xref: /openbmc/linux/fs/splice.c (revision c4ee0af3)
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
35 #include "internal.h"
36 
37 /*
38  * Attempt to steal a page from a pipe buffer. This should perhaps go into
39  * a vm helper function, it's already simplified quite a bit by the
40  * addition of remove_mapping(). If success is returned, the caller may
41  * attempt to reuse this page for another destination.
42  */
43 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
44 				     struct pipe_buffer *buf)
45 {
46 	struct page *page = buf->page;
47 	struct address_space *mapping;
48 
49 	lock_page(page);
50 
51 	mapping = page_mapping(page);
52 	if (mapping) {
53 		WARN_ON(!PageUptodate(page));
54 
55 		/*
56 		 * At least for ext2 with nobh option, we need to wait on
57 		 * writeback completing on this page, since we'll remove it
58 		 * from the pagecache.  Otherwise truncate wont wait on the
59 		 * page, allowing the disk blocks to be reused by someone else
60 		 * before we actually wrote our data to them. fs corruption
61 		 * ensues.
62 		 */
63 		wait_on_page_writeback(page);
64 
65 		if (page_has_private(page) &&
66 		    !try_to_release_page(page, GFP_KERNEL))
67 			goto out_unlock;
68 
69 		/*
70 		 * If we succeeded in removing the mapping, set LRU flag
71 		 * and return good.
72 		 */
73 		if (remove_mapping(mapping, page)) {
74 			buf->flags |= PIPE_BUF_FLAG_LRU;
75 			return 0;
76 		}
77 	}
78 
79 	/*
80 	 * Raced with truncate or failed to remove page from current
81 	 * address space, unlock and return failure.
82 	 */
83 out_unlock:
84 	unlock_page(page);
85 	return 1;
86 }
87 
88 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
89 					struct pipe_buffer *buf)
90 {
91 	page_cache_release(buf->page);
92 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
93 }
94 
95 /*
96  * Check whether the contents of buf is OK to access. Since the content
97  * is a page cache page, IO may be in flight.
98  */
99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
100 				       struct pipe_buffer *buf)
101 {
102 	struct page *page = buf->page;
103 	int err;
104 
105 	if (!PageUptodate(page)) {
106 		lock_page(page);
107 
108 		/*
109 		 * Page got truncated/unhashed. This will cause a 0-byte
110 		 * splice, if this is the first page.
111 		 */
112 		if (!page->mapping) {
113 			err = -ENODATA;
114 			goto error;
115 		}
116 
117 		/*
118 		 * Uh oh, read-error from disk.
119 		 */
120 		if (!PageUptodate(page)) {
121 			err = -EIO;
122 			goto error;
123 		}
124 
125 		/*
126 		 * Page is ok afterall, we are done.
127 		 */
128 		unlock_page(page);
129 	}
130 
131 	return 0;
132 error:
133 	unlock_page(page);
134 	return err;
135 }
136 
137 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
138 	.can_merge = 0,
139 	.map = generic_pipe_buf_map,
140 	.unmap = generic_pipe_buf_unmap,
141 	.confirm = page_cache_pipe_buf_confirm,
142 	.release = page_cache_pipe_buf_release,
143 	.steal = page_cache_pipe_buf_steal,
144 	.get = generic_pipe_buf_get,
145 };
146 
147 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
148 				    struct pipe_buffer *buf)
149 {
150 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
151 		return 1;
152 
153 	buf->flags |= PIPE_BUF_FLAG_LRU;
154 	return generic_pipe_buf_steal(pipe, buf);
155 }
156 
157 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
158 	.can_merge = 0,
159 	.map = generic_pipe_buf_map,
160 	.unmap = generic_pipe_buf_unmap,
161 	.confirm = generic_pipe_buf_confirm,
162 	.release = page_cache_pipe_buf_release,
163 	.steal = user_page_pipe_buf_steal,
164 	.get = generic_pipe_buf_get,
165 };
166 
167 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
168 {
169 	smp_mb();
170 	if (waitqueue_active(&pipe->wait))
171 		wake_up_interruptible(&pipe->wait);
172 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
173 }
174 
175 /**
176  * splice_to_pipe - fill passed data into a pipe
177  * @pipe:	pipe to fill
178  * @spd:	data to fill
179  *
180  * Description:
181  *    @spd contains a map of pages and len/offset tuples, along with
182  *    the struct pipe_buf_operations associated with these pages. This
183  *    function will link that data to the pipe.
184  *
185  */
186 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
187 		       struct splice_pipe_desc *spd)
188 {
189 	unsigned int spd_pages = spd->nr_pages;
190 	int ret, do_wakeup, page_nr;
191 
192 	ret = 0;
193 	do_wakeup = 0;
194 	page_nr = 0;
195 
196 	pipe_lock(pipe);
197 
198 	for (;;) {
199 		if (!pipe->readers) {
200 			send_sig(SIGPIPE, current, 0);
201 			if (!ret)
202 				ret = -EPIPE;
203 			break;
204 		}
205 
206 		if (pipe->nrbufs < pipe->buffers) {
207 			int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
208 			struct pipe_buffer *buf = pipe->bufs + newbuf;
209 
210 			buf->page = spd->pages[page_nr];
211 			buf->offset = spd->partial[page_nr].offset;
212 			buf->len = spd->partial[page_nr].len;
213 			buf->private = spd->partial[page_nr].private;
214 			buf->ops = spd->ops;
215 			if (spd->flags & SPLICE_F_GIFT)
216 				buf->flags |= PIPE_BUF_FLAG_GIFT;
217 
218 			pipe->nrbufs++;
219 			page_nr++;
220 			ret += buf->len;
221 
222 			if (pipe->files)
223 				do_wakeup = 1;
224 
225 			if (!--spd->nr_pages)
226 				break;
227 			if (pipe->nrbufs < pipe->buffers)
228 				continue;
229 
230 			break;
231 		}
232 
233 		if (spd->flags & SPLICE_F_NONBLOCK) {
234 			if (!ret)
235 				ret = -EAGAIN;
236 			break;
237 		}
238 
239 		if (signal_pending(current)) {
240 			if (!ret)
241 				ret = -ERESTARTSYS;
242 			break;
243 		}
244 
245 		if (do_wakeup) {
246 			smp_mb();
247 			if (waitqueue_active(&pipe->wait))
248 				wake_up_interruptible_sync(&pipe->wait);
249 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
250 			do_wakeup = 0;
251 		}
252 
253 		pipe->waiting_writers++;
254 		pipe_wait(pipe);
255 		pipe->waiting_writers--;
256 	}
257 
258 	pipe_unlock(pipe);
259 
260 	if (do_wakeup)
261 		wakeup_pipe_readers(pipe);
262 
263 	while (page_nr < spd_pages)
264 		spd->spd_release(spd, page_nr++);
265 
266 	return ret;
267 }
268 
269 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
270 {
271 	page_cache_release(spd->pages[i]);
272 }
273 
274 /*
275  * Check if we need to grow the arrays holding pages and partial page
276  * descriptions.
