xref: /openbmc/linux/fs/splice.c (revision cc8bbe1a)
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
35 #include "internal.h"
36 
37 /*
38  * Attempt to steal a page from a pipe buffer. This should perhaps go into
39  * a vm helper function, it's already simplified quite a bit by the
40  * addition of remove_mapping(). If success is returned, the caller may
41  * attempt to reuse this page for another destination.
42  */
43 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
44 				     struct pipe_buffer *buf)
45 {
46 	struct page *page = buf->page;
47 	struct address_space *mapping;
48 
49 	lock_page(page);
50 
51 	mapping = page_mapping(page);
52 	if (mapping) {
53 		WARN_ON(!PageUptodate(page));
54 
55 		/*
56 		 * At least for ext2 with nobh option, we need to wait on
57 		 * writeback completing on this page, since we'll remove it
58 		 * from the pagecache.  Otherwise truncate wont wait on the
59 		 * page, allowing the disk blocks to be reused by someone else
60 		 * before we actually wrote our data to them. fs corruption
61 		 * ensues.
62 		 */
63 		wait_on_page_writeback(page);
64 
65 		if (page_has_private(page) &&
66 		    !try_to_release_page(page, GFP_KERNEL))
67 			goto out_unlock;
68 
69 		/*
70 		 * If we succeeded in removing the mapping, set LRU flag
71 		 * and return good.
72 		 */
73 		if (remove_mapping(mapping, page)) {
74 			buf->flags |= PIPE_BUF_FLAG_LRU;
75 			return 0;
76 		}
77 	}
78 
79 	/*
80 	 * Raced with truncate or failed to remove page from current
81 	 * address space, unlock and return failure.
82 	 */
83 out_unlock:
84 	unlock_page(page);
85 	return 1;
86 }
87 
88 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
89 					struct pipe_buffer *buf)
90 {
91 	page_cache_release(buf->page);
92 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
93 }
94 
95 /*
96  * Check whether the contents of buf is OK to access. Since the content
97  * is a page cache page, IO may be in flight.
98  */
99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
100 				       struct pipe_buffer *buf)
101 {
102 	struct page *page = buf->page;
103 	int err;
104 
105 	if (!PageUptodate(page)) {
106 		lock_page(page);
107 
108 		/*
109 		 * Page got truncated/unhashed. This will cause a 0-byte
110 		 * splice, if this is the first page.
111 		 */
112 		if (!page->mapping) {
113 			err = -ENODATA;
114 			goto error;
115 		}
116 
117 		/*
118 		 * Uh oh, read-error from disk.
119 		 */
120 		if (!PageUptodate(page)) {
121 			err = -EIO;
122 			goto error;
123 		}
124 
125 		/*
126 		 * Page is ok afterall, we are done.
127 		 */
128 		unlock_page(page);
129 	}
130 
131 	return 0;
132 error:
133 	unlock_page(page);
134 	return err;
135 }
136 
137 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
138 	.can_merge = 0,
139 	.confirm = page_cache_pipe_buf_confirm,
140 	.release = page_cache_pipe_buf_release,
141 	.steal = page_cache_pipe_buf_steal,
142 	.get = generic_pipe_buf_get,
143 };
144 
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 				    struct pipe_buffer *buf)
147 {
148 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 		return 1;
150 
151 	buf->flags |= PIPE_BUF_FLAG_LRU;
152 	return generic_pipe_buf_steal(pipe, buf);
153 }
154 
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 	.can_merge = 0,
157 	.confirm = generic_pipe_buf_confirm,
158 	.release = page_cache_pipe_buf_release,
159 	.steal = user_page_pipe_buf_steal,
160 	.get = generic_pipe_buf_get,
161 };
162 
163 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
164 {
165 	smp_mb();
166 	if (waitqueue_active(&pipe->wait))
167 		wake_up_interruptible(&pipe->wait);
168 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
169 }
170 
171 /**
172  * splice_to_pipe - fill passed data into a pipe
173  * @pipe:	pipe to fill
174  * @spd:	data to fill
175  *
176  * Description:
177  *    @spd contains a map of pages and len/offset tuples, along with
178  *    the struct pipe_buf_operations associated with these pages. This
179  *    function will link that data to the pipe.
180  *
181  */
182 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183 		       struct splice_pipe_desc *spd)
184 {
185 	unsigned int spd_pages = spd->nr_pages;
186 	int ret, do_wakeup, page_nr;
187 
188 	ret = 0;
189 	do_wakeup = 0;
190 	page_nr = 0;
191 
192 	pipe_lock(pipe);
193 
194 	for (;;) {
195 		if (!pipe->readers) {
196 			send_sig(SIGPIPE, current, 0);
197 			if (!ret)
198 				ret = -EPIPE;
199 			break;
200 		}
201 
202 		if (pipe->nrbufs < pipe->buffers) {
203 			int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
204 			struct pipe_buffer *buf = pipe->bufs + newbuf;
205 
206 			buf->page = spd->pages[page_nr];
207 			buf->offset = spd->partial[page_nr].offset;
208 			buf->len = spd->partial[page_nr].len;
209 			buf->private = spd->partial[page_nr].private;
210 			buf->ops = spd->ops;
211 			if (spd->flags & SPLICE_F_GIFT)
212 				buf->flags |= PIPE_BUF_FLAG_GIFT;
213 
214 			pipe->nrbufs++;
215 			page_nr++;
216 			ret += buf->len;
217 
218 			if (pipe->files)
219 				do_wakeup = 1;
220 
221 			if (!--spd->nr_pages)
222 				break;
223 			if (pipe->nrbufs < pipe->buffers)
224 				continue;
225 
226 			break;
227 		}
228 
229 		if (spd->flags & SPLICE_F_NONBLOCK) {
230 			if (!ret)
231 				ret = -EAGAIN;
232 			break;
233 		}
234 
235 		if (signal_pending(current)) {
236 			if (!ret)
237 				ret = -ERESTARTSYS;
238 			break;
239 		}
240 
241 		if (do_wakeup) {
242 			smp_mb();
243 			if (waitqueue_active(&pipe->wait))
244 				wake_up_interruptible_sync(&pipe->wait);
245 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
246 			do_wakeup = 0;
247 		}
248 
249 		pipe->waiting_writers++;
250 		pipe_wait(pipe);
251 		pipe->waiting_writers--;
252 	}
253 
254 	pipe_unlock(pipe);
255 
256 	if (do_wakeup)
257 		wakeup_pipe_readers(pipe);
258 
259 	while (page_nr < spd_pages)
260 		spd->spd_release(spd, page_nr++);
261 
262 	return ret;
263 }
264 EXPORT_SYMBOL_GPL(splice_to_pipe);
265 
266 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
267 {
268 	page_cache_release(spd->pages[i]);
269 }
270 
271 /*
272  * Check if we need to grow the arrays holding pages and partial page
273  * descriptions.
