xref: /openbmc/linux/fs/splice.c (revision c21b37f6)
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 
33 /*
34  * Attempt to steal a page from a pipe buffer. This should perhaps go into
35  * a vm helper function, it's already simplified quite a bit by the
36  * addition of remove_mapping(). If success is returned, the caller may
37  * attempt to reuse this page for another destination.
38  */
39 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
40 				     struct pipe_buffer *buf)
41 {
42 	struct page *page = buf->page;
43 	struct address_space *mapping;
44 
45 	lock_page(page);
46 
47 	mapping = page_mapping(page);
48 	if (mapping) {
49 		WARN_ON(!PageUptodate(page));
50 
51 		/*
52 		 * At least for ext2 with nobh option, we need to wait on
53 		 * writeback completing on this page, since we'll remove it
54 		 * from the pagecache.  Otherwise truncate wont wait on the
55 		 * page, allowing the disk blocks to be reused by someone else
56 		 * before we actually wrote our data to them. fs corruption
57 		 * ensues.
58 		 */
59 		wait_on_page_writeback(page);
60 
61 		if (PagePrivate(page))
62 			try_to_release_page(page, GFP_KERNEL);
63 
64 		/*
65 		 * If we succeeded in removing the mapping, set LRU flag
66 		 * and return good.
67 		 */
68 		if (remove_mapping(mapping, page)) {
69 			buf->flags |= PIPE_BUF_FLAG_LRU;
70 			return 0;
71 		}
72 	}
73 
74 	/*
75 	 * Raced with truncate or failed to remove page from current
76 	 * address space, unlock and return failure.
77 	 */
78 	unlock_page(page);
79 	return 1;
80 }
81 
82 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
83 					struct pipe_buffer *buf)
84 {
85 	page_cache_release(buf->page);
86 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
87 }
88 
89 /*
90  * Check whether the contents of buf is OK to access. Since the content
91  * is a page cache page, IO may be in flight.
92  */
93 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
94 				       struct pipe_buffer *buf)
95 {
96 	struct page *page = buf->page;
97 	int err;
98 
99 	if (!PageUptodate(page)) {
100 		lock_page(page);
101 
102 		/*
103 		 * Page got truncated/unhashed. This will cause a 0-byte
104 		 * splice, if this is the first page.
105 		 */
106 		if (!page->mapping) {
107 			err = -ENODATA;
108 			goto error;
109 		}
110 
111 		/*
112 		 * Uh oh, read-error from disk.
113 		 */
114 		if (!PageUptodate(page)) {
115 			err = -EIO;
116 			goto error;
117 		}
118 
119 		/*
120 		 * Page is ok afterall, we are done.
121 		 */
122 		unlock_page(page);
123 	}
124 
125 	return 0;
126 error:
127 	unlock_page(page);
128 	return err;
129 }
130 
131 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
132 	.can_merge = 0,
133 	.map = generic_pipe_buf_map,
134 	.unmap = generic_pipe_buf_unmap,
135 	.confirm = page_cache_pipe_buf_confirm,
136 	.release = page_cache_pipe_buf_release,
137 	.steal = page_cache_pipe_buf_steal,
138 	.get = generic_pipe_buf_get,
139 };
140 
141 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
142 				    struct pipe_buffer *buf)
143 {
144 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
145 		return 1;
146 
147 	buf->flags |= PIPE_BUF_FLAG_LRU;
148 	return generic_pipe_buf_steal(pipe, buf);
149 }
150 
151 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
152 	.can_merge = 0,
153 	.map = generic_pipe_buf_map,
154 	.unmap = generic_pipe_buf_unmap,
155 	.confirm = generic_pipe_buf_confirm,
156 	.release = page_cache_pipe_buf_release,
157 	.steal = user_page_pipe_buf_steal,
158 	.get = generic_pipe_buf_get,
159 };
160 
161 /**
162  * splice_to_pipe - fill passed data into a pipe
163  * @pipe:	pipe to fill
164  * @spd:	data to fill
165  *
166  * Description:
167  *    @spd contains a map of pages and len/offset tuples, along with
168  *    the struct pipe_buf_operations associated with these pages. This
169  *    function will link that data to the pipe.
170  *
171  */
172 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
173 		       struct splice_pipe_desc *spd)
174 {
175 	unsigned int spd_pages = spd->nr_pages;
176 	int ret, do_wakeup, page_nr;
177 
178 	ret = 0;
179 	do_wakeup = 0;
180 	page_nr = 0;
181 
182 	if (pipe->inode)
183 		mutex_lock(&pipe->inode->i_mutex);
184 
185 	for (;;) {
186 		if (!pipe->readers) {
187 			send_sig(SIGPIPE, current, 0);
188 			if (!ret)
189 				ret = -EPIPE;
190 			break;
191 		}
192 
193 		if (pipe->nrbufs < PIPE_BUFFERS) {
194 			int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
195 			struct pipe_buffer *buf = pipe->bufs + newbuf;
196 
197 			buf->page = spd->pages[page_nr];
198 			buf->offset = spd->partial[page_nr].offset;
199 			buf->len = spd->partial[page_nr].len;
200 			buf->private = spd->partial[page_nr].private;
201 			buf->ops = spd->ops;
202 			if (spd->flags & SPLICE_F_GIFT)
203 				buf->flags |= PIPE_BUF_FLAG_GIFT;
204 
205 			pipe->nrbufs++;
206 			page_nr++;
207 			ret += buf->len;
208 
209 			if (pipe->inode)
210 				do_wakeup = 1;
211 
212 			if (!--spd->nr_pages)
213 				break;
214 			if (pipe->nrbufs < PIPE_BUFFERS)
215 				continue;
216 
217 			break;
218 		}
219 
220 		if (spd->flags & SPLICE_F_NONBLOCK) {
221 			if (!ret)
222 				ret = -EAGAIN;
223 			break;
224 		}
225 
226 		if (signal_pending(current)) {
227 			if (!ret)
228 				ret = -ERESTARTSYS;
229 			break;
230 		}
231 
232 		if (do_wakeup) {
233 			smp_mb();
234 			if (waitqueue_active(&pipe->wait))
235 				wake_up_interruptible_sync(&pipe->wait);
236 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
237 			do_wakeup = 0;
238 		}
239 
240 		pipe->waiting_writers++;
241 		pipe_wait(pipe);
242 		pipe->waiting_writers--;
243 	}
244 
245 	if (pipe->inode) {
246 		mutex_unlock(&pipe->inode->i_mutex);
247 
248 		if (do_wakeup) {
249 			smp_mb();
250 			if (waitqueue_active(&pipe->wait))
251 				wake_up_interruptible(&pipe->wait);
252 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
253 		}
254 	}
255 
256 	while (page_nr < spd_pages)
257 		page_cache_release(spd->pages[page_nr++]);
258 
259 	return ret;
260 }
261 
262 static int
263 __generic_file_splice_read(struct file *in, loff_t *ppos,
264 			   struct pipe_inode_info *pipe, size_t len,
265 			   unsigned int flags)
266 {
267 	struct address_space *mapping = in->f_mapping;
268 	unsigned int loff, nr_pages, req_pages;
269 	struct page *pages[PIPE_BUFFERS];
270 	struct partial_page partial[PIPE_BUFFERS];
271 	struct page *page;
272 	pgoff_t index, end_index;
273 	loff_t isize;
274 	int error, page_nr;
275 	struct splice_pipe_desc spd = {
276 		.pages = pages,
277 		.partial = partial,
278 		.flags = flags,
279 		.ops = &page_cache_pipe_buf_ops,
280 	};
281 
282 	index = *ppos >> PAGE_CACHE_SHIFT;
283 	loff = *ppos & ~PAGE_CACHE_MASK;
284 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
285 	nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS);
286 
287 	/*
288 	 * Lookup the (hopefully) full range of pages we need.
