigned int head = pipe->head;
234 	unsigned int tail = pipe->tail;
235 	unsigned int mask = pipe->ring_size - 1;
236 	int ret;
237 
238 	if (unlikely(!pipe->readers)) {
239 		send_sig(SIGPIPE, current, 0);
240 		ret = -EPIPE;
241 	} else if (pipe_full(head, tail, pipe->max_usage)) {
242 		ret = -EAGAIN;
243 	} else {
244 		pipe->bufs[head & mask] = *buf;
245 		pipe->head = head + 1;
246 		return buf->len;
247 	}
248 	pipe_buf_release(pipe, buf);
249 	return ret;
250 }
251 EXPORT_SYMBOL(add_to_pipe);
252 
253 /*
254  * Check if we need to grow the arrays holding pages and partial page
255  * descriptions.
256  */
257 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
258 {
259 	unsigned int max_usage = READ_ONCE(pipe->max_usage);
260 
261 	spd->nr_pages_max = max_usage;
262 	if (max_usage <= PIPE_DEF_BUFFERS)
263 		return 0;
264 
265 	spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL);
266 	spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page),
267 				     GFP_KERNEL);
268 
269 	if (spd->pages && spd->partial)
270 		return 0;
271 
272 	kfree(spd->pages);
273 	kfree(spd->partial);
274 	return -ENOMEM;
275 }
276 
277 void splice_shrink_spd(struct splice_pipe_desc *spd)
278 {
279 	if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
280 		return;
281 
282 	kfree(spd->pages);
283 	kfree(spd->partial);
284 }
285 
286 /**
287  * generic_file_splice_read - splice data from file to a pipe
288  * @in:		file to splice from
289  * @ppos:	position in @in
290  * @pipe:	pipe to splice to
291  * @len:	number of bytes to splice
292  * @flags:	splice modifier flags
293  *
294  * Description:
295  *    Will read pages from given file and fill them into a pipe. Can be
296  *    used as long as it has more or less sane ->read_iter().
297  *
298  */
299 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
300 				 struct pipe_inode_info *pipe, size_t len,
301 				 unsigned int flags)
302 {
303 	struct iov_iter to;
304 	struct kiocb kiocb;
305 	unsigned int i_head;
306 	int ret;
307 
308 	iov_iter_pipe(&to, READ, pipe, len);
309 	i_head = to.head;
310 	init_sync_kiocb(&kiocb, in);
311 	kiocb.ki_pos = *ppos;
312 	ret = call_read_iter(in, &kiocb, &to);
313 	if (ret > 0) {
314 		*ppos = kiocb.ki_pos;
315 		file_accessed(in);
316 	} else if (ret < 0) {
317 		to.head = i_head;
318 		to.iov_offset = 0;
319 		iov_iter_advance(&to, 0); /* to free what was emitted */
320 		/*
321 		 * callers of ->splice_read() expect -EAGAIN on
322 		 * "can't put anything in there", rather than -EFAULT.
323 		 */
324 		if (ret == -EFAULT)
325 			ret = -EAGAIN;
326 	}
327 
328 	return ret;
329 }
330 EXPORT_SYMBOL(generic_file_splice_read);
331 
332 const struct pipe_buf_operations default_pipe_buf_ops = {
333 	.release	= generic_pipe_buf_release,
334 	.try_steal	= generic_pipe_buf_try_steal,
335 	.get		= generic_pipe_buf_get,
336 };
337 
338 /* Pipe buffer operations for a socket and similar. */
339 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
340 	.release	= generic_pipe_buf_release,
341 	.get		= generic_pipe_buf_get,
342 };
343 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
344 
345 static ssize_t kernel_readv(struct file *file, const struct kvec *vec,
346 			    unsigned long vlen, loff_t offset)
347 {
348 	mm_segment_t old_fs;
349 	loff_t pos = offset;
350 	ssize_t res;
351 
352 	old_fs = get_fs();
353 	set_fs(KERNEL_DS);
354 	/* The cast to a user pointer is valid due to the set_fs() */
355 	res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos, 0);
356 	set_fs(old_fs);
357 
358 	return res;
359 }
360 
361 static ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
362 				 struct pipe_inode_info *pipe, size_t len,
363 				 unsigned int flags)
364 {
365 	struct kvec *vec, __vec[PIPE_DEF_BUFFERS];
366 	struct iov_iter to;
367 	struct page **pages;
368 	unsigned int nr_pages;
369 	unsigned int mask;
370 	size_t offset, base, copied = 0;
371 	ssize_t res;
372 	int i;
373 
374 	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
375 		return -EAGAIN;
376 
377 	/*
378 	 * Try to keep page boundaries matching to source pagecache ones -
379 	 * it probably won't be much help, but...
380 	 */
381 	offset = *ppos & ~PAGE_MASK;
382 
383 	iov_iter_pipe(&to, READ, pipe, len + offset);
384 
385 	res = iov_iter_get_pages_alloc(&to, &pages, len + offset, &base);
386 	if (res <= 0)
387 		return -ENOMEM;
388 
389 	nr_pages = DIV_ROUND_UP(res + base, PAGE_SIZE);
390 
391 	vec = __vec;
392 	if (nr_pages > PIPE_DEF_BUFFERS) {
393 		vec = kmalloc_array(nr_pages, sizeof(struct kvec), GFP_KERNEL);
394 		if (unlikely(!vec)) {
395 			res = -ENOMEM;
396 			goto out;
397 		}
398 	}
399 
400 	mask = pipe->ring_size - 1;
401 	pipe->bufs[to.head & mask].offset = offset;
402 	pipe->bufs[to.head & mask].len -= offset;
403 
404 	for (i = 0; i < nr_pages; i++) {
405 		size_t this_len = min_t(size_t, len, PAGE_SIZE - offset);
406 		vec[i].iov_base = page_address(pages[i]) + offset;
407 		vec[i].iov_len = this_len;
408 		len -= this_len;
409 		offset = 0;
410 	}
411 
412 	res = kernel_readv(in, vec, nr_pages, *ppos);
413 	if (res > 0) {
414 		copied = res;
415 		*ppos += res;
416 	}
417 
418 	if (vec != __vec)
419 		kfree(vec);
420 out:
421 	for (i = 0; i < nr_pages; i++)
422 		put_page(pages[i]);
423 	kvfree(pages);
424 	iov_iter_advance(&to, copied);	/* truncates and discards */
425 	return res;
426 }
427 
428 /*
429  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
430  * using sendpage(). Return the number of bytes sent.