274  */
275 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
276 {
277 	unsigned int buffers = ACCESS_ONCE(pipe->buffers);
278 
279 	spd->nr_pages_max = buffers;
280 	if (buffers <= PIPE_DEF_BUFFERS)
281 		return 0;
282 
283 	spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
284 	spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
285 
286 	if (spd->pages && spd->partial)
287 		return 0;
288 
289 	kfree(spd->pages);
290 	kfree(spd->partial);
291 	return -ENOMEM;
292 }
293 
294 void splice_shrink_spd(struct splice_pipe_desc *spd)
295 {
296 	if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
297 		return;
298 
299 	kfree(spd->pages);
300 	kfree(spd->partial);
301 }
302 
303 static int
304 __generic_file_splice_read(struct file *in, loff_t *ppos,
305 			   struct pipe_inode_info *pipe, size_t len,
306 			   unsigned int flags)
307 {
308 	struct address_space *mapping = in->f_mapping;
309 	unsigned int loff, nr_pages, req_pages;
310 	struct page *pages[PIPE_DEF_BUFFERS];
311 	struct partial_page partial[PIPE_DEF_BUFFERS];
312 	struct page *page;
313 	pgoff_t index, end_index;
314 	loff_t isize;
315 	int error, page_nr;
316 	struct splice_pipe_desc spd = {
317 		.pages = pages,
318 		.partial = partial,
319 		.nr_pages_max = PIPE_DEF_BUFFERS,
320 		.flags = flags,
321 		.ops = &page_cache_pipe_buf_ops,
322 		.spd_release = spd_release_page,
323 	};
324 
325 	if (splice_grow_spd(pipe, &spd))
326 		return -ENOMEM;
327 
328 	index = *ppos >> PAGE_CACHE_SHIFT;
329 	loff = *ppos & ~PAGE_CACHE_MASK;
330 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
331 	nr_pages = min(req_pages, spd.nr_pages_max);
332 
333 	/*
334 	 * Lookup the (hopefully) full range of pages we need.
335 	 */
336 	spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
337 	index += spd.nr_pages;
338 
339 	/*
340 	 * If find_get_pages_contig() returned fewer pages than we needed,
341 	 * readahead/allocate the rest and fill in the holes.
342 	 */
343 	if (spd.nr_pages < nr_pages)
344 		page_cache_sync_readahead(mapping, &in->f_ra, in,
345 				index, req_pages - spd.nr_pages);
346 
347 	error = 0;
348 	while (spd.nr_pages < nr_pages) {
349 		/*
350 		 * Page could be there, find_get_pages_contig() breaks on
351 		 * the first hole.
352 		 */
353 		page = find_get_page(mapping, index);
354 		if (!page) {
355 			/*
356 			 * page didn't exist, allocate one.
357 			 */
358 			page = page_cache_alloc_cold(mapping);
359 			if (!page)
360 				break;
361 
362 			error = add_to_page_cache_lru(page, mapping, index,
363 				   mapping_gfp_constraint(mapping, GFP_KERNEL));
364 			if (unlikely(error)) {
365 				page_cache_release(page);
366 				if (error == -EEXIST)
367 					continue;
368 				break;
369 			}
370 			/*
371 			 * add_to_page_cache() locks the page, unlock it
372 			 * to avoid convoluting the logic below even more.
373 			 */
374 			unlock_page(page);
375 		}
376 
377 		spd.pages[spd.nr_pages++] = page;
378 		index++;
379 	}
380 
381 	/*
382 	 * Now loop over the map and see if we need to start IO on any
383 	 * pages, fill in the partial map, etc.
384 	 */
385 	index = *ppos >> PAGE_CACHE_SHIFT;
386 	nr_pages = spd.nr_pages;
387 	spd.nr_pages = 0;
388 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
389 		unsigned int this_len;
390 
391 		if (!len)
392 			break;
393 
394 		/*
395 		 * this_len is the max we'll use from this page
396 		 */
397 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
398 		page = spd.pages[page_nr];
399 
400 		if (PageReadahead(page))
401 			page_cache_async_readahead(mapping, &in->f_ra, in,
402 					page, index, req_pages - page_nr);
403 
404 		/*
405 		 * If the page isn't uptodate, we may need to start io on it
406 		 */
407 		if (!PageUptodate(page)) {
408 			lock_page(page);
409 
410 			/*
411 			 * Page was truncated, or invalidated by the
412 			 * filesystem.  Redo the find/create, but this time the
413 			 * page is kept locked, so there's no chance of another
414 			 * race with truncate/invalidate.
415 			 */
416 			if (!page->mapping) {
417 				unlock_page(page);
418 retry_lookup:
419 				page = find_or_create_page(mapping, index,
420 						mapping_gfp_mask(mapping));
421 
422 				if (!page) {
423 					error = -ENOMEM;
424 					break;
425 				}
426 				page_cache_release(spd.pages[page_nr]);
427 				spd.pages[page_nr] = page;
428 			}
429 			/*
430 			 * page was already under io and is now done, great
431 			 */
432 			if (PageUptodate(page)) {
433 				unlock_page(page);
434 				goto fill_it;
435 			}
436 
437 			/*
438 			 * need to read in the page
439 			 */
440 			error = mapping->a_ops->readpage(in, page);
441 			if (unlikely(error)) {
442 				/*
443 				 * Re-lookup the page
444 				 */
445 				if (error == AOP_TRUNCATED_PAGE)
446 					goto retry_lookup;
447 
448 				break;
449 			}
450 		}
451 fill_it:
452 		/*
453 		 * i_size must be checked after PageUptodate.
454 		 */
455 		isize = i_size_read(mapping->host);
456 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
457 		if (unlikely(!isize || index > end_index))
458 			break;
459 
460 		/*
461 		 * if this is the last page, see if we need to shrink
462 		 * the length and stop
463 		 */
464 		if (end_index == index) {
465 			unsigned int plen;
466 
467 			/*
468 			 * max good bytes in this page
469 			 */
470 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
471 			if (plen <= loff)
472 				break;
473 
474 			/*
475 			 * force quit after adding this page
476 			 */
477 			this_len = min(this_len, plen - loff);
478 			len = this_len;
479 		}
480 
481 		spd.partial[page_nr].offset = loff;
482 		spd.partial[page_nr].len = this_len;
483 		len -= this_len;
484 		loff = 0;
485 		spd.nr_pages++;
486 		index++;
487 	}
488 
489 	/*
490 	 * Release any pages at the end, if we quit early. 'page_nr' is how far
491 	 * we got, 'nr_pages' is how many pages are in the map.
492 	 */
493 	while (page_nr < nr_pages)
494 		page_cache_release(spd.pages[page_nr++]);
495 	in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
496 
497 	if (spd.nr_pages)
498 		error = splice_to_pipe(pipe, &spd);
499 
500 	splice_shrink_spd(&spd);
501 	return error;
502 }
503 
504 /**
505  * generic_file_splice_read - splice data from file to a pipe
506  * @in:		file to splice from
507  * @ppos:	position in @in
508  * @pipe:	pipe to splice to
509  * @len:	number of bytes to splice
510  * @flags:	splice modifier flags
511  *
512  * Description:
513  *    Will read pages from given file and fill them into a pipe. Can be
514  *    used as long as the address_space operations for the source implements
515  *    a readpage() hook.