289 	 */
290 	spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
291 	index += spd.nr_pages;
292 
293 	/*
294 	 * If find_get_pages_contig() returned fewer pages than we needed,
295 	 * readahead/allocate the rest and fill in the holes.
296 	 */
297 	if (spd.nr_pages < nr_pages)
298 		page_cache_sync_readahead(mapping, &in->f_ra, in,
299 				index, req_pages - spd.nr_pages);
300 
301 	error = 0;
302 	while (spd.nr_pages < nr_pages) {
303 		/*
304 		 * Page could be there, find_get_pages_contig() breaks on
305 		 * the first hole.
306 		 */
307 		page = find_get_page(mapping, index);
308 		if (!page) {
309 			/*
310 			 * page didn't exist, allocate one.
311 			 */
312 			page = page_cache_alloc_cold(mapping);
313 			if (!page)
314 				break;
315 
316 			error = add_to_page_cache_lru(page, mapping, index,
317 					      GFP_KERNEL);
318 			if (unlikely(error)) {
319 				page_cache_release(page);
320 				if (error == -EEXIST)
321 					continue;
322 				break;
323 			}
324 			/*
325 			 * add_to_page_cache() locks the page, unlock it
326 			 * to avoid convoluting the logic below even more.
327 			 */
328 			unlock_page(page);
329 		}
330 
331 		pages[spd.nr_pages++] = page;
332 		index++;
333 	}
334 
335 	/*
336 	 * Now loop over the map and see if we need to start IO on any
337 	 * pages, fill in the partial map, etc.
338 	 */
339 	index = *ppos >> PAGE_CACHE_SHIFT;
340 	nr_pages = spd.nr_pages;
341 	spd.nr_pages = 0;
342 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
343 		unsigned int this_len;
344 
345 		if (!len)
346 			break;
347 
348 		/*
349 		 * this_len is the max we'll use from this page
350 		 */
351 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
352 		page = pages[page_nr];
353 
354 		if (PageReadahead(page))
355 			page_cache_async_readahead(mapping, &in->f_ra, in,
356 					page, index, req_pages - page_nr);
357 
358 		/*
359 		 * If the page isn't uptodate, we may need to start io on it
360 		 */
361 		if (!PageUptodate(page)) {
362 			/*
363 			 * If in nonblock mode then dont block on waiting
364 			 * for an in-flight io page
365 			 */
366 			if (flags & SPLICE_F_NONBLOCK) {
367 				if (TestSetPageLocked(page))
368 					break;
369 			} else
370 				lock_page(page);
371 
372 			/*
373 			 * page was truncated, stop here. if this isn't the
374 			 * first page, we'll just complete what we already
375 			 * added
376 			 */
377 			if (!page->mapping) {
378 				unlock_page(page);
379 				break;
380 			}
381 			/*
382 			 * page was already under io and is now done, great
383 			 */
384 			if (PageUptodate(page)) {
385 				unlock_page(page);
386 				goto fill_it;
387 			}
388 
389 			/*
390 			 * need to read in the page
391 			 */
392 			error = mapping->a_ops->readpage(in, page);
393 			if (unlikely(error)) {
394 				/*
395 				 * We really should re-lookup the page here,
396 				 * but it complicates things a lot. Instead
397 				 * lets just do what we already stored, and
398 				 * we'll get it the next time we are called.
399 				 */
400 				if (error == AOP_TRUNCATED_PAGE)
401 					error = 0;
402 
403 				break;
404 			}
405 		}
406 fill_it:
407 		/*
408 		 * i_size must be checked after PageUptodate.
409 		 */
410 		isize = i_size_read(mapping->host);
411 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
412 		if (unlikely(!isize || index > end_index))
413 			break;
414 
415 		/*
416 		 * if this is the last page, see if we need to shrink
417 		 * the length and stop
418 		 */
419 		if (end_index == index) {
420 			unsigned int plen;
421 
422 			/*
423 			 * max good bytes in this page
424 			 */
425 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
426 			if (plen <= loff)
427 				break;
428 
429 			/*
430 			 * force quit after adding this page
431 			 */
432 			this_len = min(this_len, plen - loff);
433 			len = this_len;
434 		}
435 
436 		partial[page_nr].offset = loff;
437 		partial[page_nr].len = this_len;
438 		len -= this_len;
439 		loff = 0;
440 		spd.nr_pages++;
441 		index++;
442 	}
443 
444 	/*
445 	 * Release any pages at the end, if we quit early. 'page_nr' is how far
446 	 * we got, 'nr_pages' is how many pages are in the map.
447 	 */
448 	while (page_nr < nr_pages)
449 		page_cache_release(pages[page_nr++]);
450 	in->f_ra.prev_index = index;
451 
452 	if (spd.nr_pages)
453 		return splice_to_pipe(pipe, &spd);
454 
455 	return error;
456 }
457 
458 /**
459  * generic_file_splice_read - splice data from file to a pipe
460  * @in:		file to splice from
461  * @ppos:	position in @in
462  * @pipe:	pipe to splice to
463  * @len:	number of bytes to splice
464  * @flags:	splice modifier flags
465  *
466  * Description:
467  *    Will read pages from given file and fill them into a pipe. Can be
468  *    used as long as the address_space operations for the source implements
469  *    a readpage() hook.