277  */
278 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
279 {
280 	unsigned int buffers = ACCESS_ONCE(pipe->buffers);
281 
282 	spd->nr_pages_max = buffers;
283 	if (buffers <= PIPE_DEF_BUFFERS)
284 		return 0;
285 
286 	spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
287 	spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
288 
289 	if (spd->pages && spd->partial)
290 		return 0;
291 
292 	kfree(spd->pages);
293 	kfree(spd->partial);
294 	return -ENOMEM;
295 }
296 
297 void splice_shrink_spd(struct splice_pipe_desc *spd)
298 {
299 	if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
300 		return;
301 
302 	kfree(spd->pages);
303 	kfree(spd->partial);
304 }
305 
306 static int
307 __generic_file_splice_read(struct file *in, loff_t *ppos,
308 			   struct pipe_inode_info *pipe, size_t len,
309 			   unsigned int flags)
310 {
311 	struct address_space *mapping = in->f_mapping;
312 	unsigned int loff, nr_pages, req_pages;
313 	struct page *pages[PIPE_DEF_BUFFERS];
314 	struct partial_page partial[PIPE_DEF_BUFFERS];
315 	struct page *page;
316 	pgoff_t index, end_index;
317 	loff_t isize;
318 	int error, page_nr;
319 	struct splice_pipe_desc spd = {
320 		.pages = pages,
321 		.partial = partial,
322 		.nr_pages_max = PIPE_DEF_BUFFERS,
323 		.flags = flags,
324 		.ops = &page_cache_pipe_buf_ops,
325 		.spd_release = spd_release_page,
326 	};
327 
328 	if (splice_grow_spd(pipe, &spd))
329 		return -ENOMEM;
330 
331 	index = *ppos >> PAGE_CACHE_SHIFT;
332 	loff = *ppos & ~PAGE_CACHE_MASK;
333 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
334 	nr_pages = min(req_pages, spd.nr_pages_max);
335 
336 	/*
337 	 * Lookup the (hopefully) full range of pages we need.
338 	 */
339 	spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
340 	index += spd.nr_pages;
341 
342 	/*
343 	 * If find_get_pages_contig() returned fewer pages than we needed,
344 	 * readahead/allocate the rest and fill in the holes.
345 	 */
346 	if (spd.nr_pages < nr_pages)
347 		page_cache_sync_readahead(mapping, &in->f_ra, in,
348 				index, req_pages - spd.nr_pages);
349 
350 	error = 0;
351 	while (spd.nr_pages < nr_pages) {
352 		/*
353 		 * Page could be there, find_get_pages_contig() breaks on
354 		 * the first hole.
355 		 */
356 		page = find_get_page(mapping, index);
357 		if (!page) {
358 			/*
359 			 * page didn't exist, allocate one.
360 			 */
361 			page = page_cache_alloc_cold(mapping);
362 			if (!page)
363 				break;
364 
365 			error = add_to_page_cache_lru(page, mapping, index,
366 						GFP_KERNEL);
367 			if (unlikely(error)) {
368 				page_cache_release(page);
369 				if (error == -EEXIST)
370 					continue;
371 				break;
372 			}
373 			/*
374 			 * add_to_page_cache() locks the page, unlock it
375 			 * to avoid convoluting the logic below even more.
376 			 */
377 			unlock_page(page);
378 		}
379 
380 		spd.pages[spd.nr_pages++] = page;
381 		index++;
382 	}
383 
384 	/*
385 	 * Now loop over the map and see if we need to start IO on any
386 	 * pages, fill in the partial map, etc.
387 	 */
388 	index = *ppos >> PAGE_CACHE_SHIFT;
389 	nr_pages = spd.nr_pages;
390 	spd.nr_pages = 0;
391 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
392 		unsigned int this_len;
393 
394 		if (!len)
395 			break;
396 
397 		/*
398 		 * this_len is the max we'll use from this page
399 		 */
400 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
401 		page = spd.pages[page_nr];
402 
403 		if (PageReadahead(page))
404 			page_cache_async_readahead(mapping, &in->f_ra, in,
405 					page, index, req_pages - page_nr);
406 
407 		/*
408 		 * If the page isn't uptodate, we may need to start io on it
409 		 */
410 		if (!PageUptodate(page)) {
411 			lock_page(page);
412 
413 			/*
414 			 * Page was truncated, or invalidated by the
415 			 * filesystem.  Redo the find/create, but this time the
416 			 * page is kept locked, so there's no chance of another
417 			 * race with truncate/invalidate.
418 			 */
419 			if (!page->mapping) {
420 				unlock_page(page);
421 				page = find_or_create_page(mapping, index,
422 						mapping_gfp_mask(mapping));
423 
424 				if (!page) {
425 					error = -ENOMEM;
426 					break;
427 				}
428 				page_cache_release(spd.pages[page_nr]);
429 				spd.pages[page_nr] = page;
430 			}
431 			/*
432 			 * page was already under io and is now done, great
433 			 */
434 			if (PageUptodate(page)) {
435 				unlock_page(page);
436 				goto fill_it;
437 			}
438 
439 			/*
440 			 * need to read in the page
441 			 */
442 			error = mapping->a_ops->readpage(in, page);
443 			if (unlikely(error)) {
444 				/*
445 				 * We really should re-lookup the page here,
446 				 * but it complicates things a lot. Instead
447 				 * lets just do what we already stored, and
448 				 * we'll get it the next time we are called.
449 				 */
450 				if (error == AOP_TRUNCATED_PAGE)
451 					error = 0;
452 
453 				break;
454 			}
455 		}
456 fill_it:
457 		/*
458 		 * i_size must be checked after PageUptodate.
459 		 */
460 		isize = i_size_read(mapping->host);
461 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
462 		if (unlikely(!isize || index > end_index))
463 			break;
464 
465 		/*
466 		 * if this is the last page, see if we need to shrink
467 		 * the length and stop
468 		 */
469 		if (end_index == index) {
470 			unsigned int plen;
471 
472 			/*
473 			 * max good bytes in this page
474 			 */
475 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
476 			if (plen <= loff)
477 				break;
478 
479 			/*
480 			 * force quit after adding this page
481 			 */
482 			this_len = min(this_len, plen - loff);
483 			len = this_len;
484 		}
485 
486 		spd.partial[page_nr].offset = loff;
487 		spd.partial[page_nr].len = this_len;
488 		len -= this_len;
489 		loff = 0;
490 		spd.nr_pages++;
491 		index++;
492 	}
493 
494 	/*
495 	 * Release any pages at the end, if we quit early. 'page_nr' is how far
496 	 * we got, 'nr_pages' is how many pages are in the map.
497 	 */
498 	while (page_nr < nr_pages)
499 		page_cache_release(spd.pages[page_nr++]);
500 	in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
501 
502 	if (spd.nr_pages)
503 		error = splice_to_pipe(pipe, &spd);
504 
505 	splice_shrink_spd(&spd);
506 	return error;
507 }
508 
509 /**
510  * generic_file_splice_read - splice data from file to a pipe
511  * @in:		file to splice from
512  * @ppos:	position in @in
513  * @pipe:	pipe to splice to
514  * @len:	number of bytes to splice
515  * @flags:	splice modifier flags
516  *
517  * Description:
518  *    Will read pages from given file and fill them into a pipe. Can be
519  *    used as long as the address_space operations for the source implements
520  *    a readpage() hook.