516  *
517  */
518 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
519 				 struct pipe_inode_info *pipe, size_t len,
520 				 unsigned int flags)
521 {
522 	loff_t isize, left;
523 	int ret;
524 
525 	if (IS_DAX(in->f_mapping->host))
526 		return default_file_splice_read(in, ppos, pipe, len, flags);
527 
528 	isize = i_size_read(in->f_mapping->host);
529 	if (unlikely(*ppos >= isize))
530 		return 0;
531 
532 	left = isize - *ppos;
533 	if (unlikely(left < len))
534 		len = left;
535 
536 	ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
537 	if (ret > 0) {
538 		*ppos += ret;
539 		file_accessed(in);
540 	}
541 
542 	return ret;
543 }
544 EXPORT_SYMBOL(generic_file_splice_read);
545 
546 static const struct pipe_buf_operations default_pipe_buf_ops = {
547 	.can_merge = 0,
548 	.confirm = generic_pipe_buf_confirm,
549 	.release = generic_pipe_buf_release,
550 	.steal = generic_pipe_buf_steal,
551 	.get = generic_pipe_buf_get,
552 };
553 
554 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
555 				    struct pipe_buffer *buf)
556 {
557 	return 1;
558 }
559 
560 /* Pipe buffer operations for a socket and similar. */
561 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
562 	.can_merge = 0,
563 	.confirm = generic_pipe_buf_confirm,
564 	.release = generic_pipe_buf_release,
565 	.steal = generic_pipe_buf_nosteal,
566 	.get = generic_pipe_buf_get,
567 };
568 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
569 
570 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
571 			    unsigned long vlen, loff_t offset)
572 {
573 	mm_segment_t old_fs;
574 	loff_t pos = offset;
575 	ssize_t res;
576 
577 	old_fs = get_fs();
578 	set_fs(get_ds());
579 	/* The cast to a user pointer is valid due to the set_fs() */
580 	res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
581 	set_fs(old_fs);
582 
583 	return res;
584 }
585 
586 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
587 			    loff_t pos)
588 {
589 	mm_segment_t old_fs;
590 	ssize_t res;
591 
592 	old_fs = get_fs();
593 	set_fs(get_ds());
594 	/* The cast to a user pointer is valid due to the set_fs() */
595 	res = vfs_write(file, (__force const char __user *)buf, count, &pos);
596 	set_fs(old_fs);
597 
598 	return res;
599 }
600 EXPORT_SYMBOL(kernel_write);
601 
602 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
603 				 struct pipe_inode_info *pipe, size_t len,
604 				 unsigned int flags)
605 {
606 	unsigned int nr_pages;
607 	unsigned int nr_freed;
608 	size_t offset;
609 	struct page *pages[PIPE_DEF_BUFFERS];
610 	struct partial_page partial[PIPE_DEF_BUFFERS];
611 	struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
612 	ssize_t res;
613 	size_t this_len;
614 	int error;
615 	int i;
616 	struct splice_pipe_desc spd = {
617 		.pages = pages,
618 		.partial = partial,
619 		.nr_pages_max = PIPE_DEF_BUFFERS,
620 		.flags = flags,
621 		.ops = &default_pipe_buf_ops,
622 		.spd_release = spd_release_page,
623 	};
624 
625 	if (splice_grow_spd(pipe, &spd))
626 		return -ENOMEM;
627 
628 	res = -ENOMEM;
629 	vec = __vec;
630 	if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
631 		vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
632 		if (!vec)
633 			goto shrink_ret;
634 	}
635 
636 	offset = *ppos & ~PAGE_CACHE_MASK;
637 	nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
638 
639 	for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
640 		struct page *page;
641 
642 		page = alloc_page(GFP_USER);
643 		error = -ENOMEM;
644 		if (!page)
645 			goto err;
646 
647 		this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
648 		vec[i].iov_base = (void __user *) page_address(page);
649 		vec[i].iov_len = this_len;
650 		spd.pages[i] = page;
651 		spd.nr_pages++;
652 		len -= this_len;
653 		offset = 0;
654 	}
655 
656 	res = kernel_readv(in, vec, spd.nr_pages, *ppos);
657 	if (res < 0) {
658 		error = res;
659 		goto err;
660 	}
661 
662 	error = 0;
663 	if (!res)
664 		goto err;
665 
666 	nr_freed = 0;
667 	for (i = 0; i < spd.nr_pages; i++) {
668 		this_len = min_t(size_t, vec[i].iov_len, res);
669 		spd.partial[i].offset = 0;
670 		spd.partial[i].len = this_len;
671 		if (!this_len) {
672 			__free_page(spd.pages[i]);
673 			spd.pages[i] = NULL;
674 			nr_freed++;
675 		}
676 		res -= this_len;
677 	}
678 	spd.nr_pages -= nr_freed;
679 
680 	res = splice_to_pipe(pipe, &spd);
681 	if (res > 0)
682 		*ppos += res;
683 
684 shrink_ret:
685 	if (vec != __vec)
686 		kfree(vec);
687 	splice_shrink_spd(&spd);
688 	return res;
689 
690 err:
691 	for (i = 0; i < spd.nr_pages; i++)
692 		__free_page(spd.pages[i]);
693 
694 	res = error;
695 	goto shrink_ret;
696 }
697 EXPORT_SYMBOL(default_file_splice_read);
698 
699 /*
700  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
701  * using sendpage(). Return the number of bytes sent.
702  */
703 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
704 			    struct pipe_buffer *buf, struct splice_desc *sd)
705 {
706 	struct file *file = sd->u.file;
707 	loff_t pos = sd->pos;
708 	int more;
709 
710 	if (!likely(file->f_op->sendpage))
711 		return -EINVAL;
712 
713 	more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
714 
715 	if (sd->len < sd->total_len && pipe->nrbufs > 1)
716 		more |= MSG_SENDPAGE_NOTLAST;
717 
718 	return file->f_op->sendpage(file, buf->page, buf->offset,
719 				    sd->len, &pos, more);
720 }
721 
722 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
723 {
724 	smp_mb();
725 	if (waitqueue_active(&pipe->wait))
726 		wake_up_interruptible(&pipe->wait);
727 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
728 }
729 
730 /**
731  * splice_from_pipe_feed - feed available data from a pipe to a file
732  * @pipe:	pipe to splice from
733  * @sd:		information to @actor
734  * @actor:	handler that splices the data
735  *
736  * Description:
737  *    This function loops over the pipe and calls @actor to do the
738  *    actual moving of a single struct pipe_buffer to the desired
739  *    destination.  It returns when there's no more buffers left in
740  *    the pipe or if the requested number of bytes (@sd->total_len)
741  *    have been copied.  It returns a positive number (one) if the
742  *    pipe needs to be filled with more data, zero if the required
743  *    number of bytes have been copied and -errno on error.
744  *
745  *    This, together with splice_from_pipe_{begin,end,next}, may be
746  *    used to implement the functionality of __splice_from_pipe() when
747  *    locking is required around copying the pipe buffers to the
748  *    destination.
749  */
750 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
751 			  splice_actor *actor)
752 {
753 	int ret;
754 
755 	while (pipe->nrbufs) {
756 		struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
757 		const struct pipe_buf_operations *ops = buf->ops;
758 
759 		sd->len = buf->len;
760 		if (sd->len > sd->total_len)
761 			sd->len = sd->total_len;
762 
763 		ret = buf->ops->confirm(pipe, buf);
764 		if (unlikely(ret)) {
765 			if (ret == -ENODATA)
766 				ret = 0;
767 			return ret;
768 		}
769 
770 		ret = actor(pipe, buf, sd);
771 		if (ret <= 0)
772 			return ret;
773 
774 		buf->offset += ret;
775 		buf->len -= ret;
776 
777 		sd->num_spliced += ret;
778 		sd->len -= ret;
779 		sd->pos += ret;
780 		sd->total_len -= ret;
781 
782 		if (!buf->len) {
783 			buf->ops = NULL;
784 			ops->release(pipe, buf);
785 			pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
786 			pipe->nrbufs--;
787 			if (pipe->files)
788 				sd->need_wakeup = true;
789 		}
790 
791 		if (!sd->total_len)
792 			return 0;
793 	}
794 
795 	return 1;
796 }
797 
798 /**
799  * splice_from_pipe_next - wait for some data to splice from
800  * @pipe:	pipe to splice from
801  * @sd:		information about the splice operation
802  *
803  * Description:
804  *    This function will wait for some data and return a positive
805  *    value (one) if pipe buffers are available.  It will return zero
806  *    or -errno if no more data needs to be spliced.