470  *
471  */
472 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
473 				 struct pipe_inode_info *pipe, size_t len,
474 				 unsigned int flags)
475 {
476 	ssize_t spliced;
477 	int ret;
478 	loff_t isize, left;
479 
480 	isize = i_size_read(in->f_mapping->host);
481 	if (unlikely(*ppos >= isize))
482 		return 0;
483 
484 	left = isize - *ppos;
485 	if (unlikely(left < len))
486 		len = left;
487 
488 	ret = 0;
489 	spliced = 0;
490 	while (len && !spliced) {
491 		ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
492 
493 		if (ret < 0)
494 			break;
495 		else if (!ret) {
496 			if (spliced)
497 				break;
498 			if (flags & SPLICE_F_NONBLOCK) {
499 				ret = -EAGAIN;
500 				break;
501 			}
502 		}
503 
504 		*ppos += ret;
505 		len -= ret;
506 		spliced += ret;
507 	}
508 
509 	if (spliced)
510 		return spliced;
511 
512 	return ret;
513 }
514 
515 EXPORT_SYMBOL(generic_file_splice_read);
516 
517 /*
518  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
519  * using sendpage(). Return the number of bytes sent.
520  */
521 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
522 			    struct pipe_buffer *buf, struct splice_desc *sd)
523 {
524 	struct file *file = sd->u.file;
525 	loff_t pos = sd->pos;
526 	int ret, more;
527 
528 	ret = buf->ops->confirm(pipe, buf);
529 	if (!ret) {
530 		more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
531 
532 		ret = file->f_op->sendpage(file, buf->page, buf->offset,
533 					   sd->len, &pos, more);
534 	}
535 
536 	return ret;
537 }
538 
539 /*
540  * This is a little more tricky than the file -> pipe splicing. There are
541  * basically three cases:
542  *
543  *	- Destination page already exists in the address space and there
544  *	  are users of it. For that case we have no other option that
545  *	  copying the data. Tough luck.
546  *	- Destination page already exists in the address space, but there
547  *	  are no users of it. Make sure it's uptodate, then drop it. Fall
548  *	  through to last case.
549  *	- Destination page does not exist, we can add the pipe page to
550  *	  the page cache and avoid the copy.
551  *
552  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
553  * sd->flags), we attempt to migrate pages from the pipe to the output
554  * file address space page cache. This is possible if no one else has
555  * the pipe page referenced outside of the pipe and page cache. If
556  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
557  * a new page in the output file page cache and fill/dirty that.
558  */
559 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
560 			struct splice_desc *sd)
561 {
562 	struct file *file = sd->u.file;
563 	struct address_space *mapping = file->f_mapping;
564 	unsigned int offset, this_len;
565 	struct page *page;
566 	pgoff_t index;
567 	int ret;
568 
569 	/*
570 	 * make sure the data in this buffer is uptodate
571 	 */
572 	ret = buf->ops->confirm(pipe, buf);
573 	if (unlikely(ret))
574 		return ret;
575 
576 	index = sd->pos >> PAGE_CACHE_SHIFT;
577 	offset = sd->pos & ~PAGE_CACHE_MASK;
578 
579 	this_len = sd->len;
580 	if (this_len + offset > PAGE_CACHE_SIZE)
581 		this_len = PAGE_CACHE_SIZE - offset;
582 
583 find_page:
584 	page = find_lock_page(mapping, index);
585 	if (!page) {
586 		ret = -ENOMEM;
587 		page = page_cache_alloc_cold(mapping);
588 		if (unlikely(!page))
589 			goto out_ret;
590 
591 		/*
592 		 * This will also lock the page
593 		 */
594 		ret = add_to_page_cache_lru(page, mapping, index,
595 					    GFP_KERNEL);
596 		if (unlikely(ret))
597 			goto out_release;
598 	}
599 
600 	ret = mapping->a_ops->prepare_write(file, page, offset, offset+this_len);
601 	if (unlikely(ret)) {
602 		loff_t isize = i_size_read(mapping->host);
603 
604 		if (ret != AOP_TRUNCATED_PAGE)
605 			unlock_page(page);
606 		page_cache_release(page);
607 		if (ret == AOP_TRUNCATED_PAGE)
608 			goto find_page;
609 
610 		/*
611 		 * prepare_write() may have instantiated a few blocks
612 		 * outside i_size.  Trim these off again.
613 		 */
614 		if (sd->pos + this_len > isize)
615 			vmtruncate(mapping->host, isize);
616 
617 		goto out_ret;
618 	}
619 
620 	if (buf->page != page) {
621 		/*
622 		 * Careful, ->map() uses KM_USER0!
623 		 */
624 		char *src = buf->ops->map(pipe, buf, 1);
625 		char *dst = kmap_atomic(page, KM_USER1);
626 
627 		memcpy(dst + offset, src + buf->offset, this_len);
628 		flush_dcache_page(page);
629 		kunmap_atomic(dst, KM_USER1);
630 		buf->ops->unmap(pipe, buf, src);
631 	}
632 
633 	ret = mapping->a_ops->commit_write(file, page, offset, offset+this_len);
634 	if (ret) {
635 		if (ret == AOP_TRUNCATED_PAGE) {
636 			page_cache_release(page);
637 			goto find_page;
638 		}
639 		if (ret < 0)
640 			goto out;
641 		/*
642 		 * Partial write has happened, so 'ret' already initialized by
643 		 * number of bytes written, Where is nothing we have to do here.
644 		 */
645 	} else
646 		ret = this_len;
647 	/*
648 	 * Return the number of bytes written and mark page as
649 	 * accessed, we are now done!
650 	 */
651 	mark_page_accessed(page);
652 out:
653 	unlock_page(page);
654 out_release:
655 	page_cache_release(page);
656 out_ret:
657 	return ret;
658 }
659 
660 /**
661  * __splice_from_pipe - splice data from a pipe to given actor
662  * @pipe:	pipe to splice from
663  * @sd:		information to @actor
664  * @actor:	handler that splices the data
665  *
666  * Description:
667  *    This function does little more than loop over the pipe and call
668  *    @actor to do the actual moving of a single struct pipe_buffer to
669  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
670  *    pipe_to_user.