431  */
432 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
433 			    struct pipe_buffer *buf, struct splice_desc *sd)
434 {
435 	struct file *file = sd->u.file;
436 	loff_t pos = sd->pos;
437 	int more;
438 
439 	if (!likely(file->f_op->sendpage))
440 		return -EINVAL;
441 
442 	more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
443 
444 	if (sd->len < sd->total_len &&
445 	    pipe_occupancy(pipe->head, pipe->tail) > 1)
446 		more |= MSG_SENDPAGE_NOTLAST;
447 
448 	return file->f_op->sendpage(file, buf->page, buf->offset,
449 				    sd->len, &pos, more);
450 }
451 
452 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
453 {
454 	smp_mb();
455 	if (waitqueue_active(&pipe->wr_wait))
456 		wake_up_interruptible(&pipe->wr_wait);
457 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
458 }
459 
460 /**
461  * splice_from_pipe_feed - feed available data from a pipe to a file
462  * @pipe:	pipe to splice from
463  * @sd:		information to @actor
464  * @actor:	handler that splices the data
465  *
466  * Description:
467  *    This function loops over the pipe and calls @actor to do the
468  *    actual moving of a single struct pipe_buffer to the desired
469  *    destination.  It returns when there's no more buffers left in
470  *    the pipe or if the requested number of bytes (@sd->total_len)
471  *    have been copied.  It returns a positive number (one) if the
472  *    pipe needs to be filled with more data, zero if the required
473  *    number of bytes have been copied and -errno on error.
474  *
475  *    This, together with splice_from_pipe_{begin,end,next}, may be
476  *    used to implement the functionality of __splice_from_pipe() when
477  *    locking is required around copying the pipe buffers to the
478  *    destination.
479  */
480 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
481 			  splice_actor *actor)
482 {
483 	unsigned int head = pipe->head;
484 	unsigned int tail = pipe->tail;
485 	unsigned int mask = pipe->ring_size - 1;
486 	int ret;
487 
488 	while (!pipe_empty(head, tail)) {
489 		struct pipe_buffer *buf = &pipe->bufs[tail & mask];
490 
491 		sd->len = buf->len;
492 		if (sd->len > sd->total_len)
493 			sd->len = sd->total_len;
494 
495 		ret = pipe_buf_confirm(pipe, buf);
496 		if (unlikely(ret)) {
497 			if (ret == -ENODATA)
498 				ret = 0;
499 			return ret;
500 		}
501 
502 		ret = actor(pipe, buf, sd);
503 		if (ret <= 0)
504 			return ret;
505 
506 		buf->offset += ret;
507 		buf->len -= ret;
508 
509 		sd->num_spliced += ret;
510 		sd->len -= ret;
511 		sd->pos += ret;
512 		sd->total_len -= ret;
513 
514 		if (!buf->len) {
515 			pipe_buf_release(pipe, buf);
516 			tail++;
517 			pipe->tail = tail;
518 			if (pipe->files)
519 				sd->need_wakeup = true;
520 		}
521 
522 		if (!sd->total_len)
523 			return 0;
524 	}
525 
526 	return 1;
527 }
528 
529 /* We know we have a pipe buffer, but maybe it's empty? */
530 static inline bool eat_empty_buffer(struct pipe_inode_info *pipe)
531 {
532 	unsigned int tail = pipe->tail;
533 	unsigned int mask = pipe->ring_size - 1;
534 	struct pipe_buffer *buf = &pipe->bufs[tail & mask];
535 
536 	if (unlikely(!buf->len)) {
537 		pipe_buf_release(pipe, buf);
538 		pipe->tail = tail+1;
539 		return true;
540 	}
541 
542 	return false;
543 }
544 
545 /**
546  * splice_from_pipe_next - wait for some data to splice from
547  * @pipe:	pipe to splice from
548  * @sd:		information about the splice operation
549  *
550  * Description:
551  *    This function will wait for some data and return a positive
552  *    value (one) if pipe buffers are available.  It will return zero
553  *    or -errno if no more data needs to be spliced.
554  */
555 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
556 {
557 	/*
558 	 * Check for signal early to make process killable when there are
559 	 * always buffers available
560 	 */
561 	if (signal_pending(current))
562 		return -ERESTARTSYS;
563 
564 repeat:
565 	while (pipe_empty(pipe->head, pipe->tail)) {
566 		if (!pipe->writers)
567 			return 0;
568 
569 		if (sd->num_spliced)
570 			return 0;
571 
572 		if (sd->flags & SPLICE_F_NONBLOCK)
573 			return -EAGAIN;
574 
575 		if (signal_pending(current))
576 			return -ERESTARTSYS;
577 
578 		if (sd->need_wakeup) {
579 			wakeup_pipe_writers(pipe);
580 			sd->need_wakeup = false;
581 		}
582 
583 		pipe_wait_readable(pipe);
584 	}
585 
586 	if (eat_empty_buffer(pipe))
587 		goto repeat;
588 
589 	return 1;
590 }
591 
592 /**
593  * splice_from_pipe_begin - start splicing from pipe
594  * @sd:		information about the splice operation
595  *
596  * Description:
597  *    This function should be called before a loop containing
598  *    splice_from_pipe_next() and splice_from_pipe_feed() to
599  *    initialize the necessary fields of @sd.
600  */
601 static void splice_from_pipe_begin(struct splice_desc *sd)
602 {
603 	sd->num_spliced = 0;
604 	sd->need_wakeup = false;
605 }
606 
607 /**
608  * splice_from_pipe_end - finish splicing from pipe
609  * @pipe:	pipe to splice from
610  * @sd:		information about the splice operation
611  *
612  * Description:
613  *    This function will wake up pipe writers if necessary.  It should
614  *    be called after a loop containing splice_from_pipe_next() and
615  *    splice_from_pipe_feed().