807  */
808 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
809 {
810 	/*
811 	 * Check for signal early to make process killable when there are
812 	 * always buffers available
813 	 */
814 	if (signal_pending(current))
815 		return -ERESTARTSYS;
816 
817 	while (!pipe->nrbufs) {
818 		if (!pipe->writers)
819 			return 0;
820 
821 		if (!pipe->waiting_writers && sd->num_spliced)
822 			return 0;
823 
824 		if (sd->flags & SPLICE_F_NONBLOCK)
825 			return -EAGAIN;
826 
827 		if (signal_pending(current))
828 			return -ERESTARTSYS;
829 
830 		if (sd->need_wakeup) {
831 			wakeup_pipe_writers(pipe);
832 			sd->need_wakeup = false;
833 		}
834 
835 		pipe_wait(pipe);
836 	}
837 
838 	return 1;
839 }
840 
841 /**
842  * splice_from_pipe_begin - start splicing from pipe
843  * @sd:		information about the splice operation
844  *
845  * Description:
846  *    This function should be called before a loop containing
847  *    splice_from_pipe_next() and splice_from_pipe_feed() to
848  *    initialize the necessary fields of @sd.
849  */
850 static void splice_from_pipe_begin(struct splice_desc *sd)
851 {
852 	sd->num_spliced = 0;
853 	sd->need_wakeup = false;
854 }
855 
856 /**
857  * splice_from_pipe_end - finish splicing from pipe
858  * @pipe:	pipe to splice from
859  * @sd:		information about the splice operation
860  *
861  * Description:
862  *    This function will wake up pipe writers if necessary.  It should
863  *    be called after a loop containing splice_from_pipe_next() and
864  *    splice_from_pipe_feed().
865  */
866 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
867 {
868 	if (sd->need_wakeup)
869 		wakeup_pipe_writers(pipe);
870 }
871 
872 /**
873  * __splice_from_pipe - splice data from a pipe to given actor
874  * @pipe:	pipe to splice from
875  * @sd:		information to @actor
876  * @actor:	handler that splices the data
877  *
878  * Description:
879  *    This function does little more than loop over the pipe and call
880  *    @actor to do the actual moving of a single struct pipe_buffer to
881  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
882  *    pipe_to_user.
883  *
884  */
885 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
886 			   splice_actor *actor)
887 {
888 	int ret;
889 
890 	splice_from_pipe_begin(sd);
891 	do {
892 		cond_resched();
893 		ret = splice_from_pipe_next(pipe, sd);
894 		if (ret > 0)
895 			ret = splice_from_pipe_feed(pipe, sd, actor);
896 	} while (ret > 0);
897 	splice_from_pipe_end(pipe, sd);
898 
899 	return sd->num_spliced ? sd->num_spliced : ret;
900 }
901 EXPORT_SYMBOL(__splice_from_pipe);
902 
903 /**
904  * splice_from_pipe - splice data from a pipe to a file
905  * @pipe:	pipe to splice from
906  * @out:	file to splice to
907  * @ppos:	position in @out
908  * @len:	how many bytes to splice
909  * @flags:	splice modifier flags
910  * @actor:	handler that splices the data
911  *
912  * Description:
913  *    See __splice_from_pipe. This function locks the pipe inode,
914  *    otherwise it's identical to __splice_from_pipe().
915  *
916  */
917 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
918 			 loff_t *ppos, size_t len, unsigned int flags,
919 			 splice_actor *actor)
920 {
921 	ssize_t ret;
922 	struct splice_desc sd = {
923 		.total_len = len,
924 		.flags = flags,
925 		.pos = *ppos,
926 		.u.file = out,
927 	};
928 
929 	pipe_lock(pipe);
930 	ret = __splice_from_pipe(pipe, &sd, actor);
931 	pipe_unlock(pipe);
932 
933 	return ret;
934 }
935 
936 /**
937  * iter_file_splice_write - splice data from a pipe to a file
938  * @pipe:	pipe info
939  * @out:	file to write to
940  * @ppos:	position in @out
941  * @len:	number of bytes to splice
942  * @flags:	splice modifier flags
943  *
944  * Description:
945  *    Will either move or copy pages (determined by @flags options) from
946  *    the given pipe inode to the given file.
947  *    This one is ->write_iter-based.
948  *
949  */
950 ssize_t
951 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
952 			  loff_t *ppos, size_t len, unsigned int flags)
953 {
954 	struct splice_desc sd = {
955 		.total_len = len,
956 		.flags = flags,
957 		.pos = *ppos,
958 		.u.file = out,
959 	};
960 	int nbufs = pipe->buffers;
961 	struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
962 					GFP_KERNEL);
963 	ssize_t ret;
964 
965 	if (unlikely(!array))
966 		return -ENOMEM;
967 
968 	pipe_lock(pipe);
969 
970 	splice_from_pipe_begin(&sd);
971 	while (sd.total_len) {
972 		struct iov_iter from;
973 		size_t left;
974 		int n, idx;
975 
976 		ret = splice_from_pipe_next(pipe, &sd);
977 		if (ret <= 0)
978 			break;
979 
980 		if (unlikely(nbufs < pipe->buffers)) {
981 			kfree(array);
982 			nbufs = pipe->buffers;
983 			array = kcalloc(nbufs, sizeof(struct bio_vec),
984 					GFP_KERNEL);
985 			if (!array) {
986 				ret = -ENOMEM;
987 				break;
988 			}
989 		}
990 
991 		/* build the vector */
992 		left = sd.total_len;
993 		for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
994 			struct pipe_buffer *buf = pipe->bufs + idx;
995 			size_t this_len = buf->len;
996 
997 			if (this_len > left)
998 				this_len = left;
999 
1000 			if (idx == pipe->buffers - 1)
1001 				idx = -1;
1002 
1003 			ret = buf->ops->confirm(pipe, buf);
1004 			if (unlikely(ret)) {
1005 				if (ret == -ENODATA)
1006 					ret = 0;
1007 				goto done;
1008 			}
1009 
1010 			array[n].bv_page = buf->page;
1011 			array[n].bv_len = this_len;
1012 			array[n].bv_offset = buf->offset;
1013 			left -= this_len;
1014 		}
1015 
1016 		iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n,
1017 			      sd.total_len - left);
1018 		ret = vfs_iter_write(out, &from, &sd.pos);
1019 		if (ret <= 0)
1020 			break;
1021 
1022 		sd.num_spliced += ret;
1023 		sd.total_len -= ret;
1024 		*ppos = sd.pos;
1025 
1026 		/* dismiss the fully eaten buffers, adjust the partial one */
1027 		while (ret) {
1028 			struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
1029 			if (ret >= buf->len) {
1030 				const struct pipe_buf_operations *ops = buf->ops;
1031 				ret -= buf->len;
1032 				buf->len = 0;
1033 				buf->ops = NULL;
1034 				ops->release(pipe, buf);
1035 				pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
1036 				pipe->nrbufs--;
1037 				if (pipe->files)
1038 					sd.need_wakeup = true;
1039 			} else {
1040 				buf->offset += ret;
1041 				buf->len -= ret;
1042 				ret = 0;
1043 			}
1044 		}
1045 	}
1046 done:
1047 	kfree(array);
1048 	splice_from_pipe_end(pipe, &sd);
1049 
1050 	pipe_unlock(pipe);
1051 
1052 	if (sd.num_spliced)
1053 		ret = sd.num_spliced;
1054 
1055 	return ret;
1056 }
1057 
1058 EXPORT_SYMBOL(iter_file_splice_write);
1059 
1060 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1061 			  struct splice_desc *sd)
1062 {
1063 	int ret;
1064 	void *data;
1065 	loff_t tmp = sd->pos;
1066 
1067 	data = kmap(buf->page);
1068 	ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1069 	kunmap(buf->page);
1070 
1071 	return ret;
1072 }
1073 
1074 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1075 					 struct file *out, loff_t *ppos,
1076 					 size_t len, unsigned int flags)
1077 {
1078 	ssize_t ret;
1079 
1080 	ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1081 	if (ret > 0)
1082 		*ppos += ret;
1083 
1084 	return ret;
1085 }
1086 
1087 /**
1088  * generic_splice_sendpage - splice data from a pipe to a socket
1089  * @pipe:	pipe to splice from
1090  * @out:	socket to write to
1091  * @ppos:	position in @out
1092  * @len:	number of bytes to splice
1093  * @flags:	splice modifier flags
1094  *
1095  * Description:
1096  *    Will send @len bytes from the pipe to a network socket. No data copying
1097  *    is involved.