521  *
522  */
523 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
524 				 struct pipe_inode_info *pipe, size_t len,
525 				 unsigned int flags)
526 {
527 	loff_t isize, left;
528 	int ret;
529 
530 	isize = i_size_read(in->f_mapping->host);
531 	if (unlikely(*ppos >= isize))
532 		return 0;
533 
534 	left = isize - *ppos;
535 	if (unlikely(left < len))
536 		len = left;
537 
538 	ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
539 	if (ret > 0) {
540 		*ppos += ret;
541 		file_accessed(in);
542 	}
543 
544 	return ret;
545 }
546 EXPORT_SYMBOL(generic_file_splice_read);
547 
548 static const struct pipe_buf_operations default_pipe_buf_ops = {
549 	.can_merge = 0,
550 	.map = generic_pipe_buf_map,
551 	.unmap = generic_pipe_buf_unmap,
552 	.confirm = generic_pipe_buf_confirm,
553 	.release = generic_pipe_buf_release,
554 	.steal = generic_pipe_buf_steal,
555 	.get = generic_pipe_buf_get,
556 };
557 
558 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
559 			    unsigned long vlen, loff_t offset)
560 {
561 	mm_segment_t old_fs;
562 	loff_t pos = offset;
563 	ssize_t res;
564 
565 	old_fs = get_fs();
566 	set_fs(get_ds());
567 	/* The cast to a user pointer is valid due to the set_fs() */
568 	res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
569 	set_fs(old_fs);
570 
571 	return res;
572 }
573 
574 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
575 			    loff_t pos)
576 {
577 	mm_segment_t old_fs;
578 	ssize_t res;
579 
580 	old_fs = get_fs();
581 	set_fs(get_ds());
582 	/* The cast to a user pointer is valid due to the set_fs() */
583 	res = vfs_write(file, (__force const char __user *)buf, count, &pos);
584 	set_fs(old_fs);
585 
586 	return res;
587 }
588 EXPORT_SYMBOL(kernel_write);
589 
590 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
591 				 struct pipe_inode_info *pipe, size_t len,
592 				 unsigned int flags)
593 {
594 	unsigned int nr_pages;
595 	unsigned int nr_freed;
596 	size_t offset;
597 	struct page *pages[PIPE_DEF_BUFFERS];
598 	struct partial_page partial[PIPE_DEF_BUFFERS];
599 	struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
600 	ssize_t res;
601 	size_t this_len;
602 	int error;
603 	int i;
604 	struct splice_pipe_desc spd = {
605 		.pages = pages,
606 		.partial = partial,
607 		.nr_pages_max = PIPE_DEF_BUFFERS,
608 		.flags = flags,
609 		.ops = &default_pipe_buf_ops,
610 		.spd_release = spd_release_page,
611 	};
612 
613 	if (splice_grow_spd(pipe, &spd))
614 		return -ENOMEM;
615 
616 	res = -ENOMEM;
617 	vec = __vec;
618 	if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
619 		vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
620 		if (!vec)
621 			goto shrink_ret;
622 	}
623 
624 	offset = *ppos & ~PAGE_CACHE_MASK;
625 	nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
626 
627 	for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
628 		struct page *page;
629 
630 		page = alloc_page(GFP_USER);
631 		error = -ENOMEM;
632 		if (!page)
633 			goto err;
634 
635 		this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
636 		vec[i].iov_base = (void __user *) page_address(page);
637 		vec[i].iov_len = this_len;
638 		spd.pages[i] = page;
639 		spd.nr_pages++;
640 		len -= this_len;
641 		offset = 0;
642 	}
643 
644 	res = kernel_readv(in, vec, spd.nr_pages, *ppos);
645 	if (res < 0) {
646 		error = res;
647 		goto err;
648 	}
649 
650 	error = 0;
651 	if (!res)
652 		goto err;
653 
654 	nr_freed = 0;
655 	for (i = 0; i < spd.nr_pages; i++) {
656 		this_len = min_t(size_t, vec[i].iov_len, res);
657 		spd.partial[i].offset = 0;
658 		spd.partial[i].len = this_len;
659 		if (!this_len) {
660 			__free_page(spd.pages[i]);
661 			spd.pages[i] = NULL;
662 			nr_freed++;
663 		}
664 		res -= this_len;
665 	}
666 	spd.nr_pages -= nr_freed;
667 
668 	res = splice_to_pipe(pipe, &spd);
669 	if (res > 0)
670 		*ppos += res;
671 
672 shrink_ret:
673 	if (vec != __vec)
674 		kfree(vec);
675 	splice_shrink_spd(&spd);
676 	return res;
677 
678 err:
679 	for (i = 0; i < spd.nr_pages; i++)
680 		__free_page(spd.pages[i]);
681 
682 	res = error;
683 	goto shrink_ret;
684 }
685 EXPORT_SYMBOL(default_file_splice_read);
686 
687 /*
688  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
689  * using sendpage(). Return the number of bytes sent.
690  */
691 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
692 			    struct pipe_buffer *buf, struct splice_desc *sd)
693 {
694 	struct file *file = sd->u.file;
695 	loff_t pos = sd->pos;
696 	int more;
697 
698 	if (!likely(file->f_op->sendpage))
699 		return -EINVAL;
700 
701 	more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
702 
703 	if (sd->len < sd->total_len && pipe->nrbufs > 1)
704 		more |= MSG_SENDPAGE_NOTLAST;
705 
706 	return file->f_op->sendpage(file, buf->page, buf->offset,
707 				    sd->len, &pos, more);
708 }
709 
710 /*
711  * This is a little more tricky than the file -> pipe splicing. There are
712  * basically three cases:
713  *
714  *	- Destination page already exists in the address space and there
715  *	  are users of it. For that case we have no other option that
716  *	  copying the data. Tough luck.
717  *	- Destination page already exists in the address space, but there
718  *	  are no users of it. Make sure it's uptodate, then drop it. Fall
719  *	  through to last case.
720  *	- Destination page does not exist, we can add the pipe page to
721  *	  the page cache and avoid the copy.
722  *
723  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
724  * sd->flags), we attempt to migrate pages from the pipe to the output
725  * file address space page cache. This is possible if no one else has
726  * the pipe page referenced outside of the pipe and page cache. If
727  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
728  * a new page in the output file page cache and fill/dirty that.
729  */
730 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
731 		 struct splice_desc *sd)
732 {
733 	struct file *file = sd->u.file;
734 	struct address_space *mapping = file->f_mapping;
735 	unsigned int offset, this_len;
736 	struct page *page;
737 	void *fsdata;
738 	int ret;
739 
740 	offset = sd->pos & ~PAGE_CACHE_MASK;
741 
742 	this_len = sd->len;
743 	if (this_len + offset > PAGE_CACHE_SIZE)
744 		this_len = PAGE_CACHE_SIZE - offset;
745 
746 	ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
747 				AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
748 	if (unlikely(ret))
749 		goto out;
750 
751 	if (buf->page != page) {
752 		char *src = buf->ops->map(pipe, buf, 1);
753 		char *dst = kmap_atomic(page);
754 
755 		memcpy(dst + offset, src + buf->offset, this_len);
756 		flush_dcache_page(page);
757 		kunmap_atomic(dst);
758 		buf->ops->unmap(pipe, buf, src);
759 	}
760 	ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
761 				page, fsdata);
762 out:
763 	return ret;
764 }
765 EXPORT_SYMBOL(pipe_to_file);
766 
767 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
768 {
769 	smp_mb();
770 	if (waitqueue_active(&pipe->wait))
771 		wake_up_interruptible(&pipe->wait);
772 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
773 }
774 
775 /**
776  * splice_from_pipe_feed - feed available data from a pipe to a file
777  * @pipe:	pipe to splice from
778  * @sd:		information to @actor
779  * @actor:	handler that splices the data
780  *
781  * Description:
782  *    This function loops over the pipe and calls @actor to do the
783  *    actual moving of a single struct pipe_buffer to the desired
784  *    destination.  It returns when there's no more buffers left in
785  *    the pipe or if the requested number of bytes (@sd->total_len)
786  *    have been copied.  It returns a positive number (one) if the
787  *    pipe needs to be filled with more data, zero if the required
788  *    number of bytes have been copied and -errno on error.
789  *
790  *    This, together with splice_from_pipe_{begin,end,next}, may be
791  *    used to implement the functionality of __splice_from_pipe() when
792  *    locking is required around copying the pipe buffers to the
793  *    destination.