616  */
617 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
618 {
619 	if (sd->need_wakeup)
620 		wakeup_pipe_writers(pipe);
621 }
622 
623 /**
624  * __splice_from_pipe - splice data from a pipe to given actor
625  * @pipe:	pipe to splice from
626  * @sd:		information to @actor
627  * @actor:	handler that splices the data
628  *
629  * Description:
630  *    This function does little more than loop over the pipe and call
631  *    @actor to do the actual moving of a single struct pipe_buffer to
632  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
633  *    pipe_to_user.
634  *
635  */
636 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
637 			   splice_actor *actor)
638 {
639 	int ret;
640 
641 	splice_from_pipe_begin(sd);
642 	do {
643 		cond_resched();
644 		ret = splice_from_pipe_next(pipe, sd);
645 		if (ret > 0)
646 			ret = splice_from_pipe_feed(pipe, sd, actor);
647 	} while (ret > 0);
648 	splice_from_pipe_end(pipe, sd);
649 
650 	return sd->num_spliced ? sd->num_spliced : ret;
651 }
652 EXPORT_SYMBOL(__splice_from_pipe);
653 
654 /**
655  * splice_from_pipe - splice data from a pipe to a file
656  * @pipe:	pipe to splice from
657  * @out:	file to splice to
658  * @ppos:	position in @out
659  * @len:	how many bytes to splice
660  * @flags:	splice modifier flags
661  * @actor:	handler that splices the data
662  *
663  * Description:
664  *    See __splice_from_pipe. This function locks the pipe inode,
665  *    otherwise it's identical to __splice_from_pipe().
666  *
667  */
668 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
669 			 loff_t *ppos, size_t len, unsigned int flags,
670 			 splice_actor *actor)
671 {
672 	ssize_t ret;
673 	struct splice_desc sd = {
674 		.total_len = len,
675 		.flags = flags,
676 		.pos = *ppos,
677 		.u.file = out,
678 	};
679 
680 	pipe_lock(pipe);
681 	ret = __splice_from_pipe(pipe, &sd, actor);
682 	pipe_unlock(pipe);
683 
684 	return ret;
685 }
686 
687 /**
688  * iter_file_splice_write - splice data from a pipe to a file
689  * @pipe:	pipe info
690  * @out:	file to write to
691  * @ppos:	position in @out
692  * @len:	number of bytes to splice
693  * @flags:	splice modifier flags
694  *
695  * Description:
696  *    Will either move or copy pages (determined by @flags options) from
697  *    the given pipe inode to the given file.
698  *    This one is ->write_iter-based.
699  *
700  */
701 ssize_t
702 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
703 			  loff_t *ppos, size_t len, unsigned int flags)
704 {
705 	struct splice_desc sd = {
706 		.total_len = len,
707 		.flags = flags,
708 		.pos = *ppos,
709 		.u.file = out,
710 	};
711 	int nbufs = pipe->max_usage;
712 	struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
713 					GFP_KERNEL);
714 	ssize_t ret;
715 
716 	if (unlikely(!array))
717 		return -ENOMEM;
718 
719 	pipe_lock(pipe);
720 
721 	splice_from_pipe_begin(&sd);
722 	while (sd.total_len) {
723 		struct iov_iter from;
724 		unsigned int head, tail, mask;
725 		size_t left;
726 		int n;
727 
728 		ret = splice_from_pipe_next(pipe, &sd);
729 		if (ret <= 0)
730 			break;
731 
732 		if (unlikely(nbufs < pipe->max_usage)) {
733 			kfree(array);
734 			nbufs = pipe->max_usage;
735 			array = kcalloc(nbufs, sizeof(struct bio_vec),
736 					GFP_KERNEL);
737 			if (!array) {
738 				ret = -ENOMEM;
739 				break;
740 			}
741 		}
742 
743 		head = pipe->head;
744 		tail = pipe->tail;
745 		mask = pipe->ring_size - 1;
746 
747 		/* build the vector */
748 		left = sd.total_len;
749 		for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++, n++) {
750 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
751 			size_t this_len = buf->len;
752 
753 			if (this_len > left)
754 				this_len = left;
755 
756 			ret = pipe_buf_confirm(pipe, buf);
757 			if (unlikely(ret)) {
758 				if (ret == -ENODATA)
759 					ret = 0;
760 				goto done;
761 			}
762 
763 			array[n].bv_page = buf->page;
764 			array[n].bv_len = this_len;
765 			array[n].bv_offset = buf->offset;
766 			left -= this_len;
767 		}
768 
769 		iov_iter_bvec(&from, WRITE, array, n, sd.total_len - left);
770 		ret = vfs_iter_write(out, &from, &sd.pos, 0);
771 		if (ret <= 0)
772 			break;
773 
774 		sd.num_spliced += ret;
775 		sd.total_len -= ret;
776 		*ppos = sd.pos;
777 
778 		/* dismiss the fully eaten buffers, adjust the partial one */
779 		tail = pipe->tail;
780 		while (ret) {
781 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
782 			if (ret >= buf->len) {
783 				ret -= buf->len;
784 				buf->len = 0;
785 				pipe_buf_release(pipe, buf);
786 				tail++;
787 				pipe->tail = tail;
788 				if (pipe->files)
789 					sd.need_wakeup = true;
790 			} else {
791 				buf->offset += ret;
792 				buf->len -= ret;
793 				ret = 0;
794 			}
795 		}
796 	}
797 done:
798 	kfree(array);
799 	splice_from_pipe_end(pipe, &sd);
800 
801 	pipe_unlock(pipe);
802 
803 	if (sd.num_spliced)
804 		ret = sd.num_spliced;
805 
806 	return ret;
807 }
808 
809 EXPORT_SYMBOL(iter_file_splice_write);
810 
811 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
812 			  struct splice_desc *sd)
813 {
814 	int ret;
815 	void *data;
816 	loff_t tmp = sd->pos;
817 
818 	data = kmap(buf->page);
819 	ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
820 	kunmap(buf->page);
821 
822 	return ret;
823 }
824 
825 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
826 					 struct file *out, loff_t *ppos,
827 					 size_t len, unsigned int flags)
828 {
829 	ssize_t ret;
830 
831 	ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
832 	if (ret > 0)
833 		*ppos += ret;
834 
835 	return ret;
836 }
837 
838 /**
839  * generic_splice_sendpage - splice data from a pipe to a socket
840  * @pipe:	pipe to splice from
841  * @out:	socket to write to
842  * @ppos:	position in @out
843  * @len:	number of bytes to splice
844  * @flags:	splice modifier flags
845  *
846  * Description:
847  *    Will send @len bytes from the pipe to a network socket. No data copying
848  *    is involved.