671  *
672  */
673 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
674 			   splice_actor *actor)
675 {
676 	int ret, do_wakeup, err;
677 
678 	ret = 0;
679 	do_wakeup = 0;
680 
681 	for (;;) {
682 		if (pipe->nrbufs) {
683 			struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
684 			const struct pipe_buf_operations *ops = buf->ops;
685 
686 			sd->len = buf->len;
687 			if (sd->len > sd->total_len)
688 				sd->len = sd->total_len;
689 
690 			err = actor(pipe, buf, sd);
691 			if (err <= 0) {
692 				if (!ret && err != -ENODATA)
693 					ret = err;
694 
695 				break;
696 			}
697 
698 			ret += err;
699 			buf->offset += err;
700 			buf->len -= err;
701 
702 			sd->len -= err;
703 			sd->pos += err;
704 			sd->total_len -= err;
705 			if (sd->len)
706 				continue;
707 
708 			if (!buf->len) {
709 				buf->ops = NULL;
710 				ops->release(pipe, buf);
711 				pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
712 				pipe->nrbufs--;
713 				if (pipe->inode)
714 					do_wakeup = 1;
715 			}
716 
717 			if (!sd->total_len)
718 				break;
719 		}
720 
721 		if (pipe->nrbufs)
722 			continue;
723 		if (!pipe->writers)
724 			break;
725 		if (!pipe->waiting_writers) {
726 			if (ret)
727 				break;
728 		}
729 
730 		if (sd->flags & SPLICE_F_NONBLOCK) {
731 			if (!ret)
732 				ret = -EAGAIN;
733 			break;
734 		}
735 
736 		if (signal_pending(current)) {
737 			if (!ret)
738 				ret = -ERESTARTSYS;
739 			break;
740 		}
741 
742 		if (do_wakeup) {
743 			smp_mb();
744 			if (waitqueue_active(&pipe->wait))
745 				wake_up_interruptible_sync(&pipe->wait);
746 			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
747 			do_wakeup = 0;
748 		}
749 
750 		pipe_wait(pipe);
751 	}
752 
753 	if (do_wakeup) {
754 		smp_mb();
755 		if (waitqueue_active(&pipe->wait))
756 			wake_up_interruptible(&pipe->wait);
757 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
758 	}
759 
760 	return ret;
761 }
762 EXPORT_SYMBOL(__splice_from_pipe);
763 
764 /**
765  * splice_from_pipe - splice data from a pipe to a file
766  * @pipe:	pipe to splice from
767  * @out:	file to splice to
768  * @ppos:	position in @out
769  * @len:	how many bytes to splice
770  * @flags:	splice modifier flags
771  * @actor:	handler that splices the data
772  *
773  * Description:
774  *    See __splice_from_pipe. This function locks the input and output inodes,
775  *    otherwise it's identical to __splice_from_pipe().
776  *
777  */
778 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
779 			 loff_t *ppos, size_t len, unsigned int flags,
780 			 splice_actor *actor)
781 {
782 	ssize_t ret;
783 	struct inode *inode = out->f_mapping->host;
784 	struct splice_desc sd = {
785 		.total_len = len,
786 		.flags = flags,
787 		.pos = *ppos,
788 		.u.file = out,
789 	};
790 
791 	/*
792 	 * The actor worker might be calling ->prepare_write and
793 	 * ->commit_write. Most of the time, these expect i_mutex to
794 	 * be held. Since this may result in an ABBA deadlock with
795 	 * pipe->inode, we have to order lock acquiry here.
796 	 */
797 	inode_double_lock(inode, pipe->inode);
798 	ret = __splice_from_pipe(pipe, &sd, actor);
799 	inode_double_unlock(inode, pipe->inode);
800 
801 	return ret;
802 }
803 
804 /**
805  * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
806  * @pipe:	pipe info
807  * @out:	file to write to
808  * @ppos:	position in @out
809  * @len:	number of bytes to splice
810  * @flags:	splice modifier flags
811  *
812  * Description:
813  *    Will either move or copy pages (determined by @flags options) from
814  *    the given pipe inode to the given file. The caller is responsible
815  *    for acquiring i_mutex on both inodes.
816  *
817  */
818 ssize_t
819 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
820 				 loff_t *ppos, size_t len, unsigned int flags)
821 {
822 	struct address_space *mapping = out->f_mapping;
823 	struct inode *inode = mapping->host;
824 	struct splice_desc sd = {
825 		.total_len = len,
826 		.flags = flags,
827 		.pos = *ppos,
828 		.u.file = out,
829 	};
830 	ssize_t ret;
831 	int err;
832 
833 	err = remove_suid(out->f_path.dentry);
834 	if (unlikely(err))
835 		return err;
836 
837 	ret = __splice_from_pipe(pipe, &sd, pipe_to_file);
838 	if (ret > 0) {
839 		unsigned long nr_pages;
840 
841 		*ppos += ret;
842 		nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
843 
844 		/*
845 		 * If file or inode is SYNC and we actually wrote some data,
846 		 * sync it.
847 		 */
848 		if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
849 			err = generic_osync_inode(inode, mapping,
850 						  OSYNC_METADATA|OSYNC_DATA);
851 
852 			if (err)
853 				ret = err;
854 		}
855 		balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
856 	}
857 
858 	return ret;
859 }
860 
861 EXPORT_SYMBOL(generic_file_splice_write_nolock);
862 
863 /**
864  * generic_file_splice_write - splice data from a pipe to a file
865  * @pipe:	pipe info
866  * @out:	file to write to
867  * @ppos:	position in @out
868  * @len:	number of bytes to splice
869  * @flags:	splice modifier flags
870  *
871  * Description:
872  *    Will either move or copy pages (determined by @flags options) from
873  *    the given pipe inode to the given file.
874  *
875  */
876 ssize_t
877 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
878 			  loff_t *ppos, size_t len, unsigned int flags)
879 {
880 	struct address_space *mapping = out->f_mapping;
881 	struct inode *inode = mapping->host;
882 	ssize_t ret;
883 	int err;
884 
885 	err = should_remove_suid(out->f_path.dentry);
886 	if (unlikely(err)) {
887 		mutex_lock(&inode->i_mutex);
888 		err = __remove_suid(out->f_path.dentry, err);
889 		mutex_unlock(&inode->i_mutex);
890 		if (err)
891 			return err;
892 	}
893 
894 	ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
895 	if (ret > 0) {
896 		unsigned long nr_pages;
897 
898 		*ppos += ret;
899 		nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
900 
901 		/*
902 		 * If file or inode is SYNC and we actually wrote some data,
903 		 * sync it.