794  */
795 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
796 			  splice_actor *actor)
797 {
798 	int ret;
799 
800 	while (pipe->nrbufs) {
801 		struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
802 		const struct pipe_buf_operations *ops = buf->ops;
803 
804 		sd->len = buf->len;
805 		if (sd->len > sd->total_len)
806 			sd->len = sd->total_len;
807 
808 		ret = buf->ops->confirm(pipe, buf);
809 		if (unlikely(ret)) {
810 			if (ret == -ENODATA)
811 				ret = 0;
812 			return ret;
813 		}
814 
815 		ret = actor(pipe, buf, sd);
816 		if (ret <= 0)
817 			return ret;
818 
819 		buf->offset += ret;
820 		buf->len -= ret;
821 
822 		sd->num_spliced += ret;
823 		sd->len -= ret;
824 		sd->pos += ret;
825 		sd->total_len -= ret;
826 
827 		if (!buf->len) {
828 			buf->ops = NULL;
829 			ops->release(pipe, buf);
830 			pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
831 			pipe->nrbufs--;
832 			if (pipe->files)
833 				sd->need_wakeup = true;
834 		}
835 
836 		if (!sd->total_len)
837 			return 0;
838 	}
839 
840 	return 1;
841 }
842 EXPORT_SYMBOL(splice_from_pipe_feed);
843 
844 /**
845  * splice_from_pipe_next - wait for some data to splice from
846  * @pipe:	pipe to splice from
847  * @sd:		information about the splice operation
848  *
849  * Description:
850  *    This function will wait for some data and return a positive
851  *    value (one) if pipe buffers are available.  It will return zero
852  *    or -errno if no more data needs to be spliced.
853  */
854 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
855 {
856 	while (!pipe->nrbufs) {
857 		if (!pipe->writers)
858 			return 0;
859 
860 		if (!pipe->waiting_writers && sd->num_spliced)
861 			return 0;
862 
863 		if (sd->flags & SPLICE_F_NONBLOCK)
864 			return -EAGAIN;
865 
866 		if (signal_pending(current))
867 			return -ERESTARTSYS;
868 
869 		if (sd->need_wakeup) {
870 			wakeup_pipe_writers(pipe);
871 			sd->need_wakeup = false;
872 		}
873 
874 		pipe_wait(pipe);
875 	}
876 
877 	return 1;
878 }
879 EXPORT_SYMBOL(splice_from_pipe_next);
880 
881 /**
882  * splice_from_pipe_begin - start splicing from pipe
883  * @sd:		information about the splice operation
884  *
885  * Description:
886  *    This function should be called before a loop containing
887  *    splice_from_pipe_next() and splice_from_pipe_feed() to
888  *    initialize the necessary fields of @sd.
889  */
890 void splice_from_pipe_begin(struct splice_desc *sd)
891 {
892 	sd->num_spliced = 0;
893 	sd->need_wakeup = false;
894 }
895 EXPORT_SYMBOL(splice_from_pipe_begin);
896 
897 /**
898  * splice_from_pipe_end - finish splicing from pipe
899  * @pipe:	pipe to splice from
900  * @sd:		information about the splice operation
901  *
902  * Description:
903  *    This function will wake up pipe writers if necessary.  It should
904  *    be called after a loop containing splice_from_pipe_next() and
905  *    splice_from_pipe_feed().
906  */
907 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
908 {
909 	if (sd->need_wakeup)
910 		wakeup_pipe_writers(pipe);
911 }
912 EXPORT_SYMBOL(splice_from_pipe_end);
913 
914 /**
915  * __splice_from_pipe - splice data from a pipe to given actor
916  * @pipe:	pipe to splice from
917  * @sd:		information to @actor
918  * @actor:	handler that splices the data
919  *
920  * Description:
921  *    This function does little more than loop over the pipe and call
922  *    @actor to do the actual moving of a single struct pipe_buffer to
923  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
924  *    pipe_to_user.
925  *
926  */
927 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
928 			   splice_actor *actor)
929 {
930 	int ret;
931 
932 	splice_from_pipe_begin(sd);
933 	do {
934 		ret = splice_from_pipe_next(pipe, sd);
935 		if (ret > 0)
936 			ret = splice_from_pipe_feed(pipe, sd, actor);
937 	} while (ret > 0);
938 	splice_from_pipe_end(pipe, sd);
939 
940 	return sd->num_spliced ? sd->num_spliced : ret;
941 }
942 EXPORT_SYMBOL(__splice_from_pipe);
943 
944 /**
945  * splice_from_pipe - splice data from a pipe to a file
946  * @pipe:	pipe to splice from
947  * @out:	file to splice to
948  * @ppos:	position in @out
949  * @len:	how many bytes to splice
950  * @flags:	splice modifier flags
951  * @actor:	handler that splices the data
952  *
953  * Description:
954  *    See __splice_from_pipe. This function locks the pipe inode,
955  *    otherwise it's identical to __splice_from_pipe().
956  *
957  */
958 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
959 			 loff_t *ppos, size_t len, unsigned int flags,
960 			 splice_actor *actor)
961 {
962 	ssize_t ret;
963 	struct splice_desc sd = {
964 		.total_len = len,
965 		.flags = flags,
966 		.pos = *ppos,
967 		.u.file = out,
968 	};
969 
970 	pipe_lock(pipe);
971 	ret = __splice_from_pipe(pipe, &sd, actor);
972 	pipe_unlock(pipe);
973 
974 	return ret;
975 }
976 
977 /**
978  * generic_file_splice_write - splice data from a pipe to a file
979  * @pipe:	pipe info
980  * @out:	file to write to
981  * @ppos:	position in @out
982  * @len:	number of bytes to splice
983  * @flags:	splice modifier flags
984  *
985  * Description:
986  *    Will either move or copy pages (determined by @flags options) from
987  *    the given pipe inode to the given file.
988  *
989  */
990 ssize_t
991 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
992 			  loff_t *ppos, size_t len, unsigned int flags)
993 {
994 	struct address_space *mapping = out->f_mapping;
995 	struct inode *inode = mapping->host;
996 	struct splice_desc sd = {
997 		.total_len = len,
998 		.flags = flags,
999 		.pos = *ppos,
1000 		.u.file = out,
1001 	};
1002 	ssize_t ret;
1003 
1004 	pipe_lock(pipe);
1005 
1006 	splice_from_pipe_begin(&sd);
1007 	do {
1008 		ret = splice_from_pipe_next(pipe, &sd);
1009 		if (ret <= 0)
1010 			break;
1011 
1012 		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1013 		ret = file_remove_suid(out);
1014 		if (!ret) {
1015 			ret = file_update_time(out);
1016 			if (!ret)
1017 				ret = splice_from_pipe_feed(pipe, &sd,
1018 							    pipe_to_file);
1019 		}
1020 		mutex_unlock(&inode->i_mutex);
1021 	} while (ret > 0);
1022 	splice_from_pipe_end(pipe, &sd);
1023 
1024 	pipe_unlock(pipe);
1025 
1026 	if (sd.num_spliced)
1027 		ret = sd.num_spliced;
1028 
1029 	if (ret > 0) {
1030 		int err;
1031 
1032 		err = generic_write_sync(out, *ppos, ret);
1033 		if (err)
1034 			ret = err;
1035 		else
1036 			*ppos += ret;
1037 		balance_dirty_pages_ratelimited(mapping);
1038 	}
1039 
1040 	return ret;
1041 }
1042 
1043 EXPORT_SYMBOL(generic_file_splice_write);
1044 
1045 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1046 			  struct splice_desc *sd)
1047 {
1048 	int ret;
1049 	void *data;
1050 	loff_t tmp = sd->pos;
1051 
1052 	data = buf->ops->map(pipe, buf, 0);
1053 	ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1054 	buf->ops->unmap(pipe, buf, data);
1055 
1056 	return ret;
1057 }
1058 
1059 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1060 					 struct file *out, loff_t *ppos,
1061 					 size_t len, unsigned int flags)
1062 {
1063 	ssize_t ret;
1064 
1065 	ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1066 	if (ret > 0)
1067 		*ppos += ret;
1068 
1069 	return ret;
1070 }
1071 
1072 /**
1073  * generic_splice_sendpage - splice data from a pipe to a socket
1074  * @pipe:	pipe to splice from
1075  * @out:	socket to write to
1076  * @ppos:	position in @out
1077  * @len:	number of bytes to splice
1078  * @flags:	splice modifier flags
1079  *
1080  * Description:
1081  *    Will send @len bytes from the pipe to a network socket. No data copying
1082  *    is involved.