1098  *
1099  */
1100 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1101 				loff_t *ppos, size_t len, unsigned int flags)
1102 {
1103 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1104 }
1105 
1106 EXPORT_SYMBOL(generic_splice_sendpage);
1107 
1108 /*
1109  * Attempt to initiate a splice from pipe to file.
1110  */
1111 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1112 			   loff_t *ppos, size_t len, unsigned int flags)
1113 {
1114 	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1115 				loff_t *, size_t, unsigned int);
1116 
1117 	if (out->f_op->splice_write)
1118 		splice_write = out->f_op->splice_write;
1119 	else
1120 		splice_write = default_file_splice_write;
1121 
1122 	return splice_write(pipe, out, ppos, len, flags);
1123 }
1124 
1125 /*
1126  * Attempt to initiate a splice from a file to a pipe.
1127  */
1128 static long do_splice_to(struct file *in, loff_t *ppos,
1129 			 struct pipe_inode_info *pipe, size_t len,
1130 			 unsigned int flags)
1131 {
1132 	ssize_t (*splice_read)(struct file *, loff_t *,
1133 			       struct pipe_inode_info *, size_t, unsigned int);
1134 	int ret;
1135 
1136 	if (unlikely(!(in->f_mode & FMODE_READ)))
1137 		return -EBADF;
1138 
1139 	ret = rw_verify_area(READ, in, ppos, len);
1140 	if (unlikely(ret < 0))
1141 		return ret;
1142 
1143 	if (in->f_op->splice_read)
1144 		splice_read = in->f_op->splice_read;
1145 	else
1146 		splice_read = default_file_splice_read;
1147 
1148 	return splice_read(in, ppos, pipe, len, flags);
1149 }
1150 
1151 /**
1152  * splice_direct_to_actor - splices data directly between two non-pipes
1153  * @in:		file to splice from
1154  * @sd:		actor information on where to splice to
1155  * @actor:	handles the data splicing
1156  *
1157  * Description:
1158  *    This is a special case helper to splice directly between two
1159  *    points, without requiring an explicit pipe. Internally an allocated
1160  *    pipe is cached in the process, and reused during the lifetime of
1161  *    that process.
1162  *
1163  */
1164 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1165 			       splice_direct_actor *actor)
1166 {
1167 	struct pipe_inode_info *pipe;
1168 	long ret, bytes;
1169 	umode_t i_mode;
1170 	size_t len;
1171 	int i, flags, more;
1172 
1173 	/*
1174 	 * We require the input being a regular file, as we don't want to
1175 	 * randomly drop data for eg socket -> socket splicing. Use the
1176 	 * piped splicing for that!
1177 	 */
1178 	i_mode = file_inode(in)->i_mode;
1179 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1180 		return -EINVAL;
1181 
1182 	/*
1183 	 * neither in nor out is a pipe, setup an internal pipe attached to
1184 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
1185 	 */
1186 	pipe = current->splice_pipe;
1187 	if (unlikely(!pipe)) {
1188 		pipe = alloc_pipe_info();
1189 		if (!pipe)
1190 			return -ENOMEM;
1191 
1192 		/*
1193 		 * We don't have an immediate reader, but we'll read the stuff
1194 		 * out of the pipe right after the splice_to_pipe(). So set
1195 		 * PIPE_READERS appropriately.
1196 		 */
1197 		pipe->readers = 1;
1198 
1199 		current->splice_pipe = pipe;
1200 	}
1201 
1202 	/*
1203 	 * Do the splice.
1204 	 */
1205 	ret = 0;
1206 	bytes = 0;
1207 	len = sd->total_len;
1208 	flags = sd->flags;
1209 
1210 	/*
1211 	 * Don't block on output, we have to drain the direct pipe.
1212 	 */
1213 	sd->flags &= ~SPLICE_F_NONBLOCK;
1214 	more = sd->flags & SPLICE_F_MORE;
1215 
1216 	while (len) {
1217 		size_t read_len;
1218 		loff_t pos = sd->pos, prev_pos = pos;
1219 
1220 		ret = do_splice_to(in, &pos, pipe, len, flags);
1221 		if (unlikely(ret <= 0))
1222 			goto out_release;
1223 
1224 		read_len = ret;
1225 		sd->total_len = read_len;
1226 
1227 		/*
1228 		 * If more data is pending, set SPLICE_F_MORE
1229 		 * If this is the last data and SPLICE_F_MORE was not set
1230 		 * initially, clears it.
1231 		 */
1232 		if (read_len < len)
1233 			sd->flags |= SPLICE_F_MORE;
1234 		else if (!more)
1235 			sd->flags &= ~SPLICE_F_MORE;
1236 		/*
1237 		 * NOTE: nonblocking mode only applies to the input. We
1238 		 * must not do the output in nonblocking mode as then we
1239 		 * could get stuck data in the internal pipe:
1240 		 */
1241 		ret = actor(pipe, sd);
1242 		if (unlikely(ret <= 0)) {
1243 			sd->pos = prev_pos;
1244 			goto out_release;
1245 		}
1246 
1247 		bytes += ret;
1248 		len -= ret;
1249 		sd->pos = pos;
1250 
1251 		if (ret < read_len) {
1252 			sd->pos = prev_pos + ret;
1253 			goto out_release;
1254 		}
1255 	}
1256 
1257 done:
1258 	pipe->nrbufs = pipe->curbuf = 0;
1259 	file_accessed(in);
1260 	return bytes;
1261 
1262 out_release:
1263 	/*
1264 	 * If we did an incomplete transfer we must release
1265 	 * the pipe buffers in question:
1266 	 */
1267 	for (i = 0; i < pipe->buffers; i++) {
1268 		struct pipe_buffer *buf = pipe->bufs + i;
1269 
1270 		if (buf->ops) {
1271 			buf->ops->release(pipe, buf);
1272 			buf->ops = NULL;
1273 		}
1274 	}
1275 
1276 	if (!bytes)
1277 		bytes = ret;
1278 
1279 	goto done;
1280 }
1281 EXPORT_SYMBOL(splice_direct_to_actor);
1282 
1283 static int direct_splice_actor(struct pipe_inode_info *pipe,
1284 			       struct splice_desc *sd)
1285 {
1286 	struct file *file = sd->u.file;
1287 
1288 	return do_splice_from(pipe, file, sd->opos, sd->total_len,
1289 			      sd->flags);
1290 }
1291 
1292 /**
1293  * do_splice_direct - splices data directly between two files
1294  * @in:		file to splice from
1295  * @ppos:	input file offset
1296  * @out:	file to splice to
1297  * @opos:	output file offset
1298  * @len:	number of bytes to splice
1299  * @flags:	splice modifier flags
1300  *
1301  * Description:
1302  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1303  *    doing it in the application would incur an extra system call
1304  *    (splice in + splice out, as compared to just sendfile()). So this helper
1305  *    can splice directly through a process-private pipe.