904 		 */
905 		if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
906 			mutex_lock(&inode->i_mutex);
907 			err = generic_osync_inode(inode, mapping,
908 						  OSYNC_METADATA|OSYNC_DATA);
909 			mutex_unlock(&inode->i_mutex);
910 
911 			if (err)
912 				ret = err;
913 		}
914 		balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
915 	}
916 
917 	return ret;
918 }
919 
920 EXPORT_SYMBOL(generic_file_splice_write);
921 
922 /**
923  * generic_splice_sendpage - splice data from a pipe to a socket
924  * @pipe:	pipe to splice from
925  * @out:	socket to write to
926  * @ppos:	position in @out
927  * @len:	number of bytes to splice
928  * @flags:	splice modifier flags
929  *
930  * Description:
931  *    Will send @len bytes from the pipe to a network socket. No data copying
932  *    is involved.
933  *
934  */
935 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
936 				loff_t *ppos, size_t len, unsigned int flags)
937 {
938 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
939 }
940 
941 EXPORT_SYMBOL(generic_splice_sendpage);
942 
943 /*
944  * Attempt to initiate a splice from pipe to file.
945  */
946 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
947 			   loff_t *ppos, size_t len, unsigned int flags)
948 {
949 	int ret;
950 
951 	if (unlikely(!out->f_op || !out->f_op->splice_write))
952 		return -EINVAL;
953 
954 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
955 		return -EBADF;
956 
957 	ret = rw_verify_area(WRITE, out, ppos, len);
958 	if (unlikely(ret < 0))
959 		return ret;
960 
961 	ret = security_file_permission(out, MAY_WRITE);
962 	if (unlikely(ret < 0))
963 		return ret;
964 
965 	return out->f_op->splice_write(pipe, out, ppos, len, flags);
966 }
967 
968 /*
969  * Attempt to initiate a splice from a file to a pipe.
970  */
971 static long do_splice_to(struct file *in, loff_t *ppos,
972 			 struct pipe_inode_info *pipe, size_t len,
973 			 unsigned int flags)
974 {
975 	int ret;
976 
977 	if (unlikely(!in->f_op || !in->f_op->splice_read))
978 		return -EINVAL;
979 
980 	if (unlikely(!(in->f_mode & FMODE_READ)))
981 		return -EBADF;
982 
983 	ret = rw_verify_area(READ, in, ppos, len);
984 	if (unlikely(ret < 0))
985 		return ret;
986 
987 	ret = security_file_permission(in, MAY_READ);
988 	if (unlikely(ret < 0))
989 		return ret;
990 
991 	return in->f_op->splice_read(in, ppos, pipe, len, flags);
992 }
993 
994 /**
995  * splice_direct_to_actor - splices data directly between two non-pipes
996  * @in:		file to splice from
997  * @sd:		actor information on where to splice to
998  * @actor:	handles the data splicing
999  *
1000  * Description:
1001  *    This is a special case helper to splice directly between two
1002  *    points, without requiring an explicit pipe. Internally an allocated
1003  *    pipe is cached in the process, and reused during the lifetime of
1004  *    that process.
1005  *
1006  */
1007 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1008 			       splice_direct_actor *actor)
1009 {
1010 	struct pipe_inode_info *pipe;
1011 	long ret, bytes;
1012 	umode_t i_mode;
1013 	size_t len;
1014 	int i, flags;
1015 
1016 	/*
1017 	 * We require the input being a regular file, as we don't want to
1018 	 * randomly drop data for eg socket -> socket splicing. Use the
1019 	 * piped splicing for that!
1020 	 */
1021 	i_mode = in->f_path.dentry->d_inode->i_mode;
1022 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1023 		return -EINVAL;
1024 
1025 	/*
1026 	 * neither in nor out is a pipe, setup an internal pipe attached to
1027 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
1028 	 */
1029 	pipe = current->splice_pipe;
1030 	if (unlikely(!pipe)) {
1031 		pipe = alloc_pipe_info(NULL);
1032 		if (!pipe)
1033 			return -ENOMEM;
1034 
1035 		/*
1036 		 * We don't have an immediate reader, but we'll read the stuff
1037 		 * out of the pipe right after the splice_to_pipe(). So set
1038 		 * PIPE_READERS appropriately.
1039 		 */
1040 		pipe->readers = 1;
1041 
1042 		current->splice_pipe = pipe;
1043 	}
1044 
1045 	/*
1046 	 * Do the splice.
1047 	 */
1048 	ret = 0;
1049 	bytes = 0;
1050 	len = sd->total_len;
1051 	flags = sd->flags;
1052 
1053 	/*
1054 	 * Don't block on output, we have to drain the direct pipe.
1055 	 */
1056 	sd->flags &= ~SPLICE_F_NONBLOCK;
1057 
1058 	while (len) {
1059 		size_t read_len;
1060 		loff_t pos = sd->pos;
1061 
1062 		ret = do_splice_to(in, &pos, pipe, len, flags);
1063 		if (unlikely(ret <= 0))
1064 			goto out_release;
1065 
1066 		read_len = ret;
1067 		sd->total_len = read_len;
1068 
1069 		/*
1070 		 * NOTE: nonblocking mode only applies to the input. We
1071 		 * must not do the output in nonblocking mode as then we
1072 		 * could get stuck data in the internal pipe:
1073 		 */
1074 		ret = actor(pipe, sd);
1075 		if (unlikely(ret <= 0))
1076 			goto out_release;
1077 
1078 		bytes += ret;
1079 		len -= ret;
1080 		sd->pos = pos;
1081 
1082 		if (ret < read_len)
1083 			goto out_release;
1084 	}
1085 
1086 	pipe->nrbufs = pipe->curbuf = 0;
1087 	return bytes;
1088 
1089 out_release:
1090 	/*
1091 	 * If we did an incomplete transfer we must release
1092 	 * the pipe buffers in question:
1093 	 */
1094 	for (i = 0; i < PIPE_BUFFERS; i++) {
1095 		struct pipe_buffer *buf = pipe->bufs + i;
1096 
1097 		if (buf->ops) {
1098 			buf->ops->release(pipe, buf);
1099 			buf->ops = NULL;
1100 		}
1101 	}
1102 	pipe->nrbufs = pipe->curbuf = 0;
1103 
1104 	/*
1105 	 * If we transferred some data, return the number of bytes:
1106 	 */
1107 	if (bytes > 0)
1108 		return bytes;
1109 
1110 	return ret;
1111 
1112 }
1113 EXPORT_SYMBOL(splice_direct_to_actor);
1114 
1115 static int direct_splice_actor(struct pipe_inode_info *pipe,
1116 			       struct splice_desc *sd)
1117 {
1118 	struct file *file = sd->u.file;
1119 
1120 	return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1121 }
1122 
1123 /**
1124  * do_splice_direct - splices data directly between two files
1125  * @in:		file to splice from
1126  * @ppos:	input file offset
1127  * @out:	file to splice to
1128  * @len:	number of bytes to splice
1129  * @flags:	splice modifier flags
1130  *
1131  * Description:
1132  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1133  *    doing it in the application would incur an extra system call
1134  *    (splice in + splice out, as compared to just sendfile()). So this helper
1135  *    can splice directly through a process-private pipe.