849  *
850  */
851 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
852 				loff_t *ppos, size_t len, unsigned int flags)
853 {
854 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
855 }
856 
857 EXPORT_SYMBOL(generic_splice_sendpage);
858 
859 /*
860  * Attempt to initiate a splice from pipe to file.
861  */
862 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
863 			   loff_t *ppos, size_t len, unsigned int flags)
864 {
865 	if (out->f_op->splice_write)
866 		return out->f_op->splice_write(pipe, out, ppos, len, flags);
867 	return default_file_splice_write(pipe, out, ppos, len, flags);
868 }
869 
870 /*
871  * Attempt to initiate a splice from a file to a pipe.
872  */
873 static long do_splice_to(struct file *in, loff_t *ppos,
874 			 struct pipe_inode_info *pipe, size_t len,
875 			 unsigned int flags)
876 {
877 	int ret;
878 
879 	if (unlikely(!(in->f_mode & FMODE_READ)))
880 		return -EBADF;
881 
882 	ret = rw_verify_area(READ, in, ppos, len);
883 	if (unlikely(ret < 0))
884 		return ret;
885 
886 	if (unlikely(len > MAX_RW_COUNT))
887 		len = MAX_RW_COUNT;
888 
889 	if (in->f_op->splice_read)
890 		return in->f_op->splice_read(in, ppos, pipe, len, flags);
891 	return default_file_splice_read(in, ppos, pipe, len, flags);
892 }
893 
894 /**
895  * splice_direct_to_actor - splices data directly between two non-pipes
896  * @in:		file to splice from
897  * @sd:		actor information on where to splice to
898  * @actor:	handles the data splicing
899  *
900  * Description:
901  *    This is a special case helper to splice directly between two
902  *    points, without requiring an explicit pipe. Internally an allocated
903  *    pipe is cached in the process, and reused during the lifetime of
904  *    that process.
905  *
906  */
907 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
908 			       splice_direct_actor *actor)
909 {
910 	struct pipe_inode_info *pipe;
911 	long ret, bytes;
912 	umode_t i_mode;
913 	size_t len;
914 	int i, flags, more;
915 
916 	/*
917 	 * We require the input being a regular file, as we don't want to
918 	 * randomly drop data for eg socket -> socket splicing. Use the
919 	 * piped splicing for that!
920 	 */
921 	i_mode = file_inode(in)->i_mode;
922 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
923 		return -EINVAL;
924 
925 	/*
926 	 * neither in nor out is a pipe, setup an internal pipe attached to
927 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
928 	 */
929 	pipe = current->splice_pipe;
930 	if (unlikely(!pipe)) {
931 		pipe = alloc_pipe_info();
932 		if (!pipe)
933 			return -ENOMEM;
934 
935 		/*
936 		 * We don't have an immediate reader, but we'll read the stuff
937 		 * out of the pipe right after the splice_to_pipe(). So set
938 		 * PIPE_READERS appropriately.
939 		 */
940 		pipe->readers = 1;
941 
942 		current->splice_pipe = pipe;
943 	}
944 
945 	/*
946 	 * Do the splice.
947 	 */
948 	ret = 0;
949 	bytes = 0;
950 	len = sd->total_len;
951 	flags = sd->flags;
952 
953 	/*
954 	 * Don't block on output, we have to drain the direct pipe.
955 	 */
956 	sd->flags &= ~SPLICE_F_NONBLOCK;
957 	more = sd->flags & SPLICE_F_MORE;
958 
959 	WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail));
960 
961 	while (len) {
962 		unsigned int p_space;
963 		size_t read_len;
964 		loff_t pos = sd->pos, prev_pos = pos;
965 
966 		/* Don't try to read more the pipe has space for. */
967 		p_space = pipe->max_usage -
968 			pipe_occupancy(pipe->head, pipe->tail);
969 		read_len = min_t(size_t, len, p_space << PAGE_SHIFT);
970 		ret = do_splice_to(in, &pos, pipe, read_len, flags);
971 		if (unlikely(ret <= 0))
972 			goto out_release;
973 
974 		read_len = ret;
975 		sd->total_len = read_len;
976 
977 		/*
978 		 * If more data is pending, set SPLICE_F_MORE
979 		 * If this is the last data and SPLICE_F_MORE was not set
980 		 * initially, clears it.
981 		 */
982 		if (read_len < len)
983 			sd->flags |= SPLICE_F_MORE;
984 		else if (!more)
985 			sd->flags &= ~SPLICE_F_MORE;
986 		/*
987 		 * NOTE: nonblocking mode only applies to the input. We
988 		 * must not do the output in nonblocking mode as then we
989 		 * could get stuck data in the internal pipe:
990 		 */
991 		ret = actor(pipe, sd);
992 		if (unlikely(ret <= 0)) {
993 			sd->pos = prev_pos;
994 			goto out_release;
995 		}
996 
997 		bytes += ret;
998 		len -= ret;
999 		sd->pos = pos;
1000 
1001 		if (ret < read_len) {
1002 			sd->pos = prev_pos + ret;
1003 			goto out_release;
1004 		}
1005 	}
1006 
1007 done:
1008 	pipe->tail = pipe->head = 0;
1009 	file_accessed(in);
1010 	return bytes;
1011 
1012 out_release:
1013 	/*
1014 	 * If we did an incomplete transfer we must release
1015 	 * the pipe buffers in question:
1016 	 */
1017 	for (i = 0; i < pipe->ring_size; i++) {
1018 		struct pipe_buffer *buf = &pipe->bufs[i];
1019 
1020 		if (buf->ops)
1021 			pipe_buf_release(pipe, buf);
1022 	}
1023 
1024 	if (!bytes)
1025 		bytes = ret;
1026 
1027 	goto done;
1028 }
1029 EXPORT_SYMBOL(splice_direct_to_actor);
1030 
1031 static int direct_splice_actor(struct pipe_inode_info *pipe,
1032 			       struct splice_desc *sd)
1033 {
1034 	struct file *file = sd->u.file;
1035 
1036 	return do_splice_from(pipe, file, sd->opos, sd->total_len,
1037 			      sd->flags);
1038 }
1039 
1040 /**
1041  * do_splice_direct - splices data directly between two files
1042  * @in:		file to splice from
1043  * @ppos:	input file offset
1044  * @out:	file to splice to
1045  * @opos:	output file offset
1046  * @len:	number of bytes to splice
1047  * @flags:	splice modifier flags
1048  *
1049  * Description:
1050  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1051  *    doing it in the application would incur an extra system call
1052  *    (splice in + splice out, as compared to just sendfile()). So this helper
1053  *    can splice directly through a process-private pipe.