1306  *
1307  */
1308 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1309 		      loff_t *opos, size_t len, unsigned int flags)
1310 {
1311 	struct splice_desc sd = {
1312 		.len		= len,
1313 		.total_len	= len,
1314 		.flags		= flags,
1315 		.pos		= *ppos,
1316 		.u.file		= out,
1317 		.opos		= opos,
1318 	};
1319 	long ret;
1320 
1321 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1322 		return -EBADF;
1323 
1324 	if (unlikely(out->f_flags & O_APPEND))
1325 		return -EINVAL;
1326 
1327 	ret = rw_verify_area(WRITE, out, opos, len);
1328 	if (unlikely(ret < 0))
1329 		return ret;
1330 
1331 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1332 	if (ret > 0)
1333 		*ppos = sd.pos;
1334 
1335 	return ret;
1336 }
1337 EXPORT_SYMBOL(do_splice_direct);
1338 
1339 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1340 			       struct pipe_inode_info *opipe,
1341 			       size_t len, unsigned int flags);
1342 
1343 /*
1344  * Determine where to splice to/from.
1345  */
1346 static long do_splice(struct file *in, loff_t __user *off_in,
1347 		      struct file *out, loff_t __user *off_out,
1348 		      size_t len, unsigned int flags)
1349 {
1350 	struct pipe_inode_info *ipipe;
1351 	struct pipe_inode_info *opipe;
1352 	loff_t offset;
1353 	long ret;
1354 
1355 	ipipe = get_pipe_info(in);
1356 	opipe = get_pipe_info(out);
1357 
1358 	if (ipipe && opipe) {
1359 		if (off_in || off_out)
1360 			return -ESPIPE;
1361 
1362 		if (!(in->f_mode & FMODE_READ))
1363 			return -EBADF;
1364 
1365 		if (!(out->f_mode & FMODE_WRITE))
1366 			return -EBADF;
1367 
1368 		/* Splicing to self would be fun, but... */
1369 		if (ipipe == opipe)
1370 			return -EINVAL;
1371 
1372 		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1373 	}
1374 
1375 	if (ipipe) {
1376 		if (off_in)
1377 			return -ESPIPE;
1378 		if (off_out) {
1379 			if (!(out->f_mode & FMODE_PWRITE))
1380 				return -EINVAL;
1381 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1382 				return -EFAULT;
1383 		} else {
1384 			offset = out->f_pos;
1385 		}
1386 
1387 		if (unlikely(!(out->f_mode & FMODE_WRITE)))
1388 			return -EBADF;
1389 
1390 		if (unlikely(out->f_flags & O_APPEND))
1391 			return -EINVAL;
1392 
1393 		ret = rw_verify_area(WRITE, out, &offset, len);
1394 		if (unlikely(ret < 0))
1395 			return ret;
1396 
1397 		file_start_write(out);
1398 		ret = do_splice_from(ipipe, out, &offset, len, flags);
1399 		file_end_write(out);
1400 
1401 		if (!off_out)
1402 			out->f_pos = offset;
1403 		else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1404 			ret = -EFAULT;
1405 
1406 		return ret;
1407 	}
1408 
1409 	if (opipe) {
1410 		if (off_out)
1411 			return -ESPIPE;
1412 		if (off_in) {
1413 			if (!(in->f_mode & FMODE_PREAD))
1414 				return -EINVAL;
1415 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1416 				return -EFAULT;
1417 		} else {
1418 			offset = in->f_pos;
1419 		}
1420 
1421 		ret = do_splice_to(in, &offset, opipe, len, flags);
1422 
1423 		if (!off_in)
1424 			in->f_pos = offset;
1425 		else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1426 			ret = -EFAULT;
1427 
1428 		return ret;
1429 	}
1430 
1431 	return -EINVAL;
1432 }
1433 
1434 /*
1435  * Map an iov into an array of pages and offset/length tupples. With the
1436  * partial_page structure, we can map several non-contiguous ranges into
1437  * our ones pages[] map instead of splitting that operation into pieces.
1438  * Could easily be exported as a generic helper for other users, in which
1439  * case one would probably want to add a 'max_nr_pages' parameter as well.
1440  */
1441 static int get_iovec_page_array(const struct iovec __user *iov,
1442 				unsigned int nr_vecs, struct page **pages,
1443 				struct partial_page *partial, bool aligned,
1444 				unsigned int pipe_buffers)
1445 {
1446 	int buffers = 0, error = 0;
1447 
1448 	while (nr_vecs) {
1449 		unsigned long off, npages;
1450 		struct iovec entry;
1451 		void __user *base;
1452 		size_t len;
1453 		int i;
1454 
1455 		error = -EFAULT;
1456 		if (copy_from_user(&entry, iov, sizeof(entry)))
1457 			break;
1458 
1459 		base = entry.iov_base;
1460 		len = entry.iov_len;
1461 
1462 		/*
1463 		 * Sanity check this iovec. 0 read succeeds.
1464 		 */
1465 		error = 0;
1466 		if (unlikely(!len))
1467 			break;
1468 		error = -EFAULT;
1469 		if (!access_ok(VERIFY_READ, base, len))
1470 			break;
1471 
1472 		/*
1473 		 * Get this base offset and number of pages, then map
1474 		 * in the user pages.
1475 		 */
1476 		off = (unsigned long) base & ~PAGE_MASK;
1477 
1478 		/*
1479 		 * If asked for alignment, the offset must be zero and the
1480 		 * length a multiple of the PAGE_SIZE.
1481 		 */
1482 		error = -EINVAL;
1483 		if (aligned && (off || len & ~PAGE_MASK))
1484 			break;
1485 
1486 		npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1487 		if (npages > pipe_buffers - buffers)
1488 			npages = pipe_buffers - buffers;
1489 
1490 		error = get_user_pages_fast((unsigned long)base, npages,
1491 					0, &pages[buffers]);
1492 
1493 		if (unlikely(error <= 0))
1494 			break;
1495 
1496 		/*
1497 		 * Fill this contiguous range into the partial page map.
1498 		 */
1499 		for (i = 0; i < error; i++) {
1500 			const int plen = min_t(size_t, len, PAGE_SIZE - off);
1501 
1502 			partial[buffers].offset = off;
1503 			partial[buffers].len = plen;
1504 
1505 			off = 0;
1506 			len -= plen;
1507 			buffers++;
1508 		}
1509 
1510 		/*
1511 		 * We didn't complete this iov, stop here since it probably
1512 		 * means we have to move some of this into a pipe to
1513 		 * be able to continue.
1514 		 */
1515 		if (len)
1516 			break;
1517 
1518 		/*
1519 		 * Don't continue if we mapped fewer pages than we asked for,
1520 		 * or if we mapped the max number of pages that we have
1521 		 * room for.
1522 		 */
1523 		if (error < npages || buffers == pipe_buffers)
1524 			break;
1525 
1526 		nr_vecs--;
1527 		iov++;
1528 	}
1529 
1530 	if (buffers)
1531 		return buffers;
1532 
1533 	return error;
1534 }
1535 
1536 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1537 			struct splice_desc *sd)
1538 {
1539 	int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1540 	return n == sd->len ? n : -EFAULT;
1541 }
1542 
1543 /*
1544  * For lack of a better implementation, implement vmsplice() to userspace
1545  * as a simple copy of the pipes pages to the user iov.