1136  *
1137  */
1138 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1139 		      size_t len, unsigned int flags)
1140 {
1141 	struct splice_desc sd = {
1142 		.len		= len,
1143 		.total_len	= len,
1144 		.flags		= flags,
1145 		.pos		= *ppos,
1146 		.u.file		= out,
1147 	};
1148 	long ret;
1149 
1150 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1151 	if (ret > 0)
1152 		*ppos += ret;
1153 
1154 	return ret;
1155 }
1156 
1157 /*
1158  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1159  * location, so checking ->i_pipe is not enough to verify that this is a
1160  * pipe.
1161  */
1162 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1163 {
1164 	if (S_ISFIFO(inode->i_mode))
1165 		return inode->i_pipe;
1166 
1167 	return NULL;
1168 }
1169 
1170 /*
1171  * Determine where to splice to/from.
1172  */
1173 static long do_splice(struct file *in, loff_t __user *off_in,
1174 		      struct file *out, loff_t __user *off_out,
1175 		      size_t len, unsigned int flags)
1176 {
1177 	struct pipe_inode_info *pipe;
1178 	loff_t offset, *off;
1179 	long ret;
1180 
1181 	pipe = pipe_info(in->f_path.dentry->d_inode);
1182 	if (pipe) {
1183 		if (off_in)
1184 			return -ESPIPE;
1185 		if (off_out) {
1186 			if (out->f_op->llseek == no_llseek)
1187 				return -EINVAL;
1188 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1189 				return -EFAULT;
1190 			off = &offset;
1191 		} else
1192 			off = &out->f_pos;
1193 
1194 		ret = do_splice_from(pipe, out, off, len, flags);
1195 
1196 		if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1197 			ret = -EFAULT;
1198 
1199 		return ret;
1200 	}
1201 
1202 	pipe = pipe_info(out->f_path.dentry->d_inode);
1203 	if (pipe) {
1204 		if (off_out)
1205 			return -ESPIPE;
1206 		if (off_in) {
1207 			if (in->f_op->llseek == no_llseek)
1208 				return -EINVAL;
1209 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1210 				return -EFAULT;
1211 			off = &offset;
1212 		} else
1213 			off = &in->f_pos;
1214 
1215 		ret = do_splice_to(in, off, pipe, len, flags);
1216 
1217 		if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1218 			ret = -EFAULT;
1219 
1220 		return ret;
1221 	}
1222 
1223 	return -EINVAL;
1224 }
1225 
1226 /*
1227  * Map an iov into an array of pages and offset/length tupples. With the
1228  * partial_page structure, we can map several non-contiguous ranges into
1229  * our ones pages[] map instead of splitting that operation into pieces.
1230  * Could easily be exported as a generic helper for other users, in which
1231  * case one would probably want to add a 'max_nr_pages' parameter as well.
1232  */
1233 static int get_iovec_page_array(const struct iovec __user *iov,
1234 				unsigned int nr_vecs, struct page **pages,
1235 				struct partial_page *partial, int aligned)
1236 {
1237 	int buffers = 0, error = 0;
1238 
1239 	/*
1240 	 * It's ok to take the mmap_sem for reading, even
1241 	 * across a "get_user()".
1242 	 */
1243 	down_read(&current->mm->mmap_sem);
1244 
1245 	while (nr_vecs) {
1246 		unsigned long off, npages;
1247 		void __user *base;
1248 		size_t len;
1249 		int i;
1250 
1251 		/*
1252 		 * Get user address base and length for this iovec.
1253 		 */
1254 		error = get_user(base, &iov->iov_base);
1255 		if (unlikely(error))
1256 			break;
1257 		error = get_user(len, &iov->iov_len);
1258 		if (unlikely(error))
1259 			break;
1260 
1261 		/*
1262 		 * Sanity check this iovec. 0 read succeeds.
1263 		 */
1264 		if (unlikely(!len))
1265 			break;
1266 		error = -EFAULT;
1267 		if (unlikely(!base))
1268 			break;
1269 
1270 		/*
1271 		 * Get this base offset and number of pages, then map
1272 		 * in the user pages.
1273 		 */
1274 		off = (unsigned long) base & ~PAGE_MASK;
1275 
1276 		/*
1277 		 * If asked for alignment, the offset must be zero and the
1278 		 * length a multiple of the PAGE_SIZE.
1279 		 */
1280 		error = -EINVAL;
1281 		if (aligned && (off || len & ~PAGE_MASK))
1282 			break;
1283 
1284 		npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1285 		if (npages > PIPE_BUFFERS - buffers)
1286 			npages = PIPE_BUFFERS - buffers;
1287 
1288 		error = get_user_pages(current, current->mm,
1289 				       (unsigned long) base, npages, 0, 0,
1290 				       &pages[buffers], NULL);
1291 
1292 		if (unlikely(error <= 0))
1293 			break;
1294 
1295 		/*
1296 		 * Fill this contiguous range into the partial page map.
1297 		 */
1298 		for (i = 0; i < error; i++) {
1299 			const int plen = min_t(size_t, len, PAGE_SIZE - off);
1300 
1301 			partial[buffers].offset = off;
1302 			partial[buffers].len = plen;
1303 
1304 			off = 0;
1305 			len -= plen;
1306 			buffers++;
1307 		}
1308 
1309 		/*
1310 		 * We didn't complete this iov, stop here since it probably
1311 		 * means we have to move some of this into a pipe to
1312 		 * be able to continue.
1313 		 */
1314 		if (len)
1315 			break;
1316 
1317 		/*
1318 		 * Don't continue if we mapped fewer pages than we asked for,
1319 		 * or if we mapped the max number of pages that we have
1320 		 * room for.