1054  *
1055  */
1056 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1057 		      loff_t *opos, size_t len, unsigned int flags)
1058 {
1059 	struct splice_desc sd = {
1060 		.len		= len,
1061 		.total_len	= len,
1062 		.flags		= flags,
1063 		.pos		= *ppos,
1064 		.u.file		= out,
1065 		.opos		= opos,
1066 	};
1067 	long ret;
1068 
1069 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1070 		return -EBADF;
1071 
1072 	if (unlikely(out->f_flags & O_APPEND))
1073 		return -EINVAL;
1074 
1075 	ret = rw_verify_area(WRITE, out, opos, len);
1076 	if (unlikely(ret < 0))
1077 		return ret;
1078 
1079 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1080 	if (ret > 0)
1081 		*ppos = sd.pos;
1082 
1083 	return ret;
1084 }
1085 EXPORT_SYMBOL(do_splice_direct);
1086 
1087 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1088 {
1089 	for (;;) {
1090 		if (unlikely(!pipe->readers)) {
1091 			send_sig(SIGPIPE, current, 0);
1092 			return -EPIPE;
1093 		}
1094 		if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1095 			return 0;
1096 		if (flags & SPLICE_F_NONBLOCK)
1097 			return -EAGAIN;
1098 		if (signal_pending(current))
1099 			return -ERESTARTSYS;
1100 		pipe_wait_writable(pipe);
1101 	}
1102 }
1103 
1104 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1105 			       struct pipe_inode_info *opipe,
1106 			       size_t len, unsigned int flags);
1107 
1108 /*
1109  * Determine where to splice to/from.
1110  */
1111 long do_splice(struct file *in, loff_t __user *off_in,
1112 		struct file *out, loff_t __user *off_out,
1113 		size_t len, unsigned int flags)
1114 {
1115 	struct pipe_inode_info *ipipe;
1116 	struct pipe_inode_info *opipe;
1117 	loff_t offset;
1118 	long ret;
1119 
1120 	if (unlikely(!(in->f_mode & FMODE_READ) ||
1121 		     !(out->f_mode & FMODE_WRITE)))
1122 		return -EBADF;
1123 
1124 	ipipe = get_pipe_info(in, true);
1125 	opipe = get_pipe_info(out, true);
1126 
1127 	if (ipipe && opipe) {
1128 		if (off_in || off_out)
1129 			return -ESPIPE;
1130 
1131 		/* Splicing to self would be fun, but... */
1132 		if (ipipe == opipe)
1133 			return -EINVAL;
1134 
1135 		if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1136 			flags |= SPLICE_F_NONBLOCK;
1137 
1138 		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1139 	}
1140 
1141 	if (ipipe) {
1142 		if (off_in)
1143 			return -ESPIPE;
1144 		if (off_out) {
1145 			if (!(out->f_mode & FMODE_PWRITE))
1146 				return -EINVAL;
1147 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1148 				return -EFAULT;
1149 		} else {
1150 			offset = out->f_pos;
1151 		}
1152 
1153 		if (unlikely(out->f_flags & O_APPEND))
1154 			return -EINVAL;
1155 
1156 		ret = rw_verify_area(WRITE, out, &offset, len);
1157 		if (unlikely(ret < 0))
1158 			return ret;
1159 
1160 		if (in->f_flags & O_NONBLOCK)
1161 			flags |= SPLICE_F_NONBLOCK;
1162 
1163 		file_start_write(out);
1164 		ret = do_splice_from(ipipe, out, &offset, len, flags);
1165 		file_end_write(out);
1166 
1167 		if (!off_out)
1168 			out->f_pos = offset;
1169 		else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1170 			ret = -EFAULT;
1171 
1172 		return ret;
1173 	}
1174 
1175 	if (opipe) {
1176 		if (off_out)
1177 			return -ESPIPE;
1178 		if (off_in) {
1179 			if (!(in->f_mode & FMODE_PREAD))
1180 				return -EINVAL;
1181 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1182 				return -EFAULT;
1183 		} else {
1184 			offset = in->f_pos;
1185 		}
1186 
1187 		if (out->f_flags & O_NONBLOCK)
1188 			flags |= SPLICE_F_NONBLOCK;
1189 
1190 		pipe_lock(opipe);
1191 		ret = wait_for_space(opipe, flags);
1192 		if (!ret) {
1193 			unsigned int p_space;
1194 
1195 			/* Don't try to read more the pipe has space for. */
1196 			p_space = opipe->max_usage - pipe_occupancy(opipe->head, opipe->tail);
1197 			len = min_t(size_t, len, p_space << PAGE_SHIFT);
1198 
1199 			ret = do_splice_to(in, &offset, opipe, len, flags);
1200 		}
1201 		pipe_unlock(opipe);
1202 		if (ret > 0)
1203 			wakeup_pipe_readers(opipe);
1204 		if (!off_in)
1205 			in->f_pos = offset;
1206 		else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1207 			ret = -EFAULT;
1208 
1209 		return ret;
1210 	}
1211 
1212 	return -EINVAL;
1213 }
1214 
1215 static int iter_to_pipe(struct iov_iter *from,
1216 			struct pipe_inode_info *pipe,
1217 			unsigned flags)
1218 {
1219 	struct pipe_buffer buf = {
1220 		.ops = &user_page_pipe_buf_ops,
1221 		.flags = flags
1222 	};
1223 	size_t total = 0;
1224 	int ret = 0;
1225 	bool failed = false;
1226 
1227 	while (iov_iter_count(from) && !failed) {
1228 		struct page *pages[16];
1229 		ssize_t copied;
1230 		size_t start;
1231 		int n;
1232 
1233 		copied = iov_iter_get_pages(from, pages, ~0UL, 16, &start);
1234 		if (copied <= 0) {
1235 			ret = copied;
1236 			break;
1237 		}
1238 
1239 		for (n = 0; copied; n++, start = 0) {
1240 			int size = min_t(int, copied, PAGE_SIZE - start);
1241 			if (!failed) {
1242 				buf.page = pages[n];
1243 				buf.offset = start;
1244 				buf.len = size;
1245 				ret = add_to_pipe(pipe, &buf);
1246 				if (unlikely(ret < 0)) {
1247 					failed = true;
1248 				} else {
1249 					iov_iter_advance(from, ret);
1250 					total += ret;
1251 				}
1252 			} else {
1253 				put_page(pages[n]);
1254 			}
1255 			copied -= size;
1256 		}
1257 	}
1258 	return total ? total : ret;
1259 }
1260 
1261 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1262 			struct splice_desc *sd)
1263 {
1264 	int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1265 	return n == sd->len ? n : -EFAULT;
1266 }
1267 
1268 /*
1269  * For lack of a better implementation, implement vmsplice() to userspace
1270  * as a simple copy of the pipes pages to the user iov.