1083  *
1084  */
1085 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1086 				loff_t *ppos, size_t len, unsigned int flags)
1087 {
1088 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1089 }
1090 
1091 EXPORT_SYMBOL(generic_splice_sendpage);
1092 
1093 /*
1094  * Attempt to initiate a splice from pipe to file.
1095  */
1096 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1097 			   loff_t *ppos, size_t len, unsigned int flags)
1098 {
1099 	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1100 				loff_t *, size_t, unsigned int);
1101 
1102 	if (out->f_op->splice_write)
1103 		splice_write = out->f_op->splice_write;
1104 	else
1105 		splice_write = default_file_splice_write;
1106 
1107 	return splice_write(pipe, out, ppos, len, flags);
1108 }
1109 
1110 /*
1111  * Attempt to initiate a splice from a file to a pipe.
1112  */
1113 static long do_splice_to(struct file *in, loff_t *ppos,
1114 			 struct pipe_inode_info *pipe, size_t len,
1115 			 unsigned int flags)
1116 {
1117 	ssize_t (*splice_read)(struct file *, loff_t *,
1118 			       struct pipe_inode_info *, size_t, unsigned int);
1119 	int ret;
1120 
1121 	if (unlikely(!(in->f_mode & FMODE_READ)))
1122 		return -EBADF;
1123 
1124 	ret = rw_verify_area(READ, in, ppos, len);
1125 	if (unlikely(ret < 0))
1126 		return ret;
1127 
1128 	if (in->f_op->splice_read)
1129 		splice_read = in->f_op->splice_read;
1130 	else
1131 		splice_read = default_file_splice_read;
1132 
1133 	return splice_read(in, ppos, pipe, len, flags);
1134 }
1135 
1136 /**
1137  * splice_direct_to_actor - splices data directly between two non-pipes
1138  * @in:		file to splice from
1139  * @sd:		actor information on where to splice to
1140  * @actor:	handles the data splicing
1141  *
1142  * Description:
1143  *    This is a special case helper to splice directly between two
1144  *    points, without requiring an explicit pipe. Internally an allocated
1145  *    pipe is cached in the process, and reused during the lifetime of
1146  *    that process.
1147  *
1148  */
1149 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1150 			       splice_direct_actor *actor)
1151 {
1152 	struct pipe_inode_info *pipe;
1153 	long ret, bytes;
1154 	umode_t i_mode;
1155 	size_t len;
1156 	int i, flags;
1157 
1158 	/*
1159 	 * We require the input being a regular file, as we don't want to
1160 	 * randomly drop data for eg socket -> socket splicing. Use the
1161 	 * piped splicing for that!
1162 	 */
1163 	i_mode = file_inode(in)->i_mode;
1164 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1165 		return -EINVAL;
1166 
1167 	/*
1168 	 * neither in nor out is a pipe, setup an internal pipe attached to
1169 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
1170 	 */
1171 	pipe = current->splice_pipe;
1172 	if (unlikely(!pipe)) {
1173 		pipe = alloc_pipe_info();
1174 		if (!pipe)
1175 			return -ENOMEM;
1176 
1177 		/*
1178 		 * We don't have an immediate reader, but we'll read the stuff
1179 		 * out of the pipe right after the splice_to_pipe(). So set
1180 		 * PIPE_READERS appropriately.
1181 		 */
1182 		pipe->readers = 1;
1183 
1184 		current->splice_pipe = pipe;
1185 	}
1186 
1187 	/*
1188 	 * Do the splice.
1189 	 */
1190 	ret = 0;
1191 	bytes = 0;
1192 	len = sd->total_len;
1193 	flags = sd->flags;
1194 
1195 	/*
1196 	 * Don't block on output, we have to drain the direct pipe.
1197 	 */
1198 	sd->flags &= ~SPLICE_F_NONBLOCK;
1199 
1200 	while (len) {
1201 		size_t read_len;
1202 		loff_t pos = sd->pos, prev_pos = pos;
1203 
1204 		ret = do_splice_to(in, &pos, pipe, len, flags);
1205 		if (unlikely(ret <= 0))
1206 			goto out_release;
1207 
1208 		read_len = ret;
1209 		sd->total_len = read_len;
1210 
1211 		/*
1212 		 * NOTE: nonblocking mode only applies to the input. We
1213 		 * must not do the output in nonblocking mode as then we
1214 		 * could get stuck data in the internal pipe:
1215 		 */
1216 		ret = actor(pipe, sd);
1217 		if (unlikely(ret <= 0)) {
1218 			sd->pos = prev_pos;
1219 			goto out_release;
1220 		}
1221 
1222 		bytes += ret;
1223 		len -= ret;
1224 		sd->pos = pos;
1225 
1226 		if (ret < read_len) {
1227 			sd->pos = prev_pos + ret;
1228 			goto out_release;
1229 		}
1230 	}
1231 
1232 done:
1233 	pipe->nrbufs = pipe->curbuf = 0;
1234 	file_accessed(in);
1235 	return bytes;
1236 
1237 out_release:
1238 	/*
1239 	 * If we did an incomplete transfer we must release
1240 	 * the pipe buffers in question:
1241 	 */
1242 	for (i = 0; i < pipe->buffers; i++) {
1243 		struct pipe_buffer *buf = pipe->bufs + i;
1244 
1245 		if (buf->ops) {
1246 			buf->ops->release(pipe, buf);
1247 			buf->ops = NULL;
1248 		}
1249 	}
1250 
1251 	if (!bytes)
1252 		bytes = ret;
1253 
1254 	goto done;
1255 }
1256 EXPORT_SYMBOL(splice_direct_to_actor);
1257 
1258 static int direct_splice_actor(struct pipe_inode_info *pipe,
1259 			       struct splice_desc *sd)
1260 {
1261 	struct file *file = sd->u.file;
1262 
1263 	return do_splice_from(pipe, file, sd->opos, sd->total_len,
1264 			      sd->flags);
1265 }
1266 
1267 /**
1268  * do_splice_direct - splices data directly between two files
1269  * @in:		file to splice from
1270  * @ppos:	input file offset
1271  * @out:	file to splice to
1272  * @opos:	output file offset
1273  * @len:	number of bytes to splice
1274  * @flags:	splice modifier flags
1275  *
1276  * Description:
1277  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1278  *    doing it in the application would incur an extra system call
1279  *    (splice in + splice out, as compared to just sendfile()). So this helper
1280  *    can splice directly through a process-private pipe.
1281  *
1282  */
1283 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1284 		      loff_t *opos, size_t len, unsigned int flags)
1285 {
1286 	struct splice_desc sd = {
1287 		.len		= len,
1288 		.total_len	= len,
1289 		.flags		= flags,
1290 		.pos		= *ppos,
1291 		.u.file		= out,
1292 		.opos		= opos,
1293 	};
1294 	long ret;
1295 
1296 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1297 		return -EBADF;
1298 
1299 	if (unlikely(out->f_flags & O_APPEND))
1300 		return -EINVAL;
1301 
1302 	ret = rw_verify_area(WRITE, out, opos, len);
1303 	if (unlikely(ret < 0))
1304 		return ret;
1305 
1306 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1307 	if (ret > 0)
1308 		*ppos = sd.pos;
1309 
1310 	return ret;
1311 }
1312 
1313 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1314 			       struct pipe_inode_info *opipe,
1315 			       size_t len, unsigned int flags);
1316 
1317 /*
1318  * Determine where to splice to/from.