1546  */
1547 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1548 			     unsigned long nr_segs, unsigned int flags)
1549 {
1550 	struct pipe_inode_info *pipe;
1551 	struct splice_desc sd;
1552 	long ret;
1553 	struct iovec iovstack[UIO_FASTIOV];
1554 	struct iovec *iov = iovstack;
1555 	struct iov_iter iter;
1556 
1557 	pipe = get_pipe_info(file);
1558 	if (!pipe)
1559 		return -EBADF;
1560 
1561 	ret = import_iovec(READ, uiov, nr_segs,
1562 			   ARRAY_SIZE(iovstack), &iov, &iter);
1563 	if (ret < 0)
1564 		return ret;
1565 
1566 	sd.total_len = iov_iter_count(&iter);
1567 	sd.len = 0;
1568 	sd.flags = flags;
1569 	sd.u.data = &iter;
1570 	sd.pos = 0;
1571 
1572 	if (sd.total_len) {
1573 		pipe_lock(pipe);
1574 		ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1575 		pipe_unlock(pipe);
1576 	}
1577 
1578 	kfree(iov);
1579 	return ret;
1580 }
1581 
1582 /*
1583  * vmsplice splices a user address range into a pipe. It can be thought of
1584  * as splice-from-memory, where the regular splice is splice-from-file (or
1585  * to file). In both cases the output is a pipe, naturally.
1586  */
1587 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1588 			     unsigned long nr_segs, unsigned int flags)
1589 {
1590 	struct pipe_inode_info *pipe;
1591 	struct page *pages[PIPE_DEF_BUFFERS];
1592 	struct partial_page partial[PIPE_DEF_BUFFERS];
1593 	struct splice_pipe_desc spd = {
1594 		.pages = pages,
1595 		.partial = partial,
1596 		.nr_pages_max = PIPE_DEF_BUFFERS,
1597 		.flags = flags,
1598 		.ops = &user_page_pipe_buf_ops,
1599 		.spd_release = spd_release_page,
1600 	};
1601 	long ret;
1602 
1603 	pipe = get_pipe_info(file);
1604 	if (!pipe)
1605 		return -EBADF;
1606 
1607 	if (splice_grow_spd(pipe, &spd))
1608 		return -ENOMEM;
1609 
1610 	spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1611 					    spd.partial, false,
1612 					    spd.nr_pages_max);
1613 	if (spd.nr_pages <= 0)
1614 		ret = spd.nr_pages;
1615 	else
1616 		ret = splice_to_pipe(pipe, &spd);
1617 
1618 	splice_shrink_spd(&spd);
1619 	return ret;
1620 }
1621 
1622 /*
1623  * Note that vmsplice only really supports true splicing _from_ user memory
1624  * to a pipe, not the other way around. Splicing from user memory is a simple
1625  * operation that can be supported without any funky alignment restrictions
1626  * or nasty vm tricks. We simply map in the user memory and fill them into
1627  * a pipe. The reverse isn't quite as easy, though. There are two possible
1628  * solutions for that:
1629  *
1630  *	- memcpy() the data internally, at which point we might as well just
1631  *	  do a regular read() on the buffer anyway.
1632  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1633  *	  has restriction limitations on both ends of the pipe).
1634  *
1635  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1636  *
1637  */
1638 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1639 		unsigned long, nr_segs, unsigned int, flags)
1640 {
1641 	struct fd f;
1642 	long error;
1643 
1644 	if (unlikely(nr_segs > UIO_MAXIOV))
1645 		return -EINVAL;
1646 	else if (unlikely(!nr_segs))
1647 		return 0;
1648 
1649 	error = -EBADF;
1650 	f = fdget(fd);
1651 	if (f.file) {
1652 		if (f.file->f_mode & FMODE_WRITE)
1653 			error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1654 		else if (f.file->f_mode & FMODE_READ)
1655 			error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1656 
1657 		fdput(f);
1658 	}
1659 
1660 	return error;
1661 }
1662 
1663 #ifdef CONFIG_COMPAT
1664 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1665 		    unsigned int, nr_segs, unsigned int, flags)
1666 {
1667 	unsigned i;
1668 	struct iovec __user *iov;
1669 	if (nr_segs > UIO_MAXIOV)
1670 		return -EINVAL;
1671 	iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1672 	for (i = 0; i < nr_segs; i++) {
1673 		struct compat_iovec v;
1674 		if (get_user(v.iov_base, &iov32[i].iov_base) ||
1675 		    get_user(v.iov_len, &iov32[i].iov_len) ||
1676 		    put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1677 		    put_user(v.iov_len, &iov[i].iov_len))
1678 			return -EFAULT;
1679 	}
1680 	return sys_vmsplice(fd, iov, nr_segs, flags);
1681 }
1682 #endif
1683 
1684 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1685 		int, fd_out, loff_t __user *, off_out,
1686 		size_t, len, unsigned int, flags)
1687 {
1688 	struct fd in, out;
1689 	long error;
1690 
1691 	if (unlikely(!len))
1692 		return 0;
1693 
1694 	error = -EBADF;
1695 	in = fdget(fd_in);
1696 	if (in.file) {
1697 		if (in.file->f_mode & FMODE_READ) {
1698 			out = fdget(fd_out);
1699 			if (out.file) {
1700 				if (out.file->f_mode & FMODE_WRITE)
1701 					error = do_splice(in.file, off_in,
1702 							  out.file, off_out,
1703 							  len, flags);
1704 				fdput(out);
1705 			}
1706 		}
1707 		fdput(in);
1708 	}
1709 	return error;
1710 }
1711 
1712 /*
1713  * Make sure there's data to read. Wait for input if we can, otherwise
1714  * return an appropriate error.
1715  */
1716 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1717 {
1718 	int ret;
1719 
1720 	/*
1721 	 * Check ->nrbufs without the inode lock first. This function
1722 	 * is speculative anyways, so missing one is ok.
1723 	 */
1724 	if (pipe->nrbufs)
1725 		return 0;
1726 
1727 	ret = 0;
1728 	pipe_lock(pipe);
1729 
1730 	while (!pipe->nrbufs) {
1731 		if (signal_pending(current)) {
1732 			ret = -ERESTARTSYS;
1733 			break;
1734 		}
1735 		if (!pipe->writers)
1736 			break;
1737 		if (!pipe->waiting_writers) {
1738 			if (flags & SPLICE_F_NONBLOCK) {
1739 				ret = -EAGAIN;
1740 				break;
1741 			}
1742 		}
1743 		pipe_wait(pipe);
1744 	}
1745 
1746 	pipe_unlock(pipe);
1747 	return ret;
1748 }
1749 
1750 /*
1751  * Make sure there's writeable room. Wait for room if we can, otherwise
1752  * return an appropriate error.
1753  */
1754 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1755 {
1756 	int ret;
1757 
1758 	/*
1759 	 * Check ->nrbufs without the inode lock first. This function
1760 	 * is speculative anyways, so missing one is ok.
1761 	 */
1762 	if (pipe->nrbufs < pipe->buffers)
1763 		return 0;
1764 
1765 	ret = 0;
1766 	pipe_lock(pipe);
1767 
1768 	while (pipe->nrbufs >= pipe->buffers) {
1769 		if (!pipe->readers) {
1770 			send_sig(SIGPIPE, current, 0);
1771 			ret = -EPIPE;
1772 			break;
1773 		}
1774 		if (flags & SPLICE_F_NONBLOCK) {
1775 			ret = -EAGAIN;
1776 			break;
1777 		}
1778 		if (signal_pending(current)) {
1779 			ret = -ERESTARTSYS;
1780 			break;
1781 		}
1782 		pipe->waiting_writers++;
1783 		pipe_wait(pipe);
1784 		pipe->waiting_writers--;
1785 	}
1786 
1787 	pipe_unlock(pipe);
1788 	return ret;
1789 }
1790 
1791 /*
1792  * Splice contents of ipipe to opipe.