1321 		 */
1322 		if (error < npages || buffers == PIPE_BUFFERS)
1323 			break;
1324 
1325 		nr_vecs--;
1326 		iov++;
1327 	}
1328 
1329 	up_read(&current->mm->mmap_sem);
1330 
1331 	if (buffers)
1332 		return buffers;
1333 
1334 	return error;
1335 }
1336 
1337 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1338 			struct splice_desc *sd)
1339 {
1340 	char *src;
1341 	int ret;
1342 
1343 	ret = buf->ops->confirm(pipe, buf);
1344 	if (unlikely(ret))
1345 		return ret;
1346 
1347 	/*
1348 	 * See if we can use the atomic maps, by prefaulting in the
1349 	 * pages and doing an atomic copy
1350 	 */
1351 	if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1352 		src = buf->ops->map(pipe, buf, 1);
1353 		ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1354 							sd->len);
1355 		buf->ops->unmap(pipe, buf, src);
1356 		if (!ret) {
1357 			ret = sd->len;
1358 			goto out;
1359 		}
1360 	}
1361 
1362 	/*
1363 	 * No dice, use slow non-atomic map and copy
1364  	 */
1365 	src = buf->ops->map(pipe, buf, 0);
1366 
1367 	ret = sd->len;
1368 	if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1369 		ret = -EFAULT;
1370 
1371 out:
1372 	if (ret > 0)
1373 		sd->u.userptr += ret;
1374 	buf->ops->unmap(pipe, buf, src);
1375 	return ret;
1376 }
1377 
1378 /*
1379  * For lack of a better implementation, implement vmsplice() to userspace
1380  * as a simple copy of the pipes pages to the user iov.
1381  */
1382 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1383 			     unsigned long nr_segs, unsigned int flags)
1384 {
1385 	struct pipe_inode_info *pipe;
1386 	struct splice_desc sd;
1387 	ssize_t size;
1388 	int error;
1389 	long ret;
1390 
1391 	pipe = pipe_info(file->f_path.dentry->d_inode);
1392 	if (!pipe)
1393 		return -EBADF;
1394 
1395 	if (pipe->inode)
1396 		mutex_lock(&pipe->inode->i_mutex);
1397 
1398 	error = ret = 0;
1399 	while (nr_segs) {
1400 		void __user *base;
1401 		size_t len;
1402 
1403 		/*
1404 		 * Get user address base and length for this iovec.
1405 		 */
1406 		error = get_user(base, &iov->iov_base);
1407 		if (unlikely(error))
1408 			break;
1409 		error = get_user(len, &iov->iov_len);
1410 		if (unlikely(error))
1411 			break;
1412 
1413 		/*
1414 		 * Sanity check this iovec. 0 read succeeds.
1415 		 */
1416 		if (unlikely(!len))
1417 			break;
1418 		if (unlikely(!base)) {
1419 			error = -EFAULT;
1420 			break;
1421 		}
1422 
1423 		sd.len = 0;
1424 		sd.total_len = len;
1425 		sd.flags = flags;
1426 		sd.u.userptr = base;
1427 		sd.pos = 0;
1428 
1429 		size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1430 		if (size < 0) {
1431 			if (!ret)
1432 				ret = size;
1433 
1434 			break;
1435 		}
1436 
1437 		ret += size;
1438 
1439 		if (size < len)
1440 			break;
1441 
1442 		nr_segs--;
1443 		iov++;
1444 	}
1445 
1446 	if (pipe->inode)
1447 		mutex_unlock(&pipe->inode->i_mutex);
1448 
1449 	if (!ret)
1450 		ret = error;
1451 
1452 	return ret;
1453 }
1454 
1455 /*
1456  * vmsplice splices a user address range into a pipe. It can be thought of
1457  * as splice-from-memory, where the regular splice is splice-from-file (or
1458  * to file). In both cases the output is a pipe, naturally.
1459  */
1460 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1461 			     unsigned long nr_segs, unsigned int flags)
1462 {
1463 	struct pipe_inode_info *pipe;
1464 	struct page *pages[PIPE_BUFFERS];
1465 	struct partial_page partial[PIPE_BUFFERS];
1466 	struct splice_pipe_desc spd = {
1467 		.pages = pages,
1468 		.partial = partial,
1469 		.flags = flags,
1470 		.ops = &user_page_pipe_buf_ops,
1471 	};
1472 
1473 	pipe = pipe_info(file->f_path.dentry->d_inode);
1474 	if (!pipe)
1475 		return -EBADF;
1476 
1477 	spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1478 					    flags & SPLICE_F_GIFT);
1479 	if (spd.nr_pages <= 0)
1480 		return spd.nr_pages;
1481 
1482 	return splice_to_pipe(pipe, &spd);
1483 }
1484 
1485 /*
1486  * Note that vmsplice only really supports true splicing _from_ user memory
1487  * to a pipe, not the other way around. Splicing from user memory is a simple
1488  * operation that can be supported without any funky alignment restrictions
1489  * or nasty vm tricks. We simply map in the user memory and fill them into
1490  * a pipe. The reverse isn't quite as easy, though. There are two possible
1491  * solutions for that:
1492  *
1493  *	- memcpy() the data internally, at which point we might as well just
1494  *	  do a regular read() on the buffer anyway.
1495  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1496  *	  has restriction limitations on both ends of the pipe).
1497  *
1498  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1499  *
1500  */
1501 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1502 			     unsigned long nr_segs, unsigned int flags)
1503 {
1504 	struct file *file;
1505 	long error;
1506 	int fput;
1507 
1508 	if (unlikely(nr_segs > UIO_MAXIOV))
1509 		return -EINVAL;
1510 	else if (unlikely(!nr_segs))
1511 		return 0;
1512 
1513 	error = -EBADF;
1514 	file = fget_light(fd, &fput);
1515 	if (file) {
1516 		if (file->f_mode & FMODE_WRITE)
1517 			error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1518 		else if (file->f_mode & FMODE_READ)
1519 			error = vmsplice_to_user(file, iov, nr_segs, flags);
1520 
1521 		fput_light(file, fput);
1522 	}
1523 
1524 	return error;
1525 }
1526 
1527 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1528 			   int fd_out, loff_t __user *off_out,
1529 			   size_t len, unsigned int flags)
1530 {
1531 	long error;
1532 	struct file *in, *out;
1533 	int fput_in, fput_out;
1534 
1535 	if (unlikely(!len))
1536 		return 0;
1537 
1538 	error = -EBADF;
1539 	in = fget_light(fd_in, &fput_in);
1540 	if (in) {
1541 		if (in->f_mode & FMODE_READ) {
1542 			out = fget_light(fd_out, &fput_out);
1543 			if (out) {
1544 				if (out->f_mode & FMODE_WRITE)
1545 					error = do_splice(in, off_in,
1546 							  out, off_out,
1547 							  len, flags);
1548 				fput_light(out, fput_out);
1549 			}
1550 		}
1551 
1552 		fput_light(in, fput_in);
1553 	}
1554 
1555 	return error;
1556 }
1557 
1558 /*
1559  * Make sure there's data to read. Wait for input if we can, otherwise
1560  * return an appropriate error.