1319  */
1320 static long do_splice(struct file *in, loff_t __user *off_in,
1321 		      struct file *out, loff_t __user *off_out,
1322 		      size_t len, unsigned int flags)
1323 {
1324 	struct pipe_inode_info *ipipe;
1325 	struct pipe_inode_info *opipe;
1326 	loff_t offset;
1327 	long ret;
1328 
1329 	ipipe = get_pipe_info(in);
1330 	opipe = get_pipe_info(out);
1331 
1332 	if (ipipe && opipe) {
1333 		if (off_in || off_out)
1334 			return -ESPIPE;
1335 
1336 		if (!(in->f_mode & FMODE_READ))
1337 			return -EBADF;
1338 
1339 		if (!(out->f_mode & FMODE_WRITE))
1340 			return -EBADF;
1341 
1342 		/* Splicing to self would be fun, but... */
1343 		if (ipipe == opipe)
1344 			return -EINVAL;
1345 
1346 		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1347 	}
1348 
1349 	if (ipipe) {
1350 		if (off_in)
1351 			return -ESPIPE;
1352 		if (off_out) {
1353 			if (!(out->f_mode & FMODE_PWRITE))
1354 				return -EINVAL;
1355 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1356 				return -EFAULT;
1357 		} else {
1358 			offset = out->f_pos;
1359 		}
1360 
1361 		if (unlikely(!(out->f_mode & FMODE_WRITE)))
1362 			return -EBADF;
1363 
1364 		if (unlikely(out->f_flags & O_APPEND))
1365 			return -EINVAL;
1366 
1367 		ret = rw_verify_area(WRITE, out, &offset, len);
1368 		if (unlikely(ret < 0))
1369 			return ret;
1370 
1371 		file_start_write(out);
1372 		ret = do_splice_from(ipipe, out, &offset, len, flags);
1373 		file_end_write(out);
1374 
1375 		if (!off_out)
1376 			out->f_pos = offset;
1377 		else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1378 			ret = -EFAULT;
1379 
1380 		return ret;
1381 	}
1382 
1383 	if (opipe) {
1384 		if (off_out)
1385 			return -ESPIPE;
1386 		if (off_in) {
1387 			if (!(in->f_mode & FMODE_PREAD))
1388 				return -EINVAL;
1389 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1390 				return -EFAULT;
1391 		} else {
1392 			offset = in->f_pos;
1393 		}
1394 
1395 		ret = do_splice_to(in, &offset, opipe, len, flags);
1396 
1397 		if (!off_in)
1398 			in->f_pos = offset;
1399 		else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1400 			ret = -EFAULT;
1401 
1402 		return ret;
1403 	}
1404 
1405 	return -EINVAL;
1406 }
1407 
1408 /*
1409  * Map an iov into an array of pages and offset/length tupples. With the
1410  * partial_page structure, we can map several non-contiguous ranges into
1411  * our ones pages[] map instead of splitting that operation into pieces.
1412  * Could easily be exported as a generic helper for other users, in which
1413  * case one would probably want to add a 'max_nr_pages' parameter as well.
1414  */
1415 static int get_iovec_page_array(const struct iovec __user *iov,
1416 				unsigned int nr_vecs, struct page **pages,
1417 				struct partial_page *partial, bool aligned,
1418 				unsigned int pipe_buffers)
1419 {
1420 	int buffers = 0, error = 0;
1421 
1422 	while (nr_vecs) {
1423 		unsigned long off, npages;
1424 		struct iovec entry;
1425 		void __user *base;
1426 		size_t len;
1427 		int i;
1428 
1429 		error = -EFAULT;
1430 		if (copy_from_user(&entry, iov, sizeof(entry)))
1431 			break;
1432 
1433 		base = entry.iov_base;
1434 		len = entry.iov_len;
1435 
1436 		/*
1437 		 * Sanity check this iovec. 0 read succeeds.
1438 		 */
1439 		error = 0;
1440 		if (unlikely(!len))
1441 			break;
1442 		error = -EFAULT;
1443 		if (!access_ok(VERIFY_READ, base, len))
1444 			break;
1445 
1446 		/*
1447 		 * Get this base offset and number of pages, then map
1448 		 * in the user pages.
1449 		 */
1450 		off = (unsigned long) base & ~PAGE_MASK;
1451 
1452 		/*
1453 		 * If asked for alignment, the offset must be zero and the
1454 		 * length a multiple of the PAGE_SIZE.
1455 		 */
1456 		error = -EINVAL;
1457 		if (aligned && (off || len & ~PAGE_MASK))
1458 			break;
1459 
1460 		npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1461 		if (npages > pipe_buffers - buffers)
1462 			npages = pipe_buffers - buffers;
1463 
1464 		error = get_user_pages_fast((unsigned long)base, npages,
1465 					0, &pages[buffers]);
1466 
1467 		if (unlikely(error <= 0))
1468 			break;
1469 
1470 		/*
1471 		 * Fill this contiguous range into the partial page map.
1472 		 */
1473 		for (i = 0; i < error; i++) {
1474 			const int plen = min_t(size_t, len, PAGE_SIZE - off);
1475 
1476 			partial[buffers].offset = off;
1477 			partial[buffers].len = plen;
1478 
1479 			off = 0;
1480 			len -= plen;
1481 			buffers++;
1482 		}
1483 
1484 		/*
1485 		 * We didn't complete this iov, stop here since it probably
1486 		 * means we have to move some of this into a pipe to
1487 		 * be able to continue.
1488 		 */
1489 		if (len)
1490 			break;
1491 
1492 		/*
1493 		 * Don't continue if we mapped fewer pages than we asked for,
1494 		 * or if we mapped the max number of pages that we have
1495 		 * room for.
1496 		 */
1497 		if (error < npages || buffers == pipe_buffers)
1498 			break;
1499 
1500 		nr_vecs--;
1501 		iov++;
1502 	}
1503 
1504 	if (buffers)
1505 		return buffers;
1506 
1507 	return error;
1508 }
1509 
1510 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1511 			struct splice_desc *sd)
1512 {
1513 	char *src;
1514 	int ret;
1515 
1516 	/*
1517 	 * See if we can use the atomic maps, by prefaulting in the
1518 	 * pages and doing an atomic copy
1519 	 */
1520 	if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1521 		src = buf->ops->map(pipe, buf, 1);
1522 		ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1523 							sd->len);
1524 		buf->ops->unmap(pipe, buf, src);
1525 		if (!ret) {
1526 			ret = sd->len;
1527 			goto out;
1528 		}
1529 	}
1530 
1531 	/*
1532 	 * No dice, use slow non-atomic map and copy
1533  	 */
1534 	src = buf->ops->map(pipe, buf, 0);
1535 
1536 	ret = sd->len;
1537 	if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1538 		ret = -EFAULT;
1539 
1540 	buf->ops->unmap(pipe, buf, src);
1541 out:
1542 	if (ret > 0)
1543 		sd->u.userptr += ret;
1544 	return ret;
1545 }
1546 
1547 /*
1548  * For lack of a better implementation, implement vmsplice() to userspace
1549  * as a simple copy of the pipes pages to the user iov.
1550  */
1551 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1552 			     unsigned long nr_segs, unsigned int flags)
1553 {
1554 	struct pipe_inode_info *pipe;
1555 	struct splice_desc sd;
1556 	ssize_t size;
1557 	int error;
1558 	long ret;
1559 
1560 	pipe = get_pipe_info(file);
1561 	if (!pipe)
1562 		return -EBADF;
1563 
1564 	pipe_lock(pipe);
1565 
1566 	error = ret = 0;
1567 	while (nr_segs) {
1568 		void __user *base;
1569 		size_t len;
1570 
1571 		/*
1572 		 * Get user address base and length for this iovec.
1573 		 */
1574 		error = get_user(base, &iov->iov_base);
1575 		if (unlikely(error))
1576 			break;
1577 		error = get_user(len, &iov->iov_len);
1578 		if (unlikely(error))
1579 			break;
1580 
1581 		/*
1582 		 * Sanity check this iovec. 0 read succeeds.