1793  */
1794 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1795 			       struct pipe_inode_info *opipe,
1796 			       size_t len, unsigned int flags)
1797 {
1798 	struct pipe_buffer *ibuf, *obuf;
1799 	int ret = 0, nbuf;
1800 	bool input_wakeup = false;
1801 
1802 
1803 retry:
1804 	ret = ipipe_prep(ipipe, flags);
1805 	if (ret)
1806 		return ret;
1807 
1808 	ret = opipe_prep(opipe, flags);
1809 	if (ret)
1810 		return ret;
1811 
1812 	/*
1813 	 * Potential ABBA deadlock, work around it by ordering lock
1814 	 * grabbing by pipe info address. Otherwise two different processes
1815 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1816 	 */
1817 	pipe_double_lock(ipipe, opipe);
1818 
1819 	do {
1820 		if (!opipe->readers) {
1821 			send_sig(SIGPIPE, current, 0);
1822 			if (!ret)
1823 				ret = -EPIPE;
1824 			break;
1825 		}
1826 
1827 		if (!ipipe->nrbufs && !ipipe->writers)
1828 			break;
1829 
1830 		/*
1831 		 * Cannot make any progress, because either the input
1832 		 * pipe is empty or the output pipe is full.
1833 		 */
1834 		if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1835 			/* Already processed some buffers, break */
1836 			if (ret)
1837 				break;
1838 
1839 			if (flags & SPLICE_F_NONBLOCK) {
1840 				ret = -EAGAIN;
1841 				break;
1842 			}
1843 
1844 			/*
1845 			 * We raced with another reader/writer and haven't
1846 			 * managed to process any buffers.  A zero return
1847 			 * value means EOF, so retry instead.
1848 			 */
1849 			pipe_unlock(ipipe);
1850 			pipe_unlock(opipe);
1851 			goto retry;
1852 		}
1853 
1854 		ibuf = ipipe->bufs + ipipe->curbuf;
1855 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1856 		obuf = opipe->bufs + nbuf;
1857 
1858 		if (len >= ibuf->len) {
1859 			/*
1860 			 * Simply move the whole buffer from ipipe to opipe
1861 			 */
1862 			*obuf = *ibuf;
1863 			ibuf->ops = NULL;
1864 			opipe->nrbufs++;
1865 			ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1866 			ipipe->nrbufs--;
1867 			input_wakeup = true;
1868 		} else {
1869 			/*
1870 			 * Get a reference to this pipe buffer,
1871 			 * so we can copy the contents over.
1872 			 */
1873 			ibuf->ops->get(ipipe, ibuf);
1874 			*obuf = *ibuf;
1875 
1876 			/*
1877 			 * Don't inherit the gift flag, we need to
1878 			 * prevent multiple steals of this page.
1879 			 */
1880 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1881 
1882 			obuf->len = len;
1883 			opipe->nrbufs++;
1884 			ibuf->offset += obuf->len;
1885 			ibuf->len -= obuf->len;
1886 		}
1887 		ret += obuf->len;
1888 		len -= obuf->len;
1889 	} while (len);
1890 
1891 	pipe_unlock(ipipe);
1892 	pipe_unlock(opipe);
1893 
1894 	/*
1895 	 * If we put data in the output pipe, wakeup any potential readers.
1896 	 */
1897 	if (ret > 0)
1898 		wakeup_pipe_readers(opipe);
1899 
1900 	if (input_wakeup)
1901 		wakeup_pipe_writers(ipipe);
1902 
1903 	return ret;
1904 }
1905 
1906 /*
1907  * Link contents of ipipe to opipe.
1908  */
1909 static int link_pipe(struct pipe_inode_info *ipipe,
1910 		     struct pipe_inode_info *opipe,
1911 		     size_t len, unsigned int flags)
1912 {
1913 	struct pipe_buffer *ibuf, *obuf;
1914 	int ret = 0, i = 0, nbuf;
1915 
1916 	/*
1917 	 * Potential ABBA deadlock, work around it by ordering lock
1918 	 * grabbing by pipe info address. Otherwise two different processes
1919 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1920 	 */
1921 	pipe_double_lock(ipipe, opipe);
1922 
1923 	do {
1924 		if (!opipe->readers) {
1925 			send_sig(SIGPIPE, current, 0);
1926 			if (!ret)
1927 				ret = -EPIPE;
1928 			break;
1929 		}
1930 
1931 		/*
1932 		 * If we have iterated all input buffers or ran out of
1933 		 * output room, break.
1934 		 */
1935 		if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1936 			break;
1937 
1938 		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1939 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1940 
1941 		/*
1942 		 * Get a reference to this pipe buffer,
1943 		 * so we can copy the contents over.
1944 		 */
1945 		ibuf->ops->get(ipipe, ibuf);
1946 
1947 		obuf = opipe->bufs + nbuf;
1948 		*obuf = *ibuf;
1949 
1950 		/*
1951 		 * Don't inherit the gift flag, we need to
1952 		 * prevent multiple steals of this page.
1953 		 */
1954 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1955 
1956 		if (obuf->len > len)
1957 			obuf->len = len;
1958 
1959 		opipe->nrbufs++;
1960 		ret += obuf->len;
1961 		len -= obuf->len;
1962 		i++;
1963 	} while (len);
1964 
1965 	/*
1966 	 * return EAGAIN if we have the potential of some data in the
1967 	 * future, otherwise just return 0
1968 	 */
1969 	if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1970 		ret = -EAGAIN;
1971 
1972 	pipe_unlock(ipipe);
1973 	pipe_unlock(opipe);
1974 
1975 	/*
1976 	 * If we put data in the output pipe, wakeup any potential readers.
1977 	 */
1978 	if (ret > 0)
1979 		wakeup_pipe_readers(opipe);
1980 
1981 	return ret;
1982 }
1983 
1984 /*
1985  * This is a tee(1) implementation that works on pipes. It doesn't copy
1986  * any data, it simply references the 'in' pages on the 'out' pipe.
1987  * The 'flags' used are the SPLICE_F_* variants, currently the only
1988  * applicable one is SPLICE_F_NONBLOCK.
1989  */
1990 static long do_tee(struct file *in, struct file *out, size_t len,
1991 		   unsigned int flags)
1992 {
1993 	struct pipe_inode_info *ipipe = get_pipe_info(in);
1994 	struct pipe_inode_info *opipe = get_pipe_info(out);
1995 	int ret = -EINVAL;
1996 
1997 	/*
1998 	 * Duplicate the contents of ipipe to opipe without actually
1999 	 * copying the data.
2000 	 */
2001 	if (ipipe && opipe && ipipe != opipe) {
2002 		/*
2003 		 * Keep going, unless we encounter an error. The ipipe/opipe
2004 		 * ordering doesn't really matter.
2005 		 */
2006 		ret = ipipe_prep(ipipe, flags);
2007 		if (!ret) {
2008 			ret = opipe_prep(opipe, flags);
2009 			if (!ret)
2010 				ret = link_pipe(ipipe, opipe, len, flags);
2011 		}
2012 	}
2013 
2014 	return ret;
2015 }
2016 
2017 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2018 {
2019 	struct fd in;
2020 	int error;
2021 
2022 	if (unlikely(!len))
2023 		return 0;
2024 
2025 	error = -EBADF;
2026 	in = fdget(fdin);
2027 	if (in.file) {
2028 		if (in.file->f_mode & FMODE_READ) {
2029 			struct fd out = fdget(fdout);
2030 			if (out.file) {
2031 				if (out.file->f_mode & FMODE_WRITE)
2032 					error = do_tee(in.file, out.file,
2033 							len, flags);
2034 				fdput(out);
2035 			}
2036 		}
2037  		fdput(in);
2038  	}
2039 
2040 	return error;
2041 }
2042