1271  */
1272 static long vmsplice_to_user(struct file *file, struct iov_iter *iter,
1273 			     unsigned int flags)
1274 {
1275 	struct pipe_inode_info *pipe = get_pipe_info(file, true);
1276 	struct splice_desc sd = {
1277 		.total_len = iov_iter_count(iter),
1278 		.flags = flags,
1279 		.u.data = iter
1280 	};
1281 	long ret = 0;
1282 
1283 	if (!pipe)
1284 		return -EBADF;
1285 
1286 	if (sd.total_len) {
1287 		pipe_lock(pipe);
1288 		ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1289 		pipe_unlock(pipe);
1290 	}
1291 
1292 	return ret;
1293 }
1294 
1295 /*
1296  * vmsplice splices a user address range into a pipe. It can be thought of
1297  * as splice-from-memory, where the regular splice is splice-from-file (or
1298  * to file). In both cases the output is a pipe, naturally.
1299  */
1300 static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter,
1301 			     unsigned int flags)
1302 {
1303 	struct pipe_inode_info *pipe;
1304 	long ret = 0;
1305 	unsigned buf_flag = 0;
1306 
1307 	if (flags & SPLICE_F_GIFT)
1308 		buf_flag = PIPE_BUF_FLAG_GIFT;
1309 
1310 	pipe = get_pipe_info(file, true);
1311 	if (!pipe)
1312 		return -EBADF;
1313 
1314 	pipe_lock(pipe);
1315 	ret = wait_for_space(pipe, flags);
1316 	if (!ret)
1317 		ret = iter_to_pipe(iter, pipe, buf_flag);
1318 	pipe_unlock(pipe);
1319 	if (ret > 0)
1320 		wakeup_pipe_readers(pipe);
1321 	return ret;
1322 }
1323 
1324 static int vmsplice_type(struct fd f, int *type)
1325 {
1326 	if (!f.file)
1327 		return -EBADF;
1328 	if (f.file->f_mode & FMODE_WRITE) {
1329 		*type = WRITE;
1330 	} else if (f.file->f_mode & FMODE_READ) {
1331 		*type = READ;
1332 	} else {
1333 		fdput(f);
1334 		return -EBADF;
1335 	}
1336 	return 0;
1337 }
1338 
1339 /*
1340  * Note that vmsplice only really supports true splicing _from_ user memory
1341  * to a pipe, not the other way around. Splicing from user memory is a simple
1342  * operation that can be supported without any funky alignment restrictions
1343  * or nasty vm tricks. We simply map in the user memory and fill them into
1344  * a pipe. The reverse isn't quite as easy, though. There are two possible
1345  * solutions for that:
1346  *
1347  *	- memcpy() the data internally, at which point we might as well just
1348  *	  do a regular read() on the buffer anyway.
1349  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1350  *	  has restriction limitations on both ends of the pipe).
1351  *
1352  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1353  *
1354  */
1355 static long do_vmsplice(struct file *f, struct iov_iter *iter, unsigned int flags)
1356 {
1357 	if (unlikely(flags & ~SPLICE_F_ALL))
1358 		return -EINVAL;
1359 
1360 	if (!iov_iter_count(iter))
1361 		return 0;
1362 
1363 	if (iov_iter_rw(iter) == WRITE)
1364 		return vmsplice_to_pipe(f, iter, flags);
1365 	else
1366 		return vmsplice_to_user(f, iter, flags);
1367 }
1368 
1369 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov,
1370 		unsigned long, nr_segs, unsigned int, flags)
1371 {
1372 	struct iovec iovstack[UIO_FASTIOV];
1373 	struct iovec *iov = iovstack;
1374 	struct iov_iter iter;
1375 	ssize_t error;
1376 	struct fd f;
1377 	int type;
1378 
1379 	f = fdget(fd);
1380 	error = vmsplice_type(f, &type);
1381 	if (error)
1382 		return error;
1383 
1384 	error = import_iovec(type, uiov, nr_segs,
1385 			     ARRAY_SIZE(iovstack), &iov, &iter);
1386 	if (error >= 0) {
1387 		error = do_vmsplice(f.file, &iter, flags);
1388 		kfree(iov);
1389 	}
1390 	fdput(f);
1391 	return error;
1392 }
1393 
1394 #ifdef CONFIG_COMPAT
1395 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1396 		    unsigned int, nr_segs, unsigned int, flags)
1397 {
1398 	struct iovec iovstack[UIO_FASTIOV];
1399 	struct iovec *iov = iovstack;
1400 	struct iov_iter iter;
1401 	ssize_t error;
1402 	struct fd f;
1403 	int type;
1404 
1405 	f = fdget(fd);
1406 	error = vmsplice_type(f, &type);
1407 	if (error)
1408 		return error;
1409 
1410 	error = compat_import_iovec(type, iov32, nr_segs,
1411 			     ARRAY_SIZE(iovstack), &iov, &iter);
1412 	if (error >= 0) {
1413 		error = do_vmsplice(f.file, &iter, flags);
1414 		kfree(iov);
1415 	}
1416 	fdput(f);
1417 	return error;
1418 }
1419 #endif
1420 
1421 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1422 		int, fd_out, loff_t __user *, off_out,
1423 		size_t, len, unsigned int, flags)
1424 {
1425 	struct fd in, out;
1426 	long error;
1427 
1428 	if (unlikely(!len))
1429 		return 0;
1430 
1431 	if (unlikely(flags & ~SPLICE_F_ALL))
1432 		return -EINVAL;
1433 
1434 	error = -EBADF;
1435 	in = fdget(fd_in);
1436 	if (in.file) {
1437 		out = fdget(fd_out);
1438 		if (out.file) {
1439 			error = do_splice(in.file, off_in, out.file, off_out,
1440 					  len, flags);
1441 			fdput(out);
1442 		}
1443 		fdput(in);
1444 	}
1445 	return error;
1446 }
1447 
1448 /*
1449  * Make sure there's data to read. Wait for input if we can, otherwise
1450  * return an appropriate error.