1561  */
1562 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1563 {
1564 	int ret;
1565 
1566 	/*
1567 	 * Check ->nrbufs without the inode lock first. This function
1568 	 * is speculative anyways, so missing one is ok.
1569 	 */
1570 	if (pipe->nrbufs)
1571 		return 0;
1572 
1573 	ret = 0;
1574 	mutex_lock(&pipe->inode->i_mutex);
1575 
1576 	while (!pipe->nrbufs) {
1577 		if (signal_pending(current)) {
1578 			ret = -ERESTARTSYS;
1579 			break;
1580 		}
1581 		if (!pipe->writers)
1582 			break;
1583 		if (!pipe->waiting_writers) {
1584 			if (flags & SPLICE_F_NONBLOCK) {
1585 				ret = -EAGAIN;
1586 				break;
1587 			}
1588 		}
1589 		pipe_wait(pipe);
1590 	}
1591 
1592 	mutex_unlock(&pipe->inode->i_mutex);
1593 	return ret;
1594 }
1595 
1596 /*
1597  * Make sure there's writeable room. Wait for room if we can, otherwise
1598  * return an appropriate error.
1599  */
1600 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1601 {
1602 	int ret;
1603 
1604 	/*
1605 	 * Check ->nrbufs without the inode lock first. This function
1606 	 * is speculative anyways, so missing one is ok.
1607 	 */
1608 	if (pipe->nrbufs < PIPE_BUFFERS)
1609 		return 0;
1610 
1611 	ret = 0;
1612 	mutex_lock(&pipe->inode->i_mutex);
1613 
1614 	while (pipe->nrbufs >= PIPE_BUFFERS) {
1615 		if (!pipe->readers) {
1616 			send_sig(SIGPIPE, current, 0);
1617 			ret = -EPIPE;
1618 			break;
1619 		}
1620 		if (flags & SPLICE_F_NONBLOCK) {
1621 			ret = -EAGAIN;
1622 			break;
1623 		}
1624 		if (signal_pending(current)) {
1625 			ret = -ERESTARTSYS;
1626 			break;
1627 		}
1628 		pipe->waiting_writers++;
1629 		pipe_wait(pipe);
1630 		pipe->waiting_writers--;
1631 	}
1632 
1633 	mutex_unlock(&pipe->inode->i_mutex);
1634 	return ret;
1635 }
1636 
1637 /*
1638  * Link contents of ipipe to opipe.
1639  */
1640 static int link_pipe(struct pipe_inode_info *ipipe,
1641 		     struct pipe_inode_info *opipe,
1642 		     size_t len, unsigned int flags)
1643 {
1644 	struct pipe_buffer *ibuf, *obuf;
1645 	int ret = 0, i = 0, nbuf;
1646 
1647 	/*
1648 	 * Potential ABBA deadlock, work around it by ordering lock
1649 	 * grabbing by inode address. Otherwise two different processes
1650 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1651 	 */
1652 	inode_double_lock(ipipe->inode, opipe->inode);
1653 
1654 	do {
1655 		if (!opipe->readers) {
1656 			send_sig(SIGPIPE, current, 0);
1657 			if (!ret)
1658 				ret = -EPIPE;
1659 			break;
1660 		}
1661 
1662 		/*
1663 		 * If we have iterated all input buffers or ran out of
1664 		 * output room, break.
1665 		 */
1666 		if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1667 			break;
1668 
1669 		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1670 		nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1671 
1672 		/*
1673 		 * Get a reference to this pipe buffer,
1674 		 * so we can copy the contents over.
1675 		 */
1676 		ibuf->ops->get(ipipe, ibuf);
1677 
1678 		obuf = opipe->bufs + nbuf;
1679 		*obuf = *ibuf;
1680 
1681 		/*
1682 		 * Don't inherit the gift flag, we need to
1683 		 * prevent multiple steals of this page.
1684 		 */
1685 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1686 
1687 		if (obuf->len > len)
1688 			obuf->len = len;
1689 
1690 		opipe->nrbufs++;
1691 		ret += obuf->len;
1692 		len -= obuf->len;
1693 		i++;
1694 	} while (len);
1695 
1696 	inode_double_unlock(ipipe->inode, opipe->inode);
1697 
1698 	/*
1699 	 * If we put data in the output pipe, wakeup any potential readers.
1700 	 */
1701 	if (ret > 0) {
1702 		smp_mb();
1703 		if (waitqueue_active(&opipe->wait))
1704 			wake_up_interruptible(&opipe->wait);
1705 		kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1706 	}
1707 
1708 	return ret;
1709 }
1710 
1711 /*
1712  * This is a tee(1) implementation that works on pipes. It doesn't copy
1713  * any data, it simply references the 'in' pages on the 'out' pipe.
1714  * The 'flags' used are the SPLICE_F_* variants, currently the only
1715  * applicable one is SPLICE_F_NONBLOCK.
1716  */
1717 static long do_tee(struct file *in, struct file *out, size_t len,
1718 		   unsigned int flags)
1719 {
1720 	struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1721 	struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1722 	int ret = -EINVAL;
1723 
1724 	/*
1725 	 * Duplicate the contents of ipipe to opipe without actually
1726 	 * copying the data.
1727 	 */
1728 	if (ipipe && opipe && ipipe != opipe) {
1729 		/*
1730 		 * Keep going, unless we encounter an error. The ipipe/opipe
1731 		 * ordering doesn't really matter.
1732 		 */
1733 		ret = link_ipipe_prep(ipipe, flags);
1734 		if (!ret) {
1735 			ret = link_opipe_prep(opipe, flags);
1736 			if (!ret) {
1737 				ret = link_pipe(ipipe, opipe, len, flags);
1738 				if (!ret && (flags & SPLICE_F_NONBLOCK))
1739 					ret = -EAGAIN;
1740 			}
1741 		}
1742 	}
1743 
1744 	return ret;
1745 }
1746 
1747 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1748 {
1749 	struct file *in;
1750 	int error, fput_in;
1751 
1752 	if (unlikely(!len))
1753 		return 0;
1754 
1755 	error = -EBADF;
1756 	in = fget_light(fdin, &fput_in);
1757 	if (in) {
1758 		if (in->f_mode & FMODE_READ) {
1759 			int fput_out;
1760 			struct file *out = fget_light(fdout, &fput_out);
1761 
1762 			if (out) {
1763 				if (out->f_mode & FMODE_WRITE)
1764 					error = do_tee(in, out, len, flags);
1765 				fput_light(out, fput_out);
1766 			}
1767 		}
1768  		fput_light(in, fput_in);
1769  	}
1770 
1771 	return error;
1772 }
1773