1583 		 */
1584 		if (unlikely(!len))
1585 			break;
1586 		if (unlikely(!base)) {
1587 			error = -EFAULT;
1588 			break;
1589 		}
1590 
1591 		if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1592 			error = -EFAULT;
1593 			break;
1594 		}
1595 
1596 		sd.len = 0;
1597 		sd.total_len = len;
1598 		sd.flags = flags;
1599 		sd.u.userptr = base;
1600 		sd.pos = 0;
1601 
1602 		size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1603 		if (size < 0) {
1604 			if (!ret)
1605 				ret = size;
1606 
1607 			break;
1608 		}
1609 
1610 		ret += size;
1611 
1612 		if (size < len)
1613 			break;
1614 
1615 		nr_segs--;
1616 		iov++;
1617 	}
1618 
1619 	pipe_unlock(pipe);
1620 
1621 	if (!ret)
1622 		ret = error;
1623 
1624 	return ret;
1625 }
1626 
1627 /*
1628  * vmsplice splices a user address range into a pipe. It can be thought of
1629  * as splice-from-memory, where the regular splice is splice-from-file (or
1630  * to file). In both cases the output is a pipe, naturally.
1631  */
1632 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1633 			     unsigned long nr_segs, unsigned int flags)
1634 {
1635 	struct pipe_inode_info *pipe;
1636 	struct page *pages[PIPE_DEF_BUFFERS];
1637 	struct partial_page partial[PIPE_DEF_BUFFERS];
1638 	struct splice_pipe_desc spd = {
1639 		.pages = pages,
1640 		.partial = partial,
1641 		.nr_pages_max = PIPE_DEF_BUFFERS,
1642 		.flags = flags,
1643 		.ops = &user_page_pipe_buf_ops,
1644 		.spd_release = spd_release_page,
1645 	};
1646 	long ret;
1647 
1648 	pipe = get_pipe_info(file);
1649 	if (!pipe)
1650 		return -EBADF;
1651 
1652 	if (splice_grow_spd(pipe, &spd))
1653 		return -ENOMEM;
1654 
1655 	spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1656 					    spd.partial, false,
1657 					    spd.nr_pages_max);
1658 	if (spd.nr_pages <= 0)
1659 		ret = spd.nr_pages;
1660 	else
1661 		ret = splice_to_pipe(pipe, &spd);
1662 
1663 	splice_shrink_spd(&spd);
1664 	return ret;
1665 }
1666 
1667 /*
1668  * Note that vmsplice only really supports true splicing _from_ user memory
1669  * to a pipe, not the other way around. Splicing from user memory is a simple
1670  * operation that can be supported without any funky alignment restrictions
1671  * or nasty vm tricks. We simply map in the user memory and fill them into
1672  * a pipe. The reverse isn't quite as easy, though. There are two possible
1673  * solutions for that:
1674  *
1675  *	- memcpy() the data internally, at which point we might as well just
1676  *	  do a regular read() on the buffer anyway.
1677  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1678  *	  has restriction limitations on both ends of the pipe).
1679  *
1680  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1681  *
1682  */
1683 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1684 		unsigned long, nr_segs, unsigned int, flags)
1685 {
1686 	struct fd f;
1687 	long error;
1688 
1689 	if (unlikely(nr_segs > UIO_MAXIOV))
1690 		return -EINVAL;
1691 	else if (unlikely(!nr_segs))
1692 		return 0;
1693 
1694 	error = -EBADF;
1695 	f = fdget(fd);
1696 	if (f.file) {
1697 		if (f.file->f_mode & FMODE_WRITE)
1698 			error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1699 		else if (f.file->f_mode & FMODE_READ)
1700 			error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1701 
1702 		fdput(f);
1703 	}
1704 
1705 	return error;
1706 }
1707 
1708 #ifdef CONFIG_COMPAT
1709 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1710 		    unsigned int, nr_segs, unsigned int, flags)
1711 {
1712 	unsigned i;
1713 	struct iovec __user *iov;
1714 	if (nr_segs > UIO_MAXIOV)
1715 		return -EINVAL;
1716 	iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1717 	for (i = 0; i < nr_segs; i++) {
1718 		struct compat_iovec v;
1719 		if (get_user(v.iov_base, &iov32[i].iov_base) ||
1720 		    get_user(v.iov_len, &iov32[i].iov_len) ||
1721 		    put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1722 		    put_user(v.iov_len, &iov[i].iov_len))
1723 			return -EFAULT;
1724 	}
1725 	return sys_vmsplice(fd, iov, nr_segs, flags);
1726 }
1727 #endif
1728 
1729 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1730 		int, fd_out, loff_t __user *, off_out,
1731 		size_t, len, unsigned int, flags)
1732 {
1733 	struct fd in, out;
1734 	long error;
1735 
1736 	if (unlikely(!len))
1737 		return 0;
1738 
1739 	error = -EBADF;
1740 	in = fdget(fd_in);
1741 	if (in.file) {
1742 		if (in.file->f_mode & FMODE_READ) {
1743 			out = fdget(fd_out);
1744 			if (out.file) {
1745 				if (out.file->f_mode & FMODE_WRITE)
1746 					error = do_splice(in.file, off_in,
1747 							  out.file, off_out,
1748 							  len, flags);
1749 				fdput(out);
1750 			}
1751 		}
1752 		fdput(in);
1753 	}
1754 	return error;
1755 }
1756 
1757 /*
1758  * Make sure there's data to read. Wait for input if we can, otherwise
1759  * return an appropriate error.
1760  */
1761 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1762 {
1763 	int ret;
1764 
1765 	/*
1766 	 * Check ->nrbufs without the inode lock first. This function
1767 	 * is speculative anyways, so missing one is ok.
1768 	 */
1769 	if (pipe->nrbufs)
1770 		return 0;
1771 
1772 	ret = 0;
1773 	pipe_lock(pipe);
1774 
1775 	while (!pipe->nrbufs) {
1776 		if (signal_pending(current)) {
1777 			ret = -ERESTARTSYS;
1778 			break;
1779 		}
1780 		if (!pipe->writers)
1781 			break;
1782 		if (!pipe->waiting_writers) {
1783 			if (flags & SPLICE_F_NONBLOCK) {
1784 				ret = -EAGAIN;
1785 				break;
1786 			}
1787 		}
1788 		pipe_wait(pipe);
1789 	}
1790 
1791 	pipe_unlock(pipe);
1792 	return ret;
1793 }
1794 
1795 /*
1796  * Make sure there's writeable room. Wait for room if we can, otherwise
1797  * return an appropriate error.
1798  */
1799 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1800 {
1801 	int ret;
1802 
1803 	/*
1804 	 * Check ->nrbufs without the inode lock first. This function
1805 	 * is speculative anyways, so missing one is ok.
1806 	 */
1807 	if (pipe->nrbufs < pipe->buffers)
1808 		return 0;
1809 
1810 	ret = 0;
1811 	pipe_lock(pipe);
1812 
1813 	while (pipe->nrbufs >= pipe->buffers) {
1814 		if (!pipe->readers) {
1815 			send_sig(SIGPIPE, current, 0);
1816 			ret = -EPIPE;
1817 			break;
1818 		}
1819 		if (flags & SPLICE_F_NONBLOCK) {
1820 			ret = -EAGAIN;
1821 			break;
1822 		}
1823 		if (signal_pending(current)) {
1824 			ret = -ERESTARTSYS;
1825 			break;
1826 		}
1827 		pipe->waiting_writers++;
1828 		pipe_wait(pipe);
1829 		pipe->waiting_writers--;
1830 	}
1831 
1832 	pipe_unlock(pipe);
1833 	return ret;
1834 }
1835 
1836 /*
1837  * Splice contents of ipipe to opipe.