1451  */
1452 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1453 {
1454 	int ret;
1455 
1456 	/*
1457 	 * Check the pipe occupancy without the inode lock first. This function
1458 	 * is speculative anyways, so missing one is ok.
1459 	 */
1460 	if (!pipe_empty(pipe->head, pipe->tail))
1461 		return 0;
1462 
1463 	ret = 0;
1464 	pipe_lock(pipe);
1465 
1466 	while (pipe_empty(pipe->head, pipe->tail)) {
1467 		if (signal_pending(current)) {
1468 			ret = -ERESTARTSYS;
1469 			break;
1470 		}
1471 		if (!pipe->writers)
1472 			break;
1473 		if (flags & SPLICE_F_NONBLOCK) {
1474 			ret = -EAGAIN;
1475 			break;
1476 		}
1477 		pipe_wait_readable(pipe);
1478 	}
1479 
1480 	pipe_unlock(pipe);
1481 	return ret;
1482 }
1483 
1484 /*
1485  * Make sure there's writeable room. Wait for room if we can, otherwise
1486  * return an appropriate error.
1487  */
1488 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1489 {
1490 	int ret;
1491 
1492 	/*
1493 	 * Check pipe occupancy without the inode lock first. This function
1494 	 * is speculative anyways, so missing one is ok.
1495 	 */
1496 	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1497 		return 0;
1498 
1499 	ret = 0;
1500 	pipe_lock(pipe);
1501 
1502 	while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
1503 		if (!pipe->readers) {
1504 			send_sig(SIGPIPE, current, 0);
1505 			ret = -EPIPE;
1506 			break;
1507 		}
1508 		if (flags & SPLICE_F_NONBLOCK) {
1509 			ret = -EAGAIN;
1510 			break;
1511 		}
1512 		if (signal_pending(current)) {
1513 			ret = -ERESTARTSYS;
1514 			break;
1515 		}
1516 		pipe_wait_writable(pipe);
1517 	}
1518 
1519 	pipe_unlock(pipe);
1520 	return ret;
1521 }
1522 
1523 /*
1524  * Splice contents of ipipe to opipe.
1525  */
1526 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1527 			       struct pipe_inode_info *opipe,
1528 			       size_t len, unsigned int flags)
1529 {
1530 	struct pipe_buffer *ibuf, *obuf;
1531 	unsigned int i_head, o_head;
1532 	unsigned int i_tail, o_tail;
1533 	unsigned int i_mask, o_mask;
1534 	int ret = 0;
1535 	bool input_wakeup = false;
1536 
1537 
1538 retry:
1539 	ret = ipipe_prep(ipipe, flags);
1540 	if (ret)
1541 		return ret;
1542 
1543 	ret = opipe_prep(opipe, flags);
1544 	if (ret)
1545 		return ret;
1546 
1547 	/*
1548 	 * Potential ABBA deadlock, work around it by ordering lock
1549 	 * grabbing by pipe info address. Otherwise two different processes
1550 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1551 	 */
1552 	pipe_double_lock(ipipe, opipe);
1553 
1554 	i_tail = ipipe->tail;
1555 	i_mask = ipipe->ring_size - 1;
1556 	o_head = opipe->head;
1557 	o_mask = opipe->ring_size - 1;
1558 
1559 	do {
1560 		size_t o_len;
1561 
1562 		if (!opipe->readers) {
1563 			send_sig(SIGPIPE, current, 0);
1564 			if (!ret)
1565 				ret = -EPIPE;
1566 			break;
1567 		}
1568 
1569 		i_head = ipipe->head;
1570 		o_tail = opipe->tail;
1571 
1572 		if (pipe_empty(i_head, i_tail) && !ipipe->writers)
1573 			break;
1574 
1575 		/*
1576 		 * Cannot make any progress, because either the input
1577 		 * pipe is empty or the output pipe is full.
1578 		 */
1579 		if (pipe_empty(i_head, i_tail) ||
1580 		    pipe_full(o_head, o_tail, opipe->max_usage)) {
1581 			/* Already processed some buffers, break */
1582 			if (ret)
1583 				break;
1584 
1585 			if (flags & SPLICE_F_NONBLOCK) {
1586 				ret = -EAGAIN;
1587 				break;
1588 			}
1589 
1590 			/*
1591 			 * We raced with another reader/writer and haven't
1592 			 * managed to process any buffers.  A zero return
1593 			 * value means EOF, so retry instead.
1594 			 */
1595 			pipe_unlock(ipipe);
1596 			pipe_unlock(opipe);
1597 			goto retry;
1598 		}
1599 
1600 		ibuf = &ipipe->bufs[i_tail & i_mask];
1601 		obuf = &opipe->bufs[o_head & o_mask];
1602 
1603 		if (len >= ibuf->len) {
1604 			/*
1605 			 * Simply move the whole buffer from ipipe to opipe
1606 			 */
1607 			*obuf = *ibuf;
1608 			ibuf->ops = NULL;
1609 			i_tail++;
1610 			ipipe->tail = i_tail;
1611 			input_wakeup = true;
1612 			o_len = obuf->len;
1613 			o_head++;
1614 			opipe->head = o_head;
1615 		} else {
1616 			/*
1617 			 * Get a reference to this pipe buffer,
1618 			 * so we can copy the contents over.
1619 			 */
1620 			if (!pipe_buf_get(ipipe, ibuf)) {
1621 				if (ret == 0)
1622 					ret = -EFAULT;
1623 				break;
1624 			}
1625 			*obuf = *ibuf;
1626 
1627 			/*
1628 			 * Don't inherit the gift and merge flags, we need to
1629 			 * prevent multiple steals of this page.
1630 			 */
1631 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1632 			obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1633 
1634 			obuf->len = len;
1635 			ibuf->offset += len;
1636 			ibuf->len -= len;
1637 			o_len = len;
1638 			o_head++;
1639 			opipe->head = o_head;
1640 		}
1641 		ret += o_len;
1642 		len -= o_len;
1643 	} while (len);
1644 
1645 	pipe_unlock(ipipe);
1646 	pipe_unlock(opipe);
1647 
1648 	/*
1649 	 * If we put data in the output pipe, wakeup any potential readers.
1650 	 */
1651 	if (ret > 0)
1652 		wakeup_pipe_readers(opipe);
1653 
1654 	if (input_wakeup)
1655 		wakeup_pipe_writers(ipipe);
1656 
1657 	return ret;
1658 }
1659 
1660 /*
1661  * Link contents of ipipe to opipe.
1662  */
1663 static int link_pipe(struct pipe_inode_info *ipipe,
1664 		     struct pipe_inode_info *opipe,
1665 		     size_t len, unsigned int flags)
1666 {
1667 	struct pipe_buffer *ibuf, *obuf;
1668 	unsigned int i_head, o_head;
1669 	unsigned int i_tail, o_tail;
1670 	unsigned int i_mask, o_mask;
1671 	int ret = 0;
1672 
1673 	/*
1674 	 * Potential ABBA deadlock, work around it by ordering lock
1675 	 * grabbing by pipe info address. Otherwise two different processes
1676 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1677 	 */
1678 	pipe_double_lock(ipipe, opipe);
1679 
1680 	i_tail = ipipe->tail;
1681 	i_mask = ipipe->ring_size - 1;
1682 	o_head = opipe->head;
1683 	o_mask = opipe->ring_size - 1;
1684 
1685 	do {
1686 		if (!opipe->readers) {
1687 			send_sig(SIGPIPE, current, 0);
1688 			if (!ret)
1689 				ret = -EPIPE;
1690 			break;
1691 		}
1692 
1693 		i_head = ipipe->head;
1694 		o_tail = opipe->tail;
1695 
1696 		/*
1697 		 * If we have iterated all input buffers or run out of
1698 		 * output room, break.
1699 		 */
1700 		if (pipe_empty(i_head, i_tail) ||
1701 		    pipe_full(o_head, o_tail, opipe->max_usage))
1702 			break;
1703 
1704 		ibuf = &ipipe->bufs[i_tail & i_mask];
1705 		obuf = &opipe->bufs[o_head & o_mask];
1706 
1707 		/*
1708 		 * Get a reference to this pipe buffer,
1709 		 * so we can copy the contents over.
1710 		 */
1711 		if (!pipe_buf_get(ipipe, ibuf)) {
1712 			if (ret == 0)
1713 				ret = -EFAULT;
1714 			break;
1715 		}
1716 
1717 		*obuf = *ibuf;
1718 
1719 		/*
1720 		 * Don't inherit the gift and merge flag, we need to prevent
1721 		 * multiple steals of this page.
1722 		 */
1723 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1724 		obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1725 
1726 		if (obuf->len > len)
1727 			obuf->len = len;
1728 		ret += obuf->len;
1729 		len -= obuf->len;
1730 
1731 		o_head++;
1732 		opipe->head = o_head;
1733 		i_tail++;
1734 	} while (len);
1735 
1736 	pipe_unlock(ipipe);
1737 	pipe_unlock(opipe);
1738 
1739 	/*
1740 	 * If we put data in the output pipe, wakeup any potential readers.
1741 	 */
1742 	if (ret > 0)
1743 		wakeup_pipe_readers(opipe);
1744 
1745 	return ret;
1746 }
1747 
1748 /*
1749  * This is a tee(1) implementation that works on pipes. It doesn't copy
1750  * any data, it simply references the 'in' pages on the 'out' pipe.
1751  * The 'flags' used are the SPLICE_F_* variants, currently the only
1752  * applicable one is SPLICE_F_NONBLOCK.
1753  */
1754 long do_tee(struct file *in, struct file *out, size_t len, unsigned int flags)
1755 {
1756 	struct pipe_inode_info *ipipe = get_pipe_info(in, true);
1757 	struct pipe_inode_info *opipe = get_pipe_info(out, true);
1758 	int ret = -EINVAL;
1759 
1760 	if (unlikely(!(in->f_mode & FMODE_READ) ||
1761 		     !(out->f_mode & FMODE_WRITE)))
1762 		return -EBADF;
1763 
1764 	/*
1765 	 * Duplicate the contents of ipipe to opipe without actually
1766 	 * copying the data.
1767 	 */
1768 	if (ipipe && opipe && ipipe != opipe) {
1769 		if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1770 			flags |= SPLICE_F_NONBLOCK;
1771 
1772 		/*
1773 		 * Keep going, unless we encounter an error. The ipipe/opipe
1774 		 * ordering doesn't really matter.
1775 		 */
1776 		ret = ipipe_prep(ipipe, flags);
1777 		if (!ret) {
1778 			ret = opipe_prep(opipe, flags);
1779 			if (!ret)
1780 				ret = link_pipe(ipipe, opipe, len, flags);
1781 		}
1782 	}
1783 
1784 	return ret;
1785 }
1786 
1787 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1788 {
1789 	struct fd in, out;
1790 	int error;
1791 
1792 	if (unlikely(flags & ~SPLICE_F_ALL))
1793 		return -EINVAL;
1794 
1795 	if (unlikely(!len))
1796 		return 0;
1797 
1798 	error = -EBADF;
1799 	in = fdget(fdin);
1800 	if (in.file) {
1801 		out = fdget(fdout);
1802 		if (out.file) {
1803 			error = do_tee(in.file, out.file, len, flags);
1804 			fdput(out);
1805 		}
1806  		fdput(in);
1807  	}
1808 
1809 	return error;
1810 }
1811