1838  */
1839 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1840 			       struct pipe_inode_info *opipe,
1841 			       size_t len, unsigned int flags)
1842 {
1843 	struct pipe_buffer *ibuf, *obuf;
1844 	int ret = 0, nbuf;
1845 	bool input_wakeup = false;
1846 
1847 
1848 retry:
1849 	ret = ipipe_prep(ipipe, flags);
1850 	if (ret)
1851 		return ret;
1852 
1853 	ret = opipe_prep(opipe, flags);
1854 	if (ret)
1855 		return ret;
1856 
1857 	/*
1858 	 * Potential ABBA deadlock, work around it by ordering lock
1859 	 * grabbing by pipe info address. Otherwise two different processes
1860 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1861 	 */
1862 	pipe_double_lock(ipipe, opipe);
1863 
1864 	do {
1865 		if (!opipe->readers) {
1866 			send_sig(SIGPIPE, current, 0);
1867 			if (!ret)
1868 				ret = -EPIPE;
1869 			break;
1870 		}
1871 
1872 		if (!ipipe->nrbufs && !ipipe->writers)
1873 			break;
1874 
1875 		/*
1876 		 * Cannot make any progress, because either the input
1877 		 * pipe is empty or the output pipe is full.
1878 		 */
1879 		if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1880 			/* Already processed some buffers, break */
1881 			if (ret)
1882 				break;
1883 
1884 			if (flags & SPLICE_F_NONBLOCK) {
1885 				ret = -EAGAIN;
1886 				break;
1887 			}
1888 
1889 			/*
1890 			 * We raced with another reader/writer and haven't
1891 			 * managed to process any buffers.  A zero return
1892 			 * value means EOF, so retry instead.
1893 			 */
1894 			pipe_unlock(ipipe);
1895 			pipe_unlock(opipe);
1896 			goto retry;
1897 		}
1898 
1899 		ibuf = ipipe->bufs + ipipe->curbuf;
1900 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1901 		obuf = opipe->bufs + nbuf;
1902 
1903 		if (len >= ibuf->len) {
1904 			/*
1905 			 * Simply move the whole buffer from ipipe to opipe
1906 			 */
1907 			*obuf = *ibuf;
1908 			ibuf->ops = NULL;
1909 			opipe->nrbufs++;
1910 			ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1911 			ipipe->nrbufs--;
1912 			input_wakeup = true;
1913 		} else {
1914 			/*
1915 			 * Get a reference to this pipe buffer,
1916 			 * so we can copy the contents over.
1917 			 */
1918 			ibuf->ops->get(ipipe, ibuf);
1919 			*obuf = *ibuf;
1920 
1921 			/*
1922 			 * Don't inherit the gift flag, we need to
1923 			 * prevent multiple steals of this page.
1924 			 */
1925 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1926 
1927 			obuf->len = len;
1928 			opipe->nrbufs++;
1929 			ibuf->offset += obuf->len;
1930 			ibuf->len -= obuf->len;
1931 		}
1932 		ret += obuf->len;
1933 		len -= obuf->len;
1934 	} while (len);
1935 
1936 	pipe_unlock(ipipe);
1937 	pipe_unlock(opipe);
1938 
1939 	/*
1940 	 * If we put data in the output pipe, wakeup any potential readers.
1941 	 */
1942 	if (ret > 0)
1943 		wakeup_pipe_readers(opipe);
1944 
1945 	if (input_wakeup)
1946 		wakeup_pipe_writers(ipipe);
1947 
1948 	return ret;
1949 }
1950 
1951 /*
1952  * Link contents of ipipe to opipe.
1953  */
1954 static int link_pipe(struct pipe_inode_info *ipipe,
1955 		     struct pipe_inode_info *opipe,
1956 		     size_t len, unsigned int flags)
1957 {
1958 	struct pipe_buffer *ibuf, *obuf;
1959 	int ret = 0, i = 0, nbuf;
1960 
1961 	/*
1962 	 * Potential ABBA deadlock, work around it by ordering lock
1963 	 * grabbing by pipe info address. Otherwise two different processes
1964 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1965 	 */
1966 	pipe_double_lock(ipipe, opipe);
1967 
1968 	do {
1969 		if (!opipe->readers) {
1970 			send_sig(SIGPIPE, current, 0);
1971 			if (!ret)
1972 				ret = -EPIPE;
1973 			break;
1974 		}
1975 
1976 		/*
1977 		 * If we have iterated all input buffers or ran out of
1978 		 * output room, break.
1979 		 */
1980 		if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1981 			break;
1982 
1983 		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1984 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1985 
1986 		/*
1987 		 * Get a reference to this pipe buffer,
1988 		 * so we can copy the contents over.
1989 		 */
1990 		ibuf->ops->get(ipipe, ibuf);
1991 
1992 		obuf = opipe->bufs + nbuf;
1993 		*obuf = *ibuf;
1994 
1995 		/*
1996 		 * Don't inherit the gift flag, we need to
1997 		 * prevent multiple steals of this page.
1998 		 */
1999 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
2000 
2001 		if (obuf->len > len)
2002 			obuf->len = len;
2003 
2004 		opipe->nrbufs++;
2005 		ret += obuf->len;
2006 		len -= obuf->len;
2007 		i++;
2008 	} while (len);
2009 
2010 	/*
2011 	 * return EAGAIN if we have the potential of some data in the
2012 	 * future, otherwise just return 0
2013 	 */
2014 	if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
2015 		ret = -EAGAIN;
2016 
2017 	pipe_unlock(ipipe);
2018 	pipe_unlock(opipe);
2019 
2020 	/*
2021 	 * If we put data in the output pipe, wakeup any potential readers.
2022 	 */
2023 	if (ret > 0)
2024 		wakeup_pipe_readers(opipe);
2025 
2026 	return ret;
2027 }
2028 
2029 /*
2030  * This is a tee(1) implementation that works on pipes. It doesn't copy
2031  * any data, it simply references the 'in' pages on the 'out' pipe.
2032  * The 'flags' used are the SPLICE_F_* variants, currently the only
2033  * applicable one is SPLICE_F_NONBLOCK.
2034  */
2035 static long do_tee(struct file *in, struct file *out, size_t len,
2036 		   unsigned int flags)
2037 {
2038 	struct pipe_inode_info *ipipe = get_pipe_info(in);
2039 	struct pipe_inode_info *opipe = get_pipe_info(out);
2040 	int ret = -EINVAL;
2041 
2042 	/*
2043 	 * Duplicate the contents of ipipe to opipe without actually
2044 	 * copying the data.
2045 	 */
2046 	if (ipipe && opipe && ipipe != opipe) {
2047 		/*
2048 		 * Keep going, unless we encounter an error. The ipipe/opipe
2049 		 * ordering doesn't really matter.
2050 		 */
2051 		ret = ipipe_prep(ipipe, flags);
2052 		if (!ret) {
2053 			ret = opipe_prep(opipe, flags);
2054 			if (!ret)
2055 				ret = link_pipe(ipipe, opipe, len, flags);
2056 		}
2057 	}
2058 
2059 	return ret;
2060 }
2061 
2062 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2063 {
2064 	struct fd in;
2065 	int error;
2066 
2067 	if (unlikely(!len))
2068 		return 0;
2069 
2070 	error = -EBADF;
2071 	in = fdget(fdin);
2072 	if (in.file) {
2073 		if (in.file->f_mode & FMODE_READ) {
2074 			struct fd out = fdget(fdout);
2075 			if (out.file) {
2076 				if (out.file->f_mode & FMODE_WRITE)
2077 					error = do_tee(in.file, out.file,
2078 							len, flags);
2079 				fdput(out);
2080 			}
2081 		}
2082  		fdput(in);
2083  	}
2084 
2085 	return error;
2086 }